测井方法原理 期末复习

测井方法原理 期末复习
测井方法原理 期末复习

测井方法原理 期末复习

一.绪论

1.测井技术发展根据采集系统特点大致可分为:模拟测井,数字测井,数控测井,成像测井

2.常规测井方法按照测井系列可分为:岩性测井系列、孔隙度测井系列、电阻率测井系列;

3.岩性测井系列包括:自然电位、自然伽马、井径测井;

4.孔隙度测井系列包括:声波时差测井、密度测井、中子测井;

5.电阻率测井系列包括:深、中、浅探测的普通时电阻率测井、侧向测井、感应测井

二.自然电位测井

1.自然电场产生的原因:(1)地层水和泥浆含盐浓度不同而引起的扩散电动势和吸附电动势

(2)底层压力与泥浆柱压力不同而引起的过滤电动势

2. 由砂岩,泥岩、泥浆所组成的导 电回路中,电动势Ed 和Eda 是串联的, 因此,在该回路中扩散作用的总电动势 Es 为该两电动势的代数和。Es = Ed+Eda = Kd ?lg(Cw/Cmf)+ Kda ?lg(Cw/Cmf) = Ks ?

lg(Cw/Cmf)

Ks=Kd+Kda

Ks---总的扩散、扩散吸附电动势系数; Es-井内自然电动势

通常把Es 记作SSP ,称为自然电位,此 时的E d 的幅度称为砂岩线,E da 称为泥 岩线。实际测井是通常都是以泥岩线作 为自然电位测井曲线的基线。

3.自然电位测井曲线的影响因素:(1)岩性影响、(2)温度影响、(3)地层水和泥浆滤液中含盐性质的影响、(4)地层水和泥浆滤液中含盐浓度比值的影响、(5)地层电阻率的影响、

(6)底层厚度的影响、(7)井径扩大和泥浆倾入的影响

4.自然电位测井的应用:(1)判断岩性、划分渗透层;(2)判断储层中流体性质;(3)计算地层水电阻率;(4)估计泥质含量:①泥质系数法②经验公式法③关系曲线法;(4)判断水淹层;

(5)地层对比和沉积相研究

三.普通电阻率法测井

1.地层因素:也叫相对电阻率,用F 表示,F=Ro/Rw ,式中: Ro —孔隙中100%含水时的地层电阻率;Rw —地层水电阻率。

2.

电阻增大系数:即含油岩石的电阻率Rt 与该岩石完全含水时的电阻率R0之比,I=Rt/Ro

3.阿尔奇公式: 上式合称为Archie 公式,它们是应用电阻率测井资料解释具有颗粒孔隙的含水岩石和含油气岩石的两个基本解释公式。式中 b — 系数,仅与岩性有关;n — 饱和度指数,n ≈2。

4.阿尔奇公式的重要意义:1)奠定了测井定量解释的基础;2)架起了孔隙度测井(一般为声测井与核测井)与饱和度测井(一般为电阻率测井)之间的桥梁。

5.视电阻率:这个电阻率值既不可能等于某一岩层的真电阻率,也不是电极周围各部分介质电阻率的平均值,而是在离电极装置一定距离范围内各介质电阻率综合影响的结果。我们称之为视电阻率,记作Ra 。 m w a R R F φ==0()n o n w t S b S b R R I -===10n

m t w w R abR S 1???

? ??=φ

6.泥浆低侵:泥浆侵入后,Ri

泥浆高侵:泥浆侵入后,Ri>Rt ,一般对应水层

7.梯度电极系:梯度电极系就是成对电极靠得很近,而不成对电极离得较远的电极系。 电位电极系:电位电极系就是在电极的相互距离中,成对电极相距较远的电极系。

8.普通视电阻率测井曲线特征:(1)梯度电极系视电阻率理论曲线:对于高阻厚层模型,理论曲线特征:①顶部和底部梯度电极系视电阻率曲线形状正好是相反的;②顶部梯度曲线上的视电阻率极大值、极小值分别出现在高阻层Rt 的顶界面和底界面,而底部梯度曲线上的极大值和极小值分别出现在高阻层的底界面和顶界面。③中部视电阻率测量时不受上下围岩的影响,故在地层中部,曲线出现一个直线段其幅度为Rt 。对于高阻中等厚度层模型,其理论曲线特征如下:①曲线在高阻层界面附近的特点和厚地层视电阻率曲线界面特征基本相同;②地层中部差异较大,随着地层的变薄,地层中部的平直线段部分不再存在,曲线变化陡直,幅度变低。 对于高阻薄层模型,其理论曲线特征如下:①在高阻薄层处只有极大值是明显的;②在高阻层的下方(成对电极一方)距高阻层底界面一个电极距的深度上出现一个假极大b 点。(2)电位电极系视电阻率理论曲线: ①当上、下围岩电阻率相等时,曲线对 地层中点上下对称;②视电阻率曲线在地层中点取得极值③在地层界面处,曲线出现“小平台”,小平台中点正对着地层的界面。

9.普通视电阻率测井曲线影响因素:(1)井的影响(2)电极系的影响(3).侵入影响(4).高阻邻层的屏蔽影响(5).围岩的影响

10.普通视电阻率测井的地质应用:①确定岩层界面;②确定地层电阻率Rt ;③地层对比;④用于标准测井图

11.标准测井:在一个油田或一个区域内,为了研究岩性变化、构造形态和大段油层组的划分等工作,常使用几种测井方法在全地区的各口井中,用相同的深度比例(1:500)及相同的横向比例对全井段进行测井,这种组合测井叫做标准测井。

四.侧向测井

1.三电极测井工作原理:(1)测井过程中,主电极Ao 和A1、A2供以相同极性的电流Io 和Ia ,并使它们之间处于等电位状态。(2)当Ao 与A1、A2电位不相等时,其电位差被送到调整线路上,通过调节A1、A2电路中的屏蔽电流Ia ,保持整个电极系处于等电位状态。(3)三侧向的电场: 由于主电流Io 被A1、A2所屏蔽。主电流水平流入地层。(4)仪器记录的是任意屏蔽电极A1或A2,或主电极Ao 与回流电极B 之间的电位差△U 和主电极电流Io ro —表示主电极的接地电阻,表示主电电极到回流电极所经过的 介质的电阻。(5)三侧向的主电流基本上是垂直射入地层。接地电阻定义:ro ro=rm+rt+ri(等效串联电路) 其中rm 、ri 、rt 对Ra 贡献,取决

于聚焦能力大小,聚焦能力强,rt 贡献大,反之rt 对Ro 贡献就小。

2..影响三侧向测井的因素:1)电极系参数的影响;2

3.三侧向曲线特征:单一高阻层的电阻率曲线形态(1)上下围岩一致时,曲线中心对称,对高阻层,Ra 上升;层愈厚,电阻越高。(2)上下围岩不一致时,Ra 曲线不对称,极大值偏向高阻围岩一方;3)h >4d 时,极值不变,曲线对称,对地层中心出现极大值。

4.三侧向测井曲线的应用:(1)划分岩性剖面:地层界面一般划在曲线开始急剧变化的位置

(2)可用LLd 、LLs 重叠法定性判断油水层:油、水层的泥浆侵入性质不同,(Rmf>Rw 时)油层多为减阻侵入,水层多为增阻侵入。 深侧向RLLD >浅侧向RLLS 为油层;反之为水层。3)求地层真电阻率Rt :对于较厚的高阻层可以通过深浅三侧向组合图版求出岩层的真电阻率Rt 和侵入带直径Di 。

5.双侧向测井与三侧向的比较:1)电极系结构:LL3由三个柱状电极构成,双侧向由“七环、两柱”状电极构成。(2)探测深度:双侧向探测深度大于三侧向。在泥浆侵入深时,LL3所o a r K I U K R ?=?=0

测视电阻率受侵入带影响大,深浅三侧向探测深度差别小,给判断油(气)、水层带来困难。其原因是:三侧向的探测深度取决于电极系长度,LL3电极系长度有限,主电流从一开始就缓慢发散,到一定程度后扩散剧烈,致使主电流不能进入较深的地层。而双侧向的探测深度由屏蔽电极A1,A2的长度决定。双侧向采用将屏蔽电极分为两段,通过控制各段的电压,达到增加探测深度目的。(3)纵向分层能力:三侧向的分层能力由主电极长度决定。由于主电极较短,主电流呈水平状进入地层,降低了上下围岩的影响,纵向分层能力较强,可划分出h=0.4~0.5m以上地层电阻率的变化。双侧向的纵向分层能力与O1O2的距离有关,可划分出h> O1O2的地层电阻率变化。(4)影响因素:三侧向受井眼、围岩影响,探测深度不深,使用受限制。层厚、围岩对深、浅双侧向的影响是相同的,浅双侧向比浅三侧向受井眼影响小得多。(5)应用:两种侧向测井都可用于划分地质剖面,判断油水层,确定地层电阻率Rt 和侵入带直径Di。

6.双向测井资料应用:(1)确定地层的真电阻率需要做必要的井眼、围岩、侵入三种因素的校正后即可用来确定地层的真电阻率。(2)划分岩性剖面(3)快速直观地判断油水层。

7. 将深、浅侧向视电阻率曲线重叠绘制如图,观察

两条曲线幅度的相对关系,在渗透层井段会出现

幅度差。深侧向曲线幅度大于浅侧向曲线幅度,

叫正幅度差(意味着泥浆低侵),这种井段一般可

以认为是含油气井段,反之,当深侧向曲线幅度

小于浅侧向曲线幅度时,称之为负幅度差(意味

着高侵),这种井段可以认为是含水井段。当然最

后确定油气,水层还得参考其他测井资料综合判

断做出可靠结论。

五.感应测井

1.感应测井原理:把装有发射线圈T和接收线圈R的感应测井探管放入井中,给发射线圈

通交流电(常为20kHz),在发射线圈周围地层中产生交变磁场Φ1,这个

交变磁场通过地层,在地层(假想线圈)中感应出电流I1,此电流环绕

井轴流动,称为涡流。涡流在地层中流动又产生交变磁场,这个磁场是地

层中的感应电流产生的,称为二次磁场φ2二次磁场φ2穿过接收线圈R,

并在R中感应出电流,从而被记录仪记录。

2.纵向微分几何因子:实际反映的是单位厚度水平地层几何因子在纵向(轴向)上变化规律。

物理意义是:厚度为1个单位,z值一定的无限延伸薄板状介质对视

电导率的相对贡献。

纵向积分几何因子:双线圈系处于厚度为h的地层中心时,地层对测量结果所作的贡献。

物理意义是:当双线圈系中点与地层中点重合时,厚度为h的地层对

视电导率的相对贡献。

径向微分几何因子:就是研究以井轴为中心的单位厚度无限延伸圆筒状介质的几何因子。

物理意义是:厚度为1,半径为r的无限长圆筒状介质对视电导率的

相对贡献。

径向积分几何因子:就是讨论以井轴为中心的整个圆柱状介质的几何因子。物理意义是:半径不同无限长圆柱状介质对视电导率相对贡献。

3.六线圈系与双线圈系的主要区别:从结构上看,六线圈系比双线圈系增加了一对聚焦线圈和一对补偿线圈,其中聚焦线圈对放在主线圈外侧对称位置,补偿线圈对通常放在主双线圈

之间且绕轴方向与主线圈相反,补偿线圈是为了消除井和侵入带的影响。改变探测深度,聚焦线圈功能是减小围岩影响,提高纵向辨别能力。双线圈系只由两个线圈组成,它的纵向特征和径向特征都不够理想。在纵向特征上:均匀介质中有50%的信号是线圈系以外的介质贡献的,在比较薄的底层情况下,上、下围岩的影响比较大,同时底层界面在曲线上反映不够明显。在径向上特征:1)靠近线圈系的介质r<0.45L,对读数有较大影响,说明了井对测量结果的影响很大.2)分析显示,简单双线全系的无用信号远大于有用信号,所以,相对双线圈,六线圈系有改善,压制了无用信号,克服和抵消了井、侵入岩、围岩等对测量时的影响。

4.感应测井曲线的应用:1.划分地层;2.确定地层的真电阻率Rt;3确定储层流体性质

5.感应测井的曲线特征:1上、下围岩电导率相同的单一岩层的感应测井曲线特征:曲线的共同特点是曲线对称,正对岩层处视电导率增大。但是随着厚度的变化,曲线的幅度随地层厚度的增大而增大。当厚度大于5米以上,岩层的视电导率接近真电导率,而且曲线的半幅度点为地层界面点。2.上、下围岩电导率不同的单一岩层的感应测井曲线特征:当岩层厚度大于2米时,曲线呈台阶状,可按地层中点视电导率取值,用半幅点分层。当岩层厚度小于1米时,曲线在地层处呈倾斜状,读值和分层都比较困难。

6.感应测井的曲线影响因素:1)均质校正:指对电磁波在均匀无限介质中传播时,其幅度衰减和相位移动的校正;2)围岩—层厚校正:根据图版,进行围岩—层厚校正。3)侵入校正:如果地层没有泥浆侵入,则经过均质校正及围岩—层厚校正后的电导率即为地层电导率。如果有泥浆侵入,则接着做侵入校正,得到地层电导率。

7.比较普通电阻率测井、侧向测井及感应测井的电极系特征、探测特征、电流分布特征及适用条件。见上课画的表。

六.微电阻率测井

1.微电阻率测井:是指探测深度较浅的一类测井方法,主要是探测储集层冲洗带、侵入带的

电阻率。

2.微电极系的测井曲线:岩层依渗透性可分为渗透层和非渗透层:(1)当岩层为非渗透层时测得的微电位和微梯度值相等。在微电极系曲线表现为无幅度差或有正、负不定的较小的幅度差。非渗透性的石灰岩和白云岩薄层在微电极系曲线上幅值极高且无幅度差或者具有很小的正、负不定的幅度差。(2)当岩层为渗透性地层时:由于泥浆侵入地层,同时在渗透层井壁上形成泥饼,测量结果Ra主要取决于泥浆侵入带的电阻率Ri、泥饼电阻率Rmc和泥饼的厚度Hmc。通常泥饼电阻率约为1-3倍的泥浆电阻率,冲洗带电阻率Rxo约为泥饼电阻率Rmc的5陪以上。因此微梯度电极系的极距比微电位电极系的极距短,因而受泥饼的影响比微电位电极系更大一些。

3.微电极系测井资料应用:①确定岩层界面②确定井径扩大井段③确定含油砂岩的有效厚度④划分岩性和渗透性地层

七.声波测井

1.声波测井主要分两大类:声速测井和声幅测井

2.岩石中声波传播的影响因素:(1)岩性:不同岩石矿物有不同弹性性质,所以不同岩石,其声速大小也不同。(2)孔隙度:岩层孔隙中通常被油、气、水等流体介质所充填。流体传播声波的速度较造岩矿物小得多,即孔隙流体相对岩石骨架是低速介质,所以岩性相同、孔隙流体不变时,孔隙度越大,岩石声速越小。(3)岩层的地质时代:深度相同,成分相似的岩石,当地质时代不同时,声速也不同。一般地,老地层比新地层具有较高的声速。(4)岩层埋藏的深度:在岩性和地质时代相同的条件下,声速随岩层埋藏深度加深而增大。

3.为了保证接收器首先接收到滑行波,就必须消除后面几种波的干扰,即不让这些波在滑行波之前到达。在测井仪器中,通常采用如下措施:①仪器外壳上刻槽;②适当增长发射器

至第一接收器距离(源距),使直达波与滑行波通过的路径大体相等,即可首先接收到滑行波。

4. 单发双收声速测井原理:假设发射器在某一时刻t0发射声波,声波 经过泥浆、地层、泥浆分别传播到接收器R1和R2。即沿TABR1 到达路径R1,沿TABCR2路径到达R2,到达接收器R1和R2的 时刻分别为t1和t2,那么到达两个接收器的时间差Δt 为

如果两个接收器之间的距离为L (称之为间距),且所对井径没有明显变化、仪器居中时,

则可以认为BC ≈R1R2,于是

5.周波跳跃:在声速测井曲线上,对应于疏松含气砂岩层、裂缝带或破碎带及井眼严重垮塌等地段,常出现时差明显增大且有时变化无规律现象。

6.声波时差测井曲线的影响因素:① 井径变化的影响② 地层厚度的影响③ 气层、破碎带等引起周波跳跃④ 岩石物性变化影响曲线形态

7. 曲线特征① 地层均匀、上下围岩声速相同时,曲线关 于地层中心对称,岩层的界面位于曲线急剧变化处。 ② 岩层不均匀或夹层时,岩层对应的时差曲线出现相 应变化。③ 界面附近井径影响,不反映真值。 ④ 声 波的“周波跳跃”:疏松含气砂岩层、裂缝带或破碎带 以及井眼严重垮塌等地段,出现“周波跳跃”,据此可 以识别气层或碳酸岩地层中的裂缝发育带。

8.声波时差测井应用:(1)划分岩性,作地层对比:由于各类岩石声波速度不同,所以根据声速曲线可以划分不同岩性的岩石。(2)判断气层:天然气和油水层时差差别大,一般气比油水中大30—50μs/m ,所以当岩层孔隙中含气时,时差将显著增大。此外由于声波在气层中能量衰减显著,有可能出现周波跳跃现象。(3)确定地层孔隙度Φ (4)为地震勘探提供声速资料(5)提供波阻抗和反射系数

9.水泥胶结测井的测量原理:A 、套管波的产生:声波以临界角入射到套管内壁,在套管内激发套管波;B 、套管波沿套管传播时,在井内产生临界折射波,此波被井内接收器接收并记录其首波幅度;C 、套管波幅度与第一界面的胶结程度有关,第一界胶结良好,套管波幅度低;第一界胶结差,套管波幅度高。这样,就得到了一条随深度变化的套管波幅度曲线,以反映第一界面胶结情况。

10.水泥胶结测井曲线的影响因素:(1)测井时间:为保证灌入到管外环行空间的水泥充分凝固,一般在固井后24小时到48小时测井最好,过早或过晚都会造成测井值的失真。(2)水泥环厚度:实验证明,水泥环厚度大于2厘米,其对测井曲线的影响基本固定;小于2厘米,随水泥环厚度的减小,测井值升高(失真),因此,在对资料进行解释时,应参考井径曲线。(3)井内泥浆气侵:井内泥浆气侵造成声波幅度的降低,造成胶结良好的假象。(4)仪器偏心:与井内泥浆气侵一样,仪器偏心也造成声幅的降低,造成胶结良好的假象。

11.不同固井情况下的变密度测井的特点见表: 固井情况

波列特征 VDL 图形特点

△t ???? ??++-???? ??+++=-=?11211222112v B R v AB v TA v CR v BC v AB v TA t t t ???? ??-+=11122v B R v CR v BC 2

2v l v BC t ==?t l

v ?=2m a f m a t t t t ?-??-?=φ

套管与水泥环(第一界面)、水泥环与地层(第二界面)均胶结良好套管波弱

地层波强

左浅

右深

第一界面胶结良好而第二界面未胶结套管波弱

地层波也弱

左浅

右浅

第一界面未胶结或套管外为泥浆套管波强

地层波弱

左深

右浅

八.自然伽马测井

1.根据实验和统计,沉积岩的自然放射性强度一般有以下变化规律:①随泥质含量的增加而增加;②随有机物含量的增加而增加,如沥青质泥岩的放射性很高。在还原条件下,六价铀能被还原成四价铀,从溶液中分离出来而沉淀在地层中,且有机物容易吸附含铀和钍的放射性物质;③随着钾盐和某些放射性矿物的增加而增加。

2.岩石含泥质越多,自然放射性就越强。这是因为:①构成泥质的粘土颗粒较细,有较大的比表面积,在沉积过程中能够吸附较多的溶液中放射性元素的离子。②泥质颗粒沉积时间长(特别是深海沉积),有充分的时间同放射性元素接触和进行离子交换,所以,泥质岩石就具有较强的自然放射性。

3. 其工作原理是,伽马射线射到萤光

体(如碘化钠晶体)上,从其原子中打

出电子,并在该电子的激发下发出闪

光。光电倍增管将闪光转变为电脉

冲,电脉冲的数量与进入萤光体的伽

马射线成正比,这就是闪烁计数器的

基本工作原理。

4. 自然伽马测井曲线特征:①中心对称(上下围岩放射性相同),中心出现极大值②h<3d0,曲线极大值随h增加而增加,h≥3d0,极大值=const,与强度大小成正比,与厚度无关③h≥3d0半幅点定界面,h<3d0,厚度>真实厚度。

5.自然伽马测井影响因素:(1)放射性涨落影响;(2)测井速度和仪器时间常数的影响;(3)地层厚度对曲线幅度的影响,(4)井的参数对自然伽马测井曲线的影响

6.放射性涨落:由于地层中放射性元素的衰变是随机的,因此,在一定时间间隔内衰变的原子核数,亦即放射出的伽马射线数不可能完全相同。但从统计的角度来看,它基本上围绕着一个平均值在一定的范围内波动。这就是通常所说的统计起伏,或放射性涨落。

7.自然伽马测井曲线应用:(1)划分岩性,确定渗透层;(2)进行地层对比;(3)确定岩石的泥质含量V sh=(2c·△GR-1)/(2c-1)老地层C=2, 新地层C=3.7—4;(4)确定岩石的粒度中值,作沉积环境分析

九.自然伽马能谱测井

1.自然伽马能谱测井资料的应用:⑴研究生油层:大量研究表明,岩石中的有机物对铀富集起着重要作用,因此应用自然伽马能谱测井,可在纵向和横向上,追踪生油层和评价生油层生油能力。⑵求泥质含量:研究发现,地层的泥质含量与钍或钾的含量有较好的线性关系,而与地层的铀含量关系较小⑶用Th/U比值研究沉积环境:统计表明:陆相沉积、氧化环境、风化层,Th/U>7;海相沉积、灰色或绿色页岩,Th/U<7;海相黑色页岩、磷酸盐岩,Th/U<2。(5)寻找高效放射性碎屑岩和碳酸盐岩储集层

十.密度测井

1.伽马射线与物质的相互作用:①光电效应②康普顿—吴有训效应(0.25-

2.50MeV)③

电子对效应 ④ 伽马射线的吸收

2.密度测井使用的伽马源与岩石作用时,主要产生康普顿效应,并散射伽马射线。密度测井就在于测量这种散射伽马射线强度而求岩石密度。

3. 为了克服井眼对密度测井影响,常采用:① 推靠装置将装有伽马源和探测器仪器部位推向井壁进行测量;② 将伽马源放在一个带定向窗口的铅瓶内,定向发射、定向接收,增强散射伽马射线强度。

4.通常由于短源距探测器探测深度浅,受泥饼影响比长源距探测器大,故图上交会点就会偏离脊线。这种偏离可以有两种情况:① 当泥饼密度小于岩石密度时,泥饼的影响使得长、短源距计数率有所增高,且因短源距计数率增高更显著,于是,图上的交会点将偏离所探测岩石的实际密度值而落在脊线右上方。② 当泥饼密度大于岩石密度时(如含重晶石的泥饼),泥饼的影响使得长、短源距计数率降低,且因短源距计数率的降低更显著,于是,图上的交会点将落在脊线左下方。

5.密度测井的地质应用:(1)确定岩层的孔隙度 纯岩石孔隙度为φ,骨架密度、孔隙流体密度和岩层体积密度分别为ρma 、ρf 、ρb (2)确定岩性(3)密度曲线与中子曲线重叠可用于识别气层:气层表现为低孔隙度

十一.中子测井

1.中子测井分类:(1)根据中子测井的记录内容:可以将它分为:中子-中子测井;中子-伽马测井 (2)根据仪器的结构特点,中子—中子测井又可分为:中子-超热中子测井(SNP )—井壁中子测井;中子-热中子测井(CNL )—补偿中子测井

2.地层对快中子的减速能力主要决定于地层的含氢量。

3.减速长度L S :用来描述快中子变为热中子的减速过程,减速长度定义为由快中子减速为热中子所经过的直线距离的平均值,单位为厘米

4.扩散长度Ls :从产生热中子起到其被俘获吸收为止,热中子移动的距离。

5.地层的含氢指数:单位体积的任何岩石或矿物中氢核数与同样体积的淡水中氢核数的比值,称为该岩石或矿物的含氢指数,用H 表示。 ρ是介质密度M 是该化合物的克分子量;x 是介质分子中的氢原子数;K 是比例常数

6.中子测井的应用:① 确定地层孔隙度② FDC 与CNL 石灰岩孔隙度曲线重叠定性判断气层:天然气使FDC 测井计算孔隙度增大,而使CNL 测井计算孔隙度偏小。故二者在气层上有一定的幅度差,而且φD ﹥φN 。③ CNL 与FDC 测井交会求孔隙度、确定岩性:由密度测井(FDC)的体积密度值和CNL 的石灰岩孔隙度值的交会点,可确定地层的孔隙度φND 的大小和岩性。

7.中子—伽马测井中的氯和氢的作用比较:对相同含氢量的岩石而言,如果含氯量不同时,在含氯量高的岩石中,无论采用的源距如何,测得的中子—伽马射线强度均有所增高。

8. 中子—伽马测井曲线的应用: ① 划分气层。中子伽马测井曲线可以用来划分气层②确定油水界面

十二.测井解释

1. 如图所示,当含水饱和度很低而含油饱和度很高 时,水的相对渗透率接近于零,地层产油不出水。 这时含水饱和度叫束缚水饱和度S wb 。当含水饱和 度很高,而含油饱和度很低时,有的绝对渗透率接 近于零,此时地层只出水不出油,这时的含油饱和 度叫残油饱和度S hr 。

2.储集层具备的条件:一是具有储存油气的孔隙、孔洞和裂缝(隙)等空间场所;二是孔隙、孔洞和裂缝(隙)之间必须相互连通,在一定压差下能够形成油气流动的通道。 f ma b ma ρρρρφ--=M x K H ?=ρ

3.储集层的基本参数:1、孔隙度2、渗透率3、饱和度4、储集层的厚度

4.

5.储集层评价要点:(1)岩性评价:储集层的岩性评价是指确定储集层岩石所属的岩石类别,计算岩石主要矿物成分的含量和泥质含量,还可进一步确定泥质在岩石中分布的形式和粘土矿物的成分。①岩石类别:测井地层评价是按岩石的主要矿物成分确定岩石类别,如砂岩、泥质砂岩、粉砂岩、砾岩、石灰岩、白云岩、石膏、硬石膏、盐岩、花岗岩、变质岩、石灰质白云岩等。②泥质含量和粘土含量:泥质含量是岩石中颗粒很细的细粉砂(小于0.1mm)与湿粘土的体积占岩石体积的百分数,用符号Vsh 表示。当需要把泥质区分为细粉砂和湿粘土时,则要计算岩石的粘土含量,它表示岩石中湿粘土的体积占岩石体积的百分数,用符号Vclay 表示。(2)储层物性评价:储层物性反映的是储层质量的好坏,决定了油区的丰度和储量。应用测井资料对储层物性评价,主要是通过储层的有效孔隙度、绝对渗透率、有效渗透率、孔渗关系等进行储层的评价分类。测井计算反映储层物性的参数主要有孔隙度、渗透率、泥质含量以及粒度中值,甚至颗粒分选系数等,显然储层孔隙度高、渗透率大、泥质含量低、粒度大而均匀则储层物性好,相反,储层孔隙度低、渗透率小、泥质含量高、粒度细或颗粒不均匀则储层物性差。(3)储层含油性评价:储集层的含油性是指岩层孔隙中是否含油气以及油气含量大小。地质上对岩心含油级别的描述分为饱含油、含油、微含油、油斑及油迹,其含油性依次降低。应用测井资料可对储集层的含油性作定性判断,更多的是通过定量计算饱和度参数来评价储集层的含油性。(4)储层油气产能评价:油气产能评价是在定性分析与定量计算的基础上,对储集层产出流体的性质和产量做出综合性的解释结论。 油气层是含水饱和度接近于束缚水饱和度的储集层;水层是不含油或仅含残余油的储集层;油水同层界于两者之间,干层是孔隙性和渗透性都很差的地层。这些是储集层产能评价最基本的出发点。

6.四性关系:指岩性,物性,含油性和电性。

7.岩石体积物理模型:根据测井方法的探测特性和储集层的组成,按其物理性质的差异,把实际岩石简化为对应的性质均匀的几个部分,研究每一部分对测量结果的贡献,并把测量结果看成各部分贡献的总和。

8.岩石体积物理模型要点:(1)按物质平衡原理,岩石体积V 等于各部分体积V i 之和

(2)岩石宏观物理量M 等于各部分等于宏观物理量M i 之和,当用单位体积物理量表示时,则岩石单位体积物理量m 就等于各部分相对体积V i 与其单位体积物理量m i 乘积之综合。

出师表

两汉:诸葛亮

主要岩石的测井特征 岩性 自然电位 自然伽马

微电极 电阻率 井径 声波时差 泥岩 泥岩基线 高值 低、平值 低、平值 大于钻头直径 大于300

页岩 近于泥岩基线 高值 低、平值 低、平值较泥岩高 大于钻头直径 大于300 粉砂岩 明显异常 中等值 中等正幅度差异

低于砂岩 小于钻头直径 260-400 砂岩 明显异常 低值 明显正幅度差异 中等到高,致密砂岩高 小于钻头直径 250-380 煤层 异常不明显 低值 无幅度差异 高阻 接近钻头直径 350-450

先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。诚宜开张圣听,以光先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。

宫中府中,俱为一体;陟罚臧否,不宜异同。若有作奸犯科及为忠善者,宜付有司论其刑赏,以昭陛下平明之理;不宜偏私,使内外异法也。

侍中、侍郎郭攸之、费祎、董允等,此皆良实,志虑忠纯,是以先帝简拔以遗陛下:愚以为宫中之事,事无大小,悉以咨之,然后施行,必能裨补阙漏,有所广益。

将军向宠,性行淑均,晓畅军事,试用于昔日,先帝称之曰“能”,是以众议举宠为督:愚以为营中之事,悉以咨之,必能使行阵和睦,优劣得所。

亲贤臣,远小人,此先汉所以兴隆也;亲小人,远贤臣,此后汉所以倾颓也。先帝在时,每与臣论此事,未尝不叹息痛恨于桓、灵也。侍中、尚书、长史、参军,此悉贞良死节之臣,愿陛下亲之、信之,则汉室之隆,可计日而待也。

臣本布衣,躬耕于南阳,苟全性命于乱世,不求闻达于诸侯。先帝不以臣卑鄙,猥自枉屈,三顾臣于草庐之中,咨臣以当世之事,由是感激,遂许先帝以驱驰。后值倾覆,受任于败军之际,奉命于危难之间,尔来二十有一年矣。

先帝知臣谨慎,故临崩寄臣以大事也。受命以来,夙夜忧叹,恐托付不效,以伤先帝之明;故五月渡泸,深入不毛。今南方已定,兵甲已足,当奖率三军,北定中原,庶竭驽钝,攘除奸凶,兴复汉室,还于旧都。此臣所以报先帝而忠陛下之职分也。至于斟酌损益,进尽忠言,则攸之、祎、允之任也。

愿陛下托臣以讨贼兴复之效,不效,则治臣之罪,以告先帝之灵。若无兴德之言,则责攸之、祎、允等之慢,以彰其咎;陛下亦宜自谋,以咨诹善道,察纳雅言,深追先帝遗诏。臣不胜受恩感激。

今当远离,临表涕零,不知所言。

测井解释原理

测井解释原理 一: 储集层定义:具有连通孔隙,既能储存油气,又能使油气在一定压差下流动的岩层。 必须具备两个条件: (1)孔隙性(孔隙、洞穴、裂缝) 具有储存油气的孔隙、孔洞和裂缝等空间场所。 (2)渗透性(孔隙连通成渗滤通道) 孔隙、孔洞和裂缝之间必须相互连通,在一定压差下能够形成油气流动的通道。储集层是形成油气层的基本条件,因而储集层是应用测井资料进行地层评价和油气分析的基本对象。储集层的分类 ?按岩性:–碎屑岩储集层、碳酸盐岩储集层、特殊岩性储集层。 ?按孔隙空间结构:–孔隙型储集层、裂缝型储集层和洞穴型储集层、裂缝-孔洞型储集层。碎屑岩储集层 ?1、定义:–由砾岩、砂岩、粉砂岩和砂砾岩组成的储集层。 ?2、组成:–矿物碎屑(石英、长石、云母) –岩石碎屑(由母岩类型决定) –胶结物(泥质、钙质、硅质) ?3、特点:–孔隙空间主要是粒间孔隙,孔隙分布均匀,岩性和物性在横向上比较稳定。?4、有关的几个概念 –砂岩:骨架由硅石组成的岩石都称为砂岩。骨架成份主要为SiO 2 –泥岩(Shale):由粘土(Clay)和粉砂组成的岩石。 –砂泥岩剖面:由砂岩和泥岩构成的剖面。 碳酸盐岩储集层 ?1、定义:–由碳酸盐岩石构成的储集层。 ?2、组成:–石灰岩(CaCO 3)、白云岩Ca Mg(CO 3)2)、泥灰岩 ?3、特点:–储集空间复杂 有原生孔隙:分布均匀(如晶间、粒间、鲕状孔隙等) 次生孔隙:形态不规则,分布不均匀(裂缝、溶洞等) –物性变化大:横向纵向都变化大 ?4 、分类 按孔隙结构: ?孔隙型:与碎屑岩储集层类似。 ?裂缝型:孔隙空间以裂缝为主。裂缝数量、形态及分布不均匀,孔隙度、渗透率变化大。?孔洞型:孔隙空间以溶蚀孔洞为主。孔隙度可能较大、但渗透率很小。 ?洞穴型:孔隙空间主要是由于溶蚀作用产生的洞穴。 ?裂缝-孔洞型:裂缝、孔洞同时存在。 碳酸盐岩储集空间的基本类型 砂泥岩储集层的孔隙空间是以沉积时就存在或产生的原生孔隙为主; 碳酸盐岩储集层则以沉积后在成岩后生及表生阶段的改造过程中形成的次生孔隙为主。 碳酸盐岩储集层孔隙空间的基本形态有三种:孔隙及吼道、裂缝和洞穴。 碳酸盐岩储集层孔隙结构类型有:孔隙型、裂缝型、裂缝- 孔隙型、及裂缝- 洞穴型

2006-考试题(测井原理与综合解释)答案

2006 一、名称解释(每题3分,共15分) 康普顿效应:康普顿效应:在康普顿效应中,伽马光子与原子的核外电子发生非弹性碰撞,一部分能量转移给电子,使它脱离原子成为反冲电子,而散射光子的能量和运动方向发生变化。 挖掘效应:具有相同含氢指数的岩石,由于含有天然气而使得用中子测井测得的孔隙度比实际的含氢指数要小的现象。 地层因素:岩石电阻率与该岩石中所含水的电阻率的比值就是岩石的地层因素(或相对电阻率)。该比值只与岩样的孔隙度、胶结情况和孔隙形状有关,而与孔隙中所含水的电阻率无关。 电极系互换原理:把电极系中的电极和地面电极功能互换(原供电电极改为测量电极,原测量电极改为供电电极),各电极相对位置不变,所测得的视电阻率和原来的完全相同,这就叫电极系互换原理。 含油气孔隙度:油气体积占岩石体积的百分数(V油气/V岩石)。 体积物理模型:见参考书46 周波跳跃:周波跳跃是指声波时差比邻近的值高出一个或几个波长,而出现周期性增大的现象。 横向各项异性:是指在沿井轴方向和与井轴垂直方向(水平方向)上,地层的声波速度、弹性力学性质有差异,而在与该轴垂直的平面(水平面)上,在各个方向上的声波速度和弹性力学性质相同,就是横向各项异性。 二、选择题(每题1分,共12分):下面每题有4个答案,选择正确的答案填入括号中。 1、岩性密度测井主要利用伽马射线与地层之间的(B)作用来进行测量的。 A:电子对效应与康普顿效应B:光电效应与康普顿效应C:康普顿效应与俘获效应 D:光电效应与弹性散射 2、对于普通电阻率测井,电极系的电极距增大,(B) A:其探测深度会增大,纵向分辨率会增高。 B:其探测深度会增大,纵向分辨率会降低。 C:其探测深度会减小,纵向分辨率会增高。 D:其探测深度会减小,纵向分辨率会降低。 3、利用中子测井曲线进行读值,下面哪句话表述不正确( D )。 A:砂岩的孔隙度总是大于它的真孔隙度。 B:白云岩的孔隙度总是小于它的真孔隙度。 C:石灰岩的孔隙度总是等于它的真孔隙度。 D:中子测井读值受岩性的影响较大,不同岩性的地层均需校正才能得到较准确的地层孔隙度值。 4、在相同情况下,含泥质地层的自然电位负异常幅度( A ) A:低于纯砂岩地层的自然电位负异常幅度。 B:高于纯砂岩地层的自然电位负异常幅度。 C:与纯砂岩地层的自然电位负异常幅度相等。 D:可能高于、也可能低于纯砂岩地层的自然电位负异常幅度。 5、自然伽马能谱测井是根据(A)的特征伽马射线的强度测定地层中铀的含量的。 A:214Bi B:235U C:214Pb D:208TI

(完整word版)测井方法原理及应用分类

测井方法的主要分类 1. 电法测井,又分自然电位测井、普通电阻率测井、侧向(聚焦电阻率)测井、感应测井、介电测井、电磁波测井、地层微电阻率扫描测井、阵列感应测井、方位侧向测井、地层倾角测井、过套管电阻率测井等(频率:从直流0~1.1GHZ)。 2. 声波测井,又分声速测井、声幅测井、长源距声波全波列测井、水泥胶结评价测井、偶极(多极子)声波测井、反射式声波井壁成像测井、井下声波电视、噪声测井等(频率由高向低发展,20KHZ~1.5KHZ)。 3. 核测井,种类繁多,主要分三大类:伽马测井、中子测井和核磁共振测井,伽马测井具体如下:自然伽马测井、自然伽马能谱测井、密度测井、岩性密度测井、同位素示踪测井等。 中子测井具体包括:超热中子测井、热中子测井、中子寿命测井、中子伽马测井、C/O比测井、PND-S测井、中子活化测井等。 发展趋势:中子源-记录伽马谱类(非弹性散射、俘获伽马、活化伽马等不同时间测量)。 4. 生产测井,主要分为三大类:生产动态测井、工程测井、产层评价测井。 1

生产动态测井方法主要有:流量计、流体密度计、持水率计、温度计、压力计、井下终身监测器等。 工程测井方法主要有:声幅、变密度测井仪、水泥胶结评价测井仪、磁定位测井仪、多臂微井径仪、井下超声电视、温度计、放射性示踪等。 产层评价方法测井:硼中子寿命、C/O比测井、脉冲中子能谱(PNDS)、过套管电阻率、地层测试器、其它常规测井方法组合等。 5. 随钻测井,大部分实现原理与常规电缆测井相同,实现方式上有许多特殊性。 2

测井方法主要特征总结归类表 3

4

5

测井仪器方法及原理重点

精品课程作业: 第一章双测向测井 习题一 1.为什么要测量地层的电阻率? 2.测量地层电阻率的基本公式是什么? 3.普通电阻率测井测量地层电阻率要受到那些因素的影响? 4.聚焦式电阻率测井是如何实现对主电流聚焦?如何判断主电流处于聚焦 状态? 5.画出双测向电极系,说明各电极的名称及作用。 6.为什么双测向的回流电极B和参考电极N要放在无限远处?“无限远处” 的含义是什么? 7.为什么说监控回路是一个负反馈系统?系统的增益是否越高越好? 8.为什么说浅屛流源是一个受控的电压源? 9.试导出浅屛流源带通滤波器A3的传递函数。 10.已知该带通滤波器的中心频率为128Hz,求带通宽度、 11.为什么说深测向的屛流源是一个受控的电流源。 12.监控回路由几级电路组成?各起何作用? 13.试画出电流检测电路的原理框图,说明各单元的功用? 14.双测向测井仪为什么要选用两种工作频率? 15.测量地层冲洗带电阻率的意义是什么? 16.和长电极距的电阻率测井方法相比,微电阻率测井方法有什么异同? 17.为了模拟冲洗带电阻率R xo为1000Ω·m和31.7Ω·m,计算出微球形聚 焦测井仪的相应刻度电阻值R(K=0.041m)。 18.为了测量地层真电阻率,应当选用何种电极系? 19.恒流工作方式有什么优点? 20.求商工作方式有什么有缺点? 21.给定地层电阻率变化范围为0.5~5000Ω·m,电极系常数为0.8m,测量 误差δ为5%,屛主流比n为103,试计算仪器参数:G、G v、G I、W0max、W lmax、r、E(用求商式)。 第二章感应测井 习题二 1.在麦克斯韦方程组中,忽略了介质极化的影响,试分析这种做法的合理 性。 2.已知感应测井的视电导率韦500(Ms/m),按感应测井公式计算地层的真 电导率,要求相对误差小于1%。 3.单元环的物理意义是什么? 4.相敏检波器可以从感应测井信号中检出有用信号,那么,为什么在设计 线圈系时好要把信噪比作为一个重要的设计指标? 5.画出1503双感应测井仪深感应部分的电路原理框图,说明各部分电路功 能。 6.证明:在发射线圈两端并接谐振电容可以提高发射电流强度。 7.补偿刻度法的应用范围σ<X L,其中σ为电导率刻度值,X L为刻度环感抗, 用阻抗圆图的方法证明之。 8.在线圈系对称的条件下,试导出五因子褶积滤波因子的计算公式。

测井方法与综合解释综合复习资料要点

《测井方法与综合解释》综合复习资料 一、名词解释 1、水淹层 2、地层压力 3、可动油饱和度 4、泥浆低侵 5、热中子寿命 6、泥质含量 7、声波时差 8、孔隙度 9、一界面 二、填空 1.储集层必须具备的两个基本条件是_____________和_____________,描述储集层的基本参数有____________、____________、____________和____________等。 2.地层三要素________________、_____________和____________。 3.岩石中主要的放射性核素有_______、_______和________等。沉积岩的自然放射性主要与岩石的____________含量有关。 4.声波时差Δt的单位是___________,电阻率的单位是___________。 5.渗透层在微电极曲线上有基本特征是________________________________。 6.在高矿化度地层水条件下,中子-伽马测井曲线上,水层的中子伽马计数率______油层的中子伽马计数率;在热中子寿命曲线上,油层的热中子寿命______水层的热中子寿命。 7.A2.25M0.5N电极系称为______________________电极距L=____________。 8.视地层水电阻率定义为Rwa=________,当Rw a≈Rw时,该储层为________层。 9、在砂泥岩剖面,当渗透层SP曲线为正异常时,井眼泥浆为____________,水层的泥浆侵入特征是__________。 10、地层中的主要放射性核素分别是__________、__________、_________。沉积岩的泥质含量越高,地层放射 性__________。 11、电极系A2.25M0.5N 的名称__________________,电极距_______。 12、套管波幅度_______,一界面胶结_______。 13、在砂泥岩剖面,油层深侧向电阻率_________浅侧向电阻率。 14、裂缝型灰岩地层的声波时差_______致密灰岩的声波时差。 15、微电极曲线主要用于_____________、___________。 16、地层因素随地层孔隙度的增大而;岩石电阻率增大系数随地层含油饱和度的增大 而。 17、当Rw小于Rmf时,渗透性砂岩的SP先对泥岩基线出现__________异常。

测井方法原理全面.doc

测井方法原理 一名词解释 R0孔隙中100%含水时的地层电阻率;R w地层水电阻率 地层因素:F=R0 R w 视电阻率:电阻率值既不可能等于某一岩层的真电阻率,,也不是电极周围各部分介质电阻率的平均值,而是在离电极装置一定距离范围内各介质电阻率综合影响的结果。 岩石体积物理模型:根据测井方法的探测特性和储集层的组成,按其物理性质的差异,把实际岩石简化为对应的性质均匀的几个部分,研究每一部分对测量结果的贡献,并把测量结果看成是各部分贡献的总和。 绝对渗透率:岩石孔隙中只有一种流体时测量的渗透率。 有效渗透率:当两种或两种以上的流体同时通过岩石时,对其中某一流体测得的渗透率。相对渗透率:岩石的有效渗透率与绝对渗透率之比值称为相对渗透率。 周波跳跃:在正常情况下,第一接收器R1和第二接收器R2应该被弹性振动的同一个波峰的前沿所触发。由于某种原因,造成声波的能量发生严重衰减。当首波衰减到只能触发接收器R1而不能触发接收器R2时,接收器R2便可能被第二个或者后续波峰所触发,于是造成时波差值显著增大。由于每跳越一个波峰,在时间上造成的误差正好是一个周期。故称之为周波跳跃。 标准测井:在一个油田或一个区域内,为了研究岩性变化、构造形态和大段油层组的划分等工作,常使用几种测井方法在全地区的各口井中,用相同的深度比例(1:500)及相同的横向比例,对全井段进行测井,这种组合测井叫标准测井。 减速长度:由快中子减速成热中子所经过的直线距离的平均值。 扩散长度:从产生热中子起到其被俘获吸收为止,热中子移动的距离。 热中子寿命:从热中子生成开始到它被俘获吸收为止所经过的平均时间叫热中子寿命。 含氢指数:单位体积的任何岩石或矿物中氢核数与同样体积的淡水中氢核数的比值。 统计起伏(放射性涨落):由于地层中放射性元素的衰变是随机的,因此,在一定时间间隔内衰变的原子核数,即放射出的伽马射线数,不可能完全相同。但从统计的角度来看,它基本上围绕着一个平均值在一定的范围内波动。 二、填空 1.根据勘探目的不同,通常分为石油测井、煤田测井、金属和非金属测井、水文测井、工程测井等几大类。 2.测井技术发展根据采集系统特点大致可以分为模拟测井、数字测井、数控测井、成像测井。 3.测井包括岩性测井(自然电位SP、自然伽马GR、井径测井CAL);孔隙度测井(声波、密度DEN、中子测井CNL);电阻率测井(普通视电阻率测井Ra、微电极系列测井ML、侧向测井LL、感应测井IL)。 4.整个测井工作可以分为两个阶段:资料录取阶段和资料解释阶段。 5.井内自然电位产生的原因:①地层水和泥浆含盐浓度不同而引起的扩散电动势和吸附电动势。②地层压力与泥浆柱压力不同而引起的过滤电动势。 6.电极系可以分为梯度电极系和电位电极系。 7.深三侧向电阻率测井主要反映原地层电阻率;浅三侧向电阻率测井主要反映侵入带的电阻率。 8.主电极的长度决定电流层的厚度,即主电极长度决定了分层能力。电极系直径小,泥浆层

测井曲线的识别及应用

第一讲测井曲线的识别及应用 钻井取芯、岩屑录井、地球物理测井是目前比较普及的三种认识了解地层的方法。钻井获取的岩芯资料直观、准确,但成本高、效率低。岩屑录井简便、及时,但干扰因素多,深度有误差,岩屑易失真。测井是一种间接的录井手段,它是应用地球物理方法,连续地测定岩石的物理参数,以不同的岩石存在着一定物性差别,在测井曲线上有不同的变化特征为基础,利用各种测井曲线显示的特征、变化规律来划分钻井地质剖面、认识研究储层的一种录井方法;具有经济实用、收获率高、易保存的优势,是目前我们认识地层的主要途径。 鄂尔多斯盆地常规测井系列分为综合测井和标准测井两种。 综合测井系列:重点反映目的层段钻井剖面的地层特征。测量井段由井底到直罗组底部,比例尺1:200。由感应、八侧向、四米电阻、微电极、声速、井径、自然电位、自然咖玛八种测井方法组成。探井、评价井为了提高储层物性解释精度,加测密度和补偿中子两条曲线。 标准测井系列:全面反映钻井剖面地层特征,测量井段由井底到井口(黄土层底部),比例尺1:500,多用于盆地宏观地质研究。过去标准测井系列较单一,仅有视电阻率、自然咖玛测井等两三条曲线。近几年完钻井的标准测井系列曲线较完善,只比综合测井系列少了微电极测井一项。 一、测井曲线的识别 微电极系测井、四米电阻测井、感应—八侧向测井、都是以测定岩石的电阻率为物理前提,但曲线的指向意义各异。微电极常用于判断砂岩渗透性和薄层划分。感应—八侧向测井用于判定砂岩的含油水层性能。四米电阻、声速、井径、自然电位、自然咖玛

用于砂泥岩性划分。它们各有特定含义,又互相印证,互为补充,所以,我们使用时必须综合考虑。 1、微电极测井 大家知道,油井完钻后由井眼向外围依次是:泥饼、冲洗带、侵入带、地层。泥饼是泥浆中的水分进入地层后,吸附、残留在砂岩壁上的泥浆颗粒物。冲洗带是紧靠井壁附近,地层中的流体几乎被钻井液全部赶走了的部分;其深入地层的范围一般约7—8 厘米。侵入带是钻井液与地层中流体的混合部分。 微电极测井是一种探测井壁周围泥饼和冲洗带电阻率的测井方法。由三个微电极系测得的微梯度和微电位两条曲线组成。微梯度探测范围(横向深度)4—5 厘米,显示的是泥饼的电阻值(泥饼的厚度一般在3—5 厘米之间,泥饼的电阻率通常为泥浆滤液电阻率的1—2 倍);微电位探测深度8—10 厘米,显示的是冲洗带的电阻值。当地层为非渗透性的泥岩、页岩时井壁无泥饼和冲洗带,梯度电阻值等于或接近电位电阻值,曲线重合或叠置;当地层为渗透性的砂岩时,梯度电阻值小于电位电阻值,两条曲线分离,出现差异,差异越大说明砂岩渗透性能越好。所以,主要用来判断储层的渗透性能。 微电极系由于电极距短,反应灵敏,极板紧贴井壁受泥浆影响小对层界面反映清晰,划分2?5米薄层时使用较多,曲线的拐点处为小层界面。 2、感应测井 感应测井是利用电磁感应的原理来测量地层的导电性能。双感应—八侧向综合井下仪器,测量的是地层深、中、浅三个不同位置上的电阻率值。深感应探测深度约为中感应的二倍(距井筒四米左右),反映的是原始地层的电阻率。中感应反映的是距井筒1?2 米范围内地层的电阻率。八侧向反映的是井壁附近的电阻率。这种由近到远的三组合比

测井原理与应用

测井原理与应用 测井技术:应用物理方法研究油气田钻井地质剖面和井的技术状况,寻找并监测油气层开发的一门应用技术。Well drilling 测井:矿场地球物理物探:地面地球物理 地层地球物理特性:1、电化学特性2、导电特性3、介电特性4、声学特性5、核特性6、磁特性7、热特性 特性随岩层的岩性、物性及所含流体特性的不同而变化。 测井方法:物理方法:1、电法测井2、声波测井3、核测井4、生产测井 测井用途: 一、评价油气层;(1)定性分析,划分渗透层、裂缝带,地层对比 地层对比:在横向上进行地层追踪的过程 (2)定量计算参数,储集层是具有一定的孔隙度和渗透率的地层(3)确定油气层的有效厚度(4)预测产能(5)研究构造和沉积环境 二、油藏描述;研究油气藏的生储盖条件,储量计算; 三、油气田开发的问题;(1)剩余油的确定及分布预测(2)开发井网调整措施研究(3)水淹层识别及水淹级别的判别 四、油气井工程中的问题;(1)地层压力,岩石强度,井壁稳定,固井质量(2)评价压裂酸化和封堵效果(3)注采井的流体动态监测(4)随钻实现了地质导向,消除了以往的盲目钻井(5)检查套管损伤 五、其他作用 电法测井:以研究岩石及其孔隙流体的导电性,介电特性及电化学特性为基础的一大类测井方法。 电化学特性:自然电位测井(SP) 介电特性:电磁波传播测井(EPT) 导电特性:双侧向电阻率测井(DLL)=聚焦测井、微球开聚焦电阻率测井(MSFL)、感应测井(DIL)、阵列感应式成像测井(AIT)、随钻电阻率测井(LWD)、套管电阻率测井(CHFR)、方位电阻率测井(ARI)、地层倾角测井(SHDT)、地层微电阻率扫描测井(FMS)井径曲线(CAL)钻头直径(BITS) 自然电位:井中自然电场产生的电位

油田测井方法及应用研究

油田测井方法及应用研究 这是中国油气勘探早期使用的测井技术,这一时期主要分为半自动测井技术和全自动测 井技术两个阶段。最初的测井技术出现在上个世纪50年代末期,当时所使用的测井技术较 为落后,技术手段主要是采用电法测井,并具有一定的危险性。解放前,玉门油田应用半自动 测井技术勘探油气获得了成功,解放后,克拉玛依油田第1口油气发现井也是应用半自动测井 技术进行了测井作业,发现了油层和气层。从上世纪六十年代起,开始用全自动测井技术勘探 石油。大港油田油气发现井港3井、四川盆地石炭系气藏发现井相18井等都是采用全自动 测井技术勘探油气,并且获得了成功。因此,全自动测井技术在中国油气勘探史上贡献巨大。 1.2数字、数控测井时期 第二时期测井技术诞生于上个世纪60年代初期,也就是数字测井技术,其运作原理就 是运用计算机对采集到的数字信息进行分析与处理。数字测井技术实现了系列化、数字化和 标准化,提高了砂岩和泥质砂岩油气藏的勘探效益。数字测井技术中的仪器系列配套全,采集 的测井信息多,经过计算处理解释,能对砂岩和泥质砂岩油气层做出正确评价。数字测井技术 还开辟了在油田开发中应用的新领域,用数字测井技术探测水驱油田产层剩余油动态变化,评 价水淹层和原油采出程度,现已成为中国水驱油田动态监测技术的基本手段。中国使用数控测 井技术勘探石油始于80年代初期,数控测井技术中有先进的裂缝识别测井技术,对评估裂缝 性碳酸盐岩油藏储量有利,由于数控测井技术中的仪器系列全、精度高、并有测井质量控制 和处理解释功能,提高了勘探深层天然气的分辨率。 1.3高清成像测井时期 高清成像测井技术出现是在90年代末期,即将所需要的数据和信息进行处理后,以图 像的方式经过工作站并运用电缆进行数据传输,该项技术不但传输速度快,成像质量好,操 作上也更加便捷。美国首先推出成像测井技术,用于提高复杂油气藏的勘探效益,效果显著。 中国从美国引进成像测井技术,在大庆、胜利、新疆、四川、海上等油田应用,发现了许多勘 探难度极大的油田。成像测井技术开始成为中国非均质、复杂油田勘探的关键技术。辽河油 田应用成像测井技术和钻进式井壁取心技术探测非均质严重的裂缝性石灰岩油藏,获得成功。 成像测井技术能发现裂缝,但不能判断裂缝性地层流体性质;钻进式井壁取心技术能从裂缝性 石灰岩硬地层中取出岩心,岩心上有油迹显示,评价为裂缝性油层,经测试,获得了高产。这一成 功的实践经验,为今后勘探类似的非均质复杂油藏提供了范例。 2.测井新方法及应用分析 2.1声、电成像测井技术 利用声、电成像测井技术,对研究井下的岩性特性及物性参数提供依据,是寻找和评价 油田的井下测试技术措施。例如,在井下利用传感器的阵列扫描技术措施,也可以实施扫描 测量,采集井筒的数据信息资料,传输到地面后,经过成像处理,得到井壁的二维影像资料,或者井筒周围的三维影像资料,为地质分析提供测井信息。大庆油田汪902井进行了成像测井,主要解决识别低孔隙和低渗透致密气层难题。根据阵列感应和地层微电阻率扫描成像测井 图以及核孔隙度-岩性组合测井图,准确地提供了地层岩性、构造和沉积环境信息,在井深2937.6~3052.2m的侏罗系地层中,测井解释4层低孔隙孔隙度约为5%,经射孔和压裂后测试, 获天然气产量140000m3/d,不含水。这个范例为今后勘探类似的低孔隙和低渗透气藏提供了 实践经验。 2.2产出剖面测井技术 随着油田开发的深入和要求的逐步提高,各种新的技术问题不断出现,老式产出剖面测井 仪器难以适应新的应用需求,由此近些年来相继开发出以阻抗式仪器为代表的一些新型产出剖

测井解释计算常用公式

测井解释计算常用公式目录 1. 地层泥质含量(Vsh)计算公式................................................ .. (1) 2. 地层孔隙度(υ)计算公式....................................... (4) 3. 地层含水饱和度(Sw)计算.......................................................... (7) 4. 钻井液电阻率的计算公式...................................................... . (12) 5. 地层水电阻率计算方法 (13) 6. 确定a、b、m、n参数 (21) 7. 确定烃参数 (24) 8. 声波测井孔隙度压实校正系数Cp的确定方法 (25) 9. 束缚水饱和度(Swb)计算 (26) 10.粒度中值(Md)的计算方法 (28) 11.渗透率的计算方法 (29) 12. 相对渗透率计算方法 (35) 13. 产水率(Fw) (35) 14. 驱油效率(DOF) (36) 15. 计算每米产油指数(PI) (36) 16. 中子寿命测井的计算公式 (36) 17. 碳氧比(C/O)测井计算公式 (38) 18.油层物理计算公式 (44) 19.地层水的苏林分类法 (48) 20. 毛管压力曲线的换算 (48) 21. 地层压力 (50) 22. 气测录井的图解法 (51) 附录:石油行业单位换算 (53)

测井解释计算常用公式 1. 地层泥质含量(Vsh )计算公式 1.1 利用自然伽马(GR )测井资料 1.1.1 常用公式 min max min GR GR GR GR SH --= (1) 式中,SH -自然伽马相对值; GR -目的层自然伽马测井值; GRmin -纯岩性地层的自然伽马测井值; GRmax -纯泥岩地层的自然伽马测井值。 1 2 12--= ?GCUR SH GCUR sh V (2) 式中,Vsh -泥质含量,小数; GCUR -与地层年代有关的经验系数,新地层取3.7,老地层取2。 1.1.2 自然伽马进行地层密度和泥质密度校正的公式 o sh o b sh B GR B GR V -?-?= max ρρ (3) 式中,ρb 、ρsh -分别为储层密度值、泥质密度值; Bo -纯地层自然伽马本底数; GR -目的层自然伽马测井值; GRmax -纯泥岩的自然伽马值。 1.1.3 对自然伽马考虑了泥质的粉砂成分的统计方法 C SI SI B A GR V b sh +-?-?= 1ρ (4) 式中,SI -泥质的粉砂指数; SI =(ΦNclay -ΦNsh )/ΦNclay (5) (ΦNclay 、ΦNsh 分别为ΦN -ΦD 交会图上粘土点、泥岩点的中子孔隙度) A 、B 、C -经验系数。 1.2 利用自然电位(SP )测井资料

测井解释

1.测井数据处理常用的原始输入资料有(测井曲线图)、(存放于磁带的数据)、(直接由终端输入的表格数据)和由井场或异地经卫星传送的数据。 2.国外测井公司一般运用(自然伽马曲线)曲线作为深度控制曲线进行深度校正。 3.碎屑岩储集层空隙空间的大小和形状是多样的,按孔隙成因,可将碎屑岩分为粒间空隙、微孔隙和(溶蚀孔隙)、(微裂缝)。 4.对于石油地质和测井来说,有重要意义的粘土矿物只要是高岭石、(蒙脱石)、(伊利石)和混层粘土矿物。 5.按照产状分类,裂缝可以分为高角度裂缝、(低角度裂缝)和(网状裂缝)。 6.按照成因分类,裂缝可以分为构造裂缝、(溶蚀裂缝)、(压溶裂缝)和风化裂缝。 1.Schlumberger公司用户磁带格式是(DLIS) 2.阿特拉斯公司用户磁带格式是(CLS) 3.下列哪一条测井曲线(自然伽马)的平均探测深度约为15CM。 4.下列哪一条测井曲线(岩性-密度测井)的平均探测深度约为5CM。 5.(方解石、白云石)是碳酸盐岩的主要造岩矿物。 6.下列哪种岩石(石膏)的中子孔隙度(%)接近50. 7.对于油基泥浆井,下列哪一种电阻率测井系列(感应测井)比较适用。 8.对于油基泥浆井,下列哪一种测井曲线(自然电位测井)一般不测量。 9.盐水泥浆井中,储层段自然电位曲线一般显示(正幅度差异)。 10.当两种或两种以上的流体同时通过岩石时,对其中某一流体测得的渗透率,称为岩石对流体的(有效渗透率)。 1.简述频率交会图的概念。 答:频率交会图就是在x-y平面坐标上,统计绘图井段上各个采样点的A、B两条曲线的数值,落在每个单位网格中的采样点数目(即频率数)的一种直观的数字图形,简称为频率图。 2.简述Z值图的概念。 答:Z值图是在频率交会图基础上引入第三条曲线Z做成的数据图形,Z值图的数字表示同一井段的频率图上、每个单位网格中相应采样点的第三条线Z的平均级别。 3.简述三孔隙度重叠显示可动油气和残余油气的方法原理。 答:由Rt和Rx0曲线按阿尔奇公式或其他饱和度方程得出的Sw和Sx0,可计算地层含水孔隙度Φw和冲洗带含水孔隙度Φx0:Φw=Φ*Sw;Φx0=Φ*Sx0,由Φ、Φx0、Φw三孔隙度曲线重叠,可有效地显示地层的含油性、残余油气和可动油气,即有:含油气孔隙度:Φh=Φ-Φw 残余油气孔隙度:Φhr=Φ-Φx0 可动油气孔隙度:Φhm=Φx0-Φw 因此,Φ与Φx0幅度差代表残余油气,Φx0与Φw幅度差代表可动油气。 4.简述油层水淹后,自然电位测井曲线的响应变化特征。 答:油层水淹后,自然电位基线发生偏移,幅度有可能发生变化。淡水水淹,水淹部位常发生幅度变化(甚至出现正异常),基线偏移。污水水淹,由于注入水与地层水矿化度相差不大,自然电位的基线偏移不明显或无偏移。 5.简述油层水淹后,电阻率测井曲线的响应变化特征。 答:淡水水淹,呈U形曲线变化。污水水淹,Rt随Sw的增加而降低。 1.下图为电流通过纯砂岩水层的等效模型。设r0、r ma、r w分别表示岩石、骨架和孔隙流体的电阻,试根据串并联院里,推导地层因素F的表达式。

测井曲线解释及其含义

主要测井曲线及其含义 主要测井曲线及其含义 一、自然电位测井: 测量在地层电化学作用下产生的电位。 自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水

电阻率Rw的关系一致。Rmf≈Rw时,SP几乎是平直的; Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。 自然电位测井 SP曲线的应用:①划分渗透性地层。②判断岩性,进行地层对比。③估计泥质含量。④确定地层水电阻率。⑤判断水淹层。⑥沉积相研究。 自然电位正异常 Rmf<Rw时,SP出现正异常。 淡水层Rw很大(浅部地层) 咸水泥浆(相对与地层水电阻率而言) 自然电位测井 自然电位曲线与自然伽马、微电极曲线具有较好的对应性。 自然电位曲线在水淹层出现基线偏移 二、普通视电阻率测井(R4、R2.5) 普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。 视电阻率曲线的应用:①划分岩性剖面。②求岩层的真电阻率。③求岩层孔隙度。 ④深度校正。⑤地层对比。 电极系测井 2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。 底部梯度电极系分层: 顶:低点; 底:高值。 三、微电极测井(ML) 微电极测井是一种微电阻率测井方法。其纵向分辨能力强,可直观地判断渗透层。主要应用:①划分岩性剖面。②确定岩层界面。③确定含油砂岩的有效厚度。④确定大井径井段。⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。

《测井方法与综合解释》11

葆灵蕴璞 《测井方法与综合解释》综合复习资料 一、名词解释 声波时差: 声波在介质中传播单位距离所需要的时间 孔隙度:岩石孔隙体积在岩石外表总体积的比值,为小数。 地层压力: 地层孔隙流体压力 地层倾角:地层层面法相与大地铅垂轴的夹角 含油孔隙度:含油孔隙体积占地层体积的比值 泥质含量:泥质体积占地层体积的百分数 二、填空题 1.描述储集层的基本参数有孔隙度、渗透度、含油饱和度和有效厚度等。 2.地层三要素走向、倾向、倾角。 3.伽马射线去照射地层可能会产生电子对效应、康普顿效应和光电效应效应。 4.岩石中主要的放射性核素有铀238、钍和钾等。 5.声波时差Δt的单位是微秒/米,电导率的单位是毫西门子/米。 6.渗透层在微电极曲线上有基本特征是微梯度与微点位两条曲线不重合。 7.地层因素随地层孔隙度的减小而增大;岩石电阻率增大系数随地层含水饱和度的增大而增大。 8.当Rw大于Rmf时,渗透性砂岩的SP先对泥岩基线出现正异常。 9.由测井探测特性知,普通电阻率测井提供的是探测范围内共同贡献。对于非均匀电介质,其大小不仅与测井环境有关,还与测井仪器 --和--- 有关。电极系A0.5M2.25N的电极距是_0.5_。 10.地层对热中子的俘获能力主要取决于cl的含量。利用中子寿命测井区分油、水层时,要求地层水矿化度高,此时,水层的热中子寿命小于油层的热中子寿命。 11.某淡水泥浆钻井地层剖面,油层和气层通常具有较高的视电阻率。油气层的深浅电阻率显示泥浆低侵特征。 12.地层岩性一定,C/O测井值越高,地层剩余油饱和度越大。 13.在砂泥岩剖面,当渗透层SP曲线为负异常时,井眼泥浆为_淡水泥浆__,油层的泥浆侵入特征是__泥浆侵入_。 14.地层中的主要放射性核素是_铀__、_钍_、_钾__。沉积岩的泥质含量越高,地层放射性高。 15.电极系A3.75M0.5N 的名称底部梯度电极系_,电极距4米_。

(完整word版)测井考试小结(测井原理与综合解释)

一、名词解释 1、测井:油气田地球物理测井,简称测井well logging ,是应用物理方法研究油气田钻井地质剖面和井的技术状况,寻找油气层并监测油气层开发的一门应用技术。 2、电法测井:是指以研究岩石及其孔隙流体的导电性、电化学性质及介电性为基础的一大类测井方法,包括以测量岩层电化学特性、导电特性和介电特性为基础的三小类测井方法。 3、声波测井:是通过研究声波在井下岩层和介质中的传播特性,来了解岩层的地质特性和井的技术状况的一类测井方法。 4、核测井:是根据岩石及其孔隙流体的核物理性质,研究钻井地质剖面,勘探石油、天然气、煤以及铀等有用矿藏的地球物理方法,是地球物理测井的重要组成部分。 5、储集层:在石油工业中,储集层是指具有一定孔隙性和渗透性的岩层。例如油气水层。 6、高侵:当地层孔隙中原来含有的流体电阻率较低时,电阻率较高的钻井液滤液侵入后,侵入带岩石电阻率升高,这种钻井液滤液侵入称为钻井液高侵,R XO

测井解释方法及应用

72 1?测井解释方法 目前常用的地球物理测井方法主要有电阻率测井、自然电位测井、自然伽马测井、孔隙度测井等。 电阻率测井可分为普通电阻率测井、侧向测井以及微电阻率测井技术。普通电阻率电极包括一对供电电极A、B和一对测量电极M、N。可以用于划分高阻层;微电阻率测井也包括微电位和微梯度两种,可用于划分渗透性层位与非渗透率性层位[1] 。 自然电位曲线基本上可以算是“渗透性曲线”,可以将渗透层同非渗透性泥岩层区分开来,但不是渗透性强度曲线。用于区分比较厚的砂泥岩层系中的渗透性砂岩层与泥岩层比较理想;自然伽马曲线可以划分泥质和非泥质地层,估计地层中的泥质含量;密度测井可以估算孔隙度,而且在砂泥岩中特别有效;声速测井通过测量声波穿过岩层的走时来估算孔隙度[2-4]。 2?测井方法应用 利用电测资料可反映电性与沉积相的相互关系。本文以鄂尔多斯盆地K区为例,在研究区取心资料不多的情况下,通过电测资料分析其沉积相特征。研究区在总结前人对测井相研究的基础上,分析其建立的测井模式,依据不同区域电测资料的差别及对应沉积相的改变,结合研究区的实际电测资料,建立起研究区的测井相模式较好的识别研究区的三角洲体系的各个沉积微相。 电测识别沉积相的主要曲线为自然电位和自然伽马,由于两曲线对不同的沉积微相类型表现出来的形状差别较大,故通常根据二者形态来指示沉积微相。研究区长6储层主要的测井相模式可分为5种,具体的模式分析如下: 1)箱形、钟形测井相,该类测井相类型在研究区较为常见,多以中高幅出现,可作为分流河道、水下分流河道及河道侧翼沉积微相的典型代表,其中箱形模式是主河道的代表。箱形模式上下多为钟形模式,其上多为天然堤沉积,且厚度较大,表现出明显的正韵律,两箱形之间可见间湾沉积,其曲线幅度较小。 2)漏斗形测井相,该类测井相在研究区河道末端可见,多以中高幅形态出现,常出现在厚度较大,平面连通 性差的砂体中,是河口坝沉积微相的特有形态,部分区域与分流河道形态较难区分,但其具有一个明显的沉积特征即呈上粗下细的反韵律,幅度与分流河道相比稍微偏低一点。 3)指状测井相模式,该类测井相一般出现在区域为泥岩的沉积环境中,呈一个单独的小砂体,曲线幅度以中低幅形态,多以低幅度出现,呈指状,是远砂坝沉积微相和决口扇特有的形态特征,因二者曲线形态相似,故可根据其出现的位置及区域结合其它划分标识来共同判断属于哪类沉积微相。 4)齿形测井相模式,该类测井相模式多呈低幅度形态出现,可很好的指示水下天然堤及河道间沉积,常出现在两河道间或河道与河口坝之间,可根据其齿状出现的频率而判断砂体的厚薄,当砂体厚度较薄时,曲线幅度相对很小。 5)直线测井相模式,该类测井相模式曲线表现为两根平滑的直线,几乎无幅度起伏,自然电位曲线几乎与泥岩基线重合,是前三角洲沉积相的典型形态,区域无砂体或很薄,多以泥岩为主。 3?结束语 1)目前常用的地球物理测井方法主要有电阻率测井、自然电位测井、自然伽马测井、孔隙度测井等,不同测井方法可用于识别不同的储层特征,可综合利用各类测井方法掌握储层地质信息。 2)自然电位曲线和自然伽马曲线可用于识别沉积相特征,由于两曲线对不同的沉积微相类型表现出来的形状差别较大,故通常根据二者形态来指示沉积微相。本文利用自然电位曲线和自然伽马曲线分析了鄂尔多斯盆地K区沉积相特征。 参考文献 [1]谢灏辰,于炳松,曾秋楠,等. 鄂尔多斯盆地延长组页岩有机碳测井解释方法与应用[J]. 石油与天然气地质,2013(6):731-736. [2]唐海燕. 乌尔逊凹陷火山碎屑岩储层测井解释方法研究[D].吉林大学,2010. [3]李英. 川东飞仙关组地层压力测井解释方法研究[D].西南石油学院,2003. [4]李国平,石强,王树寅. 储盖组合测井解释方法研究[J]. 测井技术,1997(2):22-28. 测井解释方法及应用 刘二虎1,2 1. 西安石油大学 陕西 西安 7100652 .油气勘探公司 陕西 延安 716000 摘要:测井解释是综合利用地球物理学方法对储层岩性、物性以及含油气性等特征进行认识方法,是利用测井曲线认识地质信息的重要技术。本文对目前常用的地球物理测井技术进行了分析应用。 关键词:测井解释 地球物理测井 地质信息 Method?of?logging?interpretation?and?its?application Liu?Erhu 1,2 1. Xi ’an Shiyou University ,Xi'an 710065,China Abstract:Logging interpretation is a method to comprehensively apply geophysical methods to understand reservoir lithology,physical properties and oil-gas-bearing properties. Also,it is an important technique to understand geological information by logging curve. This paper mainly analyses commonly used geophysical logging technology. Keywords:logging interpretation; geophysical logging; geological information

测井解释流程

测井解释流程 测井资料数据处理与综合解释 一、测井资料数据处理 1、测井解释收集的第一性资料: ①钻井取芯 ②井壁取芯和地层测试 ③钻井显示 ④岩屑录井 ⑤气测录井 ⑥试油资料 2、测井数据预处理 在用测井数据计算地质参数之前,对测井数据所做的一切处理都是预处理。主要包括: ①深度对齐:使每一深度各条测井数据同一采样点的数据。 ②把斜井曲线校正成直井曲线 ③曲线平滑处理:把非地层原因引起的小变化或不值得考虑的小变化平滑掉。 ④环境校正:把仪器探测范围内影响消除掉,获得地层真实的数值。 ⑤数值标准化:消除系统误差的方法。 二、测井资料的定性解释 测井资料的定性解释是确定每条曲线的幅度变化和明显的形态特征反映的地层岩性、物性和含油性,结合地区经验,对储集层做出综合性的地质解释。 三、测井综合解释由各油田测井公司的解释中心选择的处理解释程序,有比较富有经验的人员,较丰富的资料对测井数据做更完善的处理和解释,它向油田提供正式的单井处理与解释结果,综合地质研究,还可以完成地层倾角、裂缝识别、岩石机械性质解释等特殊处理。 1、地层评价方法 以阿尔奇公式和威里公式为基础,发展了一套定量评价储集层的方法,包括: ①建立解释模型; ②用声速或任何一种孔隙度测井计算孔隙度; ③用阿尔奇公式计算含水饱和度和含油气饱和度; ④快速直观显示地层含油性、可动油和可动水; ⑤计算绝对渗透率; ⑥综合判断油气、水层。 2、评价含油性的交会图 电阻率—孔隙度交会图 3、确定束缚水饱和度和渗透率 储集层产生流体类别和产量高低, 与地层孔隙度和含油气、束缚水饱和度、绝对渗透率和原油性质等有关。束缚水饱和度与含水饱和度的相互关系,是决定地层是否无水产油气的主要因素,绝对渗透率是决定地层能否产出流体的主要因素,束缚水饱和度有密切关系。没有一种测井方法可直接计算这两个参数。 确定束缚水饱和度的方法: 1)将试油证实的或综合分析确有把握的产油。油基泥浆取芯测量的含水饱和度就是束缚水饱和度。 2)深探测电阻率计算的含水饱和度作为束缚水饱和度。 3)根据试油、测井资料的统计分析,确定束缚水饱和度。 确定地层绝对渗透率的方法:

相关文档
最新文档