声波测井方法原理-复习

声波测井方法原理-复习
声波测井方法原理-复习

一、名词解释

杨氏模量:按广义胡克定律,在弹性限度内,被当做弹性体处理的岩石在发生伸长或压缩形变时,拉伸或压缩应力与同方向上的相对伸长或压缩,即外加应力方向上的线应变成正比,其比例系数即为杨氏模量E。

泊松比:物体在弹性限度内,在受拉伸应力时,受力方向上发生伸长,其形变用纵向线应变(x轴方向)表示,而在于受力方向垂直的方向上发生缩短,其形变用横向线应变和(y轴和z轴方向)表示,其横向线应变(缩短)与纵向线应变(伸长)的比值即为泊松比。

滑行纵波:折射纵波的折射角为90°,产生的折射纵波沿界面传播称为滑行纵波

孔隙度:岩石所有空隙体积占岩石总体积的百分比

声波时差:在物理声学中,声速的倒数1/v称为慢度,在声波测井中称为声波时差(声波信号在1m 厚的岩层中传播所用时间)

周波跳跃:声波时差测井曲线上出现声波时差值抖动性增加

滑行横波:折射横波的折射角为90°,产生的折射横波沿界面传播称为滑行横波

全波列:指滑行纵波、滑行横波、瑞利波、管波、斯通波的总和

瑞利波:在固体的自由表面上,传播方向沿表面的波

瑞利角:θr=arcsinV*/Vr,并认为在井内声波以瑞利角入射时,在井壁地层的表面产生瑞利波

斯通滤波(管波):井内流体中传播的波

自由套管:套管内外都是空气或水(或低密度钻井液)的套管

弯曲波:在井壁地层中传播时,井壁上地层中的质点在与井轴垂直方向上的位移与扭转波德位移不在一个平面内,而是沿井的半径方向,即与井壁表面垂直传播时,井壁产生弯曲形变

扭转波:在井壁地层中传播时,井壁上质点存在沿水平方向上的位移,而且在井壁相对表面位移相反方向传播时,井壁地层产生扭转形变

各向异性(TI):介质中有一个对称平面(如垂直于地面的井轴)在沿该轴方向上和与该轴垂直方向上介质的声波速度、弹性力学性质有差异,而与该轴垂直的水平面上,各个方向介质的声波速度和弹性力学性质可以认为是相同的

横向各向异性(HTI):与井轴垂直的水平面上,在各个不同的方位上呈现出的各向异性

第一、第二临界角:①产生滑行纵波时,入射波的入射角θ1*=arcsin(VP1/VP2)

②产生滑行横波是,入射波的入射角θ2* = arcsin(VP1/VS2)

二、简述题

1.声波在两种介质的分界面处是如何传播的,请画图说明?

2.什么是滑行纵波,如何产生滑行纵波?

在井壁上沿井轴方向以纵波模式传播,即介质中质点的振动方向与波的传播方向一致的波叫滑行纵波。在低速介质中的声源发出的声波向高速介质入射时,其入射角为第一临界角,则可产生滑行纵波。

3.证明Fermat原理。P257

4.推导测量滑行纵波和滑行横波的临界源距。P258

5.简述AC测井的原理、仪器结构和应用。

基本原理:测量记录在固定源距上所接收到的滑行波传播时间,随接收到的滑行波的到达时间不同,可以测量记录井壁上声波速度不同的岩层的声速。

结构:两个发射探头T1、T2对称的放置在两个接收探头R1和R2的上方和下方,T1和T2轮流工作,以上、下两次测量记录结果的平均值作为在某一深度上的测量记录结果。

应用:消除深度偏移距;消除井径变化对声波时差或声波速度测量记录的影响(补偿井眼)。

6.为什么AC测井可以补偿井眼?

双发双收声系在上发射探头T1工作时测量记录一次声波时差:△T

=CD/V P+(DF-CE)/V f

在下发射探头T2工作测量记录一次声波时差:△T

下=C ’D’/V

P

+(D’F’-C’E’)/V f

可以认为:CE=D’F’,DF=C’E’,取两次测量记录结果的平均值作为在该井段上的声波时差测量结果:

T=0.5(△T上+△T下)=CD/V P

即双发双收声系测量记录结果已经将井径变化对声波时差的影响消除了(补偿井眼)。

7.说明长源距声波测井(LSS)的仪器结构,为什么选用这种测井方法?

长源距声波测井的声系有两个发射探头T1T2及两个接受探头R1R2组成。两个发射探头T1和T2以及两个接受探头R1和R2的距离都是0.61m(2ft),发射探头和接受探头间的距离有2.44m(8ft)3.05m (10ft)3.66(12ft)三种源距。

长源距声波测井解决了BHC无法解决的两种情况:井径很大;井周围泥岩发生蚀变时,一些非固结和永冻地层中径向声速发生变化。它还有增大了源距,从而能够在时间轴上区分速度不同的波群,便于从滑行纵波、滑行横波、瑞利波、管波等各组波群中提取速度、幅度、频率变化等信息的优点,所以选用这种测井方法。

8.说明数字阵列声波测井(DAC)的仪器结构,DAC测井有哪些应用?

阵列声波测井的声系包括两组:低频(15~17kHz)发射、长源矩阵列接收;频率为20kHz的短源距单发双收。长源距声系由2个相距0.61m的发射探头和8个接收探头组成的阵列接收声系,发射探头和接收探头的最短源距是2.44m最大源距为4.11m,接收探头间的间距为0.15m。短源距声系是有一个发射探头和两个接收探头组成,最短源距0.91m,最长源距是1.52m。应用:根据测量记录到的阵列接收声系接收到的波列,还可以通过对信号的处理,获得纵波、横波、瑞利波、管波的速度、幅度、频率等可以用于评价储集层的信息。

9.简要说明DAC测井信号有哪些处理方法。

阀值检测法:对某种模式波设置一个阀值,当信号超过该阀值时,即认为是该模式波的初始相位。

差值检测法:在声波全波列上出现一种新的模式波时,在时间轴上会出现幅度跃变,检测出跃变在时间轴上的位置,即可检测出新的模式波处之到达时间

波形相似相关法:将两个不同的声波波列都离散为各有n个数据点序列,将这两个序列

用矢量表示,比较它们的相似度

直接相位法:一种在频域上处理声波波列的方法

协方差分析法:利用各种模式波因速度不同而在某个接收探头上到达的时间差异使用同一个时间-空间窗口的方法

最大似然法:计算某个模式波的信号强度,并将该模式波以外的信号调制到最小

10.简述偶极子(DSI)和四极子(QSI)横波测井原理,为什么采用种种测井方法?

原理:在井壁上直接激发横波或与横波接近的某种波来获得横波信息。利用这种测井方法是为了获得有效的横波信息从而识别储集层孔隙类型和估算储集层渗透率。

11.什么是弯曲波和扭转波,他们的传播有什么特征?

弯曲波:在井壁地层中传播时,井壁上地层中的质点在与井轴垂直方向上的位移与扭转波德位移不在一个平面内,而是沿井的半径方向,即与井壁表面垂直传播时,井壁产生弯曲形变

扭转波:在井壁地层中传播时,井壁上质点存在沿水平方向上的位移,而且在井壁相对表面位移相反方向传播时,井壁地层产生扭转形变

12.横波在地层传播时,为什么会产生横波分裂?

在井下产生的横波沿岩石层理方向传播的横波速度与沿层理垂直的方向传播的横波速度不同,就是说在同一水平面上,存在两种速度不同的横波,这就是横波分裂。

13.DSI测井有哪些应用?

①评价井壁地层弹性力学性质②估算储集层孔隙度和孔隙类型③估算储集层④评价储集层剩余油饱

和度

14.什么是正交偶极子测井(XMAC)?

是20世纪90年代后期国外测井公司继偶极子横波测井后提出的一种新方法,其切入点是解决井壁地层的各向异性问题。

15.XMAC测井的各向异性曲线有什么应用?

曲线第一道能根据测量记录结果计算出快横波和慢横波的慢度(声波时差);第二道是所记录的快横波和慢横波的波列;第三道表示两种尺度的井壁岩层的各向异性;第四道是快横波的方位。

用XMAC资料可以估算井壁岩层裂缝(包括评价储集层的原始裂缝系统和查明在井下水力压裂作业后所产生的裂缝)、地应力和涉及岩石力学、各向异性介质中声波波场分析等复杂问题。

16.固井后,由井眼到地层存在哪些声学界面?图示之。

套管与水泥交界面→第一声学界面

水泥与地层交界面→第二声学界面

17.什么是自由套管,其声幅测井曲线有什么特征?

套管内外都是空气或水(或低密度钻井液)的套管叫做自由套管。其管壁在受到声波信号的激励时所产生的套管波能够沿套管壁传播。管外无水泥、形成套管-泥浆界面,Z套管/Z泥浆大,耦合率差,R大T小,管波强、地层波弱或全消失,在变密度图上出现平直的条纹,越靠近左边,越明显,在套管接头的地方有人字纹。

18.如何利用声幅测井(CBL)评价水泥胶结情况?

CBL评价套管外的水泥胶结状况的基本出发点是以套管外面完全没有水泥时(自由套管)的套管波首波幅度作为基准值,在有水泥环的层段,根据套管波首波减少的程度来评价水泥环和套管的胶结质量。

BI=目的层的套管波首波衰减/胶结最好的层段套管波首波衰减

BI≥0.8 良好0.8>BI≥0.4 中等BI<0.4 不好

19.简述变密度测井(VDL)的原理?

通常固井水泥胶结质量检测还用源距为1.5m的单发单收声系测量记录套管波首波以后比较完整的声波波列,其中除了沿套管壁传播的套管波,还包括沿水泥环和沿水泥环以外井壁地层传播的纵波,测量记录的结果可以回放成声波信号幅度随时间变化的波列,但通常是按每个波相的幅度峰值将其显示成感光材料(照相纸或胶卷) 色度不同(或色度相同但宽度不同)的线条,这样就形成了VDL.

20.VDL测井图像会存在哪几种情况?反应了怎样的胶结情况?

若水泥环与套管胶结良好,水泥环对套管波的阻尼明显,套管波的幅度明显减小;而套管外没水泥环时,套管波的振动和传播基本没有阻尼,因而幅度较大。

21.试说明BHTV测井成像原理。

利用反射波的能量与反射界面的声阻抗有关的原理,通过测量反射波的能量的强度来了解井壁岩石和套管状况。

基本原理:发射2MHz左右的超生脉冲,在仪器上升测量中,换能器向井壁作螺旋状连续声波扫描。由于井内泥浆性质固定,反射波的能量只与井壁状况有关。声阻抗大的井壁,R大,反射波强,颜色亮;R小则弱,颜色暗。

22.在BHTV图像中,井壁地层通常有怎样的图像特征?

不同岩性和裂缝在BHTV图上的显示

不同岩性的显示裸眼、井壁平滑、泥浆恒定、反射波的能量取决于岩层的密度和速度。

高速地层或高密度地层图上亮区

低速地层或低密度地层图上暗区

砂泥岩剖面:砂岩亮区;泥岩暗区

井壁不平、发射的声波不能垂直入射,反射波的能量与入射角有关。 增加,R减小,反射波的能量低,在BHTV图上为暗区或黑色的条带。

23.UBI、CBIL测井有哪些应用?

24.写出泥质砂岩地层声波时差的响应方程,假设地层孔隙度为φ,含水饱和度为Sw,含油饱

和度为So。

测井曲线解释

主要测井曲线及其含义 主要测井曲线及其含义 一、自然电位测井: 测量在地层电化学作用下产生的电位。 自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。Rmf ≈Rw时,SP几乎是平直的;Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。 自然电位测井 SP曲线的应用:①划分渗透性地层。②判断岩性,进行地层对比。③估计泥质含量。④确定地层水电阻率。 ⑤判断水淹层。⑥沉积相研究。 自然电位正异常 Rmf<Rw时,SP出现正异常。 淡水层Rw很大(浅部地层) 咸水泥浆(相对与地层水电阻率而言) 自然电位测井 自然电位曲线与自然伽马、微电极曲线具有较好的对应性。 自然电位曲线在水淹层出现基线偏移 二、普通视电阻率测井(R4、R2.5) 普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。 视电阻率曲线的应用:①划分岩性剖面。②求岩层的真电阻率。③求岩层孔隙度。④深度校正。⑤地层对比。 电极系测井 2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。 底部梯度电极系分层: 顶:低点; 底:高值。 三、微电极测井(ML) 微电极测井是一种微电阻率测井方法。其纵向分辨能力强,可直观地判断渗透层。 主要应用:①划分岩性剖面。②确定岩层界面。③确定含油砂岩的有效厚度。④确定大井径井段。⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。 微电极确定油层有效厚度 微电极测井 微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。 四、双感应测井 感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。 感应测井曲线的应用:①划分渗透层。②确定岩层真电阻率。③快速、直观地判断油、水层。 油层: RILD>RILM>RFOC

Geolog-全波列声波测井中文手册-

Geolog软件技术手册Full Sonic Wave Processing -SWB 帕拉代姆公司北京代表处 2006年12月

1、综述................................................................................................................................................................................ - 1 - 1.1 预备知识..................................................................................................................................................................... - 1 - 1.2数据 ............................................................................................................................................................................... - 1 - 2、阵列声波全波形........................................................................................................................................................... - 2 - 2.1数据准备 ...................................................................................................................................................................... - 3 - 2.1.1查看/创建一个声波列阵工具模版.......................................................................................................... - 3 - 2.1.2 练习指导2-创建其他波形属性.............................................................................................................. - 5 - 2.1.3波形分解.......................................................................................................................................................... - 6 - 2.1.4深度转换.......................................................................................................................................................... - 7 - 2.2 处理 .............................................................................................................................................................................. - 8 - 2.2.1数据分析......................................................................................................................................................... - 8 - 2.2.2去噪................................................................................................................................................................ - 11 - 2.2.3 设计滤波器................................................................................................................................................. - 17 - 2.2.4 振幅恢复 ..................................................................................................................................................... - 19 - 2.3阵列声波处理.......................................................................................................................................................... - 20 - 2.3.1处理模块简介 ............................................................................................................................................. - 20 - 2.3.2偶极波形处理 ............................................................................................................................................. - 21 - 2.3.3 单极波形处理 ............................................................................................................................................ - 23 - 2.3.4 拾取标志波至 ............................................................................................................................................ - 26 - 2.4后期处理 (32) 2.4.1综述 (32) 2.4.2频散校正 (33) 2.4.3 传播时间叠加 (36) 2.4.4 相关性显示 (38) 2.4.5 阵列声波重处理 (39) 3、机械性质 (44) 3.1综述 (44) 3.2 计算动力学弹性性质 (44) 附录I-快速运行 (46) 附录II-频散校正讨论 (47)

测井方法与综合解释综合复习资料要点

《测井方法与综合解释》综合复习资料 一、名词解释 1、水淹层 2、地层压力 3、可动油饱和度 4、泥浆低侵 5、热中子寿命 6、泥质含量 7、声波时差 8、孔隙度 9、一界面 二、填空 1.储集层必须具备的两个基本条件是_____________和_____________,描述储集层的基本参数有____________、____________、____________和____________等。 2.地层三要素________________、_____________和____________。 3.岩石中主要的放射性核素有_______、_______和________等。沉积岩的自然放射性主要与岩石的____________含量有关。 4.声波时差Δt的单位是___________,电阻率的单位是___________。 5.渗透层在微电极曲线上有基本特征是________________________________。 6.在高矿化度地层水条件下,中子-伽马测井曲线上,水层的中子伽马计数率______油层的中子伽马计数率;在热中子寿命曲线上,油层的热中子寿命______水层的热中子寿命。 7.A2.25M0.5N电极系称为______________________电极距L=____________。 8.视地层水电阻率定义为Rwa=________,当Rw a≈Rw时,该储层为________层。 9、在砂泥岩剖面,当渗透层SP曲线为正异常时,井眼泥浆为____________,水层的泥浆侵入特征是__________。 10、地层中的主要放射性核素分别是__________、__________、_________。沉积岩的泥质含量越高,地层放射 性__________。 11、电极系A2.25M0.5N 的名称__________________,电极距_______。 12、套管波幅度_______,一界面胶结_______。 13、在砂泥岩剖面,油层深侧向电阻率_________浅侧向电阻率。 14、裂缝型灰岩地层的声波时差_______致密灰岩的声波时差。 15、微电极曲线主要用于_____________、___________。 16、地层因素随地层孔隙度的增大而;岩石电阻率增大系数随地层含油饱和度的增大 而。 17、当Rw小于Rmf时,渗透性砂岩的SP先对泥岩基线出现__________异常。

声波测井仪器的原理及应用

声波测井仪器的原理及应用 单位:胜利测井四分公司 姓名:王玉庆 日期:2011年7月

摘要 声波测井是石油勘探中专业性很强的一个领域。它是一门多学科的应用技术,已经成为油田勘探、储量评估、油气开采等方面不可缺少的工具。声波速度测井简称声速测井是利用声波在岩石中传播的速度来研究钻井剖面的一类物探方法,其方法是测量滑行波通过地层传播的时差 t(声速的倒数,单位us/ft)。目前主要用以估算孔隙度、判断气层和研究岩性等方面,是主要测井方法之一。 数字声波测井仪,其中包括66667声波数字化通用短节和6680声波探头2部分。能完成声波时差测井和水泥胶结测井,能与SL6000型地面系统和进口的5700型地面系统相配接。 正交多极子阵列声波测井(XMACII)将新一代的偶极技术与最新发展的单极技术结合在一起,提供了当今测量地层纵波、横波和斯通利波的最好方法。当偶极子声源振动时,使井壁产生扰动,形成轻微的跷曲,在地层中直接激发出横波和纵波,根据正交多极子阵列声波资料得出的纵横、波速度比可识别与含气有关的幅度异常。 关键词:数字化;声波时差;声波变密度;阵列声波;声波全波列;

目录 第1章前言 (1) 第2章岩石的声学特性 (2) 第3章数字声波测井原理及应用 (3) 3.1 数字声波测井原理 (3) 3.2仪器的工作模式 (5) 3.3时差计算 (5) 3.4 数字声波测井仪器的性能 (6) 3.5 SL6680测井仪器的不足 (7) 3.6数字声波仪器小结 (7) 第4章正交多极子阵列声波测井 (8) 4.1 XMACII多极子阵列声波测井原理 (8) 4.2 XMACII多极子阵列声波仪器组成 (9) 4.3 XMACII多极子阵列声波的使用及注意事项 (10) 4.4 应用效果及结论 (14) 第5章声波测井流程及注意事项 (15) 5.1 声波测井流程 (15) 5.2 注意事项 (16) 参考文献 (17)

测井曲线代码-整理版

原始测井曲线代码 代码名称 A1R1 T1R1声波幅度 A1R2 T1R2声波幅度 A2R1 T2R1声波幅度 A2R2 T2R2声波幅度AAC 声波附加值 AA VG 第一扇区平均值AC 声波时差 AF10 阵列感应电阻率AF20 阵列感应电阻率AF30 阵列感应电阻率AF60 阵列感应电阻率AF90 阵列感应电阻率AFRT 阵列感应电阻率AFRX 阵列感应电阻率AIMP 声阻抗 AIPD 密度孔隙度 AIPN 中子孔隙度 AMA V 声幅 AMAX 最大声幅 AMIN 最小声幅 AMP1 第一扇区的声幅值AMP2 第二扇区的声幅值AMP3 第三扇区的声幅值AMP4 第四扇区的声幅值AMP5 第五扇区的声幅值AMP6 第六扇区的声幅值AMVG 平均声幅 AO10 阵列感应电阻率AO20 阵列感应电阻率AO30 阵列感应电阻率AO60 阵列感应电阻率AO90 阵列感应电阻率AOFF 截止值 AORT 阵列感应电阻率AORX 阵列感应电阻率APLC 补偿中子 AR10 方位电阻率 AR11 方位电阻率 AR12 方位电阻率 ARO1 方位电阻率 ARO2 方位电阻率 ARO3 方位电阻率ARO4 方位电阻率 ARO5 方位电阻率 ARO6 方位电阻率 ARO7 方位电阻率 ARO8 方位电阻率 ARO9 方位电阻率 AT10 阵列感应电阻率 AT20 阵列感应电阻率 AT30 阵列感应电阻率 AT60 阵列感应电阻率 AT90 阵列感应电阻率 ATA V 平均衰减率 ATC1 声波衰减率 ATC2 声波衰减率 ATC3 声波衰减率 ATC4 声波衰减率 ATC5 声波衰减率 ATC6 声波衰减率 ATMN 最小衰减率 ATR T 阵列感应电阻率 ATRX 阵列感应电阻率 AZ 1号极板方位 AZ1 1号极板方位 AZI 1号极板方位 AZIM 井斜方位 BGF 远探头背景计数率 BGN 近探头背景计数率 BHTA 声波传播时间数据 BHTT 声波幅度数据 BLKC 块数 BS 钻头直径 BTNS 极板原始数据 C1 井径 C2 井径 C3 井径 CAL 井径 CAL1 井径 CAL2 井径 CALI 井径 CALS 井径 CASI 钙硅比 CBL 声波幅度 CCL 磁性定位 CEMC 水泥图 CGR 自然伽马 CI 总能谱比 CMFF 核磁共振自由流体体积 CMRP 核磁共振有效孔隙度 CN 补偿中子 CNL 补偿中子 CO 碳氧比 CON1 感应电导率 COND 感应电导率 CORR 密度校正值 D2EC 200兆赫兹介电常数 D4EC 47兆赫兹介电常数 DAZ 井斜方位 DCNT 数据计数 DEN 补偿密度 DEN_1 岩性密度 DEPTH 测量深度 DEV 井斜 DEVI 井斜 DFL 数字聚焦电阻率 DIA1 井径 DIA2 井径 DIA3 井径 DIFF 核磁差谱 DIP1 地层倾角微电导率曲线1 DIP1_1 极板倾角曲线 DIP2 地层倾角微电导率曲线2 DIP2_1 极板倾角曲线 DIP3 地层倾角微电导率曲线3 DIP3_1 极板倾角曲线 DIP4 地层倾角微电导率曲线4 DIP4_1 极板倾角曲线 DIP5 极板倾角曲线 DIP6 极板倾角曲线 DRH 密度校正值 DRHO 密度校正值 DT 声波时差 DT1 下偶极横波时差 DT2 上偶极横波时差 DT4P 纵横波方式单极纵波时 差 DT4S 纵横波方式单极横波时 差 DTL 声波时差

测井仪器方法及原理重点

精品课程作业: 第一章双测向测井 习题一 1.为什么要测量地层的电阻率? 2.测量地层电阻率的基本公式是什么? 3.普通电阻率测井测量地层电阻率要受到那些因素的影响? 4.聚焦式电阻率测井是如何实现对主电流聚焦?如何判断主电流处于聚焦 状态? 5.画出双测向电极系,说明各电极的名称及作用。 6.为什么双测向的回流电极B和参考电极N要放在无限远处?“无限远处” 的含义是什么? 7.为什么说监控回路是一个负反馈系统?系统的增益是否越高越好? 8.为什么说浅屛流源是一个受控的电压源? 9.试导出浅屛流源带通滤波器A3的传递函数。 10.已知该带通滤波器的中心频率为128Hz,求带通宽度、 11.为什么说深测向的屛流源是一个受控的电流源。 12.监控回路由几级电路组成?各起何作用? 13.试画出电流检测电路的原理框图,说明各单元的功用? 14.双测向测井仪为什么要选用两种工作频率? 15.测量地层冲洗带电阻率的意义是什么? 16.和长电极距的电阻率测井方法相比,微电阻率测井方法有什么异同? 17.为了模拟冲洗带电阻率R xo为1000Ω·m和31.7Ω·m,计算出微球形聚 焦测井仪的相应刻度电阻值R(K=0.041m)。 18.为了测量地层真电阻率,应当选用何种电极系? 19.恒流工作方式有什么优点? 20.求商工作方式有什么有缺点? 21.给定地层电阻率变化范围为0.5~5000Ω·m,电极系常数为0.8m,测量 误差δ为5%,屛主流比n为103,试计算仪器参数:G、G v、G I、W0max、W lmax、r、E(用求商式)。 第二章感应测井 习题二 1.在麦克斯韦方程组中,忽略了介质极化的影响,试分析这种做法的合理 性。 2.已知感应测井的视电导率韦500(Ms/m),按感应测井公式计算地层的真 电导率,要求相对误差小于1%。 3.单元环的物理意义是什么? 4.相敏检波器可以从感应测井信号中检出有用信号,那么,为什么在设计 线圈系时好要把信噪比作为一个重要的设计指标? 5.画出1503双感应测井仪深感应部分的电路原理框图,说明各部分电路功 能。 6.证明:在发射线圈两端并接谐振电容可以提高发射电流强度。 7.补偿刻度法的应用范围σ<X L,其中σ为电导率刻度值,X L为刻度环感抗, 用阻抗圆图的方法证明之。 8.在线圈系对称的条件下,试导出五因子褶积滤波因子的计算公式。

测井解释原理

测井解释原理 一: 储集层定义:具有连通孔隙,既能储存油气,又能使油气在一定压差下流动的岩层。 必须具备两个条件: (1)孔隙性(孔隙、洞穴、裂缝) 具有储存油气的孔隙、孔洞和裂缝等空间场所。 (2)渗透性(孔隙连通成渗滤通道) 孔隙、孔洞和裂缝之间必须相互连通,在一定压差下能够形成油气流动的通道。储集层是形成油气层的基本条件,因而储集层是应用测井资料进行地层评价和油气分析的基本对象。 储集层的分类 ?按岩性:–碎屑岩储集层、碳酸盐岩储集层、特殊岩性储集层。 ?按孔隙空间结构:–孔隙型储集层、裂缝型储集层和洞穴型储集层、裂缝-孔洞型储集层。 碎屑岩储集层 ?1、定义:–由砾岩、砂岩、粉砂岩和砂砾岩组成的储集层。 ?2、组成:–矿物碎屑(石英、长石、云母) –岩石碎屑(由母岩类型决定) –胶结物(泥质、钙质、硅质) ?3、特点:–孔隙空间主要是粒间孔隙,孔隙分布均匀,岩性和物性在横向上比较稳定。 ?4、有关的几个概念 –砂岩:骨架由硅石组成的岩石都称为砂岩。骨架成份主要为SiO 2 –泥岩(Shale):由粘土(Clay)和粉砂组成的岩石。 –砂泥岩剖面:由砂岩和泥岩构成的剖面。 碳酸盐岩储集层

?1、定义:–由碳酸盐岩石构成的储集层。 ?2、组成:–石灰岩(CaCO 3)、白云岩Ca Mg(CO 3)2)、泥灰岩 ?3、特点:–储集空间复杂 有原生孔隙:分布均匀(如晶间、粒间、鲕状孔隙等) 次生孔隙:形态不规则,分布不均匀(裂缝、溶洞等) –物性变化大:横向纵向都变化大 ?4 、分类 按孔隙结构: ?孔隙型:与碎屑岩储集层类似。 ?裂缝型:孔隙空间以裂缝为主。裂缝数量、形态及分布不均匀,孔隙度、渗透率变化大。 ?孔洞型:孔隙空间以溶蚀孔洞为主。孔隙度可能较大、但渗透率很小。 ?洞穴型:孔隙空间主要是由于溶蚀作用产生的洞穴。 ?裂缝-孔洞型:裂缝、孔洞同时存在。 碳酸盐岩储集空间的基本类型 砂泥岩储集层的孔隙空间是以沉积时就存在或产生的原生孔隙为主; 碳酸盐岩储集层则以沉积后在成岩后生及表生阶段的改造过程中形成的次生孔隙为主。 碳酸盐岩储集层孔隙空间的基本形态有三种:孔隙及吼道、裂缝和洞穴。 碳酸盐岩储集层孔隙结构类型有:孔隙型、裂缝型、裂缝- 孔隙型、及裂缝- 洞穴型 常规测井在孔隙型/裂缝型碳酸盐岩中的特征(简答): 孔隙型储集层:在曲线形状方面表现为圆滑的“U”字形,如电阻率呈“U”字形降低,这与裂缝发育段的尖刺状电阻率起伏形成强烈的反差;在测井值方面表现为二高两低,即时差、中子孔隙度增高,电阻率和岩石体积密度降低。特点:曲线光滑,单层明显是以小孔为主的储层的主要特征,分层明显,表面看较好。 裂缝型储集层: 电阻率测井响应:微电极测井曲线在裂缝发育段呈现明显的正幅度差,且常伴有显著的锯齿

测井曲线解释

测井曲线基本原理及其应用 一.国产测井系列 1、标准测井曲线 2.5m底部梯度视电阻率曲线。地层对比,划分储集层,基本反映地层真电组率。恢复地层剖面。 自然电位(SP)曲线。地层对比,了解地层的物性,了解储集层的泥质含量。 2、组合测井曲线(横向测井) 含油气层(目的层)井段的详细测井项目。 双侧向测井(三侧向测井)曲线。深双侧向测井曲线,测量地层的真电组率(RT),试双侧向测井曲线,测量地层的侵入带电阻率(RS)。 0.5m电位曲线。测量地层的侵入带电阻率。0.45m底部梯率曲线,测量地层的侵入带电阻率,主要做为井壁取蕊的深度跟踪曲线。 补偿声波测井曲线。测量声波在地层中的传输速度。测时是声波时差曲线(AC) 井径曲线(CALP)。测量实际井眼的井径值。 微电极测井曲线。微梯度(RML),微电位(RMN),了解地层的渗透性。 感应测井曲线。由深双侧向曲线计算平滑画出。[L/RD]*1000=COND。地层对比用。 3、套管井测井曲线 自然伽玛测井曲线(GR)。划分储集层,了解泥质含量,划分岩性。 中子伽玛测井曲线(NGR)划分储集层,了解岩性粗细,确定气层。校正套管节箍的深度。套管节箍曲线。确定射孔的深度。固井质量检查(声波幅度测井曲线) 二、3700测井系列 1、组合测井 双侧向测井曲线。深双侧向测井曲线,反映地层的真电阻率(RD)。浅双侧向测井曲线,反映侵入带电阻率(RS)。微侧向测井曲线。反映冲洗带电阻率(RX0)。 补偿声波测井曲线(AC),测量地层的声波传播速度,单位长度地层价质声波传播所需的时间(MS/M)。反映地层的致密程度。 补偿密度测井曲线(DEN),测量地层的体积密度(g/cm3),反映地层的总孔隙度。 补偿中子测井曲线(CN)。测量地层的含氢量,反映地层的含氢指数(地层的孔隙度%) 自然伽玛测蟛曲线(GR),测量地层的天然放射性总量。划分岩性,反映泥质含量多少。 井径测井曲线,测量井眼直径,反映实际井径大砂眼(CM)。 2、特殊测井项目 地层倾角测井。测量九条曲线,反映地层真倾角。 自然伽玛能谱测井。共测五条曲线,反映地层的岩性和铀钍钾含量。 重复地层测试器(MFT)。一次下井可以测量多点的地层压力,并能取两个地层流体样。 三、国产测井曲线的主要图件几个基本概念: 深度比例:图的单位长度代表的同单位的实际长度,或深度轴长度与实际长度的比例系数。如,1:500;1:200等。 横向比例:每厘米(或每格)代表的测井曲线值。如,5Ω,m/cm,5mv/cm等。 基线:测井值为0的线。 基线位置:0值线的位置。 左右刻度值:某种曲线图框左右边界的最低最高值。 第二比例:一般横向比例的第二比例,是第一比例的5倍。如:一比例为5ΩM/cm;二比例则为25m/cm。 1、标准测井曲线图 2、2.5米底部梯度曲线。以其极大值和极小值划分地层界面。它的极大值或最佳值基本反映地层的真电阻率(如图) 自然电位曲线。以半幅点划分地层界面。一般砂岩层为负异常。泥岩为相对零电位值。 标准测井曲线图,主要为2.5粘梯度和自然电位两条曲线。用于划分岩层恢复地质录井剖面,进行井间的地层对比,粗略的判断油气水层。 3、回放测井曲线图(组合测井曲线) 深浅双侧向测井曲线。深双侧向曲线的极度大值反映地层的真电阻率(RT),浅双侧向的极大值反映浸入带电阻率(RS)。以深浅双侧向曲线异常的根部(异常幅度的1/3处)划分地层界面。

声波测井技术在岩土工程勘察中应用

现代物业?新建设 2012年第11卷第9期 浅谈声波测井技术在岩土工程勘察中的应用 张建宏 (新疆新地勘岩土工程勘察设计有限公司,新疆 乌鲁木齐 830002)摘 要:伴随着不断发展的数字测井技术,在测井当中,声速测井已经成为重要的方式之一。对岩体工程勘察中声波测井技术的应用进行了分析。 关键词:岩土工程;勘察;声波测井 中图分类号:[P258] 文献标识码:A 文章编号:1671-8089(2012)09-0047-02 声波测井主要分为声幅测井与声波测井两大类。一般来说,我们说的声波测井指的是对地层当中声波传播速度进行测量。 1 声波测井 在不同的介质当中,声波传播会有明显的差别,岩石当中的裂缝、风化以及溶洞对声波速度都有影响,因此对岩层物性特征的了解可以通过声波测试来进行。而声速测井测的是地层中声波传播的时间。 声波测井一般是对纵波速度进行测量,声波耦合通过仪器发射晶体声波,然后通过仪器接收晶体声波。由于接收晶体与发射晶体之间存在一定距离,所以传播速度与所测得的声波传播时差成反比。根据实际需要,也可以将传播时差换算成声波速度,然后再与其余的物理参数进行结合,也能够将横波速度计算出来,从而对弹性参数以及岩性的划分进行计算,这样更有利于岩土工程勘察工作的进一步开展。 2 岩石中声波的传播 我们所研究的是不同地质年代在地壳中的矿物成分以及结构各异的岩石,并且在岩石当中还存在裂隙与孔隙,但是它们的分布、大小、形状并非固定,而这些因素对岩石的物理性质都有不同程度的影响。岩石的声速指的是在岩石当中声波的传播速度,理论支持与实践证明:随着岩石密度的不断增大,声波速度也会随着提升。 2.1 岩性 如果岩石的岩性不同,那么声波传播速度也会有明显的区别。岩性不同,岩石密度就存在差异,一般来说,岩石密度从大到小依次为:石灰岩→砂岩→泥岩,而声波速度也会随着密度的减少而降低。 2.2 岩石结构 如果岩石的胶结性较差、较为疏松,声波速度也会降低;反之,声波速度则会升高。对于声波速度来说,岩石当中存在的溶洞与裂隙等也会产生一定程度的影响。 2.3 岩石孔隙间的储集物 岩石声波速度也会受到岩石孔隙当中不同储集物的影响。 2.4 地质时代以及地层埋藏深度 声波在地层当中的传播会受到地层时代以及地层埋藏实际深度的影响。当地质时代与岩性相同,那么埋藏的深度越大,声波传播的速度也就越大;反之,埋藏的深度越小,那么声波速度也会随着减小。在岩性相同的情况下,相比新地层,老地层的声波传播速度更快,这主要是由于在漫长的地质年代中,老地层受到了覆盖岩层长期性压实产生的结果。此外,由于长期地壳运动,岩石骨架颗粒的排列也会越来越紧,其弹性与密度都会不同程度地增加。 3 声波测井的应用范围 3.1 钻孔岩性的划分 由于不同的岩层所具有的声波传播速度是不同的。所以,地层岩性可以通过声速测井来进行判断。在钻孔岩性的划分当中,也可以结合自然伽玛、电阻率等有关的参数。 3.2 岩层风化、氧化带的确定 由于受到了氧化与风化,岩石的胶结程度会受到不同程度的影响,甚至会出现破碎,从而导致强度减弱、密度减小、波速减小,将完整的岩石声波速度与所测得的声波速度进行比较就会发现。岩石的疏松与破碎的程度能够通过波速的减少量来判断,因此对岩层的氧化带、风化都能够加以确定。 Engineering Construction 工程施工 – 47 –

测井方法原理全面.doc

测井方法原理 一名词解释 R0孔隙中100%含水时的地层电阻率;R w地层水电阻率 地层因素:F=R0 R w 视电阻率:电阻率值既不可能等于某一岩层的真电阻率,,也不是电极周围各部分介质电阻率的平均值,而是在离电极装置一定距离范围内各介质电阻率综合影响的结果。 岩石体积物理模型:根据测井方法的探测特性和储集层的组成,按其物理性质的差异,把实际岩石简化为对应的性质均匀的几个部分,研究每一部分对测量结果的贡献,并把测量结果看成是各部分贡献的总和。 绝对渗透率:岩石孔隙中只有一种流体时测量的渗透率。 有效渗透率:当两种或两种以上的流体同时通过岩石时,对其中某一流体测得的渗透率。相对渗透率:岩石的有效渗透率与绝对渗透率之比值称为相对渗透率。 周波跳跃:在正常情况下,第一接收器R1和第二接收器R2应该被弹性振动的同一个波峰的前沿所触发。由于某种原因,造成声波的能量发生严重衰减。当首波衰减到只能触发接收器R1而不能触发接收器R2时,接收器R2便可能被第二个或者后续波峰所触发,于是造成时波差值显著增大。由于每跳越一个波峰,在时间上造成的误差正好是一个周期。故称之为周波跳跃。 标准测井:在一个油田或一个区域内,为了研究岩性变化、构造形态和大段油层组的划分等工作,常使用几种测井方法在全地区的各口井中,用相同的深度比例(1:500)及相同的横向比例,对全井段进行测井,这种组合测井叫标准测井。 减速长度:由快中子减速成热中子所经过的直线距离的平均值。 扩散长度:从产生热中子起到其被俘获吸收为止,热中子移动的距离。 热中子寿命:从热中子生成开始到它被俘获吸收为止所经过的平均时间叫热中子寿命。 含氢指数:单位体积的任何岩石或矿物中氢核数与同样体积的淡水中氢核数的比值。 统计起伏(放射性涨落):由于地层中放射性元素的衰变是随机的,因此,在一定时间间隔内衰变的原子核数,即放射出的伽马射线数,不可能完全相同。但从统计的角度来看,它基本上围绕着一个平均值在一定的范围内波动。 二、填空 1.根据勘探目的不同,通常分为石油测井、煤田测井、金属和非金属测井、水文测井、工程测井等几大类。 2.测井技术发展根据采集系统特点大致可以分为模拟测井、数字测井、数控测井、成像测井。 3.测井包括岩性测井(自然电位SP、自然伽马GR、井径测井CAL);孔隙度测井(声波、密度DEN、中子测井CNL);电阻率测井(普通视电阻率测井Ra、微电极系列测井ML、侧向测井LL、感应测井IL)。 4.整个测井工作可以分为两个阶段:资料录取阶段和资料解释阶段。 5.井内自然电位产生的原因:①地层水和泥浆含盐浓度不同而引起的扩散电动势和吸附电动势。②地层压力与泥浆柱压力不同而引起的过滤电动势。 6.电极系可以分为梯度电极系和电位电极系。 7.深三侧向电阻率测井主要反映原地层电阻率;浅三侧向电阻率测井主要反映侵入带的电阻率。 8.主电极的长度决定电流层的厚度,即主电极长度决定了分层能力。电极系直径小,泥浆层

测井解释与生产测井习题与答案

《测井解释与生产测井》期末复习题 一、填充题 1、在常规测井中用于评价孔隙度的三孔隙测井是__________________、_________________、___________________。 2、在近平衡钻井过程中产生自然电位的电动势包括____________、____________。 3、在淡水泥浆钻井液中(R mf > R w ),当储层为油层时出现 ____________现象,当储层为水层是出现______________现象。 4、自然电位包括、和三种电 动势。 5、由感应测井测得的视电导率需要经过、、 和、四个校正才能得到地层真电导率。 6、感应测井的发射线圈在接收线圈中直接产生的感应电动势通常称为___________信号,在地层介质中由_____________产生的感应电动势称为__________信号,二者的相位差为________。 7、中子与物质可发生、、 和四种作用。 8、放射性射线主要有、和三种。 9、地层对中子的减速能力主要取决于地层的元素含量。 10、自然伽马能谱测井主要测量砂泥岩剖面地层中与泥质含量有关的放射性元素____________、______________。 11、伽马射线与物质主要发生三种作用,它们是、 和; 12、密度测井主要应用伽马射线与核素反应的_______________。 13、流动剖面测井解释的主要任务是确定生产井段产出或吸入流 体的、、和。14、垂直油井混合流体的介质分布主要有、 和、四种流型。 15、在流动井温曲线上,由于井眼流体压力地层压力,高压气体到达井眼后会发生效应,因此高压气层出气口显示异常。 16、根据测量对象和应用目的不同,生产测井方法组合可以分为____________、、三大测井系列。 17、生产井流动剖面测井,需要测量的五个流体动力学参量分别

(完整word版)测井方法原理及应用分类

测井方法的主要分类 1. 电法测井,又分自然电位测井、普通电阻率测井、侧向(聚焦电阻率)测井、感应测井、介电测井、电磁波测井、地层微电阻率扫描测井、阵列感应测井、方位侧向测井、地层倾角测井、过套管电阻率测井等(频率:从直流0~1.1GHZ)。 2. 声波测井,又分声速测井、声幅测井、长源距声波全波列测井、水泥胶结评价测井、偶极(多极子)声波测井、反射式声波井壁成像测井、井下声波电视、噪声测井等(频率由高向低发展,20KHZ~1.5KHZ)。 3. 核测井,种类繁多,主要分三大类:伽马测井、中子测井和核磁共振测井,伽马测井具体如下:自然伽马测井、自然伽马能谱测井、密度测井、岩性密度测井、同位素示踪测井等。 中子测井具体包括:超热中子测井、热中子测井、中子寿命测井、中子伽马测井、C/O比测井、PND-S测井、中子活化测井等。 发展趋势:中子源-记录伽马谱类(非弹性散射、俘获伽马、活化伽马等不同时间测量)。 4. 生产测井,主要分为三大类:生产动态测井、工程测井、产层评价测井。 1

生产动态测井方法主要有:流量计、流体密度计、持水率计、温度计、压力计、井下终身监测器等。 工程测井方法主要有:声幅、变密度测井仪、水泥胶结评价测井仪、磁定位测井仪、多臂微井径仪、井下超声电视、温度计、放射性示踪等。 产层评价方法测井:硼中子寿命、C/O比测井、脉冲中子能谱(PNDS)、过套管电阻率、地层测试器、其它常规测井方法组合等。 5. 随钻测井,大部分实现原理与常规电缆测井相同,实现方式上有许多特殊性。 2

测井方法主要特征总结归类表 3

4

5

声波测井技术发展现状与趋势

浅谈声波测井技术发展现状与趋势 摘要:以声波测井换能器技术的变化为主线,分析了声波测井技术的进展以及我国在该技术领域内取得的进步。单极子声波测井技术已经成为我国成熟的声波测井技术,包括非对称声源技术在内的多极子声波测井技术已经进入产业化进程。 关键词:声波测井;换能器;单极子声波测井;多极子声波测井; 从声学上讲,声波测井属于充液井孔中的波导问题。由声波测井测量的井孔中各种波动模式的声速、衰减是石油勘探、开发中的极其重要参数。岩石的纵、横波波速和密度等资料可用来计算岩石的弹性参数(杨氏模量、体积弹性模量、泊松比等);计算岩石的非弹性参数(单轴抗压强度、地层张力等);估算就地最大、最小主地层应力;估算孔隙压力、破裂压力和坍塌压力;计算地层孔隙度和进行储层评价和产能评估;估算地层孔隙内流体的弹性模量,从而形成独立于电学方法的、解释结果不依赖于矿化度的孔隙流体识别方法;与stoneley波波速、衰减资料相结合用以估算地层的渗透率;为地震勘探多波多分量问题、avo问题、合成地震记录问题等提供输人参数等等。经过半个多世纪的发展,声波测井已经成为一个融现代声学理论、最新电子技术、计算机技术和信息处理技术等最新科技为一体的现代测量技术,并且这种技术仍在迅速发展之中,声波测井在地层评价、石油工程、采油工程等领域发挥着越来越重要

的作用。与电法测井和放射性测井方法并列,声波测井是最重要的测井方法之一。 一、测井技术发展现状及趋势 声波测井技术的进步是多方面的。声波测井声波探头个数在不断增加以提高声波测量信息的冗余度、改善声波测量的可靠性;声波测井中探头的振动方式经历了单极子振动方式、偶极子振动方式、四极子振动方式和声波相控阵工作方式,逐步满足在任意地层井孔中测量地层的纵横波波速、评价地层的各向异性和三维声波测井的需求。声波探头的相邻间距不断减小,而发收探头之间的距离在不断增大,这一方面提高了声波测井在井轴方向的测量分辨率;另一方面也提高了声波测井的径向探测深度。声波测井的工作频率范围在逐步向低频和宽频带范围、数据采集时间在不断增大,为扩大声波测井的探测范围提供了保障。声波测井中应用的电子技术从模拟电路、数字电路技术逐步发展为大规模可编程电路和内嵌中央处理器技术,从而实现声波测井仪器的探头激励、数据采集、内部通讯、逻辑控制、数据传输等方面的智能化和集成化。可以预期,下一代声波测井仪器研制的关键技术之一是研制能够控制声束指向性的 基阵式换能器。应用相控阵换能器的最大优势就是增大空间某个方向的声辐射强度,使声波沿着预先设定好的方向辐射,从根本上增加有用信号的能量、提高信噪比和探测能力。显然,声波探头结构和振动模态性质的变化直接导致了声波测井技术的根本进步。

声波测井技术在岩土工程勘察中的应用

浅谈声波测井技术在岩土工程勘察中的应用摘要:本文首先论述了声速测井的测试原理,进而论述了影响岩石声波速度的主要因素,第三以工程实例,利用声波测井技术得到了评价岩土动力学特征的参数,既校正地解释岩性和岩层,还反映了岩土层的相对强度,为建筑设计提供一定的参考依据;最后,文章还阐述了当前声波测井技术在岩土工程勘察中存在的不足之处,以供参考。 关键词:声波测井技术;岩土工程勘察;应用 abstract: this paper first discusses the velocity measurement principles of well logging, and then discusses the influence of the main factors rock acoustic velocity, and the third by engineering example, the acoustic logging technology got the evaluation of the parameters of the dynamic characteristics of rock, both correction to explain the lithology and rocks, but also reflect the relative strength of geotechnical layer, for building design provides some reference basis; finally, the paper also expounds the current acoustic logging technology in geotechnical engineering investigation in existence deficiency, for reference. keywords: acoustic logging technology; geotechnical engineering; application 中图分类号:tu74文献标识码:a 文章编号:

生产测井原理及资料解释考试题2011(有答案)

中国石油大学函授生考试试卷 课程测井解释与生产测井教师刘春艳2011/2012学年第1 学期班级2011石油工程姓名____________ 成绩_______ 一、填空(共20分,每小题1分) 1、泡点压力的大小主要取决于油气的____组分_____和油藏的___温度与压力 _ ______。 2、垂直两相管流中五种典型的流型为_____泡状流__ __、___弹状流 ______、 __段塞流________、_____环状流______和_雾状流________。 3、涡轮流量计的仪器常数与涡轮的____半径_ _____和____ 转速 _____有 关,并受流体的______性质 ___影响。 4、如果井筒中原油溶解气越多,则其密度越__ 小 ___、体积系数越__ 大 ____。 5、定性分析产出剖面资料的井温曲线时,可参照如下一般结论,对应于产出层 位,井温曲线正异常是______液体_ ___的标志,井温曲线负异常是____ __气体____的标志,产液的层位井温曲线(一定或不一定)__ 不一定________ 出现异常。 6、如果原油溶解气越少,则其密度越大、体积系数越小。 7、RMT测井仪的一般测量模式有____ C/O比测井模式 ___、___俘获模式__ ______。 8、多相流动中,当_______ 井下流型为雾状流___时,流体各相持 率与各相体积含量相同。 二、解释名词(共10分,每题2分) 1、生产测井:是在套管中进行的测井,主要用于流体的动态监测,主要包括注产 剖面测井,剩余油动态监测测井。 2、粘性:

3、天然气体积系数:天然气的体积系数是指相同质量的天然气在地层条件下的 体积与地面标准条件下的体积之比。 4、溶解气油比:指地层条件下,溶解气的体积与含有该溶解气的油的体积之比, 这两种体积都要换算到标准条件下。 5、滑脱速度:即各相流体之间的速度之差。 三、计算题:(共计25分) 1、已知某生产井地面产油50方/天、产水100方/天、产气10000方/天,若溶解气油比为150方/方,溶解气水比为20方/方,气体的体积系数为1/200,试问井下有无游离气,若有,气流量为多少方/日?(10分) 答:油中溶解气的含量为Q1=50×150=7500方/天 水中溶解气的含量为Q2=100×20=2000方/天 而产气量为10000方/天,故井下有游离气,游离气的含量为 Q=(10000-7500-2000)/200=2.5方/天

相关文档
最新文档