MG-132_细胞通透性的、可逆性的蛋白酶体抑制剂。_133407-82-6_Apexbio

MG-132_细胞通透性的、可逆性的蛋白酶体抑制剂。_133407-82-6_Apexbio
MG-132_细胞通透性的、可逆性的蛋白酶体抑制剂。_133407-82-6_Apexbio

酶分类之不可逆抑制剂

不可逆抑制剂 酶的不可逆抑制是指酶抑制剂与酶的活性中心发生了化学反应抑制剂共价地连接在酶分子的必需基团上,阻碍了底物的结合或破坏了酶的催化基团。这种抑制不能用透析或稀释的方法使酶恢复活性。 通常将其分为非专一性不可逆抑制剂和专一性不可逆抑制剂。 抑制剂与酶分子上不同类型的基团都能发生化学修饰反应,这类抑制称为非专一性的不可逆抑制。虽然缺乏基团专一性,但在一定条件下,也有助于鉴别酶分子上的必需基团。由于非专一性的不可逆抑制剂通常可作用于酶分子中的几类基团。但不同基团与抑制剂的反应性不同,故某一类基团常首先或主要地受到修饰。如被修饰的基团中包括必需基团,则可导致酶的不可逆抑制。随着蛋白质一级结构和功能的研究,目前已发现或合成了氨基酸侧链基团的修饰剂。这些化学试剂主要作用于某类特定的侧链基团,如氨基、巯基、胍基和酚基等。但绝大多数试剂都不是专一性的,可借副反应而同时修饰其他类型的基团。 专一性的不可逆抑制作用有KS型和Kcat型两类。KS型不可逆抑制又称亲和标记试剂,结构与底物类似,但同时携带一个活泼的化学基团,对酶分子必需基团的某个侧链进行共价修饰,从而抑制活性。Kcat型不可逆抑制剂又称酶的自杀性底物。这类抑制剂也是底物的类似物,但其结构中潜在着一种活性基团,在酶的作用下,潜在的化学活性基团被激活,与酶的活性中心发生共价结合,不能再分解,酶因此失活。 KS型不可逆抑制剂是根据底物的化学结构设计的: 1、它具有和底物类似的结构, 2、可以和靶酶结合, 3、同时还带有一个活泼的化学基团可以和靶酶分子中的必需基团起反应, 4、该活泼化学基团能对靶酶的必需基团进行化学修饰,从而抑制酶的活性。 卤酮是使用最早也是最经典的亲和标记试剂。其中以溴酮及氯酮较佳。例:胰蛋白酶和胰凝乳蛋白酶是两种专一性不同的内肽酶,分别水解碱性氨基酸或芳香氨基酸的羧基所形成的肽键,也可以分别水解这两类氨基酸的酯类,但其氨基酸必须被阻断而成非游离状态。 Kcat型不可逆抑制剂即酶的自杀性底物,也是底物的类似物,但其结构中潜在着一种活性基团,在酶的作用下被激活,与酶的活性中心发生共价结合,使酶失活。每一种自杀底物都是酶的作用对象,这是一种专一性很高的不可逆抑制剂。下面介绍几种自杀性底物(如图所示):

常见蛋白酶抑制剂

当前位置:生物帮 > 实验技巧 > 生物化学技术 > 正文 蛋白酶及蛋白酶抑制剂大全 日期:2012-06-13 来源:互联网 标签: 相关专题:解析蛋白酶活性测定聚焦蛋白酶研究新进展 摘要: 破碎细胞提取蛋白质的同时可释放出蛋白酶,这些蛋白酶需要迅速的被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解。以下列举了5种常用的蛋白酶抑制剂和他们各自的作用特点,因为各种蛋白酶对不同蛋白质的敏感性各不相同,因此需要调整各种蛋白酶的浓度 恩必美生物新一轮2-5折生物试剂大促销! Ibidi细胞灌流培养系统-模拟血管血液流动状态下的细胞培养系统 广州赛诚生物基因表达调控专题 蛋白酶抑制剂 破碎细胞提取蛋白质的同时可释放出蛋白酶,这些蛋白酶需要迅速的被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解。以下列举了5种常用的蛋白酶抑制剂和他们各自的作用特点,因为各种蛋白酶对不同蛋白质的敏感性各不相同,因此需要调整各种蛋白酶的浓度。由于蛋白酶抑制剂在液体中的溶解度极低,尤其应注意在缓冲液中加人蛋白酶抑制剂时应充分混匀以减少蛋白酶抑制剂的沉淀。在宝灵曼公司的目录上可查到更完整的蛋白酶和蛋白酶抑制剂表。 常用抑制剂 PMSF 1)抑制丝氨酸蛋白酶(如胰凝乳蛋白酶,胰蛋白酶,凝血酶)和巯基蛋白酶(如木瓜蛋白酶); 2)10mg/ml溶于异丙醇中; 3)在室温下可保存一年; 4)工作浓度:17~174ug/ml(0.1~1.0mmol/L); 5)在水液体溶液中不稳定,必须在每一分离和纯化步骤中加入新鲜的PMSF。 EDTA 1)抑制金属蛋白水解酶; 2)0.5mol/L水溶液,pH8~9;

蛋白酶抑制剂的研究进展

蛋白酶抑制剂的研究进展 郭川 微生物专业,200326031 摘要:自然界共发现四大类蛋白酶抑制剂:丝氨酸蛋白酶抑制剂、巯基蛋白酶抑制剂、金属蛋白酶抑制剂和酸性蛋白酶抑制剂,本文就各大类蛋白酶抑制剂的结构特点,活性部位的研究概况及其在各领域应用的原理及进展。 关键词:蛋白酶抑制剂;结构;应用 天然的蛋白酶抑制剂(PI)是对蛋白水解酶有抑制活性的一种小分子蛋白质,由于其分子量较小,所以在生物中普遍存在。它能与蛋白酶的活性部位和变构部位结合,抑制酶的催化活性或阻止酶原转化有活性的酶。在一系列重要的生理、病理过程中:如凝血、纤溶、补体活化、感染、细胞迁移等,PI发挥着关键性的调控作用,是生物体内免疫系统的重要组成部分。从Kunitz等最早分离纯化出一种PI至今,已有多种PI被发现,根据其作用的蛋白酶主要分以下几类:抑制胰蛋白酶、胰凝乳蛋白酶等的丝氨酸蛋白酶抑制剂,抑制木瓜蛋白酶、菠萝蛋白酶等的巯基蛋白酶抑制剂,抑制胃蛋白酶、组织蛋白酶D等的羧基蛋白酶抑制剂、抑制胶原酶、氨肽酶等的金属蛋白酶抑制剂等。而根据作用于酶的活性基团不同及其氨基酸序列的同源性,可将自然界发现的PI分为四大类:丝氨酸蛋白酶抑制剂、巯基蛋白酶抑制剂(半胱氨酸蛋白酶抑制剂)、金属蛋白酶抑制剂和酸性蛋白酶抑制剂[1]。 1 结构与功能 1.1丝氨酸蛋白酶抑制剂(Serine Protease Inhibitor,Serpin) 丝氨酸蛋白酶抑制剂是一族由古代抑制剂趋异进化5亿年演变而来的结构序列同源的蛋白酶抑制剂。Sepin为单一肽链蛋白质。各种serpin大约有30%的同源序列,疏水区同源性高达70%。血浆中的serpin多被糖基化,糖链经天东酰胺的酰胺基与主链相连。位于抑制性serpin表面、距C端30~40个氨基酸处的环状结构区RSL(reactive site loop)中,存在能被靶酶的底物识别位点识别的氨基酸P1[2];近C端与P1相邻的氨基酸为P1’,依此类推,即肽链结构表示为N端-P15~P9~P1-P1’~P9’~P15’-C端。在对靶酶的抑制中。Serpin 以RSL中的类底物反应活性位点与靶酶形成紧密的不易解离的酶-抑制剂复合物,同时P1-P1’间的反应活性位点断裂。几种perpin氨基酸序列比较发现,serpins各成员的抑制专一性是由P1决定的,且被抑制的酶特异性切点一致。如抗凝血酶,抑制以Arg羧基端为敏感部位的丝氨酸蛋白酶,其中P1为Arg[2]。 1.2巯基蛋白酶抑制剂(Cytsteine Proteinase Inhiitor,CPI) 对于丝氨酸蛋白酶抑制剂(SPI)已有大量研究,巯基蛋白酶抑制剂(CPI)的研究则相对要晚一些。而动物和微生物来源的CPI已有一些研究,发现它们在结构上具有同源性,Barrett等将CPI统称为胱蛋白超家族,并按分子内二硫键的有无与数量,分子量大小等将此家族分为3个成员(F1、F2、F3)。在3个家族中,大多数F1和F3的CPI中都有Glu53-Val54-Val55-Ala56-Gly57保守序列,其同源序列在其它CPI中也被发现,如F2中的Gln-X-Val-Y-Gly和CHα-ras基因产物中的Gln-Val-Val肽段。人工合成的Glu-Val-Val-Ala-Gly 短肽也显示对木瓜蛋白酶有抑制活性,因此可以认为这一保守区段在抑制活性中起着全部或部分的关键作用[3]。对植物来源的CPI研究的不多,已有报道的有水稻、鳄梨和大豆。水稻巯基蛋白酶抑制剂(Oryzacystatin,OC) 具有102个氨基酸残基,有典型的Glu-Val-Val-Ala-Gly保守序列,应与动物CPI同源进化而来。从OCI没有二硫键来看,它应归为F1成员,但从序列比较看,则更接近F3。对OCIGlu---Gly保守序列进行点突变试验表明,突变使其抑制活性大幅度下降,其中当Glu被Pro替代时则活性全无,由此说明,这一段保守序列在OCI的抑制活性中,同动物CPI一样必不可少。除Glu---Gly保守区域外,OCI序列中其

常见蛋白酶抑制剂

蛋白酶及蛋白酶抑制剂大全 标签: 相关专题:解析蛋白酶活性测定聚焦蛋白酶研究新进展 摘要: 破碎细胞提取蛋白质的同时可释放出蛋白酶,这些蛋白酶需要迅速的被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解。以下列举了5种常用的蛋白酶抑制剂和他们各自的作用特点,因为各种蛋白酶对不同蛋白质的敏感性各不相同,因此需要调整各种蛋白酶的浓度 恩必美生物新一轮2-5折生物试剂大促销! Ibidi细胞灌流培养系统-模拟血管血液流动状态下的细胞培养系统 广州赛诚生物基因表达调控专题 蛋白酶抑制剂 破碎细胞提取蛋白质的同时可释放出蛋白酶,这些蛋白酶需要迅速的被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解。以下列举了5种常用的蛋白酶抑制剂和他们各自的作用特点,因为各种蛋白酶对不同蛋白质的敏感性各不相同,因此需要调整各种蛋白酶的浓度。由于蛋白酶抑制剂在液体中的溶解度极低,尤其应注意在缓冲液中加人蛋白酶抑制剂时应充分混匀以减少蛋白酶抑制剂的沉淀。在宝灵曼公司的目录上可查到更完整的蛋白酶和蛋白酶抑制剂表。 常用抑制剂 PMSF 1)抑制丝氨酸蛋白酶(如胰凝乳蛋白酶,胰蛋白酶,凝血酶)和巯基蛋白酶(如木瓜蛋白酶); 2)10mg/ml溶于异丙醇中; 3)在室温下可保存一年; 4)工作浓度:17~174ug/ml(0.1~1.0mmol/L); 5)在水液体溶液中不稳定,必须在每一分离和纯化步骤中加入新鲜的PMSF。 EDTA 1)抑制金属蛋白水解酶; 2)0.5mol/L水溶液,pH8~9; 3)溶液在4℃稳定六个月以上;

4)工作浓度:0.5~1.5mmol/L. (0.2~0.5mg/ml); 5)加入NaOH调节溶液的pH值,否则EDTA不溶解。 胃蛋白酶抑制剂(pepst anti n) l)抑制酸性蛋白酶如胃蛋白酶,血管紧张肽原酶,组织蛋白酶D和凝乳酶; 2)1mg/ml溶于甲醇中; 3}储存液在4℃一周内稳定,-20℃稳定6个月; 4)1作浓度:0.7ug/ml(1umol/L) 5)在水中不溶解。 亮抑蛋白酶肽(leupeptin) 1)抑制丝氨酸和巯基蛋白酶,如木瓜蛋白酶,血浆酶和组织蛋白酶B; 2)lOmg/ml溶于水; 3)储存液4℃稳定一周,-20℃稳定6个月; 4)工作浓度0.5mg/ml。 胰蛋白酶抑制剂(aprotinin) 1)抑制丝氨酸蛋白酶,如血浆酶,血管舒缓素,胰蛋白酶和胰凝乳蛋白酶; 2)lOmg/ml溶于水,pH7~8 3}储存液4℃稳定一周,-20℃稳定6个月; 4)工作浓度:0.06~2.0ug/ml(0.01~0.3umol/L); 5)避免反复冻融: 6)在pH>12.8时失活。 蛋白酶抑制剂混合使用 35ug/ml PMSF…………………………………丝氨酸蛋白酶抑制剂 0.3mg/ml EDTA…………………………………金属蛋白酶抑制剂 0.7ug/ml胃蛋白酶抑制剂(Pepstatin)…………酸性蛋白酶抑制剂 0.5ug/ml亮抑蛋白肽酶(Leupeptin)……………广谱蛋白酶抑制剂

泛素-蛋白酶体与蛋白酶体抑制剂

泛素-蛋白酶体及其抑制剂 沈子珒许啸声李稻审校 上海交通大学医学院病理生理学教研室 摘要:蛋白酶体与泛素化信号系统一起构成的泛素—蛋白酶体(UPP)是哺乳动物细胞内主要的蛋白水解酶体系,参与和调控细胞的增殖、分化和凋亡。蛋白酶体是一个由20S 催化颗粒、11S调控因子和2个19S调节颗粒组成的ATP依赖性蛋白水解酶复合体。蛋白酶体的活性状态对细胞功能正常维持是非常重要的。26S蛋白酶体对蛋白的降解依赖于靶蛋白的泛素化和泛素化蛋白识别。蛋白酶体抑制剂能通过抑制蛋白酶体活性进而干扰和影响细胞原有的功能,尤其对肿瘤细胞生长有明显的抑制作用。同时,利用蛋白酶体抑制剂改变蛋白酶体的酶切位点活性也成为免疫、炎症等研究的热点。蛋白酶体的抑制剂可分为天然化合物和合成化合物两类,其中Bonezomib(Velcade,PS-341)是近年研究较多的一种蛋白酶体抑制剂。 关键词:肿瘤蛋白酶体泛素蛋白酶体抑制剂PS-341 泛素—蛋白酶体通路(Ubiquitin–proteasome pathway,UPP)的蛋白酶体(proteasome)是一种具有多个亚单位组成的蛋白酶复合体,蛋白酶体沉降系数为26S,故又称26S蛋白酶体。蛋白酶体水解蛋白的前提是靶蛋白的泛素化。在UPP中,各种靶蛋白质泛素化后,先被26S蛋白酶体的19S亚单位识别,随后泛素化靶蛋白脱泛素链和变性,进入20S亚单位的筒状结构内被降解成3~22个多肽。由于蛋白酶体具有精确降解细胞内各种目的靶蛋白,进而参与基因转录和细胞周期调节,以及受体胞吞、抗原呈递等各种细胞生理过程[1]。因此,应用蛋白酶体抑制剂改变其酶切位点活性已成为抗肿瘤治疗的研究热点,蛋白酶体是影响和改变细胞功能重要的目的靶标。 1.蛋白酶体组成 1979年,Goldberg等首先报道在大鼠肝脏和网织红细胞中存在一种分子质量为700 kD的受A TP激活的中性蛋白水解酶。此后,一些在形态、功能及免疫学特征上与之相同的颗粒通过不同途径被分离出来,被统一命名为蛋白酶体[2]。在真核生物进化中,蛋白酶体具有高度的保守性,其简单形式甚至存在于古细菌和真细菌中。真核细胞内的蛋白酶体分布于胞质与胞核内,有的与内质网或细胞骨架相结合,约占细胞蛋白质总量的1%。有功能的26S蛋白酶体是由20S催化颗粒(catalytic particle, CP)、11S调控因子(11S regulator)和2个19S调节颗粒(regulatory particle, RP)组成,其分子量为2.4MD,是ATP依赖性蛋白水解酶复合体。 1.120S催化颗粒(20S CP) 人类蛋白酶体CP的沉降系数为20S,分子量700~750kD。它由α环和β环组成,每个环各有7个相同的亚单位,分别以α1-7β1-7β1-7α1-7顺序排列成圆桶状结构,20S CP中间由两个β亚单位环组成。几乎所有β亚单位都含有一个N 端前导序列,尽管此序列在20S CP装配过程中被切除,但在引导真核生物β亚单位的正确折叠以及β与α亚单位的组装中有重要作用[3]。当β亚单位的N端前导序列被切除后,Thr残基被暴露出来,Thr是酶的活性位点,分别存在于β环的内表面,使β亚单位具有类似的丝氨酸蛋白酶的催化作用[4]。例如,β亚单位N端的折叠方式允许Thr的-OH对底物发动亲核反应形成半缩醛,而Thr的α-NH3可代替丝氨酸蛋白酶中His的咪唑基作为质子受体。此外,活性位点附近的一个Lys残基与特定的丝氨酸蛋白酶中一样,也起着催化剂的作用。目前认为,在20S CP内起催化作用的亚单位主要是β1、β2、β5。不同的β亚单位的催化活性尽管不同,但能互相协调使蛋白酶体具有多种蛋白酶活性,如类糜蛋白酶活性(chymotrypsin-like, ChTL)、类胰蛋白酶活性(trypsin-like,TL)、肽-谷氨酰肽水解酶活性(post-glutamyl-peptide hydrolyzing,PGPH)、支链氨基酸肽酶活性、中性氨基酸切割活性。在20S CP圆桶状的两端由α亚单位环组形成,环口的中央被α亚单位(α

常见蛋白酶抑制剂

当前位置:生物帮〉实验技巧 > 生物化学技术>正文 蛋白酶及蛋白酶抑制剂大全 日期:2012—06-13 来源:互联网 标签: 相关专题:解析蛋白酶活性测定聚焦蛋白酶研究新进展 摘要: 破碎细胞提取蛋白质得同时可释放出蛋白酶,这些蛋白酶需要迅速得被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解、以下列举了5种常用得蛋白酶抑制剂与她们各自得作用特点,因为各种蛋白酶对不同蛋白质得敏感性各不相同,因此需要调整各种蛋白酶得浓度 恩必美生物新一轮2-5折生物试剂大促销!?Ibidi细胞灌流培养系统-模拟血管血液流动状态下得细胞培养系统 广州赛诚生物基因表达调控专题 蛋白酶抑制剂 破碎细胞提取蛋白质得同时可释放出蛋白酶,这些蛋白酶需要迅速得被抑制以保持蛋白质不被降解、在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解、以下列举了5种常用得蛋白酶抑制剂与她们各自得作用特点,因为各种蛋白酶对不同蛋白质得敏感性各不相同,因此需要调整各种蛋白酶得浓度。由于蛋白酶抑制剂在液体中得溶解度极低,尤其应注意在缓冲液中加人蛋白酶抑制剂时应充分混匀以减少蛋白酶抑制剂得沉淀。在宝灵曼公司得目录上可查到更完整得蛋白酶与蛋白酶抑制剂表。 常用抑制剂 PMSF 1)抑制丝氨酸蛋白酶(如胰凝乳蛋白酶,胰蛋白酶,凝血酶)与巯基蛋白酶(如木瓜蛋白酶); 2)10mg/ml溶于异丙醇中; 3)在室温下可保存一年; 4)工作浓度:17~174ug/ml(0。1~1.0mmol/L); 5)在水液体溶液中不稳定,必须在每一分离与纯化步骤中加入新鲜得PMSF。 EDTA 1)抑制金属蛋白水解酶; 2)0.5mol/L水溶液,pH8~9; 3)溶液在4℃稳定六个月以上;

蛋白酶抑制剂

蛋白酶抑制剂 破碎细胞提取蛋白质的同时可释放出蛋白酶,这些蛋白酶需要迅速的被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解。以下列举了5种常用的蛋白酶抑制剂和他们各自的作用特点,因为各种蛋白酶对不同蛋白质的敏感性各不相同,因此需要调整各种蛋白酶的浓度。由于蛋白酶抑制剂在液体中的溶解度极低,尤其应注意在缓冲液中加人蛋白酶抑制剂时应充分混匀以减少蛋白酶抑制剂的沉淀。在宝灵曼公司的目录上可查到更完整的蛋白酶和蛋白酶抑制剂表。 常用抑制剂 PMSF PMSF即Phenylmethanesulfonyl fluoride,中文名为苯甲基磺酰氟。分子式为C7H7FO2S,分子量为174.19,纯度>99%。 常用生化试剂,用于抑制蛋白酶. 【配制方法】用异丙醇溶解PMSF成 1.74mg/ml(10mmol/L),分装成小份贮存于-20℃。如有必要可配成浓度高达17.4mg/ml的贮存液(100mmol/L)。 【注意】PMSF严重损害呼吸道粘膜、眼睛及皮肤,吸入、吞进或通过皮肤吸收后有致命危险。一旦眼睛或皮肤接触了PMSF,应立即用大量水冲洗之。凡被PMSF污染的衣物应予丢弃。PMSF在水溶液中不稳定。应在使用前从贮存液中现用现加于裂解缓冲液中。PMSF在水溶液中的活性丧失速率随pH值的升高而加快,且25℃的失活速率高于4℃。pH值为8.0时,20μmmol/l PMSF水溶液的半寿期大约为85min,这表明将PMSF溶液调节为碱性(pH>8.6)并在室温放置数小时后,可安全地予以丢弃。 蛋白水解酶抑制剂啊!!!实验室常用的啊!!! 主要用于组织匀浆时用!! 1)抑制丝氨酸蛋白酶(如胰凝乳蛋白酶,胰蛋白酶,凝血酶)和巯基蛋白酶(如木瓜蛋白酶); 2)10mg/ml溶于异丙醇中; 3)在室温下可保存一年; 4)工作浓度:17~174ug/ml(0.1~1.0mmol/L); 5)在水液体溶液中不稳定,必须在每一分离和纯化步骤中加入新鲜的PMSF。 EDTA 1)抑制金属蛋白水解酶; 2)0.5mol/L水溶液,pH8~9; 3)溶液在4℃稳定六个月以上; 4)工作浓度:0.5~1.5mmol/L. (0.2~0.5mg/ml); 5)加入NaOH调节溶液的pH值,否则EDTA不溶解。 胃蛋白酶抑制剂(pepstantin) l)抑制酸性蛋白酶如胃蛋白酶,血管紧张肽原酶,组织蛋白酶D和凝乳酶; 2)1mg/ml溶于甲醇中; 3}储存液在4℃一周内稳定,-20℃稳定6个月; 4)1作浓度:0.7ug/ml(1umol/L) 5)在水中不溶解。 亮抑蛋白酶肽(leupeptin) 1)抑制丝氨酸和巯基蛋白酶,如木瓜蛋白酶,血浆酶和组织蛋白酶B; 2)lOmg/ml溶于水; 3)储存液4℃稳定一周,-20℃稳定6个月; 4)工作浓度0.5mg/ml。 胰蛋白酶抑制剂(aprotinin) 1)抑制丝氨酸蛋白酶,如血浆酶,血管舒缓素,胰蛋白酶和胰凝乳蛋白酶; 2)lOmg/ml溶于水,pH7~8 3}储存液4℃稳定一周,-20℃稳定6个月; 4)工作浓度:0.06~2.0ug/ml(0.01~0.3umol/L); 5)避免反复冻融: 6)在pH>12.8时失活。

蛋白酶抑制剂选择指南

蛋白酶抑制剂选择指南 1 蛋白酶抑制剂选择指南 抑制剂 工作浓度 分子量 抑制蛋白酶种类 稳定性 AEBSF终浓度1mM MW:239.5不可逆的丝氨酸蛋白酶抑制剂,抑制胰蛋白酶,糜 蛋白酶,纤溶酶,凝血酶及激肽释放酶. 可溶于水,其pH7的水溶液在4o C可保持稳定1-2个月,在pH>8的情况下会发生缓慢水解 Aprotinins 抑肽酶终浓度2ug/ ml MW:6512 可逆的丝氨酸蛋白酶抑制剂,可抑制纤溶酶,激肽 释放酶,胰蛋白酶,糜蛋白酶,但不抑制凝血酶和 Factor Xa。 非常稳定,当pH>12.8时失去活性,可溶于 水(10mg/ml),-20o C下可长期保存 Bestatin终浓度10uM MW:308.4 可逆的丙氨酰-氨基肽酶抑制剂, 工作液可保存一天,1mM的甲醇贮存液在 -20o C可保存至少一个月 E-64 Protease Inhibitor终浓度10uM MW:357.4 不可逆的半胱氨酸酸蛋白酶抑制剂,抑制半胱氨酸 酸蛋白酶而不会影响其他酶的半胱氨酸残基,与小 分子量的巯基醇如beta-巯基乙醇不会产生反应, 具有高度特异性。工作液在正常pH值下可保持稳定数天,1mM的水溶液在-20o C可保存几个月 EDTA, 4Na终浓度10mM MW:380.2 金属蛋白酶的可逆性螯合物,可能同时影响其他金 属依赖性生物过程。其水溶液很稳定,其贮存液(pH8.5的0.5M 水溶液)在4o C可保存数月 Leupeptin, 半硫酸盐 亮抑酶肽(亮肽素) 终浓度100uM MW:493.6 可逆的丝氨酸及半胱氨酸蛋白酶制剂,可抑制胰蛋 白酶样蛋白酶及一些半胱氨酸蛋白酶如:Lys-C内 切蛋白酶,激肽释放酶,木瓜蛋白酶,凝血 酶,Cathepsin B及胰蛋白酶。 工作液的稳定期为数小时,贮存液(10mM 水溶液)在4o C时稳定期为一周,-20o C时 稳定期为一个月 Pepstatin A 终浓度1uM MW:685.9 可逆的天冬氨酸蛋白酶,可抑制胃蛋白 酶,Cathepain B&L,血管紧张肽原酶(renin)及以1mg/ml溶于甲醇,搅拌过夜可以 1mg/ml溶于乙醇,333mg/ml溶于6N的

胰蛋白酶抑制剂的测定.doc - NY

NY 中华人民共和国农业行业标准 NY/T1103.2-2006 转基因植物及其产品食用安全检测 抗营养素第2部分:胰蛋白酶抑制剂的测定 Safety assessment of genetically modified plant and derived products Part 2: assay of anti-nutrients pancreatic typsin inhibiter 2006-07-10发布2006-10-01实施 中华人民共和国农业部发布

前言 本标准由中华人民共和国农业部提出。 本标准由全国农业转基因生物安全管理标准化技术委员会归口。 本标准起草单位:中国疾病预防控制中心营养与食品安全所、农业部科技发展中心、中国农业大学、天津市卫生防病中心。 本标准主要起草人:杨月欣、王竹、韩军花、李宁、汪其怀、黄昆仑、刘克明、刘培磊、连庆。 本标准首次发布。

转基因植物及其产品食用安全检测 抗营养素第2部分:胰蛋白酶抑制剂的测定 1 范围 本标准规定了转基因植物及其产品中胰蛋白酶抑制剂的测定方法。 本标准适用于转基因大豆及其产品、转基因谷物及其产品中胰蛋白酶抑制剂的测定。其他的转基因植物,如花生、马铃薯等也可用该方法进行测定。 2 术语和定义 下列术语和定义适用于本标准。 2.1 转基因植物genetically modified plant 指利用基因工程技术改变基因组构成,用于农业生产或者农产品加工的植物。 2.2 转基因植物产品products derived from genetically modified plant 指转基因植物的直接加工产品和含有转基因植物的产品。 3 原理 胰蛋白酶可作用于苯甲酰-DL-精氨酸对硝基苯胺(BAPA),释放出黄色的对硝基苯胺,该物质在410 nm下有最大吸收值。转基因植物及其产品中的胰蛋白酶抑制剂可抑制这一反应,使吸光度值下降,其下降程度与胰蛋白酶抑制剂活性成正比。用分光光度计在410 nm 处测定吸光度值的变化,可对胰蛋白酶抑制剂活性进行定量分析。 4 试验材料 转基因植物及其产品、受体植物及其产品。如果对转基因植物产品中的胰蛋白酶抑制剂进行测定,转基因植物产品和受体植物产品的处理条件应相同。 上述材料的水分含量和种植环境应基本一致。

蛋白酶体抑制剂和免疫调节剂对骨髓瘤骨病的治疗作用

USA,2005,102(39):13944-13949. [15]M u raka m iY,Y asud a T,Saigo K,et a.l Co m prehens i ve ana l ysis of m i cro RNA exp ress i on patt erns i n hepatocell u l ar carci no m a and non -t um orous tiss ues[J].On cogene,2006,25(17):2537-2545. [16]Ku tay H,B ai S,Datta J,et a.l Down regulati on ofm i r-122i n t h e roden t and hu m an hepatocell u l ar carci no m as[J].J C ell B io- ch e m,2006,99(3):671-678.[17]C i afre SA,Gal ard i S,M ang i ola A,et a.l E xtensive m odu l ati on of a s et ofm icro RNA s i n pri m ary gliob l ast oma[J].B ioche m B i ophys R es Co mm un,2005,334(4):1351-1358. [18]Chan J A,Krichevs ky A M,K os i k KS.M icro RNA-21i s an ant-i apoptotic f act or i n hum an gli ob l ast o m a cells[J].C ancer Res, 2005,65(14):6029-6033.(编校:田媛) 蛋白酶体抑制剂和免疫调节剂对骨髓瘤骨病的治疗作用 于亚平 The effect of proteaso m e i nhi bitor and i m muno modulatory drugs on m yel o ma bone disease YU Ya-p i n g D e p ar t m ent of H e matology,N anjing GeneralH osp it a l of N anjing M ilit ary Comm and,PLA,N anj i ng210002,China. =Ab stract>M ulti p l e m yelo m a is character i zed by ex tensive bone destructi on w it h little o r no new bone for m ation.O ve r the last decade,nove l agents hav e been used in the m anage m ent o fMM.I mm uno m odulato ry drugs(I M i D s),such as tha li dom i de and lena lidom ide and pro teaso m e i nh i b itor,bortezom i b,have s hown s i gnificant anti-m yelo m a acti v ity i n both new ly diagnosed and re lapsed/refracto ry MM.Besides t he ir po ten t e fficacy ag ainst m ye l om a ce lls,these agents m odify t he i nteracti ons bet w een m ali gnant plas ma ce ll and bone m arro w m icroenv iron m ent,and alter abno r m al bone m etabo li s m i n MM.T h i s rev ie w summ arizes av ail able da ta for t he effect o f I M i D s and borte zo m i b on bone re m ode ling o fMM pa ti ents and t he ir possible role i n t he m anagem ent o fm ye l om are lated bone disease. =K ey w ords>m yelo m a;thali do m i de;lena li do m i de;proteasom e inh i bito r M odern O nco logy2009,17(02):0376-0380 =指示性摘要>多发性骨髓瘤(MM)以广泛骨破坏而少有新骨形成为特点。过去的10余年中,以沙利度胺和 来那度胺为代表的免疫调节药和以硼替佐咪为代表的蛋白酶体抑制剂等新型治疗方法引入临床,这类药物 在对初治和复发/难治MM发挥强效抗肿瘤作用的同时,尚能改变恶性浆细胞和骨髓微环境间的相互反应, 从而影响MM的异常骨代谢,对骨髓瘤骨病发挥有益的治疗作用。本文综述此类新药对MM病人骨重塑的 影响及在骨髓瘤骨病治疗中可能的作用。 =关键词>骨髓瘤;沙利度胺;来那度;蛋白酶体抑制剂 =中图分类号>R733.3=文献标识码>A=文章编号>1672-4992-(2009)02-0376-05 骨髓瘤骨病(m ye l om a bone d i sease,M BD)是骨破坏增加,但没有新骨代偿性形成的结果。约80%的多发性骨髓瘤(MM)病人在病程中并发M BD,表现为骨痛,溶骨性病变,病理性骨折和高钙血症。溶骨性破坏是骨髓瘤病人最为痛苦的表现,严重影响病人的生活质量。即使无病生存数年的病人,其骨髓瘤相关的溶骨性病变亦不会修复,是MM治疗中的主要难题之一。 1M BD的发病机制 M BD是骨髓瘤细胞与破骨细胞和成骨细胞间复杂的相 =收稿日期> 2008-03-26 =作者单位> 南京军区南京总医院血液科,江苏南京210002 =作者简介> 于亚平(1963-),男,湖南岳阳人,博士,主任医师,主要从事内科血液病专业。互作用所致。组织形态学定量研究发现,骨髓瘤细胞促进破骨细胞的骨吸收作用,而抑制成骨细胞活性,从而造成骨吸收和形成间的平衡失调,此为M BD的主要特点[1]。 正常情况下,核因子J B配体受体活化剂(receptor ac t-i va t o r o f nuc lear factor-kappa B li gand,RANKL)和其诱饵受体护骨素(osteoprotegerin,O PG)调节破骨细胞的形成、活性和骨吸收。骨髓瘤细胞通过增加RANKL的表达和降低O PG 的表达而破坏两者间的平衡,RANK L的增加有利于破骨细胞的形成和激活,从而使骨吸收增加。应用OPG或可溶性RANK结构以改变上述平衡能防止B M D的发生[2]。除了RANKL和OPG外,骨髓瘤细胞还能产生巨噬细胞炎症蛋白-1A(m acrophage i nfla mm a t o ry prote i n-1A,M IP-1A)和M IP -1B,两者均能促进破骨细胞的骨吸收。M IP-1A以依赖RANKL的方式发挥作用。其它能增强破骨细胞形成和活性

胰蛋白酶抑制剂对Wnt信号通路的作用

万方数据

万方数据

万方数据

万方数据

胰蛋白酶抑制剂对Wnt信号通路的作用 作者:伊凤双, YI Feng-shuang 作者单位:山西大学生物技术研究所,太原,030006 刊名: 国际肿瘤学杂志 英文刊名:JOURNAL OF INTERNATIONAL ONCOLOGY 年,卷(期):2010,37(5) 参考文献(21条) 1.Fogarty MP;KesslerJD;Wechsler-Reya RJ Morphing into cancer:the role of developmental signaling pathway in brain tumor formation 2005(04) 2.Moon KC;Cho SY;Lee HS Distinct expression pattems of E-Cadherinand beta-cateninin signetring cell carcinoma components of primary pulmonary adcnoesrcinoma 2006(09) 3.Khor TO;Gul YA;Ithnin H A comparative study of the expression of Wnt-1.WISP-1 sundvin and cyclin-D1 in colorectal carcinomas[外文期刊] 2006(04) 4.Luo W;Zou H;Jin L Axin contains three separable domains that confer intramolecular,homodimeric,and heterodimeric interactions involved in distinct fuctions 2005(06) 5.Krieghoff E;Behrens J;Mayr B Nucleo-cytoplasmic distribution of beta-catenin is regulated by retention[外文期刊] 2006(Pt7) 6.Li YY;Zhang Z;Wang ZH rBTI induces apoptosis in human solidtumor cell lines by loss in mitoehondrial transmembrane potential and caspase activation[外文期刊] 2009(02) 7.Kennedy AR;Billings PC;Wan XS Effects of Bowman-Birk inhibitor on rat colon carcinogenesis[外文期刊] 2002(02) 8.李卓玉;袁静明肿瘤抑制蛋白APC的结构与功能[期刊论文]-生命的化学 2006(02) 9.While SR;Williams P;Wojcik KR Initiation of apoptosis by actin cytoskeletal derangement in human airway epithelial cells[外文期刊] 2001(03) 10.Avizienyte E;Wyke AW;Jones RJ Scr-induced deregulation of E-cadherin in colon cancer cdlls requires integrin signaling[外文期刊] 2002(08) 11.Kim PJ;Plescia j;Clevers H Survivin and molecular patho-genesis of colorectal cancer[外文期刊] 2003(9379) 12.Zhang T;Otevrel T;Gao Z Evidence that APC regulates survivin expression:a possible mechanism contributing to the stem cell origin of colon[外文期刊] 2001(24) 13.Hoffman WH;Biade S;Zilfou JT Transcriptional repression of the anti-apoptotic survivin gene by wild type p53 2002(05) 14.Masur K;Lang K;Niggemann B High PKC alpha and low E -cadherin expression contribute to high migratory activity of colon carcinoma cells 2001(07) 15.Le TL;Joseph SR;Yap AS Protein kinase C regulates endocytosis and recycling of E-cadherin 2002(02) 16.Chen CL;Chen HC Functional suppression of E-cadherin by protein kinase Cdelta 2009(Pt 4) 17.Kobayashi H;Suzuki M;Tanaka Y Suppression of urokinase expression and invasiveness by urinary trypsin inhibitor is mediated through inhibition of protein kinase C-and MEK/ERK/c-Jun-dependent

小分子靶点药物蛋白酶体抑制剂Bortezomib

小分子靶点药物蛋白酶体抑制剂Bortezomib 目前认为,肿瘤发生的特征在于调节细胞生长、分化、功能和凋亡的正常细胞信号通路发生了异常改变。其中,蛋白质的降解起着非常重要的作用。这一过程包括溶酶体途径和蛋白酶体途径。溶酶体属于细胞器,参与胞外和跨膜蛋白的降解过程;蛋白酶体参与胞内蛋白的降解过程医学教育网搜集整理。真核细胞26S蛋白酶体是分子量达2.4 Mda的ATP依赖性蛋白裂解复合体。它由20S催化核心和分别位于两端的19S调节亚单位组成。尽管泛素化过程并不是所有蛋白的降解方式,蛋白酶体可识别并降解被带有泛素化标记的蛋白,其中包括细胞周期和细胞凋亡调节蛋白,例如细胞周期素、Caspases、Bcl-2和NF-κB。与正常细胞相比较,恶性肿瘤细胞对蛋白酶体抑制剂更为敏感。其部分机理在于肿瘤的发生与细胞周期和凋亡检查点突变的逆转与旁路重建有关;另外,恶性肿瘤细胞也更依赖于蛋白酶体体系去除异常蛋白以及依赖NF-κB通路的激活而维持肿瘤细胞的耐药性和放疗抵抗性。蛋白酶体抑制剂不但可直接诱导肿瘤细胞的凋亡,还对标准化学治疗和放射治疗具有增敏作用以及可逆转肿瘤细胞的抗药性。Bortezomib是一种蛋白酶体抑制剂,能够特异性抑制哺乳动物细胞内26S蛋白酶体的类胰凝乳蛋白酶(chymotrypsin-like)活性,对细胞一系列信号转导通路产生影响,最终诱导肿瘤细胞死亡。一项多中心Ⅱ期开放性临床研究显示,在202例复发性和顽固性多发性骨髓瘤患者中,其中92%的患者先前至少接受过3种药物治疗,并且先前治疗对91%的患者无效。共193例患者可评价临床疗效。结果示有效率(CR+PR+MR)为35%,中位总生存期为16个月,中位缓解时间为12个月[44]。基于该项研究,2003年5月,美国FDA批准千年制药公司Bortezomib注射剂(Velcade)上市,用于治疗先前至少用过2种药物治疗和最近1次治疗显示病情加重的多发性骨髓瘤。它是美国近十年来第一个被批准用于多发性骨髓瘤的药物,同时也是第一个蛋白酶体抑制剂药物。ASCO 2004报告的一项多中心III期随机对照临床研究显示,Bortezomib治疗多发性骨髓瘤患者可延缓肿瘤进展、改善生存,而且毒副作用轻于地塞米松,已成为复发性多发性骨髓瘤的标准治疗。 蛋白酶体抑制剂Bortezomib在治疗恶性淋巴瘤方面,多名学者在2003年ASH会议上报告了蛋白酶体抑制剂Bortezomib单药治疗单药治疗惰性淋巴瘤的II期临床研究、单药治疗套细胞淋巴瘤的II期临床研究、联合EPOCH方案治疗非霍奇金淋巴瘤的II期临床研究和联合Doxil (脂质体阿霉素)的I期临床研究。在2004年ASCO会议上,纪念Sloan Kettering 癌症中心Connor等报告了蛋白酶体抑制剂Bortezomib治疗复发性或难治性惰性淋巴瘤的临床研究[45-46]。在25例患者包括了3例小淋巴细胞性淋巴瘤、9例滤泡性淋巴瘤、11例套细胞淋巴瘤和2例边缘区淋巴瘤。其中24例先前接受过以下化学治疗:60%的患者接受过CHOP +/- R方案治疗;20%的患者接受过CVP +/- R方案治疗;15%的患者接受过以嘌呤类药物为基础的化学治疗;12%的患者接受过外周血干细胞支持下的大剂量化学治疗;还有8% 的患者接受过放射免疫治疗。Bortezomib的用法是1.5 mg/m2,每周两次,连用两周,每三周重复。除一例出现III度感觉和运动神经毒性外,其他患者均未出现III度或IV度的毒性。结果小淋巴细胞性淋巴瘤患者均在第二或第四个疗程后达到肿瘤稳定。在9例可评价疗效的滤泡性淋巴瘤患者中,6例均达到肿瘤缓解,其中1例达到持续完全缓解。2例边缘区淋巴瘤患者在治疗2疗程后达到部分缓解。在10例可评价疗效的套细胞淋巴瘤患者中,5例达到部分缓解。提示蛋白酶体抑制剂Bortezomib对惰性淋巴瘤的某些亚型具有肯定的疗效。另外,目前正在开展蛋白酶体抑制剂Bortezomib单药治疗霍奇金淋巴瘤以及联合Bcl-2反义寡核苷酸G3139治疗恶性淋巴瘤的I/II期临床研究

丝氨酸蛋白酶抑制剂的研究进展

丝氨酸蛋白酶抑制剂的研究进展 梁化亮 (生物与食品工程学院,常熟 215500) Progress on antimicrobial peptide [摘要]蛋白酶抑制剂(PIs)是一类能抑制蛋白酶水解酶的催化活性的蛋白或多肽,广泛存在于生物体,在许多生命活动过程中发挥必不可少的作用。根据活性位点氨基酸种类不同可将蛋白酶抑制剂分为四大类型:丝氨酸蛋白酶抑制剂、巯基蛋白酶抑制剂、天冬氨酸蛋白酶抑制剂和金属蛋白酶抑制剂。其中尤以丝氨酸蛋白酶及其抑制剂在体一些重要生理活动中起关键性的调控作用。其能对蛋白酶活性进行精确调控,包括分子间蛋白降解,转录,细胞周期,细胞侵入,血液凝固,细胞凋亡,纤维蛋白溶解作用,补体激活中所起的作用。 [关键词]丝氨酸蛋白酶抑制剂分类临床应用防御

1 丝氨酸蛋白酶抑制剂 免疫系统是由组织,细胞,效应分子构成,并逐渐进化形成用于阻挠病原微生物的侵入攻击,限制它们扩散进入宿主环境。这其中起到主要作用的是宿主产生的蛋白酶抑制剂,广泛存在于生物体的蛋白酶抑制剂在机体与相应的蛋白酶形成一个动态的系统,在生物体系以及一系列的生理过程中起着调控作用[1],是生物体免疫系统的重要组成部分。它不仅能使侵入体的蛋白酶失活并且能将其清除,使附着在宿主表面的病原细菌无法附着生存。其中丝氨酸蛋白酶及其抑制剂在体一些重要生理活动中起关键性的调控作用[2]。 丝氨酸蛋白酶抑制剂(serine protease inhibitor)泛指具有抑制丝氨酸蛋白酶水解活性的一类物质,广泛存在于动物、植物、微生物体中[3]。在动物体中,丝氨酸蛋白酶抑制剂是维持体环境稳定的重要因素,一旦平衡失调即导致多种疾病,任何影响其活性的因素也会造成严重的病理性疾病。它们最基本的功能是防止不必要的蛋白水解,调节丝氨酸蛋白酶的水解平衡。作为调控物,丝氨酸蛋白酶抑制剂参与机体免疫反应,对生物体的血液凝固、补体形成、纤溶、蛋白质折叠、细胞迁移、细胞分化、细胞基质重建、激素形成、激素转运、细胞蛋白水解、血压调节、肿瘤抑制以及病毒或寄生虫致病性的形成等许多重要的生化反应和生理功能有重要的影响[4]。鉴于其重要的生理功能,丝氨酸蛋白酶抑制剂一直倍受研究者的关注,目前已分离得到多种天然丝氨酸蛋白酶抑制剂,同时如何将其更好地应用于食品、医药领域也成为近来研究热点。 1.1 丝氨酸蛋白酶抑制剂分类 目前,典型的丝氨酸蛋白酶抑制剂基于其序列、拓扑结构及功能的相似性,至少可分为18个家族[5],如表1-1所示。不同家族抑制剂的空间结构也不同。通常这类抑制剂是β片层或混合了α螺旋和β片层的蛋白质,也可能是α螺旋或富含二硫键的不规则蛋白质。但它们都拥有规的反应活性位点环的构象,从而使这些非相关的蛋白质具有相似的生物学功能[6]。因此典型的丝氨酸蛋白酶抑制剂最明确最广泛地代表了蛋白质的趋同进化。 1.2 Serpins Serpins是一类分子量较大的丝氨酸蛋白酶抑制剂超家族,氨基酸残基数为

相关文档
最新文档