半导体分类

半导体分类
半导体分类

按半导体工艺分类,集成电路可以分为

A、双极型电路、MOS电路和接口电路

B、双极型电路、MOS电路和双极型-MOS电路

C、小规模、大规模和超大规模集成电路

D、模拟集成电路、数字集成电路

化合物半导体分类概述

化合物半导体主要包括III-V族,II-VI族、IV-IV族及I-III-VI族等,但就研究现况及未来远景而言,仍以III-V族、II-VI族及IV-IV族为主流,概述如下。

1.

III-V族

(1)

砷化物系列材料︰包括AlGaA s、应变InGaAs材料,已是最成熟的化合物半导体,也是在光纤通讯、无线通讯及信息产业上不可或缺的关键材料。近年来,研究重点除了与量产技术相关的课题外,最受注意的方向就是与纳米科技相关的InGaAs、InAs量子点、量子线低维度结构及其临场实时检测技术、Metamorphic 外延技术、含氮的InGaAsSbN材料、以及含Mn,Co,Ni及Cr等元素的磁性材料。

这些新材料搭配纳米结构会是未来发展量子器件的基础。

(2)

磷化物系列材料︰包括可见光范围的AlGaInP/GaAs及光纤通讯应用的InGaAsP/InP以及InAlGaAs/InP系列材料。含磷系列的材料,在MOCVD外延技术上已相当成熟,但在分子束外延(MBE)技术方面,直到最近几年由于固态磷源技术的进步,且有良好的均匀性及安全性的优点,而成为许多人青睐的选项的一。AlGaInP材料主要应用于LED及激光,而InGaP/GaAs则是重要的HBT材料,InP系列除了光纤通讯的应用的外,也是高速器件及MMIC的重要材料,特别是InP HBT将在100 GHz以上的电路扮演极重要的角色。当然,其纳米结构也是研

究重点的一。

(3)

氮化物系列材料︰包括BN,AlN,GaN及InN等,是当今最热门的研究重点,相关材料的波长涵盖范围包括紫外光、紫光、蓝光、绿光、红光,甚至红外光,而器件则包括高亮度LED、半导体激光、光侦测器,以及高功率电子器件,如HEMT 等。由于它的应用广泛,各种不同的外延技术都值得发展。目前氮化物系列材料最大的课题是没有适当的晶格匹配衬底。因此,衬底材料的单晶成长技术,及以HVPE成长厚层GaN作为衬底的相关技术,均是值得探讨的课题。除了六方晶系氮化物系列材料的外,低度含氮的立方化合物半导体材料也是一个重要的研究主题,在GaAs衬底上成长InGaAsN以制作1.3 μm,1.55 μm激光及光放大器即是一例。这类型材料的外延成长、材料缺陷研究、物理研究与器件应用,目前虽已有良好的进展,但其中牵涉的物理仍未十分清楚,有待深入研究。

(4)

锑化物系列材料︰锑化物系列的材料过去主要是在中红外线波长范围(2-5μm)的应用,包括下一世代的光纤通讯、中红外线光源、侦测器及热光伏特(TPV)能

源转换器等。近年来含锑化合物的MOCVD与MBE技术都有所进步,在电子与光纤通信领域也逐渐受到重视。例如InP/GaAsSb/InP DHBT、GaAsSb/GaAs长波长面发射激光(VCSEL),以及未来超高频、低电压、低功率消耗的锑基材料的电子器件与集成电路技术等。同时锑元素常在异质外延成长时扮演界面活性剂(surfactant)的角色,有助于获得平整的界面。因此,锑化物材料、制程与器件均有其研究价值。此外,锑化物中InAs与GaSb系列的碎能带结构也有产生许多

有趣物理课题的可能性。

(5)

氧化物材料︰一直受到无法成长高质量氧化层的限制,III-V族的MOSFET发展有限,最近几年,III-V族的MOSFET在氮化物技术有所突破后,已再次燃起研究者兴趣,氧化物的材料从SiO2,Al2O3,发展到Ga2O3,Gd2(Ga2O3),氧化物的成长技术包括液相沉积法(LPD),热氧化,PECVD及MBE等,除了GaAs MOSFET,增强型GaN MOSFET最近也已被实现,但仍有很大的研究空间。

2.

II-VI族

II-VI族材料以ZnSe及HgCdTe二个系统最为普遍,近年来ZnO、MgO等宽能阶材料也渐受重视。HgCdTe是成熟的红外探测器的材料,使用带有Hg特殊装置的MBE设备生长的HgCdTe已经是西方国家在军事上的制胜法宝之一。自1991年ZnSe蓝绿光脉冲型激光器发展成功,至今,其寿命虽可达400小时,但已被GaN 系列的激光所超越。因此,在激光器的应用上,ZnSe几乎已丧失其舞台,不过在白光LED的应用仍有一些可能性。日本住友公司利用ZnSe衬底深层能阶所发出的黄光混合于其上的二极管的蓝紫光,制作白光二极管,初步证实可行,惟目前其寿命仍不及GaN器件,一些用以提高其可靠度的方法尚待证实。ZnSe、CdSe、CdS等材料除了应用于现已成熟的光电产品上,未来最具潜力的领域应是应用于生物芯片及医学检验的量子点结构。此外,在太阳电池、磁性材料与自旋电子器件上也有发挥的空间。ZnO材料的研究逐年增加,焦点大多是在透明电极、发光

器件,及纳米结构,如纳米柱的制备等。

3.

IV-IV族

(1)

SiGe/SiGeC︰这类材料是目前极为热门的材料,未来将与Si结合,大幅增加Si 基器件的功能、性能与应用潜力,具有广大商机。此材料的制备目前仍以高真空CVD成长技术为主,它的材料特性、物理特性(如量子现象等)及器件特性值得

研究。

(2)

SiC︰由于它属于间接能带,在发光器件方面,无法和已高度发展的氮化物系列材料竞争,但它具有高导电性及较佳的晶格匹配,可作为氮化物材料成长的衬底选择。另外,它的大能带及较佳的热导系数,使其可往高功率高温的电子器件或MOSFET发展。目前SiC材料缺陷仍多,价格昂贵,所以SiC的晶体生长技术也

是值得开发的领域的一。

半导体的分类,按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。此外还

有以应用领域、设计方法等进行分类,虽然不常用,但还是按照IC、LSI、VLSI (超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、模拟数字混成及功能进行分类的方法。

双极器件、IGCT、IGBT等完整的技术平台和产业体系,可以为国内外电力电子装置制造企业提供大功率半导体器件全套解决方案。

https://www.360docs.net/doc/5a12089572.html,/dzyj/bdtsjbb.htm

全球和中国半导体产业发展历史和大事记

全球和中国半导体产业发展历史和大事记 1947年,美国贝尔实验室发明了半导体点接触式晶体管,从而开创了人类的硅文明时代。 1956年,我国提出“向科学进军”,根据国外发展电子器件的进程,提出了中国也要研究半导体科学,把半导体技术列为国家四大紧急措施之一。中国科学院应用物理所首先举办了半导体器件短期培训班。请回国的半导体专家黄昆、吴锡九、黄敞、林兰英、王守武、成众志等讲授半导体理论、晶体管制造技术和半导体线路。在五所大学――北京大学、复旦大学、吉林大学、厦门大学和南京大学联合在北京大学开办了半导体物理专业,共同培养第一批半导体人才。培养出了第一批著名的教授:北京大学的黄昆、复旦大学的谢希德、吉林大学的高鼎三。1957年毕业的第一批研究生中有中国科学院院士王阳元(北京大学微电子所所长)、工程院院士许居衍(华晶集团中央研究院院长)和电子工业部总工程师俞忠钰(北方华虹设计公司董事长)。 1957年,北京电子管厂通过还原氧化锗,拉出了锗单晶。中国科学院应用物理研究所和二机部十局第十一所开发锗晶体管。当年,中国相继研制出锗点接触二极管和三极管(即晶体管)。 1958年,美国德州仪器公司和仙童公司各自研制发明了半导体集成电路(IC)之后,发展极为迅猛,从SSI(小规模集成电路)起步,经过MSI(中规模集成电路),发展到LSI(大规模集成电路),然后发展到现在的VLSI(超大规模集成电路)及最近的ULSI(特大规模集成电路),甚至发展到将来的GSI (甚大规模集成电路),届时单片集成电路集成度将超过10亿个元件。 1959年,天津拉制出硅(Si)单晶。 1960年,中科院在北京建立半导体研究所,同年在河北建立工业性专业化研究所――第十三所(河北半导体研究所)。 1962年,天津拉制出砷化镓单晶(GaAs),为研究制备其他化合物半导体打下了基础。 1962年,我国研究制成硅外延工艺,并开始研究采用照相制版,光刻工艺。 1963年,河北省半导体研究所制成硅平面型晶体管。 1964年,河北省半导体研究所研制出硅外延平面型晶体管。 1965年12月,河北半导体研究所召开鉴定会,鉴定了第一批半导体管,并在国内首先鉴定了DTL型(二极管――晶体管逻辑)数字逻辑电路。1966年底,在工厂范围内上海元件五厂鉴定了TTL电路产品。这些小规模双极型数字集成电路主要以与非门为主,还有与非驱动器、与门、或非门、或门、以及与或非电路等。标志着中国已经制成了自己的小规模集成电路。 1968年,组建国营东光电工厂(878厂)、上海无线电十九厂,至1970年建成投产,形成中国IC产业中的“两霸”。 1968年,上海无线电十四厂首家制成PMOS(P型金属-氧化物半导体)电路(MOSIC)。拉开了我国发展MOS电路的序幕,并在七十年代初,永川半导体研究所(现电子第24所)、上无十四厂和北京878厂相继研制成功NMOS电路。之后,又研制成CMOS电路。 七十年代初,IC价高利厚,需求巨大,引起了全国建设IC生产企业的热潮,共有四十多家集成电路工厂建成,四机部所属厂有749厂(永红器材厂)、871(天光集成电路厂)、878(东光电工厂)、4433厂(风光电工厂)和4435厂

半导体材料课程教学大纲

半导体材料课程教学大纲 一、课程说明 (一)课程名称:半导体材料 所属专业:微电子科学与工程 课程性质:专业限选 学分: 3 (二)课程简介:本课程重点介绍第一代和第二代半导体材料硅、锗、砷化镓等的制备基本原理、制备工艺和材料特性,介绍第三代半导体材料氮化镓、碳化硅及其他半导体材料的性质及制备方法。 目标与任务:使学生掌握主要半导体材料的性质以及制备方法,了解半导体材料最新发展情况、为将来从事半导体材料科学、半导体器件制备等打下基础。 (三)先修课程要求:《固体物理学》、《半导体物理学》、《热力学统计物理》; 本课程中介绍半导体材料性质方面需要《固体物理学》、《半导体物理学》中晶体结构、能带理论等章节作为基础。同时介绍材料生长方面知识时需要《热力学统计物理》中关于自由能等方面的知识。 (四)教材:杨树人《半导体材料》 主要参考书:褚君浩、张玉龙《半导体材料技术》 陆大成《金属有机化合物气相外延基础及应用》 二、课程内容与安排 第一章半导体材料概述 第一节半导体材料发展历程 第二节半导体材料分类 第三节半导体材料制备方法综述 第二章硅和锗的制备 第一节硅和锗的物理化学性质 第二节高纯硅的制备 第三节锗的富集与提纯

第三章区熔提纯 第一节分凝现象与分凝系数 第二节区熔原理 第三节锗的区熔提纯 第四章晶体生长 第一节晶体生长理论基础 第二节熔体的晶体生长 第三节硅、锗单晶生长 第五章硅、锗晶体中的杂质和缺陷 第一节硅、锗晶体中杂质的性质 第二节硅、锗晶体的掺杂 第三节硅、锗单晶的位错 第四节硅单晶中的微缺陷 第六章硅外延生长 第一节硅的气相外延生长 第二节硅外延生长的缺陷及电阻率控制 第三节硅的异质外延 第七章化合物半导体的外延生长 第一节气相外延生长(VPE) 第二节金属有机物化学气相外延生长(MOCVD) 第三节分子束外延生长(MBE) 第四节其他外延生长技术 第八章化合物半导体材料(一):第二代半导体材料 第一节 GaAs、InP等III-V族化合物半导体材料的特性第二节 GaAs单晶的制备及应用 第三节 GaAs单晶中杂质控制及掺杂 第四节 InP、GaP等的制备及应用 第九章化合物半导体材料(二):第三代半导体材料 第一节氮化物半导体材料特性及应用 第二节氮化物半导体材料的外延生长 第三节碳化硅材料的特性及应用 第十章其他半导体材料

一文看透中国半导体行业现状

一文看透中国半导体行业现状 2016-10-13 在中国近年来在半导体领域的重大投入和中国庞大市场的双重影响下,中国半导体在全球扮演的的角色日益重要。国际社会上很多观察家在把中国看成一个机会的同时,也同时顾虑到中国半导体崛起带来的威胁。但有一点可以肯定的是,近年来中国半导体玩家频频露面知名国际会议,已经制造了相当程度的全球影响力。 自从中国宣布建立千亿的投资基金,挑战全球半导体霸主的地位。业界的巨头们都在思考并谨慎防御中国的半导体野心。 考虑到中国庞大的国内市场和本土业者的技术悟性”,还有中国近几十年来所缔造的电子生产龙头地位,再加上近年来在各个领域的深入探索。你就会明白为什么中国对发展相对滞后的硅产业如此重视。 据我们预测,到2020 年,中国会消耗世界上55%的存储、逻辑和模拟芯片,然而当中只有15%是由中国自身生产的,和多年前的10%相比还是有了一定比例的提升。但是供需之间的差距仍然在日益扩大。 中国想在全球半导体产业中扮演一个重要角色,为本土生产的智能手机、平板等消费电子设备,工业设备制造更多国产的微处理器芯片、存储和传感器,能够满足本土电子产业的需求甚至还展望可以出口相关元器件。 在这种目标的指导下,中国在全国已经开发了好几个半导体产业群(图1),且在未来十年内,国家和地方政府计划额外投资7200亿人民币(1080亿美金)到半导体产业。这些投资除了满足消费和工业需求外,还会兼顾到中国在通信、安全等工业,以求减少对国际半导体的依赖。 图1 :中国半导体的全国分布图

但据我们观察,中国半导体要崛起首先面临的第一个障碍就是目前中国大部分项目都是和已存在的公司合作,追逐市场的领先者和落后者,考虑到他们的目标、技术需求和国外政府对其的限制等现状。许多的中国公司已经释放出了一种信号一一那就是想投资更多的跨国半导体公司。最近的频频示好,也让中国半导体斩获不少。 在2016年1月,贵州政府出钱和高通成立了一家专注于高端服务器芯片生产的公司华芯通,合资公司中贵州政府所占的比例为55% ;另外,清华紫光集 团也给台湾的Powertech (力成)投资了6亿美金,成为后者的第一大股东。 力成成立于1997年,是全球第五大封测服务厂,美国存储生产商金士顿为其重要股东,原持股比例约3.83%,并拥有四席董事席位,台湾东芝半导体也拥有一席,在增资后股份以及董事席次估计都会有所更动。力成在营运业务上主要 专注在存储IC封测。这次投资体现了紫光和中国大陆对存储产业的决心。 早前,紫光还想买下西部数据和美光,但受限于美国监管局,这两笔交易最后只能夭折。虽然困难重重,但展望不久的将来,中国半导体业势必会发起更多并购,让我们拭目以待。 对于国际上的半导体玩家而言,中国半导体的雄心壮志有时候会让他们望而生畏。 考虑到中国庞大的市场、雄厚的资本和追求经济增长的长久目标,这就要求这些跨国公司在中国需要制定更清晰的策略。当然,这并不是说全球半导体玩家在和中国打交道的时候缺乏影响力和议价能力。 其实参考中国以往进入新市场的表现,结果是喜忧参半的。他们的国有公司政府组织会根据竞争者的状况和市场现状采取不同的策略。考虑到中国半导体目 标和他们进入国际市场的困难重重,展望未来他们还是会持续保持和跨国公司的合作,并在此期间培育自己的企业和产业。 中国抢占市场的方式 在对中国半导体并购策略了解之前,我们先了解一下中国抢占市场的惯用方

半导体产业介绍

半导体整个生态链 主要分为:前端设计(design),后端制造(mfg)、封装测试(package),最后投向消费市场。 不同的厂商负责不同的阶段,环环相扣,最终将芯片集成到产品里,销售到用户手中。半导体厂商也分为2大类,一类是IDM (Integrated Design and Manufacture),包含设计、制造、封测全流程,如Intel、TI、Samsung这类公司;另外一类是Fabless,只负责设计,芯片加工制造、封测委托给专业的Foundry,如华为海思、展讯、高通、MTK(台湾联发科)等。 前端设计是整个芯片流程的“魂”,从承接客户需求开始,到规格、系统架构设计、方案设计,再到Coding、UT/IT/ST(软件测试UT:unit testing 单元测试IT: integration testing 集成测试ST:system testing 系统测试),提交网表(netlist或称连线表,是指用基础的逻辑门来描述数字电路连接情况的描述方式)做Floorplan,最终输出GDS(Graphics Dispaly System)交给Foundry做加工。由于不同的工艺Foundry提供的工艺lib库不同,负责前端设计的工程师要提前差不多半年,开始熟悉工艺库,尝试不同的Floorplan设计,才能输出Foundry想要的GDS。 后端制造是整个芯片流程的“本”,拿到GDS以后,像台积电,就是Foundry 厂商,开始光刻流程,一层层mask光刻,最终加工厂芯片裸Die。 封装测试是整个芯片流程的“尾”,台积电加工好的芯片是一颗颗裸Die,外面没有任何包装。从晶圆图片,就可以看到一个圆圆的金光闪闪的东西,上面横七竖八的划了很多线,切出了很多小方块,那个就是裸Die。裸Die是不能集成到手机里的,需要外面加封装,用金线把芯片和PCB板连接起来,这样芯片才能真正的工作。 台积电是目前Foundry中的老大,华为麒麟系列芯片一直与台积电合作,如麒麟950就是16nm FF+工艺第一波量产的SoC芯片。 半导体行业的公司具主要分为四类: 集成器件制造商IDM (Integrated Design and Manufacture):指不仅设计和销售微芯片,也运营自己的晶圆生产线。Intel,SAMSUNG(三星),东芝,ST(意法半导体),Infineon(英飞凌)和NXP(恩智浦半导体)。 无晶圆厂供应商Fabless:公司自己开发和销售半导体器件,但把芯片转包给独立的晶圆代工厂生产。例如:Altera(FPL),爱特(FPL),博通(网路器件),CirrusLogicCrystal(音频,视频芯片),莱迪思(FPL),英伟达(FPL),

半导体产业现状、发展路径与建议

半导体产业现状、发展路径与建议 摘要:在当前数字时代、智能时代,半导体无处不在,对科技和经济发展、社会和国家安全都有着重大意义。半导体产业属于高度资本密集+高度技术密集的大产业,经历了由美国向日本和美日向韩国、中国台湾的两次产业转移,每次转移均伴随着全球消费需求周期变化以及产业垂直精细化分工。而当前中国已成为全球最大的半导体消费国,同时也是全球消费电子制造中心,这会推动半导体产业进一步向中国移转。在已经到来的半导体行业第三次产业转移中,中国将成为最大获益者。准确把握半导体行业发展趋势,正确制定支持策略,对于半导体行业业务机遇、加强服务实体经济和科技创新的能力具有重要意义。 关键词:半导体产业;现状;发展路径;建议 1我国半导体产业的发展现状 1.1技术处于追赶期,仍有相当差距 据中国半导体行业协会统计,中国半导体呈现“设计-制造-封测”两头大中间小的格局。分领域看,国内芯片设计业增速最快,为27%,与美国等全球先进企业差距不断缩小。封测业因成本和市场地缘优势,发展相对较早,具有较强的国际竞争力。但是在制造方面,国内企业与全球先进水平还存在较大差距,难以掌握核心技术和关键元件,生产线采用的技术落后于国际先进水平至少一代,核心技术甚至要落后三代。例如,台湾地区就明令禁止向大陆相关工厂提供最尖端的生产工艺,只允许引进落后一代的技术。从芯片制造领域细分来看,目前处理器市场已有中国公司具备参与国际竞争的能力,但在存储芯片市场,国内企业几乎是一片空白。目前中国三大存储芯片企业——长江存储、合肥长鑫、福建晋华等正加紧建设存储芯片工厂,最快在2018年开始投产,不久的将来中国将成为与日韩比肩的存储芯片生产地。其中,规模最大的为紫光集团旗下的长江存储,主要采用3DNANDFlash技术;合肥长鑫、福建晋华则以DRAM存储芯片为主。 1.2中国半导体行业迎来黄金发展期 从行业趋势判断,中国半导体行业正面临前所未有的战略机遇,可谓是天时地利人和。天时,首先是摩尔定律已近极限,为后来者提供了追赶的空间。摩尔定律揭示了信息技术进步的速度,尽管这种趋势已经持续了超过半个世纪,摩尔定律仍应该被认为是观测或推测,而不是一个物理或自然法则。由于硅半导体的发展趋近物理极限,芯片性能不可能无限制翻番,其性能的提升越来越困难。当芯片发展到7纳米以后,发展速度会降低。在2013年年底之后,晶体管数量密度预计只会每三年翻一番,该定律一般预计将持续到2015年或2020年。而在向新的发展方向和领域突破时,半导体行业重新划定了新的起跑线,这为后来者提供了追赶的时机。其次,随着数字经济的发展,芯片不仅仅应用于电脑、手机,还包括云计算服务器,无人驾驶的智能汽车上,以及物联网上的芯片,芯片应用领域的迅速扩大,为后来者站稳市场脚跟创造了新的机会。地利,中国已经成为全球最大的半导体消费市场,本土化、国产化需求成倍增长。同时,中国芯片制造领域也在持续发力,经过多年自主创新和国际并购,在半导体行业积累了一定的技术和人才,在产业布局和个别环节上出现了具有一定竞争力的企业,为后续实现赶超和跨越式发展打下了良好基础。人和,中国具有稳定的政治环境和政策基础,支持半导体行业的发展已经被提升到国家战略高度,出台了明确的发展规划,在政策和资金上给予大力扶持。 1.3国家战略支持

【发展战略】我国半导体产业的现状和发展前景

五、半导体篇 ——我国半导体产业的现状和发展前景 电子信息产业已成为当今全球规模最大、发展最迅猛的产业,微电子技术是其中的核心技术之一(另一个是软件技术)。现代电子信息技术,尤其是计算机和通讯技术发展的驱动力,来自于半导体元器件的技术突破,每一代更高性能的集成电路的问世,都会驱动各个信息技术向前跃进,其战略地位与近代工业化时代钢铁工业的地位不相上下。 当前,世界半导体产业仍由美国占据绝对优势地位,日本欧洲紧随其后,韩国和我国台湾地区也在迅速发展。台湾地区半导体工业已成为世界最大的集成电路代工中心,逐步形成自己的产业体系。 我国的微电子科技和产业起步在50年代,仅比美国晚几年。计划经济时期,由于体制的缺陷和其间10年“文革”,拉大了和国际水平的差距。进入80年代,我国面对国内外微电子技术的巨大反差和国外对我技术封锁,我们没有能够在体制和政策上及时拿出有效应对措施。国有企业无法适应电子技术的快节奏进步,国家协调组织能力下降,科研体制改革缓慢,以致1980~1990年代我国自主发展半导体产业的努力未获显著效果。 “市场‘开放’后,集成电路商品从合法、不合法渠道源源涌入,集成电路所服务的终端产品,以整机或部件散装的形式,也大量流入,但人家确实考虑到微电子的战略核心性质,死死卡住生产集成电路的先进设备,不让进口,在迫使我们落后一截,缺乏竞争力的同时,又时刻瞄准我们科研与生产升级的潜力,把我们的每一次进步扼杀在萌芽状态,冲垮科技能力,从外部加剧我们生产与科研的脱节,迫使我们不得不深深依赖他们。……我们的产业环境又多多少少带有计划色彩,不能很快与国际接轨,其中特别是对微电子产业发展有重大影响的企业制度、资本市场、税收政策、科研体制等,又不适应市场经济要求,使得我们在国际竞争中缺乏活力”。1 20世纪90年代,我国半导体产业的增长速度达到30%以上,但其规模仅占世界半导体子产业的1%,仅能满足大陆半导体市场的不足10%。即使“十五”期间各地计划的项目都能如期实施,到2005年,我国半导体产业在世界上的份额,顶多占到2%~3%。自己的设计和制造水平和国际先进水平的差距很大,企业规模小、重复分散、缺乏竞争力,基本上是跨国公司全球竞争战略的附庸,自己的产业体系还没有成形。 我国半导体产业如此落后的现状,使得我国的经济、科技、国防现代化的基础“建筑在沙滩上”。在世界微电子技术迅猛发展的情况下,我国如不努力追赶,就会在国际竞争中越来越被动,对我国未来信息产业的升级和市场份额的分配,乃至对整个经济发展,都可能造成十分不利的影响。形势逼迫我国必须加快这一产业的发展。“十五”计划中,加快半导体产业的发展被放在重要地位,这是具有重大意义的。 发展中国家要追赶国际高科技产业的步伐,一般都会面临技术、资金、管理、市场的障碍。高科技的产业化是一个大规模的系统工程,需要科研和产业的紧密结合,以及各部门的有效协调,而这些都不是单个企业所能跨越得过去的。在市场机制尚未成熟到有效调动资源的情况下,高层次的组织协调和扶持是必需的。构建具有较高透明度的政策环境和市场环境。有助于鼓励高科技民营企业进入电路设计业领域,鼓励生产企业走规模化和面向国内市场自主开发的路子,形成产业群体。 1许居衍院士,2000年。

半导体材料

半导体材料 应用物理1001 20102444 周辉 半导体材料的电阻率界于金属与绝缘材料之间的材料。这种材料在某个温度 范围内随温度升高而增加电荷载流子的浓度,电阻率下降。由化合物构成的半导 体材料,通常是指无机化合物半导体材料。比起元素半导体材料来它的品种更多, 应用面更广。 半导体材料结构特征主要表现在化学键上。因为化合物至少由两个元素构 成,由于它们彼此间的原子结构不同,价电子必然向其中一种元素靠近,而远离 另一种元素,这样在共价键中就有了离子性。这种离子性会影响到材料的熔点、 带隙宽度、迁移率、晶体结构等。 化合物半导体的组成规律一般服从元素周期表排列的法则。对已知的化合物 半导体材料,其组成元素在同一族内垂直变换,其结果是随着元素的金属性增大 而其带隙变小,直到成为导体。反之,随着非金属性增加而其带隙变大,直至成 为绝缘体。 类别按其构成元素的数目可分为二元、三元、四元化合物半导体材料。它 们本身还可按组成元素在元素周期表中的位置分为各族化合物,如Ⅲ—V族,I —Ⅲ—Ⅵ族等。下面介绍二元化合物,其中主要的类别为Ⅲ—v族化合物半导体 材料,Ⅱ—Ⅵ族化合物半导体材料,Ⅳ—Ⅳ族化合物半导体材料。 Ⅳ—Ⅵ族化合物半导体材料。已发现具有半导体性质的有格式,GeSe,GeTe, SnO ,SnS,SnSe,SnTe,Pb0,PbS,PbSe,PbTe,其中PbO,PbS,PbSe,PbTe 2 已获重要用途。

V—Ⅵ族化合物半导体材料。已发现具有半导体性质的有Bi 2O 3 ,Bi 2 S 3 ,Bi 2 Se 3 , Bi 2Te 3 ,Sb 2 O 3 ,Sb 2 S 3 ,Sb 2 Te 3 、As 2 O 3 ,As 2 S 3 ,其中Bi 2 Te 3 ,Bi 2 Se 3 等已获实际应用。 I—Ⅵ族化合物具有半导体性质的有Cu 2 O,Cu 2 S,Ag 2 S,Ag 2 Se,Ag 2 Te等,其 中Cu 20,Cu 2 S已获应用。 三元化合物种类较多,如I—Ⅲ—Ⅵ、I—v—Ⅵ、Ⅱ—Ⅲ—Ⅵ、Ⅱ—Ⅳ—V 族等。多数具有闪锌矿、纤锌矿或黄铜矿型晶体结构,黄铜矿型结构的三元化合 物多数具有直接禁带。比较重要的三元化合物半导体有CuInSe 2,AgGaSe 2 , CuGaSe 2,ZnSiP 2 ,CdSiP 2 ,ZnGeP 2 ,CdGaS 4 ,CdlnS 4 ,ZnlnS 4 和磁性半导体。后者 的结构为AB 2X 4 (A—Mn,Co,Fe,Ni;B—Ga,In;X—S,Se)。 四元化合物研究甚少,已知有Cu 2FeSnS 4 ,Cu 2 FeSnSe 4 ,Cu 2 FeGeS 4 等。 应用化合物及其固溶体的品种繁多,性能各异,给应用扩大了选择。在光电子方面,所有的发光二极管、激光二极管都是用化合物半导体制成的,已获工业应用的有GaAs,GaP,GaAlAs,GaAsP,InGaAsP等。用作光敏元件、光探测器、光调制器的有InAsP,CdS,CdSe,CdTe,GaAs等。一些宽禁带半导体(SiC,ZnSe等)、三元化合物具有光电子应用的潜力。GaAs是制作超高速集成电路的最主要的材料。微波器件的制作是使用GaAs,InP,GaAlAs等;红外器件则用GaAs,GaAlAs,CdTe,HgCdTe,PbSnTe等。太阳电池是使用CdS,CdTe,CulnSe2,GaAs,GaAlAs等。最早的实用“半导体”是「电晶体/ 二极体」。 一、在无线电收音机及电视机中,作为“讯号放大器用。 二、近来发展「太阳能」,也用在「光电池」中。 三、半导体可以用来测量温度,测温范围可以达到生产、生活、医疗卫生、科研教学等应用的70%的领域,有较高的准确度和稳定性,分辨率可达0.1℃,甚至达到0.01℃也不是不可能,线性度0.2%,测温范围-100~+300℃,是性价比极高的一种测温元件。 其中在半导体材料中硅材料应用最广,所以一般都用硅材料来集成电路,因为硅是元素半导体。电活性杂质磷和硼在合格半导体和多晶硅中应分别低于

半导体产业的五大技术趋势

埃森哲:半导体产业的五大技术趋势 对于半导体公司来说,现在是最好的时机。 随着越来越多的公司发现新的方法使用一大批新兴技术——尤其是人工智能(AI)、增强现实(AR)和扩展现实(XR)以及区块链,来创造引人注目的新产品和改造他们的业务,这些新技术在各行业中的地位越来越突出。所有这些技术的核心在于驱动它们起作用的芯片上。事实上,整个科技世界比以往任何时候都更依赖于半导体行业的参与,为所有这些技术发挥其潜力提供必要的计算能力。这意味着半导体行业的巨大增长潜力。 我们的研究发现,就我们所确定的技术趋势而言,半导体行业占据着独特的位置。随着推动技术变革的芯片生产商的出现,半导体公司将看到对自身产品的巨大需求——因此,随着这些技术变得越来越普遍,它们将

推动更强劲的增长。此外,与其他行业的同行一样,半导体公司也会发现,这些趋势为它们利用技术重塑业务战略和运营开辟了新途径。 五大技术趋势 通过将自己融入整个社会,公司正在模糊商业和个人之间的界限,并为自己未来的发展开辟一条新的道路。如今,科技在我们的日常生活中根深蒂固,但它的影响范围比这更大:它正在重塑我们社会的各个部分。埃森哲今年的五大技术展望趋势,突显了技术的迅速进步,进而改善人们的工作和生活方式。 一.人工智能 人工智能的覆盖范围在整个社会都在不断扩大。事实上,在我们的研究中,90%的半导体高管认为,在未来三年内,每个人每天都会受到人工智能决定的直接影响。因此,任何想利用人工智能潜力的企业也必须承认其影响。 人工智能不同于传统软件。人工智能能够学习并做出自主决策,并不断进化。人工智能解决方案不是通过编程来采取具体行动,而是通过检查输入数据的样本和期望的结果来“学习”,然后创建一个新的算法模型,用于解决需要处理的新输入数据。 人工智能强大的力量意味着部署人工智能不再仅仅是为了完成既定任务而进行的训练。相反,公司需要“提高”它来作为企业负责任的代表和为社会作贡献成员的角色——被教导做出公正的决策并代表企业的核心价值观。他们还需要面对潜在的社会和责任问题,这将要求他们解释他们基

国内31家半导体上市公司

国内31家半导体上市公司排行 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 中国芯是科技行业近几年的高频词汇之一,代表着我国对于国内半导体发展的期许,提升和现代信息安全息息相关的半导体行业的自给率,实现芯片自主替代一直是我国近年来的目标。为实现这一目标,我国从政策到资本为半导体产业提供了一系列帮助,以期在不久的将来进入到全球半导体行业一线阵营。 半导体是许多工业整机设备的核心,普遍使用于计算机、消费类电子、网络通信、汽车电子等核心领域。半导体主要由四个组成部分组成:集成电路,光电器件,分立器件,传感器。半导体行业的上游为半导体支撑业,包括半导体材料和半导体设备。中游按照制造技术分为分立器件和集成电路。下游为消费电子,计算机相关产品等终端设备。 截至3月31日收盘,中国A股半导体行业上市公司市值总额为3712.3亿元,其中市值超过100亿元的公司有11家,市值超过200亿元的公司有4家,分别为三安光电、利亚德、艾派克、兆易创新,其中三安光电以652.1亿元的市值位居首。 详细排名如下: 三安光电 三安光电是目前国内成立早、规模大、品质好的全色系超高亮度发光二极管外延及芯片产业化生产基地,总部坐落于美丽的厦门,产业化基地分布在厦门、天津、芜湖、泉州等多个地区。三安光电主要从事全色系超高亮度LED外延片、芯片、化合物太阳能电池及Ⅲ

-Ⅴ族化合物半导体等的研发、生产和销售。是我国国内LED芯片市场市占高、规模大的企业,技术水平比肩国际厂商。 利亚德 利亚德是一家专业从事LED使用产品研发、设计、生产、销售和服务的高新技术企业。公司生产的LED使用产品主要包括LED全彩显示产品、系统显示产品、创意显示产品、LED 电视、LED照明产品和LED背光标识系统等六大类。 艾派克 艾派克是一家以集成电路芯片研发、设计、生产和销售为核心,以激光和喷墨打印耗材使用为基础,以打印机产业为未来的高科技企业。是全球行业内领先的打印机加密SoC 芯片设计企业,是全球通用耗材行业的龙头企业。艾派克科技的业务涵盖通用耗材芯片、打印机SoC芯片、喷墨耗材、激光耗材、针式耗材及其部件产品和材料,可提供全方位的打印耗材解决方案。 兆易创新 兆易公司成立于2005年4月,是一家专门从事存储器及相关芯片设计的集成电路设计公司,致力于各种高速和低功耗存储器的研究及开发,正在逐步建立世界级的存储器设计公司的市场地位。产品广泛地使用于手持移动终端、消费类电子产品、个人电脑及其周边、网络、电信设备、医疗设备、办公设备、汽车电子及工业控制设备等领域。 长电科技 长电科技是主要从事研制、开发、生产销售半导体,电子原件,专用电子电气装置和销售企业自产机电产品及成套设备的公司。是中国半导体封装生产基地,国内著名的三极管制造商,集成电路封装测试龙头企业,国家重点高新技术企业。2015年成功并购同行业的新加坡星科金朋公司,合并后的长电科技在业务规模上一跃进入国际半导体封测行业的第一

半导体材料的分类及应用

半导体材料的分类及应用

————————————————————————————————作者: ————————————————————————————————日期: ?

半导体材料的分类及应用 能源、材料与信息被认为是当今正在兴起的新技术革命的三大支柱。材料方面, 电子材料的进展尤其引人注目。以大规模和超大规模集成电路为核心的电脑的问世极大地推动了现代科学技术各个方面的发展,一个又一个划时代意义的半导体生产新工艺、新材料和新仪器不断涌现, 并迅速变成生产力和生产工具,极大地推动了集成电路工业的高速发展。半导体数字集成电路、模拟集成电路、存储器、专用集成电路和微处理器,无论是在集成度和稳定可靠性的提高方面, 还是在生产成本不断降低方面都上了一个又一个新台阶,有力地促进了人类在生物工程、航空航天、工业、农业、商业、科技、教育、卫生等领域的全面发展, 也大大地方便和丰富了人们的日常生活。半导体集成电路的发展水平, 是衡量一个国家的经济实力和科技进步的主要标志之一, 然而半导体材料又是集成电路发展的一个重要基石。“半体体材料”作为电子材料的代表,在生产实践的客观需求刺激下, 科技工作者已经发现了数以千计的具有半导体特性的材料, 并正在卓有成效在研究、开发和利用各种具有特殊性能的材料。 1 元素半导体 周期表中有12 种具有半导体性质的元素( 见下表) 。但其中S、P、As、Sb 和I 不稳定,易发挥; 灰Sn在室温下转变为白Sn, 已金属;B、C的熔点太高, 不易制成单晶; T e 十分稀缺。这样只剩下Se、Ge 和Si 可供实用。半导体技术的早期( 50 年代以前) 。

中国半导体产业发展历史大事记

中国半导体产业发展历史大事记 1947年,美国贝尔实验室发明了半导体点接触式晶体管,从而开创了人类的硅文明时代。1956年,我国提出“向科学进军”,根据国外发展电子器件的进程,提出了中国也要研究半导体科学,把半导体技术列为国家四大紧急措施之一。中国科学院应用物理所首先举办了半导体器件短期培训班。请回国的半导体专家黄昆、吴锡九、黄敞、林兰英、王守武、成众志等讲授半导体理论、晶体管制造技术和半导体线路。在五所大学――北京大学、复旦大学、吉林大学、厦门大学和南京大学联合在北京大学开办了半导体物理专业,共同培养第一批半导体人才。培养出了第一批著名的教授:北京大学的黄昆、复旦大学的谢希德、吉林大学的高鼎三。 1957年毕业的第一批研究生中有中国科学院院士王阳元(北京大学微电子所所长)、工程院院士许居衍(华晶集团中央研究院院长)和电子工业部总工程师俞忠钰(北方华虹设计公司董事长)。 1957年,北京电子管厂通过还原氧化锗,拉出了锗单晶。中国科学院应用物理研究所和二机部十局第十一所开发锗晶体管。当年,中国相继研制出锗点接触二极管和三极管(即晶体管)。 1958年,美国德州仪器公司和仙童公司各自研制发明了半导体集成电路(IC)之后,发展极为迅猛,从SSI(小规模集成电路)起步,经过MSI(中规模集成电路),发展到LSI(大规模集成电路),然后发展到现在的VLSI(超大规模集成电路)及最近的ULSI(特大规模集成电路),甚至发展到将来的GSI(甚大规模集成电路),届时单片集成电路集成度将超过10亿个元件。 1959年,天津拉制出硅(Si)单晶。 1960年,中科院在北京建立半导体研究所,同年在河北建立工业性专业化研究所――第十三所(河北半导体研究所)。 1962年,天津拉制出砷化镓单晶(GaAs),为研究制备其他化合物半导体打下了基础。1962年,我国研究制成硅外延工艺,并开始研究采用照相制版,光刻工艺。 1963年,河北省半导体研究所制成硅平面型晶体管。 1964年,河北省半导体研究所研制出硅外延平面型晶体管。 1965年12月,河北半导体研究所召开鉴定会,鉴定了第一批半导体管,并在国内首先鉴定了DTL型(二极管――晶体管逻辑)数字逻辑电路。1966年底,在工厂范围内上海元件五厂鉴定了TTL电路产品。这些小规模双极型数字集成电路主要以与非门为主,还有与非驱动器、与门、或非门、或门、以及与或非电路等。标志着中国已经制成了自己的小规模集成电路。 1968年,组建国营东光电工厂(878厂)、上海无线电十九厂,至1970年建成投产,形成中国IC产业中的“两霸”。 1968年,上海无线电十四厂首家制成PMOS(P型金属-氧化物半导体)电路(MOSIC)。拉开了我国发展MOS电路的序幕,并在七十年代初,永川半导体研究所(现电子第24所)、上无十四厂和北京878厂相继研制成功NMOS电路。之后,又研制成CMOS电路。 七十年代初,IC价高利厚,需求巨大,引起了全国建设IC生产企业的热潮,共有四十多家集成电路工厂建成,四机部所属厂有749厂(永红器材厂)、871(天光集成电路厂)、878(东光电工厂)、4433厂(风光电工厂)和4435厂(韶光电工厂)等。各省市所建厂主要有:上海元件五厂、上无七厂、上无十四厂、上无十九厂、苏州半导体厂、常州半导体厂、北京半导体器件二厂、三厂、五厂、六厂、天津半导体(一)厂、航天部西安691厂等等。

半导体材料的分类及应用

半导体材料的分类及应用 能源、材料与信息被认为是当今正在兴起的新技术革命的三大支柱。材料方面, 电子材料的进展尤其引人注目。以大规模和超大规模集成电路为核心的电脑的问世极大地推动了现代科学技术各个方面的发展,一个又一个划时代意义的半导体生产新工艺、新材料和新仪器不断涌现, 并迅速变成生产力和生产工具, 极大地推动了集成电路工业的高速发展。半导体数字集成电路、模拟集成电路、存储器、专用集成电路和微处理器, 无论是在集成度和稳定可靠性的提高方面, 还是在生产成本不断降低方面都上了一个又一个新台阶,有力地促进了人类在生物工程、航空航天、工业、农业、商业、科技、教育、卫生等领域的全面发展, 也大大地方便和丰富了人们的日常生活。半导体集成电路的发展水平, 是衡量一个国家的经济实力和科技进步的主要标志之一, 然而半导体材料又是集成电路发展的一个重要基石。“半体体材料”作为电子材料的代表, 在生产实践的客观需求刺激下, 科技工作者已经发现了数以千计的具有半导体特性的材料, 并正在卓有成效在研究、开发和利用各种具有特殊性能的材料。 1 元素半导体 周期表中有12 种具有半导体性质的元素( 见下表) 。但其中S、P、As、Sb 和I 不稳定, 易发挥; 灰Sn 在室温下转变为白Sn, 已金属; B、C 的熔点太高, 不易制成单晶; T e 十分稀缺。这样只剩下Se、Ge 和Si 可供实用。半导体技术的早期( 50 年代以前) 。 表1 具有半导体性质的元素

周期ⅢA ⅣA ⅤA ⅥA ⅦA B C S i P S Ge As S e S n Sb Te I Se 曾广泛地用作光电池和整流器, 晶体管发明后,Ge 迅速地兴起, 但很快又被性能更好的Si 所取代。现在Se 在非晶半导体器件领域还保留一席之地, Ge 在若干种分立元件( 低压、低频、中功率晶体管以及光电探测器等) 中还被应用, 而Si 则一直是半导体工作的主导材料, 这种情况预计到下个世纪初也不会改变。Si 能成为主角的原因是: 含量极其丰富( 占地壳的27%) , 提纯与结晶方便; 禁带宽度1. 12eV, 比Ge 的0. 66eV 大, 因而Si 器件工作温度高; 更重要的是SiO2 膜的纯化和掩蔽作用, 纯化作用使器件的稳定性与可靠性大为提高,掩蔽作用使器件的制和实现了平面工艺, 从而实现了大规模自动化的工业生产和集成化, 使半导体分立器件和集成电路以其低廉的价格和卓越的性能迅速取代了电子管, 微电子学取代了真空电子学, 微电子工程成为当代产业中的一支生力军。据报导, 1995 年世界半导体器件销售额为1464 亿美元, 硅片销费量约为30. 0 亿平方英寸, 1996 年市场规模为1851 亿美元, 增长了26. 4%, 消费硅片则达33. 46 亿平方英寸。 硅材料分为多晶硅, 单晶硅和非晶硅。单晶硅分为直拉单晶硅( CZ) 、区熔单晶硅( FZ) 和外延单晶硅片( EPI) 。其中, CZ 单晶

关于中国半导体产业发展的现状分析和趋势展望

关于中国半导体产业发展的现状分析和趋势展望 摘要:步入二十一世纪的第十个年头,伴随着中国经济实体的繁荣发展,中国的半导体产业即将进入产业大发展的战略机遇期,如何把握机遇更好更快的发展半导体产业成为了未来中国经济发展的重点之一。中国半导体设计、制造、封测共同发展,结构日渐优化,产业链逐步完善,形成了相互促进共同发展的良好互动的大好局面。然而,由于各式各样的原因,半导体产业同时也面临着种种困难和挑战,如何制定科学合理的发展战略则成为了产业发展的重中之重。总之,中国半导体产业的发展充满机遇和挑战。 关键词:半导体产业科学发展产业调整战略优化 正文: 一、中国半导体产业的现状及分析 中国的半导体市场需求强劲,市场规模的增速远高于全球平均水平。不过,产业规模的扩大和市场的繁荣并不表明国内企业分得的份额更大,相反,中国的半导体市场正日益成为外资公司的乐土。国内半导体公司的发展面临强大的压力,生存环境堪忧。从两大分支上看,分立器件由于更新换代较慢、对技术和制造的要求较低、周期性也不明显,因而更适合国内企业,加上国际低端分立器件产能的转移,国内企业能够在低端市场获得优势。而从产业链环节上看,我们相对看好设计业,认为本土设计公司有突破的可能。基于政策支持、市场需求和产能转移,我们判断半导体行业在国内有很大的增长潜力。 二、长三角半导体产业的集群效应 我国尤其是长三角地区的半导体产业在国际半导体产业转移过程中获得了极好的发展机会,半导体产业初步形成了有一定规模的半导体产业集群,大大地推动了长三角地区的产业结构升级和带动了地区经济的发展。目前长三角地区已经成为我国集成电路产业的重镇,在国际半导体产业版图也占有极其重要的一席之地。但是应该认识到,长三角地区的半导体产业集群还只是如低廉的劳动力成本、地方政府提供的土地与财税优惠政策等基本生产要素驱动所形成的。这种低层次生产要素无法构成我国半导体产业的长久竞争优势,很快就会被以低成本比较优势的后起之秀所取代。长三角地区目前已经具有较好的半导体产业集群基础,国内又有极为庞大的内需市场,在国际半导体产业大转型的产业背景下,我们应转变传统靠低成本比较优势来招徕产业投资的观念,而应积极建立促进半导体产业高层次生产要素产生的机制,来提升长三角地区半导体产业集群的国际竞争力。 There was favorable opportunity for semiconductor industry development in China, esp. the Changjiang River delta, during the global industry transferring. There is semiconductor industrial cluster in this area and it improves the industry structures greatly and drives the economy development. The Changjiang River delta has been being as the most important area of China Semiconductor industry and it also is important in global semiconductor market.But we have to say that the semiconductor industrial clusters in the Changjiang River delta is initiated by generalized factors such as low labor cost, privilege policy of finance and landing provided by local governments. These generalized factors cannot be the competitive strength in long term and will be replaced soon by other area with low-cost comparison strength. The Changjiang River delta has good foundation of semiconductor industrial clusters and there is a huge marketing, so we should take proactive actions to buildup the environment and system to encourage high-level factors generating for semiconductor industry, during the transforming time of industry. Only in this way, we can promote the global competitive strength of the semiconductor industry in the Changjiang River delta. 三、南昌半导体照明成为国家半导体照明工程产业化基地

半导体材料有哪些

半导体材料有哪些 半导体材料有哪些 半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物(硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。 半导体的分类,按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。此外还有以应用领域、设计方法等进行分类,虽然不常用,但还是按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、模拟数字混成及功能进行分类的方法。 延伸 半导体材料是什么? 半导体材料(semiconductor material)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。 自然界的物质、材料按导电能力大小可分为导体、半导体和绝缘体三大类。半导体的电阻率在1mΩ·cm~1GΩ·cm范围(上限按谢嘉奎《电子线路》取值,还有取其1/10或10倍的;因角标不可用,暂用当前描述)。在一般情况下,半导体电导率随温度的升高而升高,这与金属导体恰好相反。 凡具有上述两种特征的材料都可归入半导体材料的范围。反映半导体半导体材料内在基本性质的却是各种外界因素如光、热、磁、电等作用于半导体而引起的物理效应和现象,这些可统称为半导体材料的半导体性质。构成固态电子器件的基体材料绝大多数是半导体,正是这些半导体材料的各种半导体性质赋予各种不同类型半导体器件以不同的功能和特性。 半导体的基本化学特征在于原子间存在饱和的共价键。作为共价键特征的典型是在晶格结构上表现为四面体结构,所以典型的半导体材料具有金刚石或闪锌矿(ZnS)的结构。由于地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿

相关文档
最新文档