甜瓜属人工异源四倍体Cucumis×hytivus早期世代表型与基因表达变化研究

甜瓜属人工异源四倍体Cucumis×hytivus早期世代表型与基因表达变化研究
甜瓜属人工异源四倍体Cucumis×hytivus早期世代表型与基因表达变化研究

甜瓜属人工异源四倍体Cucumis×hytivus早期世代表型与基因

表达变化研究

多倍体化是高等植物进化过程的重要阶段,是植物进化的主要动力之一。研究表明,异源多倍体在形成的早期可发生广泛的基因组构成和基因表达水平的变化,与此同时,异源多倍体形成早期也常表现出不同于其二倍体祖先、且不能用孟德尔定律解释的新表型,这些变化直接关系到物种的形成和稳定。

分子标记及比较基因组学的发展为认识种间杂交和多倍体化进程提供了重

要依据。前人研究天然异源多倍体进化过程中发生的种种变化主要是通过比较其与二倍体祖先的“候选”后代而进行的。

但现有的天然异源多倍体大多数形成于成千上万年以前,基因组经历了长期的“多倍体二倍化”过程,其二倍体祖先也不断进化或已灭绝,因此很难确定它们在早期进化中发生的表型和基因表达变化的具体过程和机制。新合成的异源多倍体及一些“年轻”的异源多倍体,由于其亲缘关系明晰,为准确、深入研究多倍体基因组进化及相关机制提供了良好的模式系统。

通过这种模式系统,可以精确比较亲本二倍体种与人工异源多倍体早期世代间的表型和基因表达变化特点,从而为丰富多倍体物种进化理论提供重要的例证。本研究基于实验室已合成的甜瓜属人工异源四倍体C.×hytivus(2n=4x=38),比

较研究了其早期世代间的形态学和细胞学变化特征、基因表达变化的特点和黄瓜por基因在异源四倍早期世代的表达和序列变化特征,探讨了异源多倍化引发以

上变化的相关机制。

具体如下:1.甜瓜属人工异源四倍体C.×hytivus早期世代表型变化研究研究了甜瓜属人工异源四倍体C.×hytivus早期四个自交世代S1-S4的主要形态学

性状、花粉母细胞减数分裂过程中的染色体行为、雄配子发育和花粉育性的变化特征。形态学研究表明,形态学性状在世代间表现出明显的不稳定性,其中以节间长、侧枝数、叶片厚度、雄花花梗长和子房纵径的变异系数较大。

伴随自交代数的增加,该异源多倍体叶片逐渐变薄,子房逐渐变短,其它性状的变化表现为无明显规律性。减数分裂行为研究结果表明,花粉母细胞减数分裂中期Ⅰ的染色体构型以二价体为主,伴随着自交代数的增加,每个花粉细胞中平均所含二价体的比例逐渐增加,单价体、多价体等非二价体比例减少,含19个二价体的细胞数增加。

四分体时期主要以四分孢子形态存在,并随着自交世代的增高,四分孢子所占比例逐渐增加,多分孢子比例逐渐减少。花粉活力分析表明花粉育性伴随着自交代数的增加而逐渐提高。

以上结果表明,该异源四倍体在早期进化过程中,花粉母细胞减数分裂过程中的染色体配对行为和雄配子发育正向稳定性方向进化。2.甜瓜属人工异源四倍体C.×hytivus早期世代基因表达变化特点研究以甜瓜属人工异源四倍体C.×hytivus早期世代S1和S2及其二倍体亲本为试材,利用cDNA-AFLP和

reverse-Northern blot技术比较分析了C.×hytivus中基因表达变化的特点,包括频率、时间和类型。

结果发现,亲本基因在异源四倍体中大多能表达,部分基因表现为差异表达。本研究共检测到36个基因的表达发生变化,占检测总基因数的3.37%,其中29个表现为沉默,7个表现为激活。

上述变化可发生于S1代或S2代。对15个差异表达的片段进行了回收和测序,BLAST分析表明这些基因主要是rRNA和蛋白质编码基因。

进一步的reverse-Northern blot验证了上述结果。综合cDNA-AFLP和reverse-Northern blot的分析结果将C.×hytivus中基因表达变化分为四种类型:双亲基因共沉默、栽培种基因沉默、野生种基因沉默和和基因激活表达,其中单亲基因沉默为主要类型。

以上结果表明该甜瓜属异源四倍体在形成早期发生着快速的基因沉默和激活。利用cDNA-SSCP技术分析了二倍体亲本中部分同源的rpl2基因在甜瓜属人工异源四倍体C.×hytivus早期四个自交世代S1-S4中表达水平的差异。

结果发现,两个部分同源的rpl2基因在异源四倍体C.×hytivus中表达水平存在差异,黄瓜rpl2基因表达水平高于野生种rpl2基因,且在世代间有一定的变化。以上结果表明异源多倍化诱发了异源多倍体中部分同源基因表达水平的变化。

3.黄瓜por基因在甜瓜属人工异源四倍体C.×hytivus早期世代的表达和序列变化特征为探明不同植物por基因的分子系统发生关系,本研究利用BLAST程序分析了不同物种间por基因cDNA序列和POR蛋白质的同源性,并利用MEGA

4.0软件构建了por基因树,分析了不同por基因间亲缘关系。结果发现,不同物种在por基因cDNA序列和POR氨基酸序列具有较高的保守性,表明不同物种的POR具有相同的功能。

研究还发现,同一物种内不同的por基因的cDNA序列间存在较大的差异,并存在着物种间por基因的同源性高于物种内同源性的现象。以甜瓜属人工异源四倍体C.×hytivus早期4个自交世代S1-S4及其二倍体亲本为材料,利用RT-PCR 和序列比较技术研究了异源多倍化对黄瓜por基因分子进化的影响。

基因表达分析表明,黄瓜por基因在异源四倍体的S1代发生了快速的沉默,从S2代起又重新表达,但在S3代和S4代,表达产物大小发生了变化。进一步的

序列分析表明,单碱基置换包括2个转换和1个颠换分别发生于S1代和S3代。

在S3代的转录物中发生了内含子滞留现象。以上结果表明,异源多倍化诱发了黄瓜por基因的快速沉默和突变,基因突变包括碱基置换和内含子滞留也是新合成多倍体中重复基因的进化模式。

高考复习默写18、19-基因突变、基因重组和染色体变异(含答案)

课时默写18 《基因突变和基因重组》 一、生物变异的类型 1.不遗传的变异:仅由影响造成,没有引起遗传物质的变化。 2.可遗传的变异:由细胞内的改变引起,包括、和。 二、基因突变 1.基因突变的实例——镰刀型细胞贫血症 (1)直接原因:多肽链上发生了的替换。 (2)根本原因:基因中碱基对发生了。 2.基因突变要点归纳 (1)概念:DNA分子中发生的、和,而引起的基因结构的改变,叫做基因突变。 (2)时间:有丝分裂和减数第一次分裂前的,即DNA分子时。 (3)原因:①诱发突变:因素、因素和因素 ②自发产生:由于偶尔发生差错、DNA的发生改变等原因。 (4)结果:可产生新的。 (5)特点:a、在生物界中是存在的,即性;b、发生的;c、的; d、自然状态下,突变频率,即性; e、大多对生物体是的,即性。 注:体细胞的突变不能直接传给后代,生殖细胞的则可能 (6)意义:产生的途径;是生物变异的;是生物进化的。 三、基因重组 1.概念:是指在生物体进行的过程中,控制的基因的重新组合。 2.类型: (1)自由组合型:减数分裂(减Ⅰ后期)形成配子时,随着的自由组合,位于这些染色体上的也自由组合。组合的结果可能产生与亲代基因型不同的个体。 (2)交叉互换型:减数分裂形成时期,同源染色体上染色单体之间等位基因的。结果是导致染色单体上基因的重组,组合的结果可能产生与亲代基因型不同的个体。 (3)人工重组型:技术,即基因工程。 3.结果:产生新的 4.意义:使后代产生多种新的基因型,从而出现新的性状组合,也是生物的来源之一,对生物的也具有重要的意义。

课时默写19 《染色体变异》 一、染色体结构的变异 1.实例:猫叫综合征(5号染色体部分) 2.类型:、、、(看书并理解 .....) 3.结果:染色体结构的改变,会使排列在染色体上的基因的或改变,而导致性状的变异。 二、染色体数目的变异 1.类型 (1)个别增加或减少:如21三体综合征(多1条21号染色体) (2)以的形式成倍增加或减少:如三倍体无子西瓜 2.染色体组 (1)概念:细胞中的一组,在和上各不相同,但又互相协调,共同控制生物的生长、发育、遗传和变异,这样的一组染色体,叫做一个。二倍体生物中所具有的全部染色体组成一个染色体组。 (2)特点:①一个染色体组中无,形态和功能; ②一个染色体组携带着控制生物生长的遗传信息。 (3)染色体组数的判断: ①细胞中形态相同的染色体有几条,则含几个染色体组例1:以下各图中,各有几个染色体组? ②染色体组数= 基因型中控制同一性状的基因个数(不区分大小写) 例2:以下基因型,所代表的生物染色体组数分别是多少? (1)Aa ______ (2)AaBb _______ (3)AAa _______ (4)AaaBbb _______ (5)AAAaBBbb _______ (6)ABCD ______ 3.单倍体、二倍体和多倍体 (1)体细胞中含有本物种染色体数目的个体叫单倍体(注:由配子发育成的个体,不论含有多少个染色体组,一定是单倍体)。 (2)由发育而来的个体,体细胞中含几个就叫几倍体,如含有两个染色体组就叫,含有三个染色体组就叫,以此类推。体细胞中含有三个或三个以上染色体组的

病毒学期中作业λ噬菌体的基因调控

λ噬菌体的基因调控 姓名:宋庆浩 学号:200900140102 班级:生工09.02

目录 λ噬菌体的发现 λ噬菌体的结构组成 1.基本结构 2.λ噬菌体的核心 λ噬菌体的生活周期 I.两种发育途径简介 II.调控发育途径的分子基础 1.两种途径共同的早期基因表达途径 2.溶源发育中基因的相互作用 3.裂解途径的建立 4.溶源和裂解的平衡 5.溶源发育向裂解发育的转变 λ噬菌体的侵染过程 1.吸附 2.穿入 3.生物合成 4.成熟与释放 λ噬菌体的应用 1.细菌的鉴定与分型 2.耐药细菌感染的治疗 3.分子生物学研究的重要工具 4.遗传工程 5.其他 参考文献

λ噬菌体的发现: 1951年J. Lederberg的妻子Esther Lederberg证明了J. Lederberg和Tatum用来杂交的K12中有原噬菌体,并命名为λ,经10年的研究搞清了溶原化的实质。 在E.coli K12中是有原噬菌体的存在。Jacob和Wollman(1956年)发现了合子诱导(zygotic induction)现象,并利用合子诱导确定了几个E.coli染色体上原噬菌体的整合位点。他们发现Hfr(λ)×F-所得到的重组子频率要比Hfr ×F-(λ)或Hfr(λ)×F-(λ)要低得多。这是由于在Hfr(λ)×F-的杂交中,原噬菌体进入无阻遏物的受体细胞质中,进行大量复制使受体细胞裂解(图8-20b),因此不易得到重组子,此现象就称为合子诱导。现在我们再回过头来查阅一下传递等级作图,中断杂交实验以及重组作图都是采用Hfr×F-(λ)就是不致产生合子诱导的缘故。 λ噬菌体的结构组成: 1.基本结构 λ噬菌体是一种温和的诱导性噬菌体,其基因组除在5'端有12个可互补的碱基外均为线性双链DNA,感染时DNA形成环状。λ噬菌体的基因组长达50 Kb,共61个基因,其中38个较为重要。 λ-DNA的基因顺序组织如图所示,按基因组功能共分六大区域:头部编码区、尾部编码区、重组区、控制区、复制区和裂解区.

基因克隆载体上的各种常用蛋白标签

基因克隆载体上的各种常用蛋白标签 蛋白标签(proteintag)是指利用DNA体外重组技术,与目的蛋白一起融合表达的一种多肽或者蛋白,以便于目的蛋白的表达、检测、示踪和纯化等。随着技术的不断发展,研究人员相继开发出了具有各种不同功能的蛋白标签。目前,这些蛋白标签已在基础研究和商业化产品生产等方面得到了广泛的应用。 美国GeneCopoeia(复能基因)为客户提供50多种蛋白标签,可以满足客户的不同需求,包括各种最新型的标签,如:SNAP-Tag?、Halo Tag?、AviTag?、Sumo等;也提供齐全的各种常用标签,如eGFP、His、Flag等等标签。 以下是部分蛋白标签的特性介绍,更加详细的介绍可在查询产品的结果列表里面看到各种推荐的蛋白标签和载体。 TrxHIS His6是指六个组氨酸残基组成的融合标签,可插入在目的蛋白的C末端或N末端。当某一个标签的使用,一是能构成表位利于纯化和检测;二是构成独特的结构特征(结合配体)利于纯化。组氨酸残基侧链与固态的镍有强烈的吸引力,可用于固定化金属螯合层析(IMAC),对重组蛋白进行分离纯化。使用His-tag有下面优点: 标签的量小,只有~0.84KD,而GST和蛋白A分别为~26KD和~30KD,一般不影响目标蛋白的功能; His标签融合蛋白可以在非离子型表面活性剂存在的条件下或变性条件下纯化,前者在纯化疏水性强的蛋白得到应用,后者在纯化包涵体蛋白时特别有用,用高浓度的变性剂溶解后通过金属螯和去除杂蛋白,使复性不受其它蛋白的干扰,或进行金属螯和亲和层析复性; His标签融合蛋白也被用于蛋白质-蛋白质、蛋白质-DNA相互作用研究; His标签免疫原性相对较低,可将纯化的蛋白直接注射动物进行免疫并制备抗体。 可应用于多种表达系统,纯化的条件温和; 可以和其它的亲和标签一起构建双亲和标签。 Flag标签蛋白 Flag标签蛋白为编码8个氨基酸的亲水性多肽(DYKDDDDK),同时载体中构建的Kozak序列使得带有FLAG的融合蛋白在真核表达系统中表达效率更高。FLAG作为标签蛋白,其融合表达目的蛋白后具有以下优点: FLAG作为融合表达标签,其通常不会与目的蛋白相互作用并且通常不会影响目的蛋白的功能、性质,这样就有利用研究人员对融合蛋白进行下游研究。 融合FLAG的目的蛋白,可以直接通过FLAG进行亲和层析,此层析为非变性纯化,可以纯化有活性的融合蛋白,并且纯化效率高。 FLAG作为标签蛋白,其可以被抗FLAG的抗体识别,这样就方便通过Western Blot、ELISA等方法对含有FLAG的融合蛋白进行检测、鉴定。

5.1基因突变和基因重组练习试题

第五章第1节基因突变和基因重组 (45分钟100分) 一、选择题(包括10小题,每小题5分,共50分) 1.下列关于基因突变的叙述中,正确的是( ) A.基因突变一定能引起性状改变 B.亲代的突变基因一定能传递给子代 C.等位基因的产生是基因突变的结果 D.DNA分子结构的改变都属于基因突变 2.谷胱甘肽(GSH)是普遍存在于生物体内的一种重要化合物。下表为GSH的密码子和氨基酸序列及控制合成GSH的DNA突变后所对应的密码子和氨基酸序列,则下列有关突变原因的叙述正确的是( ) A.增添 B.缺失 C.改变 D.易位 3.(2013·泰安模拟)某个婴儿不能消化乳类,经检查发现他的乳糖酶分子有一个氨基酸改换而导致乳糖酶失活,发生这种现象的根本原因是( ) A.缺乏吸收某种氨基酸的能力 B.不能摄取足够的乳糖酶 C.乳糖酶基因有一个碱基改换了 D.乳糖酶基因有一个碱基缺失了 4.如图为某二倍体生物精原细胞分裂过程中,细胞内的同源染色体对数的变化曲线。基因重组最可能发生在( )

A.AB段 B.CD段 C.FG段 D.HI段 5.据报道,加拿大科学家研究发现选择特定的外源DNA(脱氧核糖核酸)片段并将其嵌入到细菌基因组的特定区域,这些片段便可作为一种免疫因子,抵抗DNA裂解酶入侵,此项技术有望解决某些细菌对抗生素产生抗药性的难题。这种技术所依据的原理是( ) A.基因突变 B.基因重组 C.染色体变异 D.DNA分子杂交 6.(能力挑战题)(2013·长沙模拟)如图为雌性果蝇体内部分染色体的行为及细胞分裂图像,其中能够体现基因重组的是( ) A.①③ B.①④ C.②③ D.②④ 7.农业技术人员在大田中发现一株矮壮穗大的水稻,将这株水稻所收获的种子再种植下去,发育成的植株之间总会有差异,这种差异主要来自( ) A.基因突变 B.染色体变异 C.基因重组 D.细胞质遗传 8.(2013·温州模拟)已知家鸡的无尾(A)对有尾(a)是显性。现用有尾鸡(甲群体)

染色体结构变异与基因突变的区别

染色体结构变异与基因突变的区别 染色体结构变异是指染色体上基因数目或者顺序的改变;基因突变是指基因结构的改变,包括碱基的替换、增添、缺失。 .易位和交叉互换的区别 易位发生在非同源染色体之间,是指一条染色体的某一片段移接到另外一条非同源染色体上。交叉互换发生在同源染色体的非姐妹染色单体之间。 细胞分裂图的染色体组数判断 (1)①为减数第一次分裂的前期,有 4 条染色体,生殖细胞中有 2 条染色体,每个染色体组有 2 条染色体,该细胞中有 2 个染色体组。 (2)②为减数第一次分裂的末期,有 2 条染色体,生殖细胞中有 2 条染色体,每个染色体组有 2 条染色体,该细胞中有 1 个染色体组。 (3)③为减数第一次分裂的后期,有 4 条染色体,生殖细胞中有 2 条染色体,每个染色体组有 2 条染色体,该细胞中有 2 个染色体组。 (4)④为有丝分裂后期,染色体 8 条,每个染色体组 2 条染色体,该细胞中有 4 个染色体组。 【说明】着丝点分裂导致染色体、染色体组数目加倍。 无子西瓜和无子番茄的原理不同: 无子番茄是用一定浓度人工合成的生长素来处理没有授粉的花蕾; 无子西瓜是由于三倍体植株在减数分裂中同源染色体联会紊乱, 因而不能形成正常的生殖细胞。

单倍体育种与多倍体育种比较 二倍体、多倍体、单倍体的比较

比较三种可遗传变异

【易错易混】 ①同源染色体上非姐妹染色单体间的交叉互换,属于基因重组;非同源染色体之间的交叉互换,属于染色体结构变异中的易位。 ②基因突变、基因重组属于分子水平的变化;染色体变异属于亚细胞水平的变化。 ③DNA 分子上若干基因的缺失属于染色体变异;DNA 分子上若干碱基对的缺失,属于基因突变。 不同生物可遗传变异的来源 ①病毒可遗传变异的来源——基因突变 ②原核生物可遗传变异的来源——基因突变 ③真核生物可遗传变异的来源: 无性生殖——基因突变和染色体变异 有性生殖——基因突变、基因重组和染色体变异

基因突变染色体变异试题

基因突变与染色体变异 1、为什么在纯系中进行选择是毫无意义的? A 所有的个体均具有同一表现型 B 所有的个体均具有同一基因型 C 各个个体具有不同的表现型 D 各个个体具有不同的基因型 (见问第四个孩子患这种病的机率是多少、这一家族中有一成员患一种常染色体的隐性疾病。2 右图,阴影代表换病的)?%100 D C 50%A 0% B 25%流感病毒毒株甲型HN12月7日在美国《传染病杂志》网络版上发表报告称,3、美国和加拿大研究人员2010年11对目前普遍使用的金刚烷和神经氨酸酶抑制剂两大类抗流感药物产生了一定的抗药性。下列相关说法错误的)是 (.使用金刚烷和神经氨酸酶抑制剂的剂量越大,病菌向抗药能力增强方向的变异越快A.长期使用金刚烷和神经氨酸酶抑制剂是对病原体进行选择的过程,结果导致种群中抗药性基因频率增加B N流感病毒进入人体后,能够合成多种类型的蛋白质C.H11 HN流感病毒变异的主要来源是基因突变D.11则该生物自交后代中显性纯合体出现的概率为m,交换值为4、基因型为的生物,如果A-b .DA .B..CF1完全显性。用隐性性状个体与显性纯合个体杂交得F1,、、C三个基因分别对a、bc、5、位于常染色体上的AB基因型的是F11:1,则下列正确表示:::测交结果为aabbccAaBbCc;aaBbccAabbCc=1:1 (Ⅰ、和非同源区(Ⅱ)形态不完全相同,YX、6人的染色体和染色体大小、但存在着同源区Ⅲ)如右图所示。下列有关叙述中错误的是 1 A.Ⅰ片段上隐性基因控制的遗传病,男性患病率高于女性 B.Ⅱ片段上基因控制的遗传病,男性患病率等于女性.Ⅲ片段上基因控制的遗传病,患病者全为男性C

高考生物知识点基因突变和染色体变异区别

高考生物知识点:基因突变和染色体变异区别 学习生物,不仅要有明确的学习目的,还要有勤奋的学习态度,科学的学习方法。针对高考生物知识点的特点,要努力学好高中生物课。 从分子水平上看,基因突变是指基因在结构上发生碱基对组成或排列顺序的改变。染色体变异是染色体的结构或数目发生变化;基因突变在显微镜下不能看到而染色体变异则可以看到 基因型为aa的个体发生显性突变时是变成了AA还是Aa?还是两种都有可能? 一般只考虑一次突变:基因型为aa的个体发生显性突变时是变成Aa基因型为AA的个体发生隐性突变后变为Aa,性状不改变 突变和基因重组发生在体细胞中呢?还叫可遗传变异吗? 还叫可遗传变异,因为可遗传变异,只表示它可以遗传,不表明它一定能遗传。如果突变发生于体细胞,可通过无性生殖遗传。 非同源染色体片段的交换属于基因重组吗? 非同源染色体片段的交换是染色体变异,同源染色体片段的交换才属于基因重组 如何根据图像准确判断细胞染色体组数? 有几条一样的染色体,就有几个染色体组。 基因型为AAaaBBBB的细胞含几个染色体组。麻烦说具体点,最好有图示。

该基因型是四个染色体组。染色体组,是指一组非同源染色体,即他们的形态功能各不相同。碰到这类题只要数一下同类等位基因重复几个就行了。如AAaa有四个或者BBBB有四个,就是四个染色体组。 “单倍体一定高度不育”为什么错? 例如:用秋水仙素处理二倍体西瓜的幼苗,能得到同源四倍体,若将该四倍体的花药进行离体培养能得到含有偶数个相同的染色体组数的单倍体,它可育。八倍体小黑麦是异源多倍体,它的花药进行离体培养能得到含有偶数个相同的染色体组数的单倍体,但它不可育。所以单倍体不一定高度不育 单倍体什么性状能看出来? 有的性状单倍体能看出来,如植物的颜色,抗病性等 秋水仙素是抑制纺锤丝合成还是让已形成的纺锤丝解体?那么细胞会停止分裂吗?染色体如不分离,染色体如何加倍? 秋水仙素既能抑制纺锤丝合成(前期)还能让已形成的纺锤丝断裂,秋水仙素阻止了细胞的分裂。着丝点的分裂与“纺锤丝”无关系,它相当于基因程序性表达。当含有“染色单体”的染色体发育到一定时候,着丝点即断裂,染色体数加倍。 所有的基因重组都发生在减数分裂中---对吗?错的解释一下好吗? 错:基因重组有广义,狭义的说法,狭义的基因重组发生在减数分裂中,广义的基因重组包括减数分裂,受精作用,基因工程。 袁隆平院士的超级杂交水稻和鲍文奎教授的适于高寒地区种植的小黑麦为什么前者依据基因重组,后者依据染色体变异?请老师详细告诉我原因。

《基因突变和基因重组》习题精选

《基因突变和基因重组》习题精选 1.培育青霉素高产菌株的方法是() (A)杂交育种(B)单倍体育种 (C)诱变育种(D)多倍体育种 2.自然界中生物变异的主要来源是() (A)基因突变(B)基因重组 (C)环境影响(D)染色体变异 3.产生镰刀型细胞贫血症的根本原因是() (A)红细胞易变形破裂 (B)血红蛋白中的一个氨基酸不正常 (C)信使RNA中的一个密码发生了变化 (D)基因中的一个碱基发生了变化 4.人工诱变区别于自然突变的突出特点是() (A)产生的有利变异多(B)使变异的频率提高 (C)可人工控制变异方向(D)产生的不利变异多 5.下面列举了几种可能诱发基因突变的原因,其中哪项是不正确的() (A)射线的辐射作用(B)杂交 (C)激光照射(D)秋水仙素处理 6.人类的基因突变常发生在() (A)减数分裂的间期(B)减数第一次分裂 (C)减数第二次分裂(D)有丝分裂末期 7.人工诱变是创造生物新类型的重要方法,这是因为人工诱变() (A)易得大量有利突变体 (B)可按计划定向改良 (C)变异频率高,有利变异较易稳定 (D)以上都对 8.一种植物只开红花,但在红花中偶尔出现一朵白花,将白花所给种子种下,后代仍为白花。出现这种现象的原因可能是() (A)基因突变(B)基因重组 (C)染色体变异(D)基因互换 9.下列属于基因突变的是() (A)外祖母正常,母亲正常,儿子色盲 (B)杂种高茎豌豆自交,后代中出现矮茎豌豆 (C)纯种红眼果蝇后代中出现白眼果蝇 (D)肥水充足时农作物出现穗大粒多 10.一对夫妇所生子女中,性状差别甚多,这种变异主要来自于() (A)基因重组(B)基因突变 (C)染色体变异(D)环境的影响 11.如果基因中四种脱氧核苷酸的排列顺序发生了变化,则这种变化叫() (A)遗传性变化(B)遗传信息变化 (C)遗传密码变化(D)遗传规律变化

克隆载体与表达载体教程文件

克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。 克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。(这是为“携带”感兴趣的外源DNA、实现外源DNA的无性繁殖或表达有意义的蛋白质所采用的一些DNA 分子。) 其中,为使插入的外源DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。 是否含有表达系统元件,即启动子--核糖体结合位点--克隆位点--转录终止信号,这是用来区别克隆载体和表达载体的标志。 表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。 表达载体(Expression vectors)就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。如表达载体pKK223-3是一个具有典型表达结构的大肠杆菌表达载体。其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。在表达元件中,有一个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。 (RBS位点:1974年Shine和Dalgarno首先发现,原核生物,在mRNA上有核糖体的结合位点,它们是起始密码子AUG和一段位于AUG上游3~10 bp处的由3—9bp组成的序列。这段序列富含嘌呤核苷酸,刚好与16S rRNA 3,末端的富含嘧啶的序列互补,是核糖体RNA的识别与结合位点。根据发现者的名字,命名为Shine-Dalgarno序列,简称S-D序列。 由于它正好与30S小亚基中的16s rRNA3’端一部分序列互补,因此S-D序列也叫做核糖体结合序列。 真核生物存在于真核生物mRNA的一段序列,其在翻译的起始中有重要作用。加Kozark sequence(GCCACC), Kozak sequence是用来增强真核基因的翻译效率的。是最优化的ATG环境,避免ribosome出现leaky scan) 克隆载体目的在于复制足够多的目标质粒,所以常带有较强的自我复制元件,如复制起始位点等,往往在菌体内存在多拷贝,所以抽质粒会抽出一大堆。但不具备表达元件。而表达质粒有复杂的构成,为的是控制目标蛋白的表达,如各种启动子(T7),调节子(LacZ)等,而且以pET为代表的表达载体在菌体内都是低拷贝的,防止渗漏表达。 克隆载体只是把你要的基因片段拿到就可以了,不管读码框什么的,但是表达载体是不但要你的目的基因连在上面,而且要表达蛋白,所以就要求你的读码框不能乱了,否则就不能得到你想到的表达产物。 1.载体即要把一个有用的基因(目的基因——研究或应用基因)通过基因工程手段送到生物细胞(受体细胞),需要运载工具(交通工具)携带外源基因进入受体细胞,这种运载工具就叫做载体(vector)。 2. 载体的分类 按功能分成:(1)克隆载体: 都有一个松弛的复制子,能带动外源基因,在宿主细胞中复制扩增。它是用来克隆和扩增DNA片段(基因)的载体。(2)表达载体:具有克隆载体的基本元件(ori,Ampr,Mcs等)还具有转录/翻译所必需的DNA顺序的载体。 按进入受体细胞类型分:(1)原核载体(2)真核载体(3)穿梭载体(sbuttle vector)指在两种宿主生物体内复制的载体分子,因而可以运载目的基因(穿梭往返两种生物之间). 克隆载体顾名思义就是质粒拷贝数比较高,在做上游克隆时比较方便, 其重点在于质粒的复制.

高一生物《基因突变和基因重组》知识点归纳

高一生物《基因突变和基因重组》知识点归纳 名词: 1、基因突变:是指基因结构的改变,包括DNA碱基对的增添、缺失或改变。 2、基因重组:是指控制不同性状的基因的重新组合。 3、自然突变:有些突变是自然发生的,这叫~。 4、诱发突变(人工诱变):有些突变是在人为条件下产生的,这叫~。是指利用物理的、化学的因素来处理生物,使它发生基因突变。 5、不遗传的变异:环境因素引起的变异,遗传物质没有改变,不能进一步遗传给后代。 6、可遗传的变异:遗传物质所引起的变异。包括:基因突变、基因重组、染色体变异。 语句: 1、基因突变 ①类型:包括自然突变和诱发突变 ②特点:普遍性;随机性(基因突变可以发生在生物个体发育的任何时期和生物体的任何细胞。突变发生的时期越早,表现突变的部分越多,突变发生的时期越晚,表现突变的部分越少。);突变率低;多数有害;不定向性(一个基因可以向不同的方向发生突变,产生一个以上的等位基因。)。 ③意义:它是生物变异的根本来源,也为生物进化提供了最初的原材料。 ④原因:在一定的外界条件或者生物内部因素的作用下,使得DNA复制过程出现小小的差错,造成了基因中脱氧核苷酸排列顺序的改变,最终导致原来的基因变为它的等位基因。这种基因中包含的特定遗传信息的改变,就引起了生物性状的改变。

⑤实例:a、人类镰刀型贫血病的形成:控制血红蛋白的DNA上一个碱基对改变,使得该基因脱氧核苷酸的排列顺序—发生了改变,也就是基因结构改变了,最终控制血红蛋白的性状也会发生改变,所以红细胞就由圆饼状变为镰刀状了。b、正常山羊有时生下短腿“安康羊”、白化病、太空椒(利用宇宙空间强烈辐射而发生基因突变培育的新品种。)。 ⑥引起基因突变的因素:a、物理因素:主要是各种射线。b、化学因素:主要是各种能与DNA发生化学反应的化学物质。c、生物因素:主要是某些寄生在细胞内的病毒。 ⑦人工诱变在育种上的应用:a、诱变因素:物理因素---各种射线(辐射诱变),激光(激光诱变);化学因素—秋水仙素等b、优点:提高突变率,变异性状稳定快,加速育种进程,大幅度地改良某些性状。c、缺点:诱发产生的突变,有利的个体往往不多,需处理大量的材料。d、如青霉素的生产。 2、基因突变是染色体的某一个位点上基因的改变,基因突变使一个基因变成它的等位基因,并且通常会引起一定的表现型变化。 3、基因重组: ①类型:基因自由组合(非同源染色体上的非等位基因)、基因交换(同源染色体上的非等位基因)。 ②意义:非常丰富(父本和母本遗传物质基础不同,自身杂合性越高,二者遗传物质基础相差越大,基因重组产生的差异可能性也就越大。);基因重组的变异必须通过有性生殖过程(减数分裂)实现。丰富多彩的变异形成了生物多样性的重要原因之一。 4、基因突变和基因重组的不同点:基因突变不同于基因重组,基因重组是基因的重新组合,产生了新的基因型,基因突变是基因结构的改变,产生了新的基因,产生出新的遗传物质。因此,基因突变是生物产生变异的根本原因,为进

《基因突变与基因重组》说课稿

《基因突变和基因重组》说课稿 一、教学背景分析。 1.教材内容、地位及学情分析 本节是人教版普通高中标准实验教科书生物必修2《遗传与进化》的第五章《基因突变及其他变异》的第一节内容。通过前面各章的学习,学生对“基因是什么”、“基因在哪里”和基因如何起作用“等问题已有了基本的认识。本章内容既是对前四章内容合乎逻辑的延续,又是学习第六章《从杂交育种到基因工程》和第七章《现代生物进化理论》的重要基础。 本节介绍了基因突变,从实例入手,通过对镰刀型细胞贫血症的分析,引入基因突变的概念,然后详细阐述基因突变的原因和特点、意义。本节内容引导学生从分子水平上理解遗传物质如何引起基因突变的。 学生对于生物变异的现象并不陌生,通过初中生物课的学习学生已初步认识到生物变异首先与遗传物质有关,其次与环境有关,本节内容在此基础上,进一步引导学生学习遗传物质究竟是如何引体生物变异 2.教学目标 1、知识目标: (1)举例说明基因突变的概念。 (2)举例说明基因突变的特点和原因。 (3)说出基因突变的意义。 2、能力目标: (1)通过对课本中实例的分析,培养学生分析归纳总结的逻辑推理能力。 (2)通过学生之间相互启发、相互补充、激发灵感,提高学生合作—探究的能力。 3、情感目标: (1)通过生物变异的事例,增强学生对生物世界探究的好奇心及保护意识,培养学生们严谨的科学态度和热爱科学的兴趣。 (2)引领学生进入“自主—合作—探究”新课程理念氛围,让学生真正成为学习的主人。 3.教学重点、难点 (1)教学重点 基因突变的概念、特点及原因。 (2)教学难点 基因突变的意义。 二、教学展开分析 1.教具准备 实物投影仪、电脑演示教学软件 2.课时安排 1课时 3.教学方法和手段 利用多媒体课件,创设形象生动的教学氛围;同时应用讲述法、谈话法、指导读书法

λ噬菌体的裂解性和溶原性的基因调控机制

λ噬菌体的裂解性和溶原性的基因调控机制 摘要: λ噬菌体(phage)有两种生存策略,一种通过感染宿主细胞,产生大量的子代噬菌体,同时宿主细胞裂解死亡,这种方式称为裂解性感染。另一种是噬菌体的基因组以一种原噬菌体的方式潜伏于细菌中,这种增值方式称为溶原态(lysogeny)。λ噬菌体的裂解发育、溶原发育和溶原发育到裂解发育的诱导是研究生物分子调节优异的模型。经过四十多年的研究,在这个模型中已经发现了众多的正调节因子和负调节因子在转录水平或转录后调节基因的表达。 关键词:λ噬菌体、裂解性、溶原性 1951年J. Lederberg的妻子Esther Lederberg证明了J. Lederberg和Tatum用来杂交的K12中有原噬菌体,并命名为λ,经10年的研究搞清了溶原化的实质。 λ噬菌体的基因组长达50 Kb,共61个基因,其中38个较为重要。其生活史如图8-15所示,可分为裂解周期和溶原周期。细菌处于溶原化状态时,细胞质中有一些λ CⅠ基因的产物CⅠ蛋白,这是一种阻遏蛋白,可以阻止λ左、右两个早期起动子的转录,使之不能产生一些复制及细胞裂解的蛋白。λ的DNA随着宿主的染色体复制而复制。但在UV诱导下Rec蛋白可降解CⅠ蛋白(见第17章),诱导90%的细胞裂解。有时λ也可自发地(10-5)从宿主的染色体上游离出来,进行复制,最终导致宿主细胞的裂解,此称为治愈(curing)。游离在细胞质中的λ可以进行滚环复制,产生多个拷贝,并合成头部和尾部蛋白,包装成完整的λ噬菌体,使细胞裂解,释放出λ噬菌体再感染新的细胞。(图8-19)。因为λ噬菌体的DNA也有整合在染色体上和游离于细胞质中两种状态,所以也称做附加体。但和F因子不同,λ噬菌体有细胞外形式,而F因子无细胞外形式。 在E.coli K12中是有原噬菌体的存在。Jacob和Wollman(1956年)发现了合子诱导(zygotic induction)现象,并利用合子诱导确定了几个E.coli染色体上原噬菌体的整合位点。他们发现Hfr(λ)×F-所得到的重组子频率要比Hfr×F-(λ)或Hfr(λ)×F-(λ)要低得多。这是由于在Hfr(λ)×F-的杂交中,原噬菌体进入无阻遏物的受体细胞质中,进行大量复制使受体细胞裂解(图8-20b),因此不易得到重组子,此现象就称为合子诱导。现在我们再回过头来查阅一下传递等级作图,中断杂交实验以及重组作图都是采用Hfr×F-(λ)就是不致产生合子诱导的缘故。 裂解发育 噬菌体的感染周期可以分为早期(复制前)和晚期(复制后)两个阶段。 噬菌体基因组复制和产生蛋白质颗粒,并组装进子代噬菌体,开始裂解进程。噬菌体的DNA注入宿主细胞中后经早期发育和晚期发育最终可以裂解从而释放出子代噬菌体,完成整个裂解发育。早期感染是指从噬菌体到进入复制开始的时期,晚期感染是指从复制开始到最后细胞裂解释放出子代噬菌体颗粒这一时期。噬菌体内的必需基因组不大,当噬菌体的DNA注入细菌体内时,若发生裂解发育,在早期发育过程中噬菌体的DNA会被优先复制,并转录成mRNA,mRNA可以代替宿主细胞的mRNA重新引导噬菌体的活性,从而使噬菌体大量增殖,所以一个噬菌体感染将产生大量经过复制和重组的子代噬菌体。

λ噬菌体的基因调控

λ噬菌体的基因调控 λ噬菌体是一种感染大肠杆菌的温和噬菌体,侵染E.coli后既能进行复制和造成细菌裂解死亡,又能整合进入E. coli基因组并随着宿主基因组进行复制,进行溶源态生存。溶源发育尽管十分稳定,但是仍然可以通过一些损害宿主细胞的诱导剂使之诱导进入裂解感染。λ噬菌体的裂解发育、溶源发育和溶源发育到裂解发育的诱导是研究生物分子调节优异的模型。经过四十多年的研究,在这个模型中已经发现了众多的正调节因子和负调节因子在转录水平或转录后调节基因的表达。 I.两种发育途径简介 λ噬菌体在裂解发育中的繁殖过程为吸附宿主、向宿主注射核酸物质、基因的复制和蛋白质的表达、宿主细胞的裂解和子代噬菌体的释放。裂解发育通过使噬菌体的基因按照一定的顺序表达而完成,这样就保证了每种成分在生命周期适宜的时间表达。裂解周期可以分为两个主要的阶段: 早期感染—从噬菌体DNA进入宿主到开始复制的这一段时期,主要合成与DNA 复制有关的酶类,如参与DNA复制、重组和修饰的酶; 晚期感染—从复制开始到最后细胞裂解释放出子代噬菌体颗粒的过程,主要合成噬菌体颗粒的蛋白质外壳,由于噬菌体需要许多不同的蛋白质外科组建成衣壳和尾,因此基因组的绝大部分是用于执行晚期功能的。 噬菌体基因表达的早期阶段只有少数基因表达,并且严重依赖宿主的转录机构,例如RNA聚合酶和σ因子。这些基因被成为早早期基因(immediate early gene)。第二类基因称为迟早期基因(delayed early gene)。裂解周期受到正调控作用,即每组基因只有受到恰当的信号刺激时才能启动表达。因此,早早期基因的表达编码了迟早期基因的调控蛋白,这种调控蛋白对于迟早期基因的表达是必需的。当噬菌体DNA开始复制时,晚期基因(late gene)开始表达。晚期基因的表达需要早早期或迟早期基因的编码产物作为信号,在λ噬菌体中,这种调控信号是一种抗终止因子。 因此,裂解性感染通常分为三个时期:第一个时期由宿主RNA聚合酶转录噬菌体早期的转录调控因子;第二个时期的基因在前一阶段表达的调控因子的作用下进行转录,此阶段表达的基因大多数为噬菌体复制所必须;第三个时期由编码噬菌体成分的基因组成,他们能够在第二个时期合成的调控因子的指导下转录。每个时期的基因都含有编码下一套基因表达所必须的转录因子基因,而本时期的基因表达也必然要受到上一阶段表达的转录因子的调控,这样裂解发育过程就形成了一种级联反应控制过程。 在级联反应中,上一阶段编码的转录调控因子对下一阶段的调控作用有几种不同的机制,调控因子可能是一种新的RNA聚合酶,或者是产生一种新的σ因子,从而使得RNA聚合酶在

λ噬菌体的基因调控

λ噬菌体的基因调控 姓名 学号: 班级:

目录 λ噬菌体的发现 λ噬菌体的结构组成 1.基本结构 2.λ噬菌体的核心 λ噬菌体的生活周期 I.两种发育途径简介 II.调控发育途径的分子基础 1.两种途径共同的早期基因表达途径 2.溶源发育中基因的相互作用 3.裂解途径的建立 4.溶源和裂解的平衡 5.溶源发育向裂解发育的转变 λ噬菌体的侵染过程 1.吸附 2.穿入 3.生物合成 4.成熟与释放 λ噬菌体的应用 1.细菌的鉴定与分型 2.耐药细菌感染的治疗 3.分子生物学研究的重要工具 4.遗传工程 5.其他 参考文献

λ噬菌体的发现: 1951年J. Lederberg的妻子Esther Lederberg证明了J. Lederberg和Tatum用来杂交的K12中有原噬菌体,并命名为λ,经10年的研究搞清了溶原化的实质。 在E.coli K12中是有原噬菌体的存在。Jacob和Wollman(1956年)发现了合子诱导(zygotic induction)现象,并利用合子诱导确定了几个E.coli染色体上原噬菌体的整合位点。他们发现Hfr(λ)×F-所得到的重组子频率要比Hfr ×F-(λ)或Hfr(λ)×F-(λ)要低得多。这是由于在Hfr(λ)×F-的杂交中,原噬菌体进入无阻遏物的受体细胞质中,进行大量复制使受体细胞裂解(图8-20b),因此不易得到重组子,此现象就称为合子诱导。现在我们再回过头来查阅一下传递等级作图,中断杂交实验以及重组作图都是采用Hfr×F-(λ)就是不致产生合子诱导的缘故。 λ噬菌体的结构组成: 1.基本结构 λ噬菌体是一种温和的诱导性噬菌体,其基因组除在5'端有12个可互补的 碱基外均为线性双链DNA,感染时DNA形成环状。λ噬菌体的基因组长达50 Kb,共61个基因,其中38个较为重要。 λ-DNA的基因顺序组织如图所示,按基因组功能共分六大区域:头部编码区、尾部编码区、重组区、控制区、复制区和裂解区.

专题复习:基因突变、基因重组和染色体变异1

基因突变、基因重组和染色体变异 一、选择题: 1.将纯种小麦播种于生产田,发现边际和灌水沟两侧的植株总体上比中间的长得好。产生这种现 象的原因是 ( B ) A .基因重组引起性状分离 B .环境引起性状变异 C .隐性基因突变成为显性基因 D .染色体结构和数目发生了变化 2.如果DNA 分子的模板链的TAA 突变成TAC ,则相应的遗传密码 ( B ) A .由UAA 突变成AUU B .由AUU 突变成AUG C .由UAA 突变成UAC D .由AUG 突变成AUU 3.基因突变按其发生部位可分为体细胞突变a 和生殖细胞突变b 两种,则( B ) A .均发生于有丝分裂的间期 B .a 发生于有丝分裂的间期;b 发生于减数第一次分裂的间期 C .均发生于减数第一次分裂的间期 D .a 发生于有丝分裂间期b 发生于减数第二次分裂的间期 4.果蝇约有104对基因,假定每个基因的突变率都是10--5,一个大约有109个果蝇的群体,每一 代出现的基因突变数是( B ) A .2×109 B .2×108 C .2×107 D .108 5.下图表示基因A 与a 1、a 2、a 3之间关系,该图不能表明的是 ( D ) A .基因突变是不定向的 B .等位基因的出现是基因突变的结果 C .正常基因与致病基因可以通过突变而转化 D .这些基因的转化遵循自由组合规律 6.若某基因原有303对碱基,现经过突变,成为300个碱基对,它合成的蛋白质分子与原来基因 控制合成的蛋白质分子相比较,差异可能为 ( D ) A .只相差一个氨基酸,其他顺序不变 B .长度相差一个氨基酸外,其他顺序也改变 C .长度不变,但顺序改变 D .A 、B 都有可能 7.关于基因突变的下列叙述中,错误.. 的是 ( D ) A .基因突变是指基因结构中碱基对的增添、缺失或改变 B .基因突变是由于基因中脱氧核苷酸的种类、数量和排列顺序的改变而发生的 C .基因突变可以在一定的外界环境条件或者生物内部因素的作用下引起 D .基因突变的突变率是很低的,并且都是有害的 8.某基因的一个片断是,在解旋时,a 链发生差错,C 变成G ,该基因复制3次,发生突变的基因占全部基因的( B ) A .11% B .50% C .25% D .12.5% 9.人工诱变区别于自然突变的突出特点是( B ) (A )产生的有利变异多 (B )使变异的频率提高 A a 1 a 2 a 3

基因突变和基因重组

基因突变和基因重组

基因突变和基因重组 【课前复习】 在学习新课程前必须复习有关DNA的复制、基因控制蛋白质的合成、表现型与基因型的关系等知识,这样既有利于掌握新知识,又便于将新知识纳入知识系统中。 温故——会做了,学习新课才能有保障1.DNA分子的特异性决定于 A.核糖的种类B.碱基的种类 C.碱基的比例D.碱基对的排列顺序答案:D 2.基因对性状控制的实现是通过A.DNA的自我复制 B.DNA控制蛋白质的合成 C.一个DNA上的多种基因 D.转运RNA携带氨基酸 答案:B 3.下列关于基因型与表现型关系的叙述中,错误的是 A.表现型相同,基因型不一定相同B.基因型相同,表现型一定相同C.在相同生活环境中,基因型相同,表现型一定相同

D.在相同生活环境中,表现型相同,基因型不一定相同 答案:B 4.实现或体现遗传信息的最后阶段是在细胞的哪一部分中进行的 A.线粒体中B.核糖体中C.染色质中D.细胞质中 答案:B 知新——先看书,再来做一做 1.变异的类型有_________和_________两种。后者有三个来源_________、___________、___________。2.基因突变 (1)概念:由于DNA分子中发生碱基对的___________、___________或___________,而引起的基因结构的改变,就叫做基因突变。 (2)实例:镰刀型细胞贫血症 ①根本原因:控制合成血红蛋白的DNA 分子的一个___________发生改变。 ②直接原因:血红蛋白多肽链中___________被___________代替。(3)结果:基因突变使一个基因变成它的___________基因,并且通常会引起—定的___________型的变化。

λ噬菌体的基因调控策略

λ噬菌体的基因调控策略 λ噬菌体侵染细菌后,由于P L /O L 和P R /O R 上没有阻抑物cI的结合, 所以细菌RNA聚合酶自P L 和P R 处开始转录并形成N蛋白和cro蛋白,转录终止 于左右两侧的第一个启动子tL1和tR1;N蛋白发挥抗终止作用,使得转录越过左右两个终止子而转录cII和cIII;cII对于cI的产生是必需的,cII导致细菌的RNA聚合酶识别P RE 启动子而向左转录,从而表达cI;“无中生有”的cI 之后启动正调节回路,从P RM 开始转录产生更多的cI,cI也结合到O L 和O R ,阻 止N蛋白和cro的表达,使λ噬菌体维持溶源发育。 如果早早期基因表达翻译出的Cro蛋白与OR3结合,就能够停 止从P RM 处开始的阻抑物合成;Cro蛋白同时跟O R 1或O R 2,以及O L 1或O L 2结合, 以下调基因表达。通过停止合成cII和cIII蛋白,导致从P RE 停止合成阻抑物cI;当不稳定的cII蛋白和cIII蛋白降解时,阻抑物回路就被关闭。 ------------------------------------------------------------------------- λ噬菌体是一种感染大肠杆菌的温和噬菌体,侵染E.coli后既能进行复制和造成细菌裂解死亡,又能整合进入E. coli基因组并随着宿主基因组进行复制,进行溶源态生存。溶源发育尽管十分稳定,但是仍然可以通过一些损害宿主细胞的诱导剂使之诱导进入裂解感染。λ噬菌体的裂解发育、溶源发育和溶源发育到裂解发育的诱导是研究生物分子调节优异的模型。经过四十多年的研究,在这个模型中已经发现了众多的正调节因子和负调节因子在转录水平或转录后调节基因的表达【Donald L. C. et. al., 2007】。 I.两种发育途径简介 λ噬菌体在裂解发育中的繁殖过程为吸附宿主、向宿主注射核酸物质、基因的复制和蛋白质的表达、宿主细胞的裂解和子代噬菌体的释放(如图1)。裂解发育通过使噬菌体的基因按照一定的顺序表达而完成,这样就保证了每种成分在生命周期适宜的时间表达。裂解周期可以分为两个主要的阶段:

λ噬菌体溶源途径和裂解途径的基因调控

λ噬菌体溶源途径和裂解途径的基因调控 摘要 λ噬菌体侵染细胞后,大多数情况下进入裂解循环,λDNA复制,产生较多的噬菌体粒子。而在以对数期以后的细菌和培养在缺乏碳源物质的培养基中的细菌作为寄主时进入溶源化途径,只有与溶源化有关的少数基因如cI才被表达。另外溶源性细菌受到UV照射等因子诱导时,原噬菌体可以脱离细菌染色体而进行自我复制,最终导致细菌裂解,游离出大量噬菌体。噬菌体是进入裂解循环还是整合到寄主染色体上形成溶源态,这主要取决于CI蛋白和Cro蛋白的合成及它们的调控作用。 关键词 λ噬菌体,溶源化,裂解,基因调控,CⅠ蛋白,Cro蛋白 一.λ噬菌体基因组和调控区 λDNA分子总长度为48.5kb,编码66个基因(如下图所示),可分为三个区域:1.左臂区,自基因A到基因J,包括参与噬菌体头部蛋白质和尾部蛋白质合成所必需的全部基因。 2.中间区,介于基因J和基因N之间,这个区又称为非必需区,包含了与重组有关的基因(如基因gam)以及使噬菌体整合到大肠杆菌染色体中去的int基因和把原噬菌体从寄主染色体上切除下来的xis基因。 3.右臂区,位于N基因的右侧,包括全部主要的调控基因(cⅠ,c Ⅱ和cro),噬菌体的复制基因(O和P)以及溶菌基因(S和R)。

λ噬菌体主要的调节元件及调节基因产物的功能 调节元件或调节基因产物及功能 P L,O L, P R,O R左右向转录的启动子和操纵子 t R(1,2,3,4,5)右向转录的终止子 t L(1,2)左向转录的终止子 P RE CⅠ蛋白建立启动子,受CⅡ蛋白调控 P I int基因启动子,受CⅡ蛋白调控 P aQ Q蛋白反义RNA启动子,受CⅡ蛋白调控 P RM CⅠ蛋白基因维持启动子,受CⅠ浓度调控 P R′晚期转录的启动子 nut L, nut R N蛋白左右两个反终止结合位点 qut Q蛋白反终止结合位点 cro P L和P R的阻遏蛋白,并可阻遏P E,抑制 CI 表达 c I P L和P R的主要的阻遏物,并可自主调控P RM cⅡ可以启动P RE、P I和P AQ,使λ进入溶原化途径 cⅢ和CⅡ组成复合物,启动P E产生cⅠ及cro的反义RNA N t R1, t R2及t L1的反终止蛋白 Q t R4的反终止蛋白.

相关文档
最新文档