基于分布式光纤振动传感原理的电力电缆故障定位技术研究

基于分布式光纤振动传感原理的电力电缆故障定位技术研究
基于分布式光纤振动传感原理的电力电缆故障定位技术研究

电力电缆故障原因及常用的检测方法(超全讲解)

https://www.360docs.net/doc/5a13607343.html, 电力电缆故障原因及常用的检测方法(超全讲解)盲目的进行电缆故障查找工作往往费时费力而且无法准确的进行故障定点判断,这不是因为电缆故障种类的复杂造成,而是因为电缆周边环境所造成的。 1、电力电缆基础理论 我们目前采用的电缆故障查找方法离不开:故障诊断、粗测定点与精确定点三个步骤。但是往往在实际测试中能够确定故障类型,做到粗测定点,但是却无法真正精确定点进行开挖。这种原因的形成是因为客观存在的我们听得到的因素(公路或施工处振动噪声过大等原因)和看不到的因素(电缆走向、电缆埋设深度过深、故障点在积水中、电缆施工时余留不规范等原因)所造成的。因此在电缆故障查找前通过电缆施工、运行管理人员明确电缆长度、电缆走向、周边特殊情况、中间头位置、周边是否存在施工等要因是电缆故障查找前不可或缺的准备工作。 2、电缆故障原因及测量仪器 了解电缆故障的原因,对于减少电缆的损坏,快速地判定出故障点是十分重要的。

https://www.360docs.net/doc/5a13607343.html, 注:(HZ-TC电缆故障测试仪) 电缆故障测试仪是我公司根据用户要求,从现场使用考虑,精心设计和制造的全新一代便携式电缆故障测试仪器。它秉承我们一贯高科技、高精度、高质量的宗旨,将电缆测试水平提高到一个新境界。 电缆故障测试仪(闪测仪)可用于检测各种电缆的低阻、高阻、短路、开路、泄漏性故障以及闪络性故障,可准确的检测地下电缆的故障点位置、电缆长度和电缆的埋设路径。具有测试准确、智能化程度高、适应面广、性能稳定以及轻巧便携等特点。仪器采用汉字系统,高清晰度显示,界面友好。

https://www.360docs.net/doc/5a13607343.html, 电缆寻迹及故障定点是由路径仪、定点仪、T型探头、A字架、听筒等组成。本仪器是电缆故障定位测试的专用仪表,适用测试对象为具有金属导体(线对、护层、屏蔽层)的各种电缆。其主要功能为对地绝缘不良点的定位测试,线缆路径的探测以及线缆埋深的测试。 注:(HZ-TCD全智能多次脉冲电缆故障测试仪) 全智能多次脉冲电缆故障测试仪是我公司为了迎合电力工业电力时代的到来,在集成了电缆故障测试行业的诸多精品方案,以IT时代的快速发展为契机,将单片机及笔记本式的电缆故障测试仪彻底摒弃,在嵌入式计算机平台的基础上打造出适合电缆故障测试行业自身特点的网络化电缆故障测试服务平台,并且系统化得集成了USB通信技术,触摸屏技术,3G 通信技术,极大提高了仪器的使用功能和利用价值以及便捷的现场环境操作。考虑到现在地

关于电力电缆故障分析与诊断技术探讨 费利定

关于电力电缆故障分析与诊断技术探讨费利定 发表时间:2018-11-14T20:13:48.483Z 来源:《基层建设》2018年第28期作者:曾维炎费利定[导读] 摘要:随着我国社会与经济的发展,工农业生产以及人民生活水平快速提高,用电量也快速增加,同时社会各界对于电力的需求量也在增加,对于电网的安全运行有了更高的要求,如何确保配网电力电缆的安全成为了一个相当重要的问题。 浙江省送变电工程有限公司浙江杭州 310016 摘要:随着我国社会与经济的发展,工农业生产以及人民生活水平快速提高,用电量也快速增加,同时社会各界对于电力的需求量也在增加,对于电网的安全运行有了更高的要求,如何确保配网电力电缆的安全成为了一个相当重要的问题。因此,在配网电力电缆的使用与运行的过程之中如何快速、准确地定位故障的类型以及故障点就显得非常的重要,因此需要加强对配网电力电缆故障监测的研究。 关键词:电力电缆;故障;诊断技术随着我国社会经济发展进步,电力行业迅猛发展,人们在用电方面的需求不断增大,对于电力系统的要求也越来越高。当前电力已经逐渐发展成为人们生活、生产过程中一项主要动力来源,电力电缆属于电力传输的主要介质。很多企业在电力电缆敷设方面以埋地电缆方式为主,这种电力输送方式能够将电缆与外界环境有效隔绝,避免电缆与环境之间相互作用,使电缆的运行和维护得到简化,供电安全性和可靠性有显著提高。 1 常见的电力电缆故障分析 1.1 高阻故障 如果故障区域电缆绝缘电阻值超过电缆本身电阻值,则属于高阻故障,具体可分为三种不同类型,分别是断路故障、闪络性故障、高阻泄露故障,其中闪络性故障主要是指试验电压升高时引起电流表值突然升高,试验电压下降情况下电流值回归正常,但是电缆绝缘阻值仍比较大,在故障点未有电阻通道出现,只在闪络性表面故障;高阻泄露故障,这种故障主要指在高压绝缘测试时,随着试验电压的增加,泄露电流值也会有明显升高,试验电压在上升至额定值时,泄露电流会超过最大允许值。 1.2 机械损伤 导致机械损伤的原因有三种,其一是受到外力的破坏,比如在施工过程或者运输过程中发生意外损伤,对电缆造成影响,其二是敷设造成损坏,尤其是过大拉力作用下,绝缘材料出现损伤,或者保护层发生损坏,其三是自然力的作用,在受到自然压力下两端的接头会出现膨胀电缆,护套开裂,并且还会受到气候变化的影响,产生自然缩涨。 1.3 因绝缘层破损引发的故障 绝缘层的老化、破损对输电电路的损害是不可估量的,而造成绝缘层老化、破损的原因有很多,除上述几种原因外,还要其他几种常见的原因。(1)腐蚀影响,由于一些电力电缆铺设环境存在腐蚀性较强的物质,在长期腐蚀侵蚀下,电力电缆的绝缘层遭到损坏引发故障问题。(2)摩擦损伤,在电力电缆与金属结构重合的地方,电缆与金属结构长期摩擦造成绝缘层破损,也会导致电力电缆受潮引发故障。(3)动物啃咬,电力电缆容易受到老鼠、白蚁等动物的啃咬造成绝缘层破损,导致电力电缆受潮,进而引发短路问题。 2 电力电缆故障的类型 电力电缆故障类型呈现出多样性,第一是因为低电阻接地或者短路导致故障的发生,简而言之便是电缆线路一相或者多相导体对地,绝缘电阻比正常的阻值要低,且导体具有连续性,常见的类型有单相接地、两相接地等。第二是因为电阻接地或者短路所导致的故障,该故障类型同第一点相似,但仍旧存在差别,主要是接地或短路电阻具有良好的芯线连接,较为常见的类型包括单相接地、两相接地等;第三种是开路故障电缆的各相导体均符合相应的绝缘电阻,但是针对导体进行的连续性实验结果却存在不连续的一项或者数项导体,虽然没有发生断开,但是却无法将电压及时传送给电缆终端,这种情况下则会导致故障的发生,较为常见的便是单相与两相、三相断线。 3 电力电缆故障的诊断技术 3.1 动态监测电缆负荷 电缆超负荷运行情况下会严重缩短绝缘层使用寿命,电力电缆运行中需要注意避免电缆的超负荷运行,结合电网分布以及电缆特性做好载流量的合理分配,降低电缆负荷控制在合理范围,及时更换无法满足电力输送要求电缆,使电缆运行安全稳定性得到保证。另外,还需要采取针对性技术措施做好电缆载流量的动态监测,当有超负荷情况出现时,及时采取处理措施,最大限度降低电缆故障发生率。 3.2 电桥检测法 所谓的电桥检测法主要是指在电缆中要利用双臂电桥测量出流经新线的电流阻值,然后对电缆的长度进行测量,严格按照电阻与电缆长度之间所存在的关系,对电缆之中所存在的故障点加以计算,其中在应用电桥检测法对故障进行诊断的时候,需要多角度分析,尤其要对短路点接触加以诊断,对小于一欧姆的电缆芯线间的短路接触阻值进行计算,要将故障的误差保持在三米以下,其中需要注意的是对于超过一欧姆故障连接处阻值的故障,则需要应用高电压烧穿技术,将其电阻下降到标准数值以下,然后继续利用电桥检测法进行测量。从本质上分析,利用电桥检测法对电力电缆故障进行诊断,可以提高精度测量,减少电桥连接线。 3.3 万用表法 在配网电力电缆的故障监测过程中,在万用表法之中短接了电缆内的金属屏蔽层以及电缆芯,也就是配网电力电缆的终端,而始端测量短接的电阻值,如果测得的电阻值读数为无穷大,那么就代表配网电力电缆系统之中存在有开路故障,如果电阻值的读数比线芯的两倍还要高,那么就代表系统之内出现了似断非断的故障。如果配网电力电缆采用的是三芯电缆结构,接入了金属屏蔽层,那么就需要考虑中终端位置,对屏蔽层进行短接,然后使用万用表接入开始位置,对三相间的实际电阻值进行直接测量,对绝缘层的电阻值进行掌握。而对于没有金属屏蔽层的情况,只需要检测相间电阻就可以,以对配网电力电缆的性能以及质量进行判断。 3.4 声音测量法 声音测量法主要是指检测诊断电缆故障的时候需要根据放电过程中所释放的声音进行判断,高压电缆的线芯对绝缘层闪络的放电比较适用于声音测量方法,需要应用直流耐压试验机对电力电缆故障加以诊断。其中,当电容器达到固定电压值的时候,要根据电缆故障新线放电,这个时候放电会发出滋滋的声音,可以靠听觉查出故障所在的位置,对于敷设在地下电缆如发生故障,首先需要对电缆的走向加以确定,并且在最大放电声音区域内放大设备,查找故障的发生位置,主要的方法是利用低音器缓慢地在电缆的走向处进行移动,在放电声最大的区域仔细检测。

光纤传感中的光学原理及效应

第1章:光纤传感中的光学原理及效应 光学反射原理 分为镜面反射和漫反射 镜面反射和漫反射情况 基于反射原理的光纤传感器结构简单、工作可靠、成本低廉。主要应用于位移测量,振动测量,压力测量,浓度测量和液位测量。 光学折射原理

光学吸收原理 选择吸收:介质对某些波长的光的吸收特别显著 郎伯比尔(Lambert-Beer)定律: Lambert-Beer 定律是吸收光度法的基本定律,表示物质对某一单色光吸收的强弱与吸光物质浓度和厚度间的关系。 当气体浓度、光程均很小的时候,可以近似为: 光学多普勒效应 θ cos 11f f 02 20 0c u c u -= 雷达测速仪 检查机动车速度的雷达测速仪也是利用这种多普勒效应。交通警向行进中的车辆发射频率已知的电磁波,通常是红外线,同时测量反射波的频率,根据

反射波频率变化的多少就能知道车辆的速度.装有多普勒测速仪的警车有时就停在公路旁,在测速的同时把车辆牌号拍摄下来,并把测得的速度自动打印在照片上。 声光效应 超声波通过介质时会造成介质的局部压缩和伸长而产生弹性应变,该应变随时间和空间作周期性变化,使介质出现疏密相间的现象,如同一个相位光栅 。当光通过这一受到超声波扰动的介质时就会发生衍射现象,这种现象称之为声光效应。 利用声光衍射效应制成的器件,称为声光器件。声光器件能快速有效地控制激光束的强度、方向和频率,还可把电信号实时转换 为光信号。此外,声光衍射还是探测材料声学性质的主要手段。 主要用途有:制作声光调制器件,制作声光偏转器件,声光调Q 开关,可调谐滤光器,在光信号处理和集成光通讯方面的应用。 磁光效应 具有固有磁矩的物质在外磁场的作用下,电磁特性发生变化,因而使得光波在其内部传输特性也发生变化的现象。 A 、法拉第效应:当线偏振光沿磁场方向通过置于磁场中的磁光介质时,其偏振面发生旋转的现象,对于给定的介质,偏振面旋转角度=介质长度×磁场强度×维厄德系数 B 、磁光克尔效应:指一束线偏振光在磁化了的介质表面反射时,反射光将是椭圆偏振光,而且以椭圆的长轴为标志的“偏振面”相对于入射偏振光的偏振面旋转了一定的角度。 分类: ①极化克尔效应,即磁化强度M 与介质表面垂直时的克尔效应,应用于磁光存储技术中 ②横向克尔效应:M 既平行于介质表面,但垂直于光的入射面 ③纵向克尔效应:M 既平行于介质表面,又平行于光的入射面 C 、磁致线双折射效应:某些由各向异性分子组成的介质,在不加磁场时表现为各向同性,加上足够强的外磁场时,分子磁矩受到了力的作用,各分子对外磁场有了一定的取向,使介质宏观上呈现各向异性,当光以不同于磁场方向通过这样的介质时,就会出现双折射现象。 电光效应 电光效应:指某些晶体的折射率因外加电场而发生变化的一种效应,当光波通过此介质时,其传输特性就受到影响而改变。 +++=20bE aE n n (6-3) 在上式中, aE 是一次项,由该项引起的折射率变化,称为线性电光效应或泡克耳斯(Pockels )效

文献综述——光纤振动传感器

中国计量学院 毕业设计(论文)文献综述 学生姓名:徐婷学号: 0800403238 专业:光电信息工程 班级: 08光电2 设计(论文)题目: 光纤振动传感器的设计 指导教师:李裔 二级学院:光学与电子科技学院 2011年 3 月07日

光纤振动传感器的设计 文献综述 一、概述: 光纤传感器的历史可追溯到上世纪70 年代,那时,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来。由于其具有常规传感器所无法比拟的优点和广阔的发展前景,很多国家不遗余力地加大对光纤传感器的研究力度,也涌现出许多成果。但它仍存在诸如价格昂贵、技术不够成熟等瓶颈,这使得它在工程上的应用较少。最近涌现的很多成果无论是在价位上还是技术上都有了新的突破。随着新方法、新工艺不断被引入,大量低价位高性能光纤传感器面世,而光纤与其他学科理论相结合,不仅使光纤传感器在信号检测精度、传输减损、信号处理方面有了很大的提高,而且其应用领域也越加广阔。 光纤传感器作为一种优势明显的新型传感器不但在高、精、尖领域得到应用,而且在传统的工业领域被迅速推广,其本身产品也不断推层出新,显示出强大的生命力。可以预见随着制作技术的日益成熟和器件性能的不断提高,不久的将来光纤传感器必将在海洋、化工、土木工程、水利电力等各个领域显示其应用活力。 二、光纤传感器的特点和工作原理: a。光纤结构和种类: 光纤是一种光信号的传输媒介。 光纤的结构:最内层的纤芯是一种截面积很小、质地脆、易断裂的光导纤维,制造材料可以是石英、玻璃或塑料。纤芯的外层由折射率比纤芯小的材料制成。由于纤芯与包层之间存在着折射率的差异,光信号得以通过全反射在纤芯中不断向前传播。光纤的最外层是起保护作用的外套。通常是将多根光纤扎成束并裹以保护层制成多芯光缆。 图一光纤结构 光纤的种类:1)按纤芯和包层的材质:玻璃光纤、塑料光纤。2)按折射率的变化:阶跃型、渐变型(聚焦光纤)。3)按传播模式:单模光纤、多模光纤。 b。光纤传感器的特点 近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程

电力电缆故障原因及其普通地检测方法(超全讲解)

电力电缆故障原因及常用的检测方法(超全讲解)盲目的进行电缆故障查找工作往往费时费力而且无法准确的进行故障定点判断,这不是因为电缆故障种类的复杂造成,而是因为电缆周边环境所造成的。 1、电力电缆基础理论 我们目前采用的电缆故障查找方法离不开:故障诊断、粗测定点与精确定点三个步骤。但是往往在实际测试中能够确定故障类型,做到粗测定点,但是却无法真正精确定点进行开挖。这种原因的形成是因为客观存在的我们听得到的因素(公路或施工处振动噪声过大等原因)和看不到的因素(电缆走向、电缆埋设深度过深、故障点在积水中、电缆施工时余留不规范等原因)所造成的。因此在电缆故障查找前通过电缆施工、运行管理人员明确电缆长度、电缆走向、周边特殊情况、中间头位置、周边是否存在施工等要因是电缆故障查找前不可或缺的准备工作。 2、电缆故障原因及测量仪器 了解电缆故障的原因,对于减少电缆的损坏,快速地判定出故障点是十分重要的。

注:(HZ-TC电缆故障测试仪) 电缆故障测试仪是我公司根据用户要求,从现场使用考虑,精心设计和制造的全新一代便携式电缆故障测试仪器。它秉承我们一贯高科技、高精度、高质量的宗旨,将电缆测试水平提高到一个新境界。 电缆故障测试仪(闪测仪)可用于检测各种电缆的低阻、高阻、短路、开路、泄漏性故障以及闪络性故障,可准确的检测地下电缆的故障点位置、电缆长度和电缆的埋设路径。具有测试准确、智能化程度高、适应面广、性能稳定以及轻巧便携等特点。仪器采用汉字系统,高清晰度显示,界面友好。 电缆寻迹及故障定点是由路径仪、定点仪、T型探头、A字架、听筒等组成。本仪器是电缆故障定位测试的专用仪表,适用测试对象为具有金属导体(线对、护层、屏蔽层)的各种电缆。其主要功能为对地绝缘不良点的定位测试,线缆路径的探测以及线缆埋深的测试。

电力电缆故障探测方法

电力电缆故障探测 摘要:该文介绍了电力电缆故障探测工作中,常用的几种探测方法及在应用效果上的分析和比较。 关键词:电力电缆;故障探测 随着电力电缆在城市电网中的应用日益广泛,运行时间越久,故障会越来越频繁,如何及时有效地处理故障,保证城市供电和电网的正常运行,就要看是否能够快速准确地判定故障性质和地点。为解决这项课题,淮北供电公司于2002年购置了一套YM型电缆故障探测议,开始是给配电工区使用,后给修试所实验班使用,对公司所辖的电缆进行故障探测。经过积极探索和分析研究判断,在多次的电缆故障探测工作中发挥了极好的作用和效果,也积累了丰富的经验,现对电缆故障发生的原因、性质、探测原理与方法、实际运用进行探讨。 1 电缆故障原因 导致电缆发生故障的原因是多方面的,现将常见的几种主要原因归纳如下: 机械损伤。电缆的很多故障是由于敷设安装时造成的机械损伤或敷设后在电缆线路上施工造成的外力损伤,而直接引起的。有时虽然损伤轻微,但在几个月甚至几年后其损伤部位的绝缘将逐渐降低而导致击穿。 设计和制作工艺不良,不按规程要求制作,往往是形成电缆故障的重要原因。 化学、电腐蚀。电缆外铅皮电腐蚀导致潮气侵入,绝缘破坏。 电缆的制造缺陷。 由于电缆长期过负荷运行,电缆的温度会随之升高,尤其在炎热的夏季,电缆的温升,常常导致电缆薄弱处和对接接头处首先被击穿。 电缆绝缘物的流失。 2 电缆故障预定位的方法 在电缆故障定位中最重要的一步就是鉴别电缆故障类型。一旦故障发生,判断故障类型,根据故障类型和本单位的设备条件选择合适的探测方法,直接影响着对事故处理的速度。实际上,电缆可能在任何位置发生任何类型的故障,能否快速排除故障取决于现场工作人员的实际经验。通常用万用表来测定故障电缆电阻,按电阻大小把电缆故障分为两组:低阻故障——小于100kΩ;高阻故障——大于100kΩ。每种类型的电缆故障需要特殊的方法进行预定位,常用的比较有效的预定位方法如下。 2.1 低压脉冲反射法 这种测量方法是将高频率的低压脉冲发送到电缆中,该脉冲沿电缆传播,直到阻抗失配的地方,如中间接头、T接头、短路点、断路点和终端头等,在这些点上都会引起波的反射,反射脉冲回到电缆测试端时被试验设备接收。实践证明现场绝大多数故障电缆,采用低压脉冲反射法是无法测量故障位置的,其所反射的波形只能测试电缆全长。图1为低压脉冲反射标准波形图。

光纤式传感器

光纤式传感器 传感技术与计算机技术、通讯技术被称为信息产业三大支柱技术, 是组成现代信息化技术的基础。世界各大强国均将传感器技术视为国家科技发展战略中的重要组成部分, 作为国家重点发展的领域之一。光纤传感器主要有传感型和传光型两大类, 两类传感器在传感原理上均可分为光强调制、相位调制、偏振态调制及波长调制不同形式, 由此构成不同的传感器。迄今业已证实, 被光纤传感器敏感的物理量有 70多种, 与传统的传感器相比, 光纤传感器有灵敏度高、重量轻和体积小、多用途、对介质影响小、抗电磁干扰和耐腐蚀且本质安全、易于组网等特点, 使其近年来在航天航空、国防、能源电力、医疗和环保、石油化工、食品加工、土木工程等领域的应用得到了迅速发展。表 1 为光纤传感器对参数测定的原理及主要方式。 一、光纤传感器的基本原理及组成 光纤传感器由光源、敏感元件、光探测器、信号处理器系统以及光纤等组成。光纤传感器的基本原理是将来自光源的光经过光纤送入调制器,使待测量参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长频率、相位偏振态等)发生变化,成为被调制的信号光,再经过光纤送入光探测器,经解调器解调后,获得被测参数。 1.1强度调制光纤传感器 强度调制光纤传感器的基本原理是:待测物理量引起光纤中传输光的光强变化,通过检测光强的变化实现对待测量的测量。待测量作用于光纤敏感元件,使通过光纤的光强发生变化。设输入光强为恒量Iin,输出光强为Iout,即待测量对光纤中的光强度产生调制。可

直接连接光探测器变成电信号(即调制的强度包括电信号)。 1.2相位调制光纤传感器 相位调制光纤传感器的基本原理是:通过被测能量场的作用,使光纤内传输的光波相位发生变化,再用干涉测量技术把相位变化转换为光强变化,从而检测出待测的物理量。所有能够影响光纤长度、折射率和内部应力的被测量都会引起相位变化,如应力应变温度和磁场等外界物理量。但是,目前的各类光探测器都不能探测敏感光的相位变化,必须采用干涉测量技术,才能实现对外界物理量的检测。与其他调制方式相比,相位调制技术由于采用干涉技术而具有很高的检测灵敏度。常用的干涉仪有四种:迈克尔逊、马赫-琴特、法布里-珀罗和萨格耐克。它们的共同点是:光源发出的光都要分成两束或更多束的光,沿不同的路径传播后,分离的光束又重新汇合,产生干涉现象。

光纤振动传感技术综述

光纤振动传感技术综述 摘要:随着设备朝着大型化、高速化的发展,振动引起的问题更为突出,需要 解决的问题更为迫切,也对振动测试与振动分析技术的研究提出了越来越高的要求。用光纤振动传感器取代常规的振动传感器,尤其是在一些具有强电磁干扰等 环境恶劣的特殊场合,己成为发展的趋势,不同类型、不同原理的光纤振动传感 技术对于振动检测领域的发展有着非常重要的现实意义。本文对光纤振动传感技 术的全球专利申请脉络进行了详细梳理,并通过专利数据统计分析,认识了光纤 振动传感技术的专利申请状况、研究热点以及核心技术的发展,为光纤振动传感 技术的后续审查工作打下了坚实的基础。 关键词:光纤;光栅;振动;传感;解调;分布式 一、引言 振动问题是近代物理学和科学技术众多领域中的重要课题。目前比较成熟的 振动加速度传感器主要为动圈式、压电式、涡流式和微机电系统等电类传感器, 上述类型的传感器都存在易受电磁干扰的问题,应用受到一定的限制。由于光纤 不仅可以作为光波的传输介质,而且光波在光纤中传播的特征参量(振幅、相位、偏振态、波长等)会因外界因素(如温度、压力、磁场等)的作用而发生变化。 用光纤振动传感器取代常规的振动传感器,尤其是在一些具有强电磁干扰等环境 恶劣的特殊场合,己成为发展的趋势。本文旨在通过梳理光纤振动传感技术的全 球专利申请,通过专利数据统计分析,认识了解光纤振动传感技术的专利申请状况、研究热点以及核心技术的发展,为光纤振动传感技术的审查工作打下一定的 基础。 二、专利分析 本文在中国专利文摘数据库(CNABS)和世界专利文摘库(SIPOABS)中,筛 选从1969年6月25日至2017年12月22日申请的国内外专利申请。将从以下 三个方面对光纤振动传感技术的专利进行分析: (1)专利申请发展趋势状况分析 全球范围内关于光纤振动传感技术的专利申请共计1268项,其中向中国专利局提交的国内申请为857项。图1示出了光纤振动传感技术的全球、国内和国外 的专利申请量的发展趋势,从图中可以清楚地看到:光纤传感技术发展中经历了 主要三个阶段,即:1980年以前,光纤传感技术的研究主要停留在理论阶段,以强度调制型光纤传感器的研究为主;从1980年后,开始大规模研究光纤传感技术,出现了大量不同的光纤传感原理和光纤检测技术;进入2000后,各种技术 和器件的研究已基本成熟,光纤传感器开始进入了商业化的进程,光纤传感进入 实用阶段。 图1.专利申请量的发展趋势 对于国外申请而言,尽管他们对于光纤振动传感技术的研究起步很早,但是 总体来看其发展一直呈现较为平稳状态,起伏不大;对于国内申请而言,呈现出 的趋势与国外申请有很大的不同,尽管国内的第一件申请出现的时间较晚,但是 后期发展势头尤为迅猛。 (2)专利申请地域分布状况分析 图2示出了光纤振动传感技术专利申请的国别/地区分布情况,显而易见,中 国是该领域最大的申请来源国;日本是该领域的第二大申请来源国,剩余的部分

分布式光纤传感技术

光纤光栅传感器是一种常用的光学传感器件,分布式光纤光栅就属于准分布式光纤传感器件中的一种。选题方向合理。请尽快确定课题完成方式,明确研究内容,尽快开展课题调研论证工作。75 分布式光纤光栅传感技术 光纤传感技术是一种以光纤为媒介,光为载体,感知和传输外界信号(被测量)的新型传感技术,是伴随着光导纤维及光纤通信技术发展而逐步形成的。在光通信系统中,光纤被用作远距离传输光波信号的媒质,在这类应用中,光纤传输的光信号受外界因素的影响越小越好,但是,在实际的光传输过程中,光纤容易受到外界环境因素的影响,如温度、压力、应变等外界条件的变化将引起光纤中传输光波的特征参数如频率、相位、光强、偏振态等的变化,通过测量这些参数的变化,就可以得到外界作用于光纤的物理量,这就是光纤传感技术。光纤传感技术的基本原理是:将光源的光入射进光纤,当光在光纤中传输的过程中受到外界物理量影响,使得被测参数与光纤内传输的光相互作用,进行调制,从而使其光学性质如光的频率、波长(颜色)、强度、相位、偏振态等发生变化成为被调制的信号光,然后将这一调制的信号光送入光探测器中进行解调,经信号处理后就可获得被测参数。 光纤传感器与传统传感器相比具有许多明显优势: 1)体积小、重量轻,几何形状具有多方面的适应性,可以做成任意形状的传感器和传感器阵列。 2)抗电磁干扰能力强、耐高温、耐腐蚀,在易燃、易爆环境下安全可靠。 3)光纤传感器件多是无源器件,对被测对象影响较小。 4)便于复用,便于成网。它既可以作为信息的传递媒介,又可以作为信号测量的传感装置。 5)光纤传感器传输频带宽,动态范围大,测量距离长。 光纤传感器的种类很多,按照其工作方式可分为:点式、准分布式和分布式三类。其中,准分布式光纤传感器是使用传感网络系统进行测量的,其光纤不作为传感元件,只作为传输元件,其敏感元件为多个点式的传感器,它们采用串联或各种网络结构形式连接起来,利用波分复用、时分复用或频分复用等技术形成分布式网络系统,进而可以较精确地分时或同时得到被测量信息的空间分布,也可同时得到某一点或某些空间点上不同被测量的分布信息。 光纤光栅传感器除了具有一般光纤传感器耐高温、耐腐蚀等优点之外,还具有波长编码,抗干扰能力强等特性。另外,它较易于在一根光纤中连续写入多个光栅,以制成分布式光纤光栅传感,制得的光栅阵列轻巧柔软,可与渡分复用或时分复用技术等相结合,且十分适于作为分布式传感兀件贴于结构表面或埋人到材料和结构的内部,以实现对结构应变、温度以及压力等的多点监测,这对于目

光纤传感中的光学原理及效应概论

第1 章:光纤传感中的光学原理及效应 1.1光学反射原理 分为镜面反射和漫反射 基于反射原理的光纤传感器结构简单、工作可靠、成本低廉。主要应用于位移测量,振动测量,压力测量,浓度测量和液位测量。 1.2光学折射原理 镜面反射和漫反射情况

1.3光学吸收原理 选择吸收:介质对某些波长的光的吸收特别显著 郎伯比尔(Lambert-Beer)定律: Lambert-Beer定律是吸收光度法的基本定律,表示物质对某一单色光吸收的强弱与吸光物质浓度和厚度间的关系。 当气体浓度、光程均很小的时候,可以近似为: 1.4光学多普勒效应 θ cos 1 1 f f 2 2 c u c u - = 雷达测速仪 检查机动车速度的雷达测速仪也是利用这种多普勒效应。交通警向行进中的车辆发射频率已知的电磁波,通常是红外线,同时测量反射波的频率,根据

反射波频率变化的多少就能知道车辆的速度.装有多普勒测速仪的警车有时就停在公路旁,在测速的同时把车辆牌号拍摄下来,并把测得的速度自动打印在照片上。 1.5声光效应 超声波通过介质时会造成介质的局部压缩和伸长而产生弹性应变,该应变随时间和空间作周期性变化,使介质出现疏密相间的现象,如同一个相位光栅 。当光通过这一受到超声波扰动的介质时就会发生衍射现象,这种现象称之为声光效应。 利用声光衍射效应制成的器件,称为声光器件。声光器件能快速有效地控制激光束的强度、方向和频率,还可把电信号实时转换 为光信号。此外,声光衍射还是探测材料声学性质的主要手段。 主要用途有:制作声光调制器件,制作声光偏转器件,声光调Q 开关,可调谐滤光器,在光信号处理和集成光通讯方面的应用。 1.6磁光效应 具有固有磁矩的物质在外磁场的作用下,电磁特性发生变化,因而使得光波在其内部传输特性也发生变化的现象。 A 、法拉第效应:当线偏振光沿磁场方向通过置于磁场中的磁光介质时,其偏振面发生旋转的现象,对于给定的介质,偏振面旋转角度=介质长度×磁场强度×维厄德系数 B 、磁光克尔效应:指一束线偏振光在磁化了的介质表面反射时,反射光将是椭圆偏振光,而且以椭圆的长轴为标志的“偏振面”相对于入射偏振光的偏振面旋转了一定的角度。 分类: ①极化克尔效应,即磁化强度M 与介质表面垂直时的克尔效应,应用于磁光存储技术中 ②横向克尔效应:M 既平行于介质表面,但垂直于光的入射面 ③纵向克尔效应:M 既平行于介质表面,又平行于光的入射面 C 、磁致线双折射效应:某些由各向异性分子组成的介质,在不加磁场时表现为各向同性,加上足够强的外磁场时,分子磁矩受到了力的作用,各分子对外磁场有了一定的取向,使介质宏观上呈现各向异性,当光以不同于磁场方向通过这样的介质时,就会出现双折射现象。 1.7电光效应 电光效应:指某些晶体的折射率因外加电场而发生变化的一种效应,当光波通过此介质时,其传输特性就受到影响而改变。 +++=20bE aE n n (6-3) 在上式中, a E 是一次项,由该项引起的折射率变化,称为线性电光效应或泡克耳斯(Pockels )效

拉曼型分布式光纤传感器DTS.

拉曼型分布式光纤传感器DTS 拉曼型分布式光纤传感器DTS描述: 产品简介 拉曼型分布式光纤传感器DTS是国内外应用较成熟的分布式光纤测温技术,利用自发拉曼散射效应和光时域反射技术实时获得沿光纤分布的温度信息,结合智能火灾判断算法,可及时预警火灾隐患,并精确定位火灾发生位置。 诺驰光电的DTS产品采用模块化设计,可靠性高;同时凭借高速微弱信号处理技术优势,实现0.5m空间分辨率,技术指标国内领先。诺驰光电可提供基于多模光纤和单模光纤的DTS,尤其适合高压电缆在线监测、电力载流量分析、交通隧道火情监测、油气储罐火情监测、输煤皮带火情监测、大坝渗漏监测应用。 测量原理 拉曼型分布式光纤传感器DTS的温度测量基于自发拉曼Raman散射效应。大功率窄脉宽激光脉冲入射到传感光纤后,激光与光纤分子相互作用,产生极其微弱的背向散射光,包括温度不敏感的斯托克斯Stokes光和温度敏感的反斯托克斯Anti-stokes光,两者波长不一样,经波分复用器WF分离后由高灵敏的探测器APD探测,根据两者的光强比值可计算出温度。而位置的确定是基于光时域反射OTDR技术,利用高速数据采集测量散射信号的回波时间即可确定散射信号所对应的光纤位置。

技术优势 ?连续分布式温度测量,无测量盲区?光纤即为传感器,可抗干扰 ?测量距离长?可精确定位 ?测量速度快?本质安全,适于易燃易爆环境下长 期工作 ?测量稳定可靠,误报率低?光纤寿命长,几十年免维护 性能特点 ?测量距离:10km?空间分辨率:0.5m—10m ?取样分辨率:0.25m—1m?测量时间:5s ?测量精度:1℃?友好的用户软件,提供可视化界面?提供单模光纤版本产品应用Applications 性能指标

光纤传感器中的光学原理和效应

光纤传感器中的光学原理和效应 1. 光学反射原理: A . 镜面反射:???≠==i i I 反反θθ,,0,I r B . 漫反射:])/(2)(exp[2)(20 2 '020I I I σθθσπθ--?=,这是一个高斯分布其中,σ为光强分布的方差;θ为反射场中光线与表面法线的夹角;‘0θ为遵循镜面反射定律的光束 反射方向。 C . 应用:基于反射原理的光纤传感器结构简单、工作可靠、成本低廉。主要应用于位移测量,振动测量,压力测量,浓度测量和液位测量。 2.光学折射原理 2sin *n21sin *n1θθ= 应用:液体浓度,成分,折射率测量 3. 光学吸收原理 l e ?-?=α0I I (朗伯定律,J.H. Lambdet,1760) 0I 和I 分别是在初始位置和l 处时的光强,吸收系数α一般与材料的密度、浓度,光波波长有关。 一般吸收:介质对各种波长的光都能几乎均匀吸收,吸收系数α与波长无关。 选择吸收:对特定波长的光吸收特别显著。 应用:半导体吸收法测量温度,光谱吸收测量成分或浓度。 4、光学多普勒效应 θcos 11f f 02200c u c u -=

5、声光效应:当超声波在介质中传播时,引起介质的弹性应变做时间上和空间上的周期变化,并导致介质的折射率发生相应的变化,当光束通过有超声波的介质后会产生衍射的现象。 应用:声光调制器 6、磁光效应:具有固有磁矩的物质在外磁场的作用下,电磁特性发生变化,因而使得光波在其内部传输特性也发生变化的现象。 A 、法拉第效应:当线偏振光沿磁场方向通过置于磁场中的磁光介质时,其偏振面发生旋转的现象,对于给定的介质,偏振面旋转角度=介质长度×磁场强度×维厄德系数 B 、磁光克尔效应:指一束线偏振光在磁化了的介质表面反射时,反射光将是椭圆偏振光,而且以椭圆的长轴为标志的“偏振面”相对于入射偏振光的偏振面旋转了一定的角度。 分类: ①极化克尔效应,即磁化强度M 与介质表面垂直时的克尔效应,应用于磁光存储技术中 ②横向克尔效应:M 既平行于介质表面,但垂直于光的入射面 ③纵向克尔效应:M 既平行于介质表面,又平行于光的入射面 C 、磁致线双折射效应:某些由各向异性分子组成的介质,在不加磁场时表现为各向同性,加上足够强的外磁场时,分子磁矩受到了力的作用,各分子对外磁场有了一定的取向,使介质宏观上呈现各向异性,当光以不同于磁场方向通过这样的介质时,就会出现双折射现象。 7、电光效应:在电场作用下,可以使某些各向同性的透明介质变为各向异性,从而使光产生人为双折射的现象,包括:克尔(Kerr)效应(二阶电光效应,强,半波电压高) 和泡克尔斯(Pockels)效应(一阶电光效应,弱,半波电压小),后者应用广泛,可以调制光束相位,进而调制光束的频率,振幅,偏振态及传播方向。 应用:由于光电效应,发生双折射的两束光波之间的相位差与外施电压成正比。(OVT 基于电光泡克尔斯效应的光纤电压传感器)。a 、横向调制式和纵向调制式,b 、透射式反射式结构,c 、分压式和无分压式结构,d 、分立式和组合式结构,e 、单光路式和双光路结构,f 、单晶体式和双晶体式结构。 8、弹光效应: 由于机械应力引起的材料折射率变化的现象称为弹光效应(Elasto-Optical-Effect ), 利用弹光材料在外界应力的作用下对入射光呈现双折射而引入的相位差,可以测量压力的大小,进而得到与压力相应的位移量。 Sagnac 效应:同一光源同一光路,两束相向传播的光之间的光程差或相位差与其光学系统相对于惯性空间旋转的角速度成正比。 λπθC S N 8Ω= ?(N 匝,Ω角速度) 9、光声效应:激光

分布式光纤传感器系统测量原理

分布式光纤传感器系统测量原理 [摘要]: 光在光纤中传播,光与介质中光学声子、声学声子发生碰撞,会产生后向散射的光,这些后向散射的光的频率、强度均会发生改变。其改变量的大小与折射率等有关,而折射率等因素受光纤的应变、温度的影响。 [关键词]:光纤;光纤传感器;测量 中国分类号:TN6 文献标识码:A 文章编号:1002-6908(2007)0110021-01 1.BOTDR的分布式温度和应变测量 BOTDR的分布式应变测量原理,当入射光在光纤中传播时,入射光会与声波声子相互作用,产生布里渊散射。其散射光的传播方向与入射光的传播方向相反。当入射光的波长那布里渊散射的最大能量的频率与入射光的频率之差大约是11GHz。这个频移量就叫做布里渊频移。如果光纤沿径向发生了应变,那布里渊散射对应于应力的频移量,如图1所示: 为了测量分布式的应变,通过使用BOTDR技术,沿着光纤观测布里渊散射光的频谱,确定布里渊频移的大小,从而达到测量应力的目的。如图2所示。在光纤的一端脉冲光入射,同时在这端使用时间域的BOTDR接收布里渊后向散射光。因此,产生布里渊散射的位置与脉冲光发射的位置的距离Z可以由下列登时确定,在这个式中,时间T是发射脉冲光与接收的布里渊散射光的时间差。 为了能获得布里渊散射光的频谱,我们重复上面所做的步骤,我们缓慢的改变入射光的频谱宽度。在布里渊散射光的不同频率段,我们能获得大量的分布式能量。如图2所示。所以,我们能够从获得的布里渊散射光的波形,知道在光纤中任何位置,那散射光的频谱。所以,我们固定频谱到那些Lorentzian弯曲和使用能量峰值的频谱。通过相应弯曲位置的应力。 应变与布里渊频率的改变量的各自联系。在实际的测量中,测量之前,(1)中的系数和布里渊频移可以在无应变时测量出来。然后,频移转换成应变。 注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。

最新光纤传感器的应用研究

光纤传感器的应用研 究

光纤传感器的应用研究 孙义才 2011301510103 电科三班 摘要:光纤传感技术是一门新的科学技术,也是信息社会的一个重要技术基础,在当代高科技中占有十分重要的位置。该技术是测量技术、半导体技术、计算机技术、信息处理技术、微电子学、光学、声学、精密机械、仿生学、材料科学等众多学科相互交叉的综合性高新技术和密集型前沿技术。本课题主要了解光纤导光的基本原理及其在传感技术上应用的物理基础,重点研究光纤传感器敏感的物理量、光纤传感器的基本类型及其相关应用。 关键词:传感器;光纤通信;禁带宽度;光纤传感温度计;光纤传感压强计。 1.序言 光纤传感技术是二十世纪七十年代左右随着光纤通信技术的萌芽而迅速建立起来的,通过以光波这一载体并光纤这一媒质,起到具有感知与信号传输的新型传感技术。作为被测量信号载体的光波和作为光波传播媒质的光纤,具有一系列独特的、其他载体和媒质难以相比的优点。传感技术是近几年热门的应用技术,传感器在朝着灵敏、精确、适应性强、小巧和智慧化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。 现阶段,光纤传感领域在世界中的发展大致分为两大方面:应用开发与相关原理性研究。 2.1光纤传感器的结构原理 以电为基础的传统传感器是一种把测量的状态转变为可测的电信号的装置。它的电源、敏感元件、信号接收和处理系统以及信息传输均用金属导线连接,见图(a)。光纤传感器则是一种把被测量的状态转变为可测的光信号的装置。由光发送器、敏感元件(光纤或非光纤的)、光接收器、信号处理系统以及光纤构成由光发送器发出的光经源光纤引导至敏感元件。这时,光的某一性质受到被测量的调制,已调光经接收光纤耦合到光接收器,使光信号变为电信号,最后经信号处理得到所期待的被测量。 可见,光纤传感器与以电为基础的传统传感器相比较,在测量原理上有本质的差别。传统传感器是以机—电测量为基础,而光纤传感器则以光学测量为基础。

电力电缆故障定位分析及预防 贺磊

电力电缆故障定位分析及预防贺磊 发表时间:2018-05-14T17:19:11.757Z 来源:《电力设备》2017年第34期作者:贺磊 [导读] 摘要:随着社会经济的不断发展,人们对电能的需求也越来越大,所以现代社会对电力的传输质量和安全性就有了更高的要求。(国网江苏省电力公司常州供电公司江苏常州 213003) 摘要:随着社会经济的不断发展,人们对电能的需求也越来越大,所以现代社会对电力的传输质量和安全性就有了更高的要求。但是,电力电缆的复杂性越来越高,电缆出现故障的现象逐渐明显,所以及时对配电网中的故障电缆进行点位一直被研究的课题。因此有效的故障定位方法,准确的找出故障点,对保证电力运输畅通具有重要的意义。 关键词:电力电缆;故障定位;预防 1电力电缆故障分类及故障原因分析 1.1电力电缆故障分类 电力电缆故障的分类方法较多,按其绝缘电阻大小,可分为开路故障、低阻(短路)故障和高阻故障3类。(1)开路故障。若电缆相对地或相间绝缘电阻为无穷大,但工作电压却不能传输到终端;或虽终端有电压,但负载能力较差,开路故障的特例即为断线故障。(2)低阻故障。此类故障较常见的有单相接地、两相或三相短路或接地。故障表现为电缆的相对地或相间绝缘受损但电缆芯线连接良好,其绝缘电阻值低于10Zc(Zc为电缆线路波阻抗,一般不超过40Ω),能用低压脉冲法测量到。(3)高阻故障。与低阻故障相对应,故障表现为电缆相对地或者相间绝缘受损,但是绝缘电阻大于10Zc,不能用低压脉冲法测量到。一般分为闪络性高阻故障和泄漏性高阻故障2类。其中,电缆在一些特殊条件下,绝缘被击穿后又恢复正常的这一类电缆故障被称为闪络性高阻故障;泄漏电流随试验电压的增加而增加,在试验电压升高到额定值或远没达到额定值时,泄漏电流超过允许值,被称为泄漏性高阻故障。 1.2故障原因 造成电缆故障的原因是复杂的。要想对故障点进行快速判断,就需要对电缆的工作环境以及常见原因有所了解,这也是减少电缆故障的一个重要途径。常见的故障原因主要包括外力破坏、电缆质量、电缆中间头制作不达标、管理存在问题、自然现象造成的损伤以及电缆生产质量等。 外力破坏主要是在未经许可、核实的情况下进行的打桩、开挖等施工破坏电缆而导致的接地短路故障。电缆施工质量问题是未能落实安装要求,在施工过程中走形成碰伤或不合理的机械牵引力对电缆形成拉伤,对于移动设备,通常会出现因固定不够而发生变形、摩擦、拉扯和错位而出现绝缘故障。电缆接头故障的原因大致包括以下几个方面:潮湿环境下未对电缆头进行相关防护;中间接头因密封不良而受潮导致的绝缘层劣化;中间接头导体连接管管口不平整而导致的压接不良;不合理的中间接头设置。电缆的管理方面,存在电缆长期超负荷工作而未进行相关维护,长期处于腐蚀环境中,通过热力管线未采取防护措施,这些都导致电缆的绝缘老化、腐蚀以及过热损坏。 2电力电缆故障定位的步骤与方法 2.1故障分析 电力电缆事故发生后,首先要找到电缆敷设时的详细资料,要对故障电缆的基本情况,如电缆型号、长度、走向、敷设方式、有无接头及接头位置、有无预留、预留地点及长度,故障前的运行情况,有无检修历史,路径上有无施工等进行了解与分析。并对故障电缆进行绝缘测试,判断故障类型。如果电缆的长度、路径等不清楚时,则应在定位时探查清楚。 2.2测距 测距的含义就是测量出从故障点到测量端的距离。可以说,在全部定位过程中最重要的一环就是测距,特别是对于长电缆,如果不能将测距这项工作做好,将会大大延长故障定位的时间,给电缆检修维护人员带来巨大的压力。所以,在实际测试中应保证初测的准确性,可采用不同方法进行验证。比如采用行波法测距时,低阻与高阻的分界并不是很确切,因此可在使用行波法后再利用脉冲电流法或电桥法进行验证。 一般而言,行波法是测距的首选方法,低压脉冲法可用来测试电缆的开路、短路、低阻故障,脉冲电流法或二次脉冲法可用来测试高阻故障。如果行波法测距时出现没有反射脉冲或反射脉冲波形比较乱的情况,就可以选用电桥法进行测试。而对单芯高压电缆护层故障,因为大地的衰减系数很大,使用脉冲电流法能测量的范围很小,一般也选用电桥法测距。 2.3精确定位 精准定位是根据初步测距后进行定位,主要包括音频感应法、声磁同步法以及声测法三种。声磁同步法克有限应用于部分低阻故障或会产生冲击放电声的高阻故障,如果不存在放电声的金属性短路、接地则可选用跨步电压法和音频感应法。 ①声测法。高压脉冲作用于故障电缆时会出现击穿放电,会伴随较大的放电声。对于直埋电缆或是打开盖板的沟架式敷设电缆,可通过人耳听声来定位。在较大埋深或封闭性电缆中,可通过振动传感器和声电转换器来对放电点进行查找,该技术也是最基础的精确定位技术,有着较高的可信性,但是受环境噪声影响较大。应用仪器可对故障点的声波信号进行记录,测试人员根据相关数据来对故障点的防电信号进行准确判断。 ②声磁同步法。高压脉冲作用于故障线路产生声音信号同时还会产生放电电流,使电缆周围出现脉冲磁场。该方法是采用仪器来对脉冲磁场信号进行检测,如果磁场信号与声音信号同步,则可将其认作故障点发出,否则为干扰信号。由于声音信号和磁场信号传输速度差,到达地面会存在一定的时间差,通过探头对时间差最小的地方进行查找就能寻找到故障点位置。声磁同步法能排除环境干扰因素,也是当前较为理想的检测方式。 ③音频感应法。该方法是对电缆输入音频电流,通过接收电磁波来实现准确定位。探头移动在电缆上会接收到相同强度和规律的音频声音,而在故障点上方则会出现信号突然加强的情形,越过故障点,信号明显减弱,则可判断信号增强点为故障点。该方法多用于低于10欧的低阻故障。当电缆接地电阻较低特别是金属性接地故障时,因微弱的放电声音,声测法进行定位存在很大难度,所以要采用音频感应法。音频感应法能较好的应用于两相短路并接地故障,三相短路以及三相短路并接地故障。 3电力电缆故障的预防措施 3.1提高电缆生的产质量 在电缆的生产过程中,要严格规范生产秩序,按照国家相关规定提高电缆的生产质量。其次,要加强相关检验部门的检验力度,认真

相关文档
最新文档