电力系统电压与无功补偿

电力系统电压与无功补偿
电力系统电压与无功补偿

现代生产和现代生活离不开电力。电力部门不仅要满足用户对电力数量不断增长的需要,而且也要满足对电能质量上的要求。所谓电能质量,主要是指所提供电能的电压、频率和波形是否合格,在合格的电能下工作,用电设备性能最好、效率最高,电压质量是电能质量的一个重要方面,同时,电压质量的高低对电网稳定、经济运行也起着至关重要的作用。

1 电压与无功补偿

电压顾名思义就是电(力)的压力。在电压的作用下电能从电源端传输到用户端,驱动用电设备工作。

交流电力系统需要电源供给两部分能量,一部分将用于作功而被消耗掉,这部分电能将转换为机械能、光能、热能或化学能,我们称

为“有功功率”。另一部分能量是用来建立磁场,用于交换能量使用的,对于外部电路它并没有作功,由电能转换为磁能,再由磁能转换为电能,周而复始,并没有消耗,这部分能量我们称为“无功功率”,无功是相对于有功而言,不能说无功是无用之功,没有这部分功率,就不能建立感应磁场,电动机、变压器等设备就不能运转。在电力系统中,除了负荷无功功率外,变压器和线路的电抗上也需要大量无功功率。

国际电工委员会给出的无功功率的定义是:电压与无功电流的乘积

为无功功率。其物理意义是:电路中电感元件与电容元件活动所需要的功率交换称为无功功率。

 我们以电感元件和电容元件的并联回路来说明这个问题,见图1a,在电压的作用下,电感回路中电流滞后电压90°,而在电容回路中电流却是超前电压90°,即在同一电压作用下,任一瞬时,IL和IC在时间轴对称。我们将每一瞬间电感上的电压与电感电流IL相乘得到电感的功率曲线PL(图1b),同样的,将电容上的电压与电容电流IC相乘得到电容的功率曲线PC(图1c)。

如图2a所示,功率在第二个和第四个1/4周期内电感在吸收功率,并把所吸 电感收的能量转化为磁场能量;而在第一和第三个1/4周期内

电感就放出功率,储存在磁场中的能量将全部放出。这时电感好象一个电源,把能量送回电网。磁场能量和外部能量的转化反复进行,电感的平均功率为零,所以电感是不消耗功率的。

如图2b所示,在电容中,在第一个1/4周期内,电容在吸收功率进行充电,把能量储存在电场中。在第二个1/4周期内电容则放出功率,原来储存在电场中的能量将全部送回给外部电路。第三和第四个1/4周期内各重复一次。

电容的充电和放电过程,实际上就是外部电路的能量和电容的电场能量之间的交换过程。在一个周期内,其平均功率为零,所以电容也是不消耗功率的。

我们注意到:在第一个1/4周期中,当电压通过零点逐渐上升时,电容开始充电吸收功率,电感则将储存的能量放回电路。而当第二个1/4周期,电感吸收功率时,电容放出功率。第三和第四个1/4周期又重复这样的充放电循环过程。

因此,电容和电感并联接在同一电路时,当电感吸收能量时,正好电容释放能量;电感放出能量时,电容正好吸收能量。能量就在它们中间互相交换。即电感性负荷所需的无功功率,可以由电容器的无功输出得到补偿,因此我们把具有电容性的装置称为“无功补偿装置”。

电力系统常用的无功补偿装置主要是电力电容器和同步调相机。

 若电力负荷的视在功率为S,有功功率为P,无功功率为Q,有功功率、无功功率和视在功率之间的关系可以用一个直角三角形来表示,以有功功率和无功功率各为直角边,以视在功率为斜边构成直角三角形(见图3),有功功率与视在功率的夹角称为功率因数角。有功功率与视在功率的比值,我们称为功率因数,用cosφ表示,cosφ = P/S。它表明了电力负荷的性质。

P = U I cosφ

Q = U I sinφ

S = (P2 + Q2)1/2 = UI

有功功率的常用单位为千瓦(kW),无功功率为千乏(kvar),视在功

率的单位为千伏安(kVA)。

无功功率按电路的性质有正有负,Q为正值时表示吸收无功功率,Q 为负值时表示发出无功功率,在感性电路中,电流滞后于电压,Φ>0,Q为正值。而在容性电路中,电流超前于电压,Φ< 0,Q为负值。 这就是人们通常称电动机等设备“吸收”无功而电容器发出“无功”的道理。

2 电压水平与无功功率补偿

当输电线路或变压器传输功率时,电流将在线路或变压器阻抗上产生电压损耗,下面以一条输电线路为例来分析这个问题。如图4所示,该图表示一段输电线路的单相等值电路,其中R、X分别为一相的电阻和等值电抗,U1、U2为首未端相电压,I为线路中流过的相电流。

为了说明问题,我们作出向量图,以线路末端电压U2为参考轴,设

线路电流I为正常的阻感性负荷电流,它滞后于U2一个角度f,电流流过线路电阻产生一个电压降IR,它与电流向量同方向,同时,线路电流也在线路上产生一个电压降IX,它超前于电流向量90°,那么,线路首端电压就是U2、IR、IX三个电压的和,如图5所示。

从向量图可知,线路的电压损耗△U为电压△U1和△U2之和,从图中可知,U1 = IRcosΦ,△U2 = IXsinΦ,所以线路的电压损耗为△U =△U1 + △U2= I(RcosΦ + XsinΦ),如果电流I用线路末端的单相功率S和电压U2来表示,即

P = U2IcosΦ, Q = U2IsinΦ

则可得:

△U = (PR + QX)/U2

由此可见,电压损耗由两部分组成,即有功功率在电阻上的压降和无功功率在电抗上的压降。一般说来,在超高压电网的线路、变压器的等值电路中,电抗的数值比电阻大得多。所以无功功率对电压损耗的影响很大,而有功功率对电压损耗的影响则要小得多。因此,可以得出结论,在电力系统中,无功功率是造成电压损耗的主要因素。

从前面的分析我们知道,当线路、变压器传输功率时,会产生电压损耗,因而影响了电网各处电压的高低。如果能改变线路、变压器等电网元件上的电压损耗,也就改变了电网各节点的电压状况。

由电压损耗表达式DU = (PR + QX)/U可知,要改变电压损耗有两种办法。

(1)改变元件的电阻;(2)改变元件的电抗,都能起到改变电压损耗的作用。

可采取的一种办法是增大导线截面减小电阻以减小电压损耗,这种办法在负荷功率因数较高、原有导线截面偏小的配电线路中比较有效。适宜负荷不断增加的农村地区采用。

而电网中用的最多的办法是减少线路中的电抗,在超高压输电线路中广泛采用的分裂导线就可以明显降低线路的电抗。在我国,220kV线路一般采用二分裂、500kV线路采用四分裂导线。采用分裂导线,降低线路电抗,不仅仅减少了电压损耗,而且有利于电力系统的稳定性,能提高线路的输电能力。现在已逐步采用的紧凑型结构输电线路,还可以进一步降低输电线路的电抗,不仅提高了电网的稳定性,同时,也降低了线路的电压损耗。

减小线路电抗的另一种办法是采用串联电容补偿,就是在线路中串

联一定数值的电容器,大家知道,同一电流流过串联的电感、电容时,电感电压与电容电压在相位上正好差180°,这就好象电容电抗抵消了部分电感电抗,使表达式中的X减少,其主要目的也是增加线路的输电能力,提高电网的稳定性,同时,也降低了线路电压损耗,如图6。

串联电容器补偿,现在主要应用于超高压、大容量的输电线路上,山西大同到北京的500kV输电线路全长300多km,在加装了串联电容补偿后电网线损降低,电压质量改善,电网运行的稳定性得到加强,而且输电能力提高了30%以上。

为了更直观的说明改变电抗对降低电路电压损耗的作用,我们举一个简单的例子:

有一110kV线路,输送有功功率15MW,无功功率20Mvar,线路电阻R 为2W,线路电抗XL为6W(这里只是假设的数值,因线路的电抗和线路的长度、截面、材料,结构等诸多因素有关,计算比较复杂)求:在电抗XL = 6W和经补偿后电抗XL = 2W时的压降。

解:XL = 6W时电压损耗:

DU = (PR + QXL)/U = (15×106×2 + 20×106×6)/

(110×103×31/2) = 788(V)

XL = 2W时电压损耗:

DU = (PR + QXL)/U = (15×106×2 + 20×106×2)/(110×103×31/2) = 368(V)

减少电压损耗 = 788V - 368V = 420V。

除了用改变电力网参数来减少电压损耗以外,改变电压损耗的另一个重要方面是改变电网元件中传输的功率。即改变表达式中的P和Q的大小,在满足负荷有功功率的前提下,要改变供电线路、变压器传输的有功功率,是比较困难的,常常是不可能的。因此,改变线路、变压器传输功率都是改变其无功功率,使表达式中的Q减少。由此我们引出无功功率的几个非常重要的关键的概念。

2.1 无功功率补偿概念

当今电厂受水、环保等多方面的制约,它的位置越来越远离负荷中心,即使建在靠近负荷点,由于单机容量越来越大,发电机的额定功率因数也越来越高,这样,电网实际接受的无功功率就越来越少,单靠发电机发出的无功功率远远不能满足电网对无功功率的需要,必须配置各种无功功率补偿装置。

例如:目前北京地区有功负荷的2/3电力要从山西、内蒙、河北等地远距离用超高压500kV线路送来,为了能接受到这么多的有功功率,必须在北京地区负荷中心装设相应数量的无功功率补偿电力设施(一般为1kW的有功电力配1kvar的无功电力补偿设施)见图7。

2.2 无功功率就地补偿的概念

无功补偿装置的分布,首先要考虑调压的要求,满足电网电压质量指标。同时,也要避免无功功率在电网内的长距离传输,减少电网的电压损耗和功率损耗。无功功率补偿的原则是做到无功功率分层分区平衡,就是要做到哪里有无功负荷就在那里安装无功补偿装置。这既是经济上的需要,也是无功电力特征所必需的,如果不这样做,就达不到最佳补偿的目的,解决不了无功电力就地平衡的问题。

2.3 无功功率平衡的概念

如同有功功率平衡一样,电力系统的无功功率在每一刻也必须保持平衡。

在电力系统中,频率与有功功率是一对统一体,当有功负荷与有功电源出力相平衡时,频率就正常,达到额定值50Hz,而当有功负荷大于有功出力时,频率就下降,反之,频率就会上升。电压与无功功率也和频率与有功功率一样,是一对对立的统一体。当无功负荷与无功出力相平衡时,电压就正常,达到额定值,而当无功负荷大于无功出力时,电压就下降,反之,电压就会上升。但是,需要说明的是电压与无功功率之间的关系要比频率与有功功率之间的关系复杂得多,大体上有以下几点:

①在一个并列运行的电力系统中,任何一点的频率都是一样的,而电压与无功电力却不是这样的。当无功功率平衡时,整个电力系统的电压从整体上看是会正常的,是可以达到额定值的,即便是如此,也是指整体上而已,实际上有些节点处的电压并不一定合格,如果无功不是处于平衡状态时,那么情况就更复杂了,当无功出力大于无功负荷时,电压普遍会高一些,但也会有个别地方可能低一些,反之,也是如此。

②系统需要的无功功率远远大于发电机所能提供的无功出力,这是由于现代超高压电网包括各级变压器和架空线路在传送电能时需要消耗大量的无功,称为"无功损耗",一般来说,这些无功损耗与整个电网中的无功负荷的大小是差不多的,我们以一台50MVA的110kV变压器为例来了解变压器在运行中的无功损耗情况。

变压器的参数为:Ue = 110kV,Se=50MVA,Uk%=17%,变压器在传送电能时的无功损耗的计算式为:

Q = SeUk%(I/Ie)2

式中 I--变压器的负荷电流;

Ie--变压器的额定电流,与变压器的无功损耗与变压器的负载率、变压器的额定容量及短路阻抗有关。

如果这台变压器满负荷运行,那么它的无功损耗就是:Q = 50MVA×17%=8.5Mvar

此时变压器的无功损耗相当大,其低压侧安装的并联电容器组的容量甚至不够补偿变压器满负荷时的无功损耗。

③无功功率不宜远距离输送,当输送功率与传送距离达到一定极限时,其传送功率成为不可能,这是由于超高压等级的变压器、线路电抗较大,其无功损耗Q = I2X相应也很大,所输送的无功功率均损耗在变压器及线路上了。另外,传送大量的无功功率时,线路电压损失也相当大,同样会造成无法传送的结果。

合理的就地无功补偿对调整系统电压、降低线损有十分重要的作用。

设有一条110kV线路选用LG-300型导线(导线电阻0.095W/km)线路全长20km,输送有功功率30MW,无功功率40Mvar,下面分别计算在功率因数cosf = 0.6和0.9时线路的功率损耗和应补偿的无功功率。本题只计算导线电阻的功率损耗,不考虑其它因素。

1)在cosΦ = 0.6时,此时有功P = 30MW,无功Q = 40Mvar,视在功率S = 50MVA,电流I = S/U = 50MVA/(110kV×31/2) = 263A,功率损耗P = I2·R = 2632×0.095×20×3 = 394kW。

2) 在cosΦ = 0.9时,此时有功功率P = 30MW,视在功率S = 33.333MVA,无功功率Q = 14.528Mvar,I = S/U = 33.333MVA/(110kV×31/2) = 175A,功率损耗 P = I2·R = 1752×0.095×20×3 = 175kW。应补偿无功容量 = 40 - 14.528 = 25.472Mvar。

补偿前后有功损耗相差219kW。由计算结果可知补偿无功功率

25.472Mvar后每小时可降低线损219kWh。

无功补偿对电力系统的重要性越来越受到重视,合理地投停使用无功补偿设备,对调整电网电压、提高供电质量、抑制谐波干扰、保证电网安全运行都有着十分重要的作用。

无功补偿装置的合理使用可以给供电企业带来巨大的经济效益。对于像北京电力公司这样的大企业来说,线损每降低0.1个百分点,就可以增加上千万元收入。

从根本上说,要维持整个系统的电压水平,就必须有足够的无功电源来满足系统负荷对无功功率的需求和补偿线路和变压器中的无功功率损耗。

如果系统无功电源不足,则会使电网处于低电压水平上的无功功率平衡,即靠电压降低、负荷吸收无功功率的减少来弥补无功电源的不足。同样,如果由于电网缺乏调节手段或无功补偿元件的不合理运行使某段时间无功功率过剩,也会造成整个电网的运行电压过高。

我国电网曾在20世纪70年代由于缺乏无功功率补偿设备而长期处于低电压运行状态。有些地方想用调节变压器分接头的办法来解决本地区电压低的问题。开始,这种办法也有一些效果,某些供电点电压升高了,但这是以降低别处电压为代价的,因为总的无功电源不足,局部地区电压升高无功负荷增大,必然使别处无功功率更少、电压更低。各处普遍采用调节变压器分接头的结果,不仅没能提高负荷的供电电压,而是使得无功损耗加大,整个系统低电压问题更加严重。在这种情况下,首要的问题应该是增加无功功率补偿设备。

低压运行同时对电网安全带来巨大危害,系统稳定性差,十分脆弱,经受不起事故异常及负荷强烈变化对系统的冲击、十分容易造成大面积的停电和系统瓦解的后果,国内外均有此先例。

3 各种无功补偿设备及补偿方式

下面我们介绍各种无功功率补偿设备及补偿方式。

3.1 同步调相机

同步调相机实质上是一种不带机械负载的同步电动机,它是最早采用的一种无功补偿设备,在并联电容器得到大量采用后,它退居次要地位。其主要缺点是投资大,运行维护复杂。因此,许多国家不再新增同步调相机作为无功补偿设备。但是同步调相机也有自身的优点:

①调相机可以随着系统负荷的变化,均匀调整电压,使电网电压保持规定的水平。电容器只能分成若干个小组,进行阶梯式的调压。

②调相机可以根据系统无功的需要,调节励磁运行,过励磁时可以做到发出其额定100%的无功功率,欠励磁时还可以吸收其额定的50%的无功功率。电容器只能发出无功,不能吸收无功。

③调相机可以安装强行励磁装置,当电网发生故障时,电压剧烈降低,调相机可以强行励磁,保持电网电压稳定,因而提高了系统运行的稳定性。电容器输出无功功率与运行电压的平方成正比,电压降低,输出的无功将急剧下降,比如,当电压下降10%,变为0.9Ue时,电容器输出的无功功率变为0.81Q,即其输出的无功功率将下降19%,所以,电容器此时不能起到稳定系统电压的作用。

3.2 并联电容器

作为无功补偿设备,电容器有以下显著优点:

①电容器是最经济的设备。它的一次性投资和运行费用都比较低,且安装调试简单。

②电容器的损耗低,效率高。现代电容器的损耗只有本身容量的

0.02%左右。调相机除了本身的损耗外,其附属设备还需用一定的所用电,损耗2%~30%,大大高于电容器。

③电容器是静止设备,运行维护简单,没有噪音。调相机为旋转电机,运行维护很复杂。

④电容器的应用范围广,可以集中安装在中心变电站,也可以分散安装在配电系统和厂矿用户。而调相机则只能固定安装在中心变电站,应用有较大的局限。

并联电容器是电网中用得最多的一种无功功率补偿设备,目前国内外电力系统中90%的无功补偿设备是并联电容器。

3.3 并联电抗器

并联电抗器是一种感性无功补偿设备,它可以吸收系统中过剩的无功功率,避免电网运行电压过高。

为了防止超高压线路空载或轻负荷运行时,线路的充电功率造成线路电压升高,一般装设并联电抗器吸收线路的充电功率,同时,并联电抗器也用来限制由于突然甩负荷或接地故障引起的过电压从而危及系统的绝缘。

并联电抗器可以直接接到超高压(275kV及以上)线路上,其优点是:可以限制高压线路的过电压,与中性点小电抗配合,有利于超高压长距离输电线路单相重合闸过程中故障相的消弧,从而提高单相重合闸的成功率。高压电抗器本身损耗小,但造价较高。并联电抗器也可以接到低压侧或变压器三次侧,有干式的和油浸的两种,这种方式的优点是造价较低,操作方便。从发展趋势看,更多的将采用高压电抗器。

大型并联电抗器的技术、结构和标准与大型电力变压器类似,也有单相和三相,心式和壳式之分,心式还可以分为带间隙柱的和空心式的,目前我国制造的高压大容量并联电抗器只采用心式结构。心式电抗器的结构与心式变压器类似,但是只有一个绕组,在磁路中加入间隙以保证不饱和,维持线性。

3.4 静止补偿器(SVC-Static Var Compensator)

静止补偿器是近年来发展起来的一种动态无功功率补偿装置,电容器、电抗器、调相机是对电力系统静态无功电力的补偿,而静止补偿器主要是对电力系统中的动态冲击负荷的补偿。根据负荷变动情况,静止补偿可以迅速改变所输出无功功率的性质或保持母线电压恒定。

静止补偿器实际上是将可控电抗器与电容器并联使用。电容器可发出无功功率,可控电抗器可吸收无功功率。其控制系统由可控的电子器件来实现,响应速度远远高于调相机,一般只有20ms。它主要用于冲击负荷如大型电炉炼钢、大型轧机以及大型整流设备等。另外,在电力系统的电压枢纽点、支撑点也可以用静止补偿器来提高系统的稳定性,同时,静止补偿器还可以抑制谐波对电力系统的危害。在我国湖南、湖

北、广东、河南等多个500kV枢纽变电站都采用了这种装置。

例如我国某大型炼钢厂使用电弧炉炼钢,严重影响供电质量,电弧炉运行时使电压下降15%~20%,谐波的干扰使众多用户的电视不能收看,电器设备不能正常使用,群众反应强烈。在装了静止补偿装置后,供电质量显著改善,电压波动很小,完全在允许范围内,谐波干扰明显降低。在周围广大用户普遍受益的同时,该厂也降低了线损,减少了电费支出,提高了产品的产量和质量,获得了良好的经济效益。

静止补偿器的最大特点是调节快速。为了充分发挥它在需要无功功率时的快速调节能力,在正常情况下应经常运行在接近零功率的状态。但因正常负荷变动引起的电压变化过程缓慢,用一般价格比较便宜的电容器与电抗器等投切配合,完全可以满足要求,没有必要选用这种设备。

4 各种调压方法的比较和应用

电力系统电压的调整可以通过对中枢点电压的调整来实现。

如果中枢点供电至各负荷点的线路较长,各负荷点的变化规律大致相同,而负荷变动较大,则应在高峰负荷时适当提高中枢点的电压以补偿线路上增大的电压损耗,在低谷负荷时,供电线路电压损耗较小,中枢点电压适当降低,以防止负荷点电压过高。这种高峰负荷时电压高于低谷负荷时的电压调整方式,称为"逆调压"。中枢点采用逆调压方式的,在高峰负荷时一般保持电压比线路额定电压高5%,在低谷负荷时电压下降至线路额定电压。

对供电线路不长,负荷变化不大的中枢点,可以采用"顺调压",顺调压就是在高峰负荷时中枢点电压略低,低谷负荷时电压略高。顺调压一般要求高峰负荷中枢点电压不低于线路额定电压的102.5%,低谷负荷时中枢点电压不高于线路额定电压的107.5%。

介于"逆调压"与"顺调压"之间的是"恒调压",恒调压是指在任何负荷时,保持中枢点电压基本不变。一般保持102%~105%的额定电压。

电压调整是个比较复杂的问题,因为整个系统每一个节点的电压都不相同,运行条件也有差别。因此,电压调整要根据系统具体情况,选

用合适的方法,才能达到目的。

发电机调压,是各种调压手段中首先被考虑的,因为它不需要附加设备,从而不需要附加投资,而是充分利用发电机本身具有的发出或吸收无功功率的能力。但是这种方法往往只能满足电厂附近地区负荷的调压要求,对于远端负荷,还需要采用其它调压措施才能保证其电压质量。合理使用发电机调压常常可以在很大程度上减轻其它调压措施的负担。

在无功功率不足的系统中,首要的问题是增加无功功率补偿设备,而不能只靠调整变压器电压的方法。通常,大量采用并联电容器作为无功补偿设备,其突出的优点是投资低,安装维护方便。只是在有特殊要求的场合下,才需要采用静止补偿器或同步调相机。而静止补偿器是一种性能良好,维护方便的新型补偿装置,在价格相当的条件下,应优先选用。

对于500kV、330kV及部分220kV线路,以及大量使用电缆作为出线的电网,要装设足够的并联电抗器,以防止线路轻载时充电功率过剩引起电网电压过高。

在无功电源充裕的系统中,应该大力推广有载调压变压器,这是在各种运行方式下保证电网电压质量的关键手段之一。随着我国经济的发展和人民生活水平的提高,电网负荷的峰谷差也越来越大,线路、变压器上高峰负荷与低谷负荷产生的电压损耗的差别,已经大到无法仅仅用发电机调压或无功补偿的方法来满足两种运行方式下用户电压的要求了,其结果不是高峰负荷时用户电压太低,就是低谷负荷时电压太高。在这种情况下,输电系统中的一级变压器或多级变压器,采用有载调压是保证用户电压质量最有效的办法。

5 并联电容器组的接线方式

电容器的接线通常分为三角形和星形两种方式。此外,还有双三角形和双星形之分。

三角形接线的电容器直接承受线间电压,任何一台电容器因故障被击穿时,就形成两相短路,故障电流很大,如果故障不能迅速切除,故

障电流和电弧将使绝缘介质分解产生气体,使油箱爆炸,并波及邻近的电容器。因此这种接线已经很少在10kV系统中使用,只是在380V配电系统中有少量使用。

在高压电力网中,星形接线的电容器组目前在国内外得到广泛应用。星形接线电容器的极间电压是电网的相电压,绝缘承受的电压较低,电容器的制造设计可以选择较低的工作场强。当电容器组中有一台电容器因故障击穿短路时,由于其余两健全相的阻抗限制,故障电流将减小到一定范围,并使故障影响减轻。

星形接线的电容器组结构比较简单、清晰,建设费用经济,当应用到更高电压等级时,这种接线更为有利。

星形接线的最大优点是可以选择多种保护方式。少数电容器故障击穿短路后,单台的保护熔丝可以将故障电容器迅速切除,不致造成电容器爆炸。

由于上述优点,各电压等级的高压电容器组现已普遍采用星形接线。

高压电力系统的电容器组除广泛采用星形接线外,双星形接线也在国内外得到广泛应用。所谓双星形接线,是将电容器平均分为两个电容相等或相近的星形接线电容器组,并联到电网母线,两组电容器的中性点之间经过一台低变比的电流互感器连接起来。

这种接线可以利用其中性点连接的电流保护装置,当电容器故障击穿切除后,会产生不平衡电流,使保护装置动作将电源断开,这种保护方式简单有效,不受系统电压不平衡或接地故障的影响。

大容量的电容器组,如单台容量较小,每相并联台数较多者可以选择双星形接线。如电压等级较高,每相串联段数较多,为简化结构布局,宜采用单星形接线。

电容器一次侧接有串联电抗器和并联放电线圈。放电线圈的作用是将断开电源后的电容器上的电荷迅速、可靠地释放掉。由于电容器组需要经常进行投入、切除操作,其间隔可能很短,电容器组断开电源后,其电极间储存有大量电荷,不能自行很快消失,在短时间内,其极间有

很高的直流电压,待再次合闸送电时,造成电压叠加,将会产生很高的过电压,危及电容器和系统的安全运行。因此,必须安装放电线圈,将它和电容器并联,形成感容并联谐振电路,使电能在谐振中消耗掉。放电线圈应能在电容器断开电源5s内将电容器端电压下降到50V。

对串联电抗器的作用,我们做一下重点介绍:

电容器配套设置的串联电抗器是为了限制合闸涌流和限制谐波两个目的,串联电抗器限制合闸涌流的作用非常浅显,不言而喻。但是限制谐波的原理我们需要解释一下:

所谓谐波,是指电网运行中存在的与工频频率不同的电磁波。我国电网使用50Hz频率,波形按正弦规律变化的三相对称的电源,而谐波(主要是指高次谐波),如3次、5次、7次……的存在,将对电网工频的波形造成影响,使其不再是正弦波,而是波形发生畸变的非正弦波。波形的畸变会危及电气设备的安全运行,造成继电保护和自动装置的误动,会影响电力用户的产品质量,甚至会影响我们家用电器的正常使用,因此消除和抑制谐波,做为一项课题日益受到有关部门的重视。

电网在运行时不可能没有谐波,很多电气设备和用电设备在运行时都会产生谐波,只不过一般情况下对电网波形影响不大,不会危及正常的供电和用电,但某些情况则不同,如变压器铁心饱和、电弧炉炼钢,大型整流设备,都会对电网带来严重的谐波干扰,影响供电质量,因此必须加以治理。

为了回避谐波的影响,必须采取消除谐波影响的措施,其中一条重要的措施就是在电容器回路中串联一定数值的电抗器,即造成一个对n 次谐波的滤波回路。

在实际运行中,3次、5次、7次谐波分量往往偏高,是电容器滤波回路的主要目标。所谓3次、5次、7次……谐波,指的是谐波的频率相当于工频的3倍、5倍或7倍。当串联电抗器的n次谐波感抗与电容器的n 次谐波容抗相等时,即nwL = 1/(nwC)时构成串联谐振条件,则母线的n 次谐波电压将被抑制得干干净净。

对于3次谐波:3XL = (1/3) XC,则XL = (1/9) XC =

0.11XC;对于5次谐波:5XL = (1/5) XC,则XL = (1/25) XC = 0.04XC。

实际运行中,各变电站普遍采有在回路中串联12%电抗构成3次谐波滤波器,12%电抗率的含义是指串联电抗器的感抗值为该回路电容器容抗值的12%,而用串联6%电抗构成5次谐波滤波器。不正好采用11%和4%,而是稍大一点,目的是使电容器回路阻抗呈感性,避免完全谐振时电容器过电流。

当变电站母线上具有两组以上电容器组,且既有串联大电抗的电容器组又有串联小电抗的电容器组时,电容器组的投切顺序是一个应该考虑的问题。投切顺序不合理可能造成不良后果。由对谐波电流的分析可知:当电容器回路呈电感性时,电容器回路和系统阻抗并联分流,可使流入系统的谐波电流减小。

当电容器回路呈电容性时,由于电容器的“补偿”作用,电容器回路在谐波电压作用下,将产生的谐波电流流入系统,这时将使系统谐波电流扩大,并使母线电压波形发生畸变。

也就是说,仅当电容器回路对谐波呈电感性时,才不会发生对系统的谐波放大。

当变电站母线上既有串大电抗的电容器组又有串小电抗的电容器组时,电容器组回路各元件对谐波的阻抗如表1:

 

国家电网公司电力系统无功补偿配置技术原则

国家电网公司电力系统无功补偿配置技术原则 为进一步加强国家电网公司无功补偿装置的技术管理工作,规范电网无功补偿的配置要求,提高电网的安全、稳定、经济运行水平,国家电网公司在广泛征求公司各有关单位意见的基础上,制定完成了《国家电网公司电力系统无功补偿配置技术原则》,并于8月24日以国家电网生[2004]435号印发,其全文如下: 国家电网公司电力系统无功补偿配置技术原则 第一章总则 第一条为保证电压质量和电网稳定运行,提高电网运行的经济效益,根据《中华人民共和国电力法》等国家有关法律法规、《电力系统安全稳定导则》、信息来源:《电力系统电压和无功电力技术导则》、《国家电网公司电力系统电压质量和无功电力管理规定》等相关技术标准和管理规定,特制定本技术原则。 第二条国家电网公司各级电网企业、并网运行的发电企业、电力用户均应遵守本技术原则。 第二章无功补偿配置的基本原则 第三条电力系统配置的无功补偿装置应能保证在系统有功负荷高峰和负荷低谷运行方式下,分(电压)层和分(供电)区的无功平衡。分(电压)层无功平衡的重点是220kV及以上电压等级层面的无功平衡,分(供电)区就地平衡的重点是110kV及以下配电系统的无功平衡。无功补偿配置应根据电网情况,实施分散就地补偿与变电站集中补偿相结合,电网补偿与用户补偿相结合,高压补偿与低压补偿相结合,满足降损和调压的需要。 第四条各级电网应避免通过输电线路远距离输送无功电力。500(330)kV 电压等级系统与下一级系统之间不应有大量的无功电力交换。500(330)kV电压等级超高压输电线路的充电功率应按照就地补偿的原则采用高、低压并联电抗器基本予以补偿。 第五条受端系统应有足够的无功备用容量。当受端系统存在电压稳定问题时,应通过技术经济比较,考虑在受端系统的枢纽变电站配置动态无功补偿装置。 第六条各电压等级的变电站应结合电网规划和电源建设,合理配置适当规模、类型的无功补偿装置。所装设的无功补偿装置应不引起系统谐波明显放大,并应避免大量的无功电力穿越变压器。35kV~220kV变电站,在主变最大负荷时,其高压侧功率因数应不低于0.95,在低谷负荷时功率因数应不高于0.95。 第七条对于大量采用10kV~220kV电缆线路的城市电网,在新建110kV 及以上电压等级的变电站时,应根据电缆进、出线情况在相关变电站分散配置适当容量的感性无功补偿装置。

电力系统电压及无功补偿

电力系统电压与无功补偿 交流电力系统需要电源供给两部分能量,一部分将用于作功而被消耗掉,这部分电能将转换为机械能、光能、热能或化学能,我们称为“有功功率”。另一部分能量是用来建立磁场,用于交换能量使用的,对于外部电路它并没有作功,由电能转换为磁能,再由磁能转换为电能,周而复始,并没有消耗,这部分能量我们称为“无功功率”,无功是相对于有功而言,不能说无功是无用之功,没有这部分功率,就不能建立感应磁场,电动机、变压器等设备就不能运转。 2、无功功率按电路的性质有正有负,Q为正值(感性)时表示吸收无功功率,Q为负值(容性)时表示发出无功功率,在感性电路中,电流滞后于电压,f >0,Q为正值。而在容性电路中,电流超前于电压,f < 0,Q为负值。这就是人们通常称电动机等设备“吸收”无功而电容器发出“无功”的道理。 3、输电线路电压损耗由两部分组成,即有功功率在电阻上的压降和无功功率在电抗上的压降。一般说来,在超高压电网的线路、变压器的等值电路中,电抗的数值比电阻大得多。所以无功功率对电压损耗的影响很大,而有功功率对电压损耗的影响则要小得多。因此,可以得出结论,在电力系统中,无功功率是造成电压损耗的主要因素。由电压损耗表达式DU = (PR + QX)/U可知,要改变电压损耗有两种办法。

(1)改变元件的电阻; (2)改变元件的电抗,都能起到改变电压损耗的作用。 可采取的一种办法是增大导线截面减小电阻以减小电压损耗,这种办法在负荷功率因数较高、原有导线截面偏小的配电线路中比较有效。适宜负荷不断增加的农村地区采用。 而电网中用的最多的办法是减少线路中的电抗,在超高压输电线路中广泛采用的分裂导线就可以明显降低线路的电抗。在我国,220kV线路一般采用二分裂、500kV线路采用四分裂导线。采用分裂导线,降低线路电抗,不仅仅减少了电压损耗,而且有利于电力系统的稳定性,能提高线路的输电能力。 减小线路电抗的另一种办法是采用串联电容补偿,就是在线路中串联一定数值的电容器,大家知道,同一电流流过串联的电感、电容时,电感电压与电容电压在相位上正好差180 串联电容器补偿,现在主要应用于超高压、大容量的输电线路上 4、除了用改变电力网参数来减少电压损耗以外,改变电压损耗的另一个重要方面是改变电网元件中传输的功率。即改变表达式中的P和Q的大小,在满足负荷有功功率的前提下,要改变供电线路、变压器传输的有功功率,是比较困难的,常常是不可能的。因此,改变线路、

电力系统无功补偿论文

电力系统的无功优化、补偿及无功补偿技术对低压电网功率因数的影响 电气与信息工程学院 自动化13-2 马春野 20131802

电力系统的无功优化、补偿及 无功补偿技术对低压电网功率因数的影响 一前言 随着国民经济的迅速发展,用电量的增加,电网的经济运行日益受到重视。降低网损,提高电力系统输电效率和电力系统运行的经济性是电力系统运行部门面临的实际问题,也是电力系统研究的主要方向之一。特别是随着电力市场的实行,输电公司(电网公司)通过有效的手段,降低网损,提高系统运行的经济性,可给输电公司带来更高的效益和利润。电力系统无功功率优化和无功功率补偿是电力系统安全经济运行研究的一个重要组成部分。通过对电力系统无功电源的合理配置和对无功负荷的最佳补偿,不仅可以维持电压水平和提高电力系统运行的稳定性, 而且可以降低有功网损和无功网损,使电力系统能够安全经济运行。 无功补偿,就其概念而言早为人所知,它就是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低能耗,改善电网电压质量。 二无功优化和补偿的原则和类型 1、无功优化和补偿的原则 在无功优化和无功补偿中,首先要确定合适的补偿点。无功负荷补偿点一般按以下原则进行确定: 1)根据网络结构的特点,选择几个中枢点以实现对其他节点电压的控制; 2)根据无功就地平衡原则,选择无功负荷较大的节点。 3)无功分层平衡,即避免不同电压等级的无功相互流动,以提高系统运行的经济性。 4)网络中无功补偿度不应低于部颁标准0.7的规定。 2、无功优化和补偿的类型 电力系统的无功补偿不仅包括容性无功功率的补偿而且包括感性无功功率的补偿。在超高压输电线路中(500kV及以上),由于线路的容性充电功率很大,据统计在500kV 每公里的容性充电功率达1.2Mvar/km。这样就必须对系统进行感性无功功率补偿以抵消线路的容性功率。如实际上,电网在500kV的变电所都进行了感性无功补偿,并联了高压电抗和低压电抗,使无功在500kV电网平衡。

无功补偿来源和电压调节设备

无功补偿来源和电压调节设备 1)同步发电机:同步发电机是电力系统中最重要的无功补偿设备。往往依照不同系统条件和不同的安装位置,根据需要选择不同的发电机额定功率因数。位于负荷中心附近的发电机组,宜于有较大的送出无功功率的能力,可以供应正常负荷的部分无功功率需求外,还可以在正常时保留一部分作为事故紧急储备,非常重要。 至于送端电厂的发电机组,特别是远方电厂,由于无功功率不宜远送的规律,它发出的无功功率主要用以补偿配出线路在重负荷期间的部分无功功率损耗,实现超高压网无功功率的分层平衡。功率因数一般都较高。例如,巴西伊泰普水电.站中,有9台765MW勺机组接在交流侧,经900km 765kV交流线路到受端,机组的额定功率因数选为0.95,另9台7机通过直流线路到受端,其额定功率因数选为0.85,因为前者只需要补偿线路,后者还需要补偿换流站的无功(换流站的无功需求相当大)。 反过来说,接到超高压电网特别是位于远方的发电机组需要具有 适当的进相运行能力(吸收无功),使能在系统低负荷期间,吸收配出的超高压线路的部分多余无功功率,以保持电厂送电电压不超标。这点在工程实践中往往是一个后备方案,即机组的进相运行来调整电压。我国一般现在

机组都会做进相运行试验。 2)输电线路:输电线路既能产生无功功率(由于分布电容)又消耗无功功率(由于串联阻抗)。当沿线路传送某一固定有功功率,线路上的这两种无功功率适能相互平衡时,这个有功功率,叫做线路的 “自然功率”。这点应该是较为基本的认识,所以有功潮流大的线路,无功消耗也大,自然产生较少无功;空载线路也最容易贡献无功,从而抬升电压。尤其是500kV层面小负荷方式下容易无功剩余。

高压电压无功补偿-无功补偿的意义

无功补偿的意义 电网中的许多用电设备是根据电磁感应原理工作的。它们在能量转换过程中建立交变磁场,在一个周期内吸收的功率和释放的功率相等,这种功率叫无功功率。电力系统中,不但有功功率平衡,无功功率也要平衡。 有功功率、无功功率、视在功率之间的关系如图1所示 式中: S——视在功率,kV A P——有功功率,kW Q——无功功率,kvar φ角为功率因数角,它的余弦(cosφ)是有功功率与视在功率之比即cosφ=P/S称作功率因数。 由功率三角形可以看出,在一定的有功功率下,用电企业功率因数cosφ越小,则所需的无功功率越大。如果无功功率不是由电容器提供,则必须由输电系统供给,为满足用电的要求,供电线路和变压器的容量需增大。这样,不仅增加供电投资、降低设备利用率,也将增加线路损耗。为此,国家供用电规则规定:无功电力应就地平衡,用户应在提高用电自然功率因数的基础上,设计和装置无功补偿设备,并做到随其负荷和电压变动及时投入或切除,防止无功倒送。还规定用户的功率因数应达到相应的标准,否则供电部门可以拒绝供电。因此,无论对供电部门还是用电部门,对无功功率进行自动补偿以提高功率因数,防止无功倒送,从而节约电能,提高运行质量都具有非常重要的意义。 无功补偿的基本原理是:把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,能量在两种负荷之间相互交换。这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率补偿。 当前,国内外广泛采用并联电容器作为无功补偿装置。这种方法安装方便、建设周期短、造价低、运行维护简便、自身损耗小。 采用并联电容器进行无功补偿的主要作用:

1、提高功率因数 如图2所示图中: P——有功功率 S1——补偿前的视在功率 S2——补偿后的视在功率 Q1——补偿前的无功功率 Q2——补偿后的无功功率 φ1——补偿前的功率因数角 φ2——补偿后的功率因数角 由图示可以看出,在有功功率P一定的前提下,无功功率补偿以后(补偿量Qc=Q1-Q2),功率因数角由φ1减小到φ2,则cosφ2>cosφ1提高了功率因数。 2、降低输电线路及变压器的损耗 三相电路中,功率损耗ΔP的计算公式为 式中 P——有功功率,kW; U——额定电压,kV; R——线路总电阻,Ω。 由此可见,当功率因数cosφ提高以后,线路中功率损耗大大下降。 3、改善电压质量 线路中电压损失ΔU的计算公式 式中 P——有功功率,KW; Q——无功功率,Kvar; U——额定电压,KV; R——线路总电阻,Ω

详解电网无功补偿与电压调节

详解电网无功补偿与电压调节 无功对于电网系统设计来说,肯定是非常非常重要的了,这块其实内容很多,就做一个简单的梳理总结,有一些工程实践中的认识,希望可以互相印证。无功对应电压,有功对应频率,应该是一个比较普遍大概的认识,当然没错。所以无功补偿和电压调节是密不可分的,也是调度考核的重要指标。 一、无功补偿概述和原则 无功功率比较抽象,它是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。它不对外作功,而是转变为其他形式的能量。凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。比如40瓦的日光灯,除需40多瓦有功功率(镇流器也需消耗一部分有功功率)来发光外,还需80乏左右的无功功率供镇流器的线圈建立交变磁场用。由于它不对外做功,才被称之为“无功”。 电力系统的无功补偿与无功平衡是保证电压质量的基本条件,首先是一些重要原则当然很多是国网的原则,虽说要摆脱国网思路束缚,但是有些好东西还是要保留。 分层分区补偿原则:有鉴于经较大阻抗传输无功功率所产生的很大无功功率损耗和相应的有功功率损耗,电网无功功率的补偿安排宜实行分层分区和就地平衡的原则。所谓的分层安排,是指作为主要有功功率大容量传输即220--500 kV电网,宜力求保持各电压层间的无功功率平衡,尽可能使这些层间的无功功率串动极小,以减少通过电网变压器传输无功功率时的大量消耗;而所谓分区安排、是指110k V 及以下的供电网,宜于实现无功功率的分区和就地平衡。 电压合格标准:

500kV母线:正常运行方式时,最高运行电压不得超过系统额定电压的+10%;最低运行电压不应影响电力系统同步稳定、电压稳定、厂用电的正常使用及下一级电压调节。 发电厂和500kV变电所的220kV母线:正常运行方式时,电压允许偏差为系统额定电压0~+10%;事故运行方式时为系统额定电压的的-5%~+10%。 发电厂和220kV变电所的110kV~35kV母线:正常运行方式时,电压允许偏差为相应系统额定电压-3%~+7%;事故后为系统额定电压的的±10%。 带地区供电负荷的变电站和发电厂(直属)的10(6)kV母线:正常运行方式下的电压允许偏差为系统额定电压的0~+7%。 无功补偿配置原则:各电压等级变电站无功补偿装置的分组容量选择,应根据计算确定,最大单组无功补偿装置投切引起所在母线电压变化不宜超过电压额定值的2.5%,并满足主变最大负荷时,功率因数不低于0.95。 以上只是大概的比例估计,具体工程的变电站的无功配置是需要通过计算的,计算分不同运行方式(针对容性和感性),无功计算一般是有无功交换的整个区域一

《国家电网公司电力系统无功补偿配置技术原则》

《国家电网公司电力系统无功补偿配置技术原则》 第一章总则 第一条为保证电压质量和电网稳定运行,提高电网运行的经济效益,根据《中华人民共和国电力法》等国家有关法律法规、《电力系统安全稳定导则》、信息来源:《电力系统电压和无功电力技术导则》、《国家电网公司电力系统电压质量和无功电力管理规定》等相关技术标准和管理规定,特制定本技术原则。 第二条国家电网公司各级电网企业、并网运行的发电企业、电力用户均应遵守本技术原则。 第二章无功补偿配置的基本原则 第三条电力系统配置的无功补偿装置应能保证在系统有功负荷高峰和负荷低谷运行方式下,分(电压)层和分(供电)区的无功平衡。分(电压)层无功平衡的重点是220kV 及以上电压等级层面的无功平衡,分(供电)区就地平衡的重点是110kV及以下配电系统的无功平衡。无功补偿配置应根据电网情况,实施分散就地补偿与变电站集中补偿相结合,电网补偿与用户补偿相结合,高压补偿与低压补偿相结合,满足降损和调压的需要。 第四条各级电网应避免通过输电线路远距离输送无功电力。500(330)kV电压等级系统与下一级系统之间不应有大量的无功电力交换。500(330)kV电压等级超高压输电线路的充电功率应按照就地补偿的原则采用高、低压并联电抗器基本予以补偿。 第五条受端系统应有足够的无功备用容量。当受端系统存在电压稳定问题时,应通过技术经济比较,考虑在受端系统的枢纽变电站配置动态无功补偿装置。 第六条各电压等级的变电站应结合电网规划和电源建设,合理配置适当规模、类型的无功补偿装置。所装设的无功补偿装置应不引起系统谐波明显放大,并应避免大量的无功电力穿越变压器。35kV~220kV变电站,在主变最大负荷时,其高压侧功率因数应不低于0.95,在低谷负荷时功率因数应不高于0.95。 第七条对于大量采用10kV~220kV电缆线路的城市电网,在新建110kV及以上电压等级的变电站时,应根据电缆进、出线情况在相关变电站分散配置适当容量的感性无功补偿装置。 第八条35kV及以上电压等级的变电站,主变压器高压侧应具备双向有功功率和无功功

电网的无功补偿与电压调整

电网的无功补偿与电压调整 、输电网的无功补偿与电压调整 输电网多数无直供负载,一般不为调压目的而设置无功补偿装置。参数补偿多用于较长距离的输电线路,有串联补偿(又称纵补偿)与并联补偿(又称横补偿)之分。电压支撑则多用于与地区受电网络连接的输电网的中枢点。 1.1电抗器补偿 电抗器是超高压长距离输电线路的常用补偿设备,用以补偿输电线路对地电容所产生的充电功率,以抑制工频过电压。电抗器的容量根据线路长度和过电压限制水平选择,其补偿度(电抗器容量与线路充电功率之比)国外统计大多为70-85,个别为65,一般不低于60。电抗器一般常设置在线路两端,且不设断路器。 1.2串连电容补偿 串联电容用来补偿输电线路的感抗,起到缩短电气距离提高稳定性水平和线路的输电容量的作用。串联电容器组多为串、并联组合而成,并联支数由线路输送容量而定,串联个数则由所需的串联电容补偿度(串联电容的容抗与所补偿的线路感抗之比)而定。串联电容补偿一般在50以下,不宜过高,以免引起系统的次同步谐振。输电网中因阻抗不均而造成环流时,也可用串联电容来补偿。日本在110kV环网中就使用了串联电容补偿。 1.3中间同步或静止补偿 在远距离输电线路中间装设同步调相机或静止补偿装置,利用这些

装置的无功调节能力,在线路轻载时吸收线路充电功率,限制电压升高;在线路重载时发出无功功率,以补偿线路的无功损耗,支持电压水平,从而提高线路的输送容量。中间同步或静止补偿通常设在线路中点,若设在线路首末端,则调节作用消失。 输电网的电压支撑点与调压输电网与受电地区的低一级电压的电网相联的枢纽点,常设置有载调压变压器或有相当调节与控制能力的无功补偿装置,或者二者都有,以实现中枢点调压,使电网的运行不受或少受因潮流变化或其他原因形成的电压波动的影响,在电网发生事故时起支撑电压的作用,防止因电网电压剧烈波动而扩大事故。 电压支撑能力的强弱,除与补偿方法和补偿容量大小有关外,更与补偿装置的调节控制能力和响应速度有关。并联电容器虽是常用而价廉的补偿设备,但其无功出力在电压下降时将按电压的平方值下降,不利于支撑电压。大量装设并联补偿电容器反而有事故发生助长电网电压崩溃的可能性。采用同步调相机和静止无功补偿装置辅以适当的调节控制,是比较理想的支撑电压的无功补偿设备。近年来,国内外均注重静止补偿装置的应用。 2、配电网的无功补偿与电压调整 以相位补偿和保证用户用电电压质量为主。 2.1相位补偿亦称功率因数补偿 用电电器多为电磁结构,需要大量的励磁功率,致使用户的功率因数均为滞相且较低,一般约为0.7左右。励磁功率滞相的无功功率在配电网中流动,不仅占用配电网容量,造成不必要的损耗,而且导致用户

电网的无功补偿与电压调整

电网的无功补偿与电压调整 1、输电网的无功补偿与电压调整 输电网多数无直供负载,一般不为调压目的而设置无功补偿装置。参数补偿多用于较长距离的输电线路,有串联补偿(又称纵补偿)与并联补偿(又称横补偿)之分。电压支撑则多用于与地区受电网络连接的输电网的中枢点。 1.1电抗器补偿 电抗器是超高压长距离输电线路的常用补偿设备,用以补偿输电线路对地电容所产生的充电功率,以抑制工频过电压。电抗器的容量根据线路长度和过电压限制水平选择,其补偿度(电抗器容量与线路充电功率之比)国外统计大多为70-85,个别为65,一般不低于60。电抗器一般常设置在线路两端,且不设断路器。 1.2串连电容补偿 串联电容用来补偿输电线路的感抗,起到缩短电气距离提高稳定性水平和线路的输电容量的作用。串联电容器组多为串、并联组合而成,并联支数由线路输送容量而定,串联个数则由所需的串联电容补偿度(串联电容的容抗与所补偿的线路感抗之比)而定。串联电容补偿一般在50以下,不宜过高,以免引起系统的次同步谐振。输电网中因阻抗不均而造成环流时,也可用串联电容来补偿。日本在110kV环网中就使用了串联电容补偿。 1.3中间同步或静止补偿 在远距离输电线路中间装设同步调相机或静止补偿装置,利用这些装置的无功调节能力,在线路轻载时吸收线路充电功率,限制电压升高;在线

路重载时发出无功功率,以补偿线路的无功损耗,支持电压水平,从而提高线路的输送容量。中间同步或静止补偿通常设在线路中点,若设在线路首末端,则调节作用消失。 输电网的电压支撑点与调压输电网与受电地区的低一级电压的电网 相联的枢纽点,常设置有载调压变压器或有相当调节与控制能力的无功补偿装置,或者二者都有,以实现中枢点调压,使电网的运行不受或少受因潮流变化或其他原因形成的电压波动的影响,在电网发生事故时起支撑电压的作用,防止因电网电压剧烈波动而扩大事故。 电压支撑能力的强弱,除与补偿方法和补偿容量大小有关外,更与补偿装置的调节控制能力和响应速度有关。并联电容器虽是常用而价廉的补偿设备,但其无功出力在电压下降时将按电压的平方值下降,不利于支撑电压。大量装设并联补偿电容器反而有事故发生助长电网电压崩溃的可能性。采用同步调相机和静止无功补偿装置辅以适当的调节控制,是比较理想的支撑电压的无功补偿设备。近年来,国内外均注重静止补偿装置的应用。 2、配电网的无功补偿与电压调整 以相位补偿和保证用户用电电压质量为主。 2.1相位补偿亦称功率因数补偿 用电电器多为电磁结构,需要大量的励磁功率,致使用户的功率因数均为滞相且较低,一般约为0.7左右。励磁功率——滞相的无功功率在配电网中流动,不仅占用配电网容量,造成不必要的损耗,而且导致用户电压降低。相位补偿是以进相的无功补偿设备(如并联电容器)就近供给用户或配电网所需要的滞相无功功率,减少在配电网中流动的无功功率,降低网损,

电力系统电压与无功补偿

现代生产和现代生活离不开电力。电力部门不仅要满足用户对电力数量不断增长的需要,而且也要满足对电能质量上的要求。所谓电能质量,主要是指所提供电能的电压、频率和波形是否合格,在合格的电能下工作,用电设备性能最好、效率最高,电压质量是电能质量的一个重要方面,同时,电压质量的高低对电网稳定、经济运行也起着至关重要的作用。 1 电压与无功补偿 电压顾名思义就是电(力)的压力。在电压的作用下电能从电源端传输到用户端,驱动用电设备工作。 交流电力系统需要电源供给两部分能量,一部分将用于作功而被消耗掉,这部分电能将转换为机械能、光能、热能或化学能,我们称 为“有功功率”。另一部分能量是用来建立磁场,用于交换能量使用的,对于外部电路它并没有作功,由电能转换为磁能,再由磁能转换为电能,周而复始,并没有消耗,这部分能量我们称为“无功功率”,无功是相对于有功而言,不能说无功是无用之功,没有这部分功率,就不能建立感应磁场,电动机、变压器等设备就不能运转。在电力系统中,除了负荷无功功率外,变压器和线路的电抗上也需要大量无功功率。

国际电工委员会给出的无功功率的定义是:电压与无功电流的乘积 为无功功率。其物理意义是:电路中电感元件与电容元件活动所需要的功率交换称为无功功率。

我们以电感元件和电容元件的并联回路来说明这个问题,见图1a,在电压的作用下,电感回路中电流滞后电压90°,而在电容回路中电流却是超前电压90°,即在同一电压作用下,任一瞬时,IL和IC在时间轴对称。我们将每一瞬间电感上的电压与电感电流IL相乘得到电感的功率曲线PL(图1b),同样的,将电容上的电压与电容电流IC相乘得到电容的功率曲线PC(图1c)。 如图2a所示,功率在第二个和第四个1/4周期内电感在吸收功率,并把所吸 电感收的能量转化为磁场能量;而在第一和第三个1/4周期内

电力系统无功补偿

毕业论文(设计) 题目电力系统的无功优化、补偿及无功补 偿技术对低压电网功率因数的影响

2007年8月30日 电力系统的无功优化、补偿及 无功补偿技术对低压电网功率因数的影响 电气工程及其自动化专业 学生:指导教师: 摘要:电力系统的无功优化和无功补偿是提高系统运行电压,减小网损,提高系统稳定水平的有效手段。本文对当前常用的无功优化和无功补偿进行了总结,对目前无功补偿和优化存在的问题进行了一定的探讨和研究。电压是电能质量的重要指标之一,电压质量对电网稳定及电力设备安全运行、线路损失、工农业安全生产、产品质量、用电单耗和人民生活用电都有直接影响。无功电力是影响电压质量的一个重要因素,电压质量与无功是密不可分的,电压问题本质上就是一个无功问题。解决好无功补偿问题,具有十分重要的意义。 关键词:无功优化无功补偿网损电压质量功率因数 Reactive power system optimization, compensation and Reactive power compensation of low voltage network of power factor Electrical Engineering and Automation Student:Luobifeng Supervisor:Qingyuanjiu Abstract:Reactive optimization and reactive compensation of power system is a valid way to increse the sy stem’s operating voltage and maintenance level .It’s also the way to reduce the internet loss . This essay summarize what Reactive optimization and reactive compensation are in our daily life. It also discusses and studies some problems existing in reactive optimization and reactive compensation. Voltage is one of the important targets of Quality of power supply, whose quality will affect stabilization of power grids and electric equipment functioning well

并联电容器对电力系统无功补偿及电压调节问题的探讨_马文成

DOI :10.3969/j.issn.1001-8972.2012.09.069 并联电容器对电力系统无功补偿及电压调节问题的探讨 马文成 固原供电局,宁夏 固原 756300 摘 要 变电站并联电容器可以对电网的无功功率进 行集中补偿。通过对无功功率的合理补偿, 从而达到调节电压、使系统经济和稳定运 行。但在实际运行中,往往由于设计原因, 无功负荷的分布不可预见性等因素导致变电 站母线并联电容器不能合理的补偿无功和调 节电压。下面就某站10kV 母线并联电容器运 行中存在的问题加以分析和探讨。 关键词 并联电容器;无功补偿;电压调节 某变电站电压等级为110/35/10kV ,两台 主变容量分别为25000kVA 和20000kVA 的有载调 压变压器,正常时20000kVA 变压器运行,另一 台主变热备用,10kV Ⅰ、Ⅱ段母线经分段开关 联成单母运行。10kV Ⅱ段母线装TBB 210- 3600/3600Kvar 成套电容器装置,电容器型号 为:BFFH 4-11/ -2×1800-1×3W 密集型电 容器,每组容量为1800Kvar ,两组共 3600Kvar ,其额定电流为89A ,串联电抗器型 号为CKGKL-12/10-1的空芯电抗器,额定电 抗率为1%。 1 运行中存在的问题 该站自2000年投运以来,因10kV 母线并联 电容器的补偿容量不合理致使电容器不能正常 投入运行,因此,10kV 母线输送的无功负荷不 能实现就地补偿,从而不利于电网运行的经济 性和稳定性。 1.1 并联电容器投入时补偿容量过剩 图例分析如下: 图1 上图数据为该站10kV 母线2011年有功、无 功负荷平均值,从图中可以看出,10kV 母线 年输送无功负荷最大值为1500Kvar ,最小值为 500Kvar ,平均值为1000Kvar 。若投入一组容量 为 的电容器时除补偿了10kV 母线输送的无功 负荷外,还向系统倒送无功容量800Kvar 。按照 规定,电力系统无功补偿应以分级补偿,就地 平衡的原则进行,向系统倒送无功时将会引起 过电压,系统稳定性受到破坏。因此,向系统 倒送无功是不允许的。 1.2 并联电容器投入时对母线电压影响较 大 若正常运行时投入一台20000kVA 的有载调 压变压器时,从图A 中可知10kV 母线年输送有 功功率最大值为6000kW ,最小值为3000kW , 平均值为4500kW 。正常运行时,在110kV 母线 确保电压合格率的情况下,35kV 及10kV 母线 通过有载调压完全可以满足各级母线电压合格 率的要求。当电容器投入时,除补偿了10kV 母线输送的无功功率外,还向系统倒送了大量 无功。此时,变压器输出的无功功率减少,导 致高压侧母线向系统输送的无功减少而电压升 高。变压器中、低压侧母线电压随之相应升 高,尤其低压侧母线电压升高较大,而并联电 容器运行时向系统补偿的无功容量与其端电压 的平方成正比,电压升高浮度越大,向系统输 送的无功容量越大,如此恶性循环,可能导致 电容器过电压保护动作跳闸,系统其它设备超 过额定电压运行时,其绝缘受到威胁。此时, 用有载调压来降低电压运行已不能满足电压合 格率的要求。 1.3 并联电容器退出运行时对系统经济运 行的影响 变电站并联电容器投入电网的目的是为 了补偿系统无功的不足,减少电源向系统输送 的无功功率,从而提高有功输送容量。因电源 向系统远距离输送无功负荷时,在线路及变压 器等感性、容性元件及阻性元件上消耗一定的 有功功率,因此,电源远距离大容量输送无功 不经济。变电站采用并联电容器通过就地无功 补偿,可以降低电源向系统及用户输送的无功 负荷,从而提高了有功输送容量。相对于电源 输送无功时,变电站并联电容器的单位容量费 用最低,有功功率损耗最小(约为额定容量的 0.3%~0.5%),一次性投资,运行维护简便。 因此用系统减少输送的无功功率来相应的提高 有功容量的输送能力,从经济性方面比较, 并联电容器投资成本小,最多1~2年可收回成 本。因此,获得了最好的经济效益。 从以上分析可以看出,当该站并联电容器 退出运行时,据查10kV 母线年输送无功电能约 760万度。因此,在当前负荷情况下,并联电容 器退出运行最不经济。 2 应采取的措施 针对以上分析,该站10kV 母线并联电容器 在电压调整、无功补偿过剩及运行经济性方面 存在着相互制约的矛盾,如何解决这一问题, 本人提出采取以下措施: 2.1 改变10kV 母线并联电容器的接线方 式,改造图如下: 图2 图3 图2为原接线,改造前当一组电容器投 入运行时向系统输送的总无功补偿容量为 Q 1=U 2ωC ,式中:U 为母线端电压,当f 为工 频时,ω为一常数,C 1=C 2,因C 1和C 2并联, 所以C=C 1+C 2,即Q 1=2U 2ωC 1。图C 为改造后 的接线图,总无功补偿容量为Q 2=U 2ωC ,式 中:U 为母线端电压,当f 为工频时,ω为一 常数,C 1=C 2,因C 1和C 2串联,所以C=C 1/2, 即Q 2=U 2ωC 1/2。所以 Q 1/Q 2=2U 2ωC 1/ U 2ωC 1/2=4,即Q 2=Q 1/4=3600/4=900(Kvar)。 通过计算可知,改造后两组电容器串联后 再三相并联接于电网时的总无功功率900Kvar 。 考虑到后期无功负荷的增长给补偿带来新 -119- 的问题,上述改造中在实际设备上可通过如图 C 所示加装一组隔离开关来实现,即通过操作 拉开G 2隔离开关,合上G 1隔离开关来实现投入 无功容量900Kvar 。后期无功负荷增长较大时, 可通过操作拉开G 1隔离开关,合上G 2隔离开关 来实现投入无功容量 1800Kvar 。 2.2 改变并联电容器的接线方式后对系统 及各元件的影响 2.2.1 对系统的无功补偿情况 图A 中,按目前年平均输送无功负荷曲线 可以看出,年平均无功输送容量为1000Kvar , 改造后并联电容器投入电网运行时补偿的无功 容量为900Kvar ,因此,可以实现就地补偿无 功的能力。对于后期无功负荷增长带来的无功 补偿不足时,可通过操作 G 1、G 2隔离开关来实 现电容器无功容量在900Kvar 与1800Kvar 之间转 换。 2.2.2 对电压质量的影响 改造后并联电容器输送的总无功容量为改 造前的一半,因此电容器投入运行时对电压的 影响相对较小,当各级母线电压变化时可通过 变压器有载调压装置调整电压,以及无功补偿 情况投退并联电容器来调整电压。 2.2.3 改造后的并联电容器运行时的经济 性 通过无功就地平衡补偿,据查可实现年累 计补偿无功负荷约760万度,相对电源系统输送 无功来说,可减少网损,提高电源输送能力, 最终达到经济效益最大化。 2.2.4 改造后对成套并联电容器装置各元 件的影响 2.2.4.1 对电容器各参数的影响 电容器额定电压为11/ kV ,改造后C1和 C2串联,当接在10kV 母线上时,C1和C2 串联 时分压,即C1与C2各承受电压为改造前端电压 的 一 半 , 电 容 器 通 过 的 电 流 为 I=Q2/2U=900/2×10=45(A)。因此,改造后的 各电容器承受的电压和通过的电流均在额定参 数内。 2.2.4.2 对电抗器的影响 因电抗器额定电压为10kV ,额定电流为 189A ,改造后均在额定值范围内。 2.2.4.3 对继电保护的影响 当并联电容器主接线改变后,其输送的电 流和各电容器承受的电压相应的发生变化,因 此,原保护定值不能满足需要,应重新计算并 整定,即可通过现有微机保护整定两套定值, 当电容器的无功容量在900Kvar 与1800Kvar 之间 转换时,切换相应的定值实现保护功能。 笔者认为通过上述改造后,可解决该站目 前10kV 母线无功负荷的补偿问题,从而实现了 该站并联电容器长时间不能投入电网运行的难 题,同时,提高了10kV 系统的功率因数,优化 了电网运行方案,提高了系统运行的经济性。 参考文献 [1] 韩祯祥,吴国炎 .电力系统分析. 浙江大学出 版社, 2002年版,227页 [2] 李坚,郭建文 .变电运行及设备管理技术问 答.中国电力出版社 ,2005年版,158页 作者简介 马文成 学历:大学 职称:工程师。

电力系统中的无功补偿

电力系统中的无功补偿 众所周知,电源能量通过电感或电容时并没有能量消耗,只是在负荷与电源之间相互交换和三相之间流动。由于这种交换功率不对外做功,因此称为无功功率。电力系统中的设备大部分是根据电磁感应原理工作的,它们在单位周期内吸收的功率和释放的功率相同,以此建立交变的磁场,这部分功率就是无功功率。可见,无功功率在电力系统中扮演了重要的角色。可是在电力系统中为什么要进行无功补偿呢? 无功补偿的必要性 在电力系统中,如变压器、电动机等许多工作时需要励磁的设备都需要从电力系统中吸收无功功率;并且输电线路具有分布电容,在电压下将产生容性无功功率,也就是说线路也要吸收感性无功。发电机是电力系统中唯一的有功电源,也是基本的无功电源。如果只依靠发电机来提供无功功率的,由于无功功率不断地来回地交换会引起发电、输电及供配电设备上的电压损耗及功率损失。另外,发电机发出的所有功率等于有功功率与无功功率的矢量和,提供的无功功率多时,提供的有功功率也就相对就减少了,显然这种运行方式也是很不经济的。 如果不进行无功功率补偿,通常会造成两个主要问题: (1)在电力传输系统中,如果说出现了无功功率不足的现象,那么就会导致电力系统中的电压以及功率因数不断的降低,最终导致用电设备受到破坏,严重情况下甚至会导致电网系统中的电压崩溃,使得整个电网控制系统瓦解,从而造成片区大面积的停电。 (2)电力电压以及功率因素的降低,会导致电力系统中的电气传输设备无法得到有效的利用,从而造成了电力系统中传输的电能损耗不断增加,降低了电能传输的效率,给用电用户的日常生活带来的极大的困扰。 因此国家相关政策规定,各级电压的电力网和电力用户都要提高自然功率因数,并按无功分层分区和就地平衡以及便于调压的原则,安装无功补偿设备和必要的调压装置,电网用户都要提高调压装置和无功补偿设备的运行水平。 无功补偿的作用 (1)提高电压质量 将线路中的电流分为有功电流I a 和无功电流I r ,则线路中的电压损失为 l a r l 3()3PR QX U I R I X U +?=?+= 其中,P 为有功功率,Q 为无功功率,U 为额定电压,R 为线路总电阻,X l 为线路感抗。

无功补偿方案.

济宁聚能光伏石墨材料有限公司35kV动态无功补偿装置(MCR+FC) 技 术 标 书

武汉国瑞电力设备有限公司 二○一二年九月 动态无功补偿装置设备技术规范书 1 设备总机要求 ◆本设备技术协议书适用于济宁聚能光伏石墨材料有限公司35kV动态无 功补偿装置,它提出了该设备的功能设计、结构、性能、安装和试验等方面的技术要求。 ◆本设备技术协议书提出的是最低限度的技术要求,并未对一切技术细节 作出规定,也未充分引述有关标准和规范的条文,供方应提供符合工业标准和本规范书的优质产品。 ◆本设备技术协议书所使用的标准如遇与供方所执行的标准不一致时,按 较高标准执行。 ◆本设备技术协议书经供、需双方确认后作为订货合同的技术附件,与合 同正文具有同等的法律效力。 ◆本设备技术协议书未尽事宜,由供、需双方协商确定。 2 应用技术条件及技术指标 2.1标准和规范 应遵循的主要现行标准,但不仅限于下列标准的要求,所有设备都符合相应的标准、规范或法规的最新版本或其修正本的要求,除非另有特别外,合同期内有效的任何修正和补充都应包括在内。 DL/T672-1999《变电所电压无功调节控制装置订货技术条件》

DL/T597-1996 《低压无功补偿控制器订货技术条件》 GB11920-89 《电站电气部分集中控制装置通用技术条件》 GB 1207-1997《电压互感器》 SD 325-89《电力系统电压和无功电力技术导则》 SD205-1987 《高压并联电容器技术条件》。 DL442-91 《高压并联电容器单台保护用熔断器订货技术条件》。GB50227-95 《高压并联电容器装置设计规范》。 GB311.2~311.6-83 《高电压试验技术》。 GB11 024 《高电压并联电容器耐久性试验》。 GB11025 《并联电容器用内部熔丝和内部过压力隔离器》。 ZBK48003《并联电容器电气试验规范》。 GB50227《并联电容器装置设计规范》 GB3983.2-89《高电压并联电容器》 JB7111-97《高压并联电容器装置》 DL/T604-1996《高压并联电容器装置定货技术条件》 GB3983.2《高压并联电容器》 GB5316《串联电抗器》 GB1985-89《交流高压隔离开关和接地开关》 JB 5346-1998《串联电抗器》 DL/T 462-1992《高压并联电容器用串联电抗器订货技术条件》DL/T653-1998《高压并联电容器用放电线圈订货技术条件》 JB/T 3840-1985《并联电容器单台保护用高压熔断器》 DL/T620 《交流电气装置的过电压保护和绝缘配合》 GB/T 11032-2000《交流无间隙金属氧化物避雷器》 GB/T 11024.1-2001《放电器》 GB2900 《电工名词术语》

电力系统的无功补偿方法和意义

电力系统的无功补偿方法和意义 摘要随着现代电力电子技术与国民经济的进一步发展,电力用户对供电电能质量水平和用电可靠性提出了更高更多的要求。由此产生了一些静止形态的动态无功补偿装置。电力电子装置不仅可以发送而且还可以吸收无功功率,其本身也成为产生无功的功率源。但动态补偿的技术目前还不成熟。 关键词配电系统;无功补偿 中图分类号TM715 文献标识码 A 文章编号1673-9671-(2012)112-0231-01 1 无功功率的作用 无功功率决不是无用功率,它的用处很大。电动机需要建立和维持旋转磁场,使转子转动,从而带动机械运动,电动机的转子磁场就是靠从电源取得无功功率建立的。变压器也同样需要无功功率,才能使变压器的一次线圈产生磁场,在二次线圈感应出电压。因此,没有无功功率,电动机就不会转动,变压器也不能变压,交流接触器不会吸合。在正常情况下,用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率。无功补偿的主要作用就是提高功率因数以减少设备容量和功率损耗、稳定电压和提高供电质量,在长距离输电中提高输电稳定性和输电能力以及平衡三相负载的有功和无功功率。安装并联电容器进行无功补偿,可限制无功功率在电网中的传输,相应减少了线路的电压损耗,提高了配电网的电压质量。 2 影响功率因数的主要因素 异步电动机和电力变压器是耗用无功功率的主要设备异步电动机的定子与转子间的气隙是决定异步电动机需要较多无功的主要因素。而异步电动机所耗用的无功功率是由其空载时的无功功率和一定负载下无功功率增加值两部分所组成。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。变压器消耗无功的主要成份是它的空载无功功率,它和负载率的大小无关。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长其处于低负载运行状态。 电网频率的波动也会对异步电机和变压器的磁化无功功率造成一定的影响。 以上论述了影响电力系统功率因数的一些主要因素,因此必须要寻求一些行之有效的、能够使低压电力网功率因数提高的一些实用方法,使低压网能够实现无功的就地平衡,达到降损节能的效果。 3 低压配电网无功补偿的方法 3.1 变电站集中补偿方式 针对输电网的无功平衡,在变电站进行集中补偿,补偿装置包括并联电容器、同步调相机、静止补偿器等,主要目的是改善输电网的功率因数、提高终端变电所的电压和补偿主变的无功损耗。这些补偿装置一般连接在变电站的10 kV母线上,以补偿负荷的无功功率。补偿电容分为固定补偿与自动补偿两部分。因为有功负荷是变化的,其无功负荷也随之变化,但不论无功负荷如何变化,总可把它分为固定部分和变动部分,所以补偿电容应采取固定补偿与自动补偿相结合的方法,配置固定补偿电容以减少投资,配置自动补偿电容以满足补偿需要,做到二者兼顾。因此变电站集中补偿具有管理容易、维护方便等优点,但是这种方案对配电网的降损起不到什么作用。

无功补偿常用计算方法

按照不同的补偿对象,无功补偿容量有不同的计算方法。 (1)按照功率因数的提高计算 对需要补偿的负载,补偿前后的电压、负载从电网取用的电流矢量关系图如图3.7所示: I 2r I 1 补偿前功率因数1cos ?,补偿后功率因数2cos ?,补偿前后的平均有功功率为 P ,则需要补偿的无功功率容量 )t a n (t a n 21? ?-=P Q 补偿 (3.1) 由于负载功率因数的增加,会使电网给负载供电的线路上的损耗下降, 线损的下降率 %100)cos (3)cos (3)cos ( 3%21 122 2211?-= ?R I R I R I P a a a ???线损 %100)c o s c o s (1221??? ? ???-=?? (3.2) 式中R 为负载侧等值系统阻抗的电阻值。 (2)按母线运行电压的提高计算 ①高压侧无功补偿 无功补偿装置直接在高压侧母线补偿,系统等值示意图如图3.8所示: 图3.7 电流矢量图

P+jQ 补偿 图中, S U、U分别是系统电压和负载侧电压;jX R+是系统等值阻抗(不 含主变压器高低压绕组阻抗);jQ P+是负载功率, 补偿 jQ是高压侧无功补偿容 量; 1 U、 2 U分别是补偿装置投入前后的母线电压。 无功补偿装置投入前后,系统电压、母线电压的量值存在如下关系: 无功补偿装置投入前 1 1U QX PR U U S + + ≈ 无功补偿装置投入后 2 2 ) ( U X Q Q PR U U S 补偿 - + + ≈ 所以 2 1 2U X Q U U补偿 ≈ -(3.3) 所以母线高压侧无功补偿容量 ) ( 1 2 2U U X U Q- = 补偿 (3.4) ②主变压器低压侧无功补偿 无功补偿装置在主变压器的低压侧进行无功补偿,系统等值示意图如图3.9所示: P+jQ 补偿 图3.8 系统等值示意图

相关文档
最新文档