检测技术与控制工程答案概要

检测技术与控制工程答案概要

检测技术与控制工程答案概要

检测技术与控制工程教学大纲

检测技术与控制工程教学大纲 《测试技术与控制工程》教学大纲 课程代码:课程名称:学习时间:课程类型:0110098测试技术与控制工程32选修英文名称:课程成绩:课程性质:预存课程:课程系:检测技术与控制工程2专业课程电气与电子技术、C语言程序设计、机电工程学院应用专业:机械设计与制造及自动化课程术语: 1、第六学期课程的地位、目标和任务 本课程的状态: 测试技术和控制工程是高等院校机电工程、机械设计制造和自动化专业的专业课程。本课程在教学内容上应着重介绍机电系统中传感器、检测技术和计算机控制技术的基础知识、基本理论和基本方法。在实践能力培养方面,应注重设计理念、创新意识和设计技能的培养。本课程的目标是: 1.学生获得传感器、自动检测方法、计算机控制系统的组成和特点等方面的基本知识和技能。 2.将所学的自动检测技术和计算机控制系统灵活地应用于未来的工作和生产实践。本课程的任务: 1.掌握各种传感器的原理和应用; 2.具备自动检测技术的基本知识和技能; 3.掌握计算机控制系统的组成和特点; 4.掌握计算机控制系统的应用程序设计和实现技术; 5.初步形成解决生产中实际问题的能力。 第二,本课程与其他课程的联系

以前的课程:电气和电子技术,C语言编程。后课程:创新机械设计等。 三、教学内容和要求 第一章导言 教学要求: 掌握机电一体化的基本概念和关键技术,了解机电一体化的典型产品和发展趋势。要点:机电一体化的基本概念和关键技术难点:机电一体化关键技术的教学内容; 第一节机电一体化的基本概念(1)机电一体化的定义(2)机电一体化系统的要素 (3)机电系统的分类(4)机电系统的特征 第二节机电一体化技术与产品(1)机电一体化理论与技术基础(2)机电一体化关键技术(3)典型机电一体化产品 第三节机电一体化的历史和趋势(1)机电一体化的历史(2)机电一体化的趋势 第二章传感器和检测技术 教学要求: 理解传感和检测技术的基本概念;掌握应变和应力、压力、位移、流量、温度等典型物理量的检测技术及相应传感器的测量原理。 要点:传感器的基本概念;力传感器、压力传感器、温度传感器等的测量原理。难点:各种传感器的工作原理、适用场合和选型。教学内容: 第1节传感和检测技术概述(1)检测技术基础(2)传感器的基本概念

检测技术与自动化装置

method 线性系统理论Linear system theory 362秋 机器人控制与自主系统Robotic contr ol and autono mous system 543春 计算机控制理论与应用Computer con trol system th eory and its application 543春 自动测试理论Automatic me asurement the ory 543春 运筹学Operation res earch 543秋 系统工程理论与应用System engin eering theory and its appli cations 543春 复杂系统建模与仿真Modeling and simulation o f complex sy stems 543秋 非 学位课现代控制理论 专题 Special topic of modern co ntrol theory 362 鲁棒控制系统Robust contro l systems 362春 最优控制Optimal contr ol 362春 自适应控制Adaptive Con trol 362春

最优估计与系统辨识Optimal estim ate and syste m identificati on 362春 过程控制Process contr ol 362秋 非线性控制系统Nonlinear con trol systems 362春 离散事件动态系统Discrete event dynamic syst ems 362春 PETRI网Petri net362秋 人工智能原理及应用Artificial intel ligence theory and its appli cations 362春 智能化方法与技术Intelligent me thod and tech nology 362 模糊理论与应用Fuzzy theory and applicatio ns 362春 模糊逻辑控制系统Fuzzy logic c ontrol system 362春 人工神经网络Artificial neur al network 362秋 遗传算法与进化算法Genetic and e volutional alg orithm 362春 实时控制系统Real-time con trol systems 362秋 机器人视觉Robotic visio362春

生化过程的检测与控制(西农)

因为上传问题,特别添加了三个无关的图片,不然没法让其他人阅读 自己下完后删除即可 多打些无感的字,减小与另一个的相似率 一、绪论 1、基本概念 生化过程:即(发酵过程),利用微生物细胞或酶转化基本原料合成目的产物的过程。 状态变量:可显示过程状态及其特征的参数,一般指反应生物浓度、生物活性及反应速率的参数。 测量变量:指那些可以测量的状态变量。 操作变量:所谓的环境因子或操作条件,而改变这些环境因子和操作条件,可以造成生化过程状态变量的改变。 构造模型:包含胞内代谢网络在内,细致到考虑细胞内构成成分变化的数学模型。非构造模型:介于构造模型和状态模型之间,把生物过程的理论定理与经验公式结合起来,生化过程控制和优化中使用最广泛的模型。 状态模型:完全基于生物过程状态变量和操作变量时间序列数据的模型。 2、简答题 1、简述生化过程的控制特点。 答:(1)不需太高的控制精度,除温度、pH感受强的菌株发酵过程外,控制指标

不需精确也不可能100%地控制在某一水平; (2)生物过程的各状态变量之间存在一定的连带关系,难以检测的生物量在一定程度上可通过易检测的物理化学量间接检测,因此相当部分的生化过程控制是一种间接的优化和控制; (3)相当数量的工业规模或实验室规模的生物过程,没有合适的定量数学模型可循,控制和优化操作必须依靠操作人员的经验和知识。 2、实现发酵过程的优化与控制,必须解决的5个问题 答:(1)系统动力学; (2)生物模型; (3)传感器技术; (4)适用于生物过程的最优化技术; (5)计算机─检测系统─发酵罐之间的接口技术(如神经网络、专家系统) 3、生化过程控制理论存在的难点。 答:(1)无论是前馈还是反馈控制,都必须建立在在线监测的各种参数上,但适用于生化反应过程的传感器的研究大大落后于生物工业的发展。 (2)各种微生物具有独特的生理特性、生产各种代谢产物又有各自的代谢途径,应用于生化反应过程的控制理论不具有普适性。 (3)控制理论自身的局限,至今不能模拟生化反应过程的高度非线性的多容量特性。 (4)在具体的控制模型构建时,缺乏以细胞代谢流为核心的过程分析,采用以动力学为基础的最佳工艺控制点为依据的静态操作方法实质上是化学工程动力学概念在发酵工程上的延伸。 (5)目前发酵动力学模型主要通过经验法、半经验法或简化法得到,一般为非结构动力学模型,如Monod、Moser、Tessier、Contois等模型方程。 二、生化过程参数中物理参数检测技术

自动检测技术及其应用

现代化检测技术的应用与发展 The application and development of modern testing technology 【摘要】 自动检测技术是现代化领域中发展前景十分广阔的一门新兴技术,是将生产、科研、生活等方面的相关信息通过选择合适的检测方法与装置进行检查测量,以发现事物的规律性。随着社会经济的发展,自动检测技术不断进步,在机械制造、化工、电力、汽车、航空航天以及军事等领域有着不可或缺的作用,是自动化技术的四个支柱之一。 【关键词】自动检测传感器数据处理信号转换 【正文】 一、关于自动检测技术的基础知识 自动检测技术是以研究自动检测系统中的信息提取、信息转换以及信息处理的理论和技术为主要内容的一门应用技术学科。其任务是寻找与自然信息具有对应关系的各种表现形式的信号,以及寻求最佳的采集、转换、处理、传输、存储、显示等方法和相应的设备。 信息采集是指从自然界诸多被检查与测量的量中提取所需要的信息。 信息转换是指将所提取出的有用信息向电量、幅值、功率等形式转换。 信息处理的任务是根据输出环节的需要,将转换后的电信号进行数字运算(求均值、极值等)以及模拟量、数字量转换等处理。 信息传输的任务是在排除干扰的的情况下经济地、准确无误地吧信息进行传输。 二、自动检测技术的核心—自动检测系统 自动检测系统是自动测量、自动计量、自动保护、自动诊断、自动信号等诸多系统的总称,其原理图如下所示: 图1.自动检测系统框图 自动系统一般由传感器、信号处理器、显示器、数据处理装置和执行机构等五部分构成。下面介绍每个部分的功能: ①传感器:传感器(sensor)是指一个能将被测的非电量转换成电量的敏感元 件,是连接北侧对象和检测系统的接口。通过它人们可以利用计算机实现自

过程检测与控制仪表培训课件

过程检测与控制仪表知识 员工培训教材 马仁

过程控制与检测仪表课件 一、过程控制仪表: 1)是实现工业生产过程自动化的重要工具。控制检测仪表可分为八大单元:变动单元、调节单元、计算单元、显示单元、转换单元、给定单元、执行单元和辅助单元。(理论以“够用为度”,实践以“实用为主”) LT 控制系统方框图 说明:图中控制对象代表生产过程中的某个环节,控制对象输出的是被控变量(如压力、流量、温度、液位等温度变量)。这些工艺变量经变动单元转换成相应的电信号或气压信号后,一方面送显示单元供指示和记录,同时又送到调节单元中与给定单元送来的给定值进行比较,调节单元将比较后的偏差值进行一定的运算后,发出控制信号,控制执行单元的动作,将阀门开大或关小。改变控制量(如燃料油、蒸汽等介质流量的多少)直至被控变量与给定值相等为止,此时阀门会

平衡在某一位置,使工艺介质达到工艺要求。 ①LT—检测锅炉汽包水位的变化并将汽包水位高低这一物理量转换成仪表间的标准统一信号。 ②LC—接受液位测量变送器的输出标准信号,与工艺控制调节(控制器)器要求的水位信号相比较得出偏差信号的大小和方向,并按一定的规律运算后输送一个对应的标准统一信号。 ③LV—接受控制器的输出信号后,根据信号的大小和方向控制阀门的开度,从而改变给水量,经过反复测量和控制使锅炉汽包水位达到工艺要求。 一个控制系统基本由给定单元、控制对象、变送单元、调节(控制)单元、执行单元组成。 锅炉汽包水位控制系统原理图 二、检测与过程控制仪表(通常称自动化仪表)分类方法很多,根据不同原则可以进行相应的分类,如: 按照能源(所使用的):气动仪表、电动仪表、液动仪表。 根据是否引入微处理机可分为:智能仪表和非智能仪表。 根据信号形式可分为:模拟仪表和数字仪表。 检测与过程控制仪表最通用的分类是按照仪表在测量与控制系统中的作用划分的:

控制工程基础测试题1_2_3

机械工程控制基础A 卷参考答案 一填空题:(每空1分,共30分) 1. 构成控制系统的基本环节通常有1. 给定环节、 2. 比较环节、 3. 放大环节、 4. 执行环节、 5.控制环节、 6.被控对象、 7.反馈环节(或测量环节)。 2. 理论上而言,零型伺服控制系统适用于对8. 线位移或角位移信号进行跟踪;I 型伺服系统适用于对9. 线速度或角速度信号进行跟踪;II 型伺服系统适用于对10. 线加速度或角加速度信号进行跟踪。 3. 系统的时间响应中,与传递函数极点对应的响应分量称为11. 动态分量、与输入信号极点对应的响应分量称为12. 稳态分量。 4.传递函数中的基本环节按性质可分为五类,即13.比例环节 、14. 微分环节、1 5. 惯性环节 、1 6. 积分环节 、1 7. 延迟环节。 5. 时域分析方法中,常使用的性能指标有:18.延迟时间、19.上升时间、20.峰值时间、21.调节时间、22.最大超调量、23.稳态误差(或偏差)。 6.经典控制理论中,常使用的校正方式有:24. 串联校正、25.反馈校正、26.前馈校正。 7..伯德图(Bode)用27.对数幅频特性坐标系和28.半对数相频特性坐标系分别描述系统的幅频特性和相频特性。 8. 奈奎斯特稳定性判据中N=Z-P ,Z 代表特征函数在右半平面的29.零点数、P 代表特征函数在右半平面的30.极点数。 二.用等效变换法求如下系统传递函数C(S)/R (S):(12分 ) 答案为:2 323211213 211)(H G G G G G H G G G G G S G ++-= 三.质量-弹簧-阻尼系统,试求在作用力F 作用下,质量块M 的位移方程:(8分) 案:牛顿定律: ∑=ma F 可得 答 F ky dt dy fm dt y d m dt y d m dt dy f ky F =++?==--22 2 2 四.已知系统的特征方程为43251020240s s s s ++++=,使用劳斯判据判断系统的稳定性:(10分) 答案: 4 s 1 10 24

检测技术与控制工程 教学大纲

《检测技术与控制工程》课程教学大纲 一、课程的地位、目的和任务 本课程地位: 检测技术与控制工程是高等院校机械电子工程、机械设计制造及其自动化等专业的专业课程。本课程在教学内容方面应着重于介绍机电一体化系统中传感器与检测技术与计算机控制技术的基本知识、基本理论和基本方法,在培养实践能力方面应重视设计构思、创新意识和设计技能的培养。 本课程目的: 1.学生获得传感器、自动检测方法及计算机控制系统的组成及特点等方面的基本知识和基本技能; 2.将所学到的自动检测技术与计算机控制系统灵活地应用于今后的工作、生产实践中去。 本课程任务: 1.掌握各种传感器的原理及应用; 2.具备自动检测技术方面的基本知识和基本技能; 3.掌握计算机控制系统的组成和特点; 4.掌握计算机控制系统的应用程序设计及实现技术; 5.初步形成解决生产实际问题的能力。 二、本课程与其它课程的联系 前修课程:电工电子技术、c语言程序设计。 后修课程:机械创新设计等。 三、教学内容及要求 第一章绪论 教学要求: 掌握机电一体化的基本概念、关键技术,了解机电一体化的典型产品与发展趋势。 重点:机电一体化的基本概念、关键技术 难点:机电一体化的关键技术 教学内容: 第一节机电一体化的基本概念 (一)机电一体化的定义 (二)机电一体化系统构成要素

(三)机电一体化系统分类 (四)机电一体化系统特点 第二节机电一体化技术与产品 (一)机电一体化的理论与技术基础 (二)机电一体化的关键技术 (三)典型的机电一体化产品 第三节机电一体化的发展历史及趋势 (一)机电一体化的发展历史 (二)机电一体化的发展趋势 第二章传感器与检测技术 教学要求: 了解传感与检测技术的基本概念;掌握应变与应力、压力、位移、流量、温度等典型物理量的检测技术及其相应传感器的测量原理。 重点:传感器的基本概念;力传感器、压力传感器、温度传感器等的测量原理。 难点:各种传感器的工作原理、适用场合及选型。 教学内容: 第一节传感与检测技术概述 (一)检测技术基础 (二)传感器的基本概念 (三)传感器和检测系统的基本特性 (四)传感与检测系统的发展趋势 第二节应变与应力的检测 (一)电阻应变效应 (二)电阻应变片 (三)测量电桥 第三节应力的直接检测 (一)压电效应 (二)压电传感器及其等效电路 (三)压电式测力传感器及其应用 第四节位移量的检测 (一)常用位移测量方法 (二)电阻式位移传感器测量位移 (三)电感式位移传感器测量位移 (四)电容式位移传感器测量位移 (五)数字式位移传感器测量位移 第五节流量的检测 (一)流量的特征 (二)介入式流量检测方法 (三)非介入式流量检测方法 第六节温度的检测

控制工程基础应掌握的重要知识点

控制工程基础应掌握的重要知识点 控制以测量反馈为基础,控制的本质是检测偏差,纠正偏差。 自动控制系统的重要信号有输入信号、输出信号、反馈信号、偏差信号等。 输入信号又称为输入量、给定量、控制量等。 自动控制按有无反馈作用分为开环控制与闭环控制。 自动控制系统按给定量的运动规律分为恒值调节系统、程序控制系统与随动控制系统。 自动控制系统按系统线性特性分为线性系统与非线性系统。 自动控制系统按系统信号类型分为连续控制系统与离散控制系统。 对控制系统的基本要求是稳定性、准确性、快速性。 求机械系统与电路的微分方程与传递函数 拉普拉斯变换: 拉普拉斯反变换 拉普拉斯变换解微分方程 传递函数是在零初始条件下将微分方程作拉普拉斯变换,进而运算而来, 传递函数与微分方程是等价的, 传递函数适合线性定常系统。 ) a s (F )t (f e at +→- ) s (F e )T t (f TS -→-

典型环节传递函数: 比例环节K 惯性环节 一阶微分环节 二阶微分环节 传递函数框图的化简 闭环传递函数 开环传递函数 误差传递函数 闭环传递函数是输出信号与输入信号间的传递函数。 误差传递函数又称偏差传递函数,是偏差信号与输入信号间的传递函数。 系统输出信号称为响应,时间响应由瞬态响应与稳态响应组成。 系统的特征方程是令系统闭环传递函数分母等于零而得。 特征方程的根就是系统的极点。 1S +τ 1 S 2S 2 2+ζτ+τ

一阶惯性系统 特征方程为: 系统进入稳定状态指响应c(t)进入并永远保持在稳态值c(∞)的允许误差范围内,允许误差常取2%或5% 调整时间 特征方程为: 特征方程的根(即极点)为: ??? ??±=?±=?=% 2,T 4%5, T 3t s n ω无阻尼自由振荡频率ζ 阻尼比0 S 2S 2 n n 2=ω+ζω+一对虚极点 无阻尼,j S ),(0n 2,1ω±==ζ不能用 系统振荡会越来越大,,0<ζ0 1T S =+

现代控制工程及测试技术(卓迅佳)

《现代控制工程及测试技术》作业 班级:硕911 姓名:卓迅佳 学号:3109009028

1. 用MATLAB 求解微分方程的不同命令求解如下微分方程。 5.02d d 3 d d 2 d d 2 2 33 =+++y t y t y t y ,2.0)0(,4.0)0(,0)0(-===y y y 1) 至少选用两种求解微分方程的命令; 2) 在同一幅图上,用不同属性、颜色的曲线表示)(t y 和)(t y ; 解:编写m 文件程序如下: %------第一种方法采用函数ode23或ode45解---- clear all; close all; t0=0; tf=15; y0=[0,0.4,-0.2]'; [t,y]=ode23('vdpl',t0,tf,y0); figure(1) plot(t,y(:,1),'g-',t,y(:,2),'r--') title('用ode23函数实现微分方程的数值解') xlabel('time/sec') ylabel('value') legend('y','y''') grid %-------第二种方法采用dsolve 函数求解----- t1=0:0.05:15 y=dsolve('D3y+2*D2y+3*Dy+2*y=0.5','y(0)=0,Dy(0)=0.4,D2y(0)=-0.2') s=subs(y ,t1); dy=diff(y); s1=subs(dy ,t1); figure(2) plot(t1,s,'g-',t1,s1,'r--') title('用dsolve 函数实现微分方程的符号解') xlabel('time/sec') ylabel('value') legend('y','y''')

《控制工程基础》习题集

第一部分:单选题 1.自动控制系统的反馈环节中必须具有[ b ] a.给定元件 b .检测元件 c .放大元件 d .执行元件 2. 在直流电动机的电枢回路中,以电流为输出,电压为输入,两者之间的传递函数是[ a ] a .比例环节 b .积分环节 c .惯性环节 d .微分环节 3. 如果系统不稳定,则系统 [ a ] a.不能工作 b .可以工作,但稳态误差很大 c .可以工作,但过渡过程时间很长 d .可以正常工作 4. 在转速、电流双闭环调速系统中,速度调节器通常采用[ B ]调节器。 a .比例 b .比例积分 c .比例微分 d .比例积分微分 5.单位阶跃函数1(t)的拉氏变换式L[1(t)]为[ B ]: a .S b. S 1 c. 2 1S d. S 2 6. 在直流电动机的电枢回路中,以电流为输出,电压为输入,两者之间的传递函数是[ A ] A .比例环节 B .积分环节 C .惯性环节 D .微分环节

7.如果系统不稳定,则系统 [ A ] A. 不能工作 B.可以工作,但稳态误差很大 C.可以工作,但过渡过程时间很长 D.可以正常工作 8. 已知串联校正网络(最小相位环节)的渐近对数幅频特性如下图所示。试判断该环节的相位特性是[ A ]: A.相位超前B.相位滞后 [ B ]调节器。 A.比例 B.比例积分 C.比例微分 D.比例积分微分 10. 已知某环节的幅相频率特性曲线如下图所示,试判定它是何种环 A.相位超前 B. 相位滞后

C. 相位滞后-超前 D. 相位超前-滞后 12. 开环增益K 增加,系统的稳定性( c ): A .变好 B. 变坏 C. 不变 D. 不一定 13. 开环传递函数的积分环节v 增加,系统的稳定性( ): A .变好 B. 变坏 C. 不变 D. 不一定 14. 已知 f(t)=0.5t+1,其L[f(t)]=( c ): A .S+0.5S 2 B. 0.5S 2 C. S S 1212 D. S 21 15.自动控制系统的反馈环节中必须具有( b ): A.给定元件 B .检测元件 C .放大元件 D .执行元件 16.PD 调节器是一种( a )校正装置。 A .相位超前 B. 相位滞后 C. 相位滞后-超前 D. 相位超前-滞后 17.已知最小相位系统的开环对数幅频特性曲线的渐近线如下图所示,试确定其开环增益K ( c )。 A 、0 ; B 、5 ; C 、10 ; D 、12 L(18.已知系统的特征方程为S 3+S 2+τS+5=0,则系统稳定的τ值范围为( c )。 τ>0; B. τ<0 ; C. τ>5 ; D. 0<τ<5 19.开环传递函数的积分环节v 增加,系统的稳态性能( ):

机械控制工程基础复习重点总结

◎闭环控制系统主要由给定环节、比较环节、运算放大环节、执行环节、被控对象、检测环节(反馈环节)组成 ◎开环控制反馈及其类型:内反馈、外反馈、正反馈、负反馈。 ◎1、从数学角度来看,拉氏变换方法是求解常系数线性微分方程的工具。可以分别将“微分”与“积分”运算转换成“乘法”和“除法”运算,即把微分、积分方程转换为代数方程。对于指数函数、超越函数以及某些非周期性的具有不连续点的函数,用古典方法求解比较烦琐,经拉氏变换可转换为简单的初等函数,就很简便。 2、当求解控制系统输入输出微分方程时,求解的过程得到简化,可以同时获得控制系统的瞬态分量和稳态分量。 3、拉氏变换可把时域中的两个函数的卷积运算转换为复频域中两函数的乘法运算。在此基础上,建立了控制系统传递函数的概念,这一重要概念的应用为研究控制系统的传输问题提供了许多方便。 ◎描述系统的输入输出变量以及系统内部各变量之间的数学表达式 称为系统的数学模型,各变量间的关系通常用微分方程等数学表达式来描述。 ◎建立控制系统数学模型的方法主要有分析法(解析法)、实验法 ◎建立微分方程的基本步骤:1、确定系统或各元件的输入输出,找出各物理量之间的关系 2、按照信号在系统中的传递顺序,从系统输入端开始列出动态微分方程 3、按照系统的工作条件,忽略次要元素,对微分方程进行简化 4、消除中间变量 5整理微分方程,降幂排序,标准化。 ◎传递函数具有以下特点:1、传递函数分母的阶次与各项系数只取决于系统本身的固有特性,而与外界输入无关。 2、当系统在初始状态为0时,对于给定的输入,系统输出的拉氏逆变换完全取决于系统的传递函数。 x0(t)=L^-1[X0(s)]=L^-1[G(s)Xi(s)] 3、传递函数分母中s 的阶次n 不小于分子中s 的阶次m ,即n ≥m 。这是由于实际系统或元件总是具有惯性的 ◎方框图的结构要素:1、传递函数方框。2、相加点。3、分支点。 ◎时间响应及其组成:瞬态响应:系统在某一输入信号作用下,其输出量从初始状态到稳定状态的响应过程,也称动态响应,反映了控制系统的稳定性和快速性。 稳态响应:当某一信号输入时,系统在时间t 趋于无穷时的输出状态,也称静态响应,反映了系统的准确性。 ◎二阶系统的微分方程和传递函数: ◎系统稳态误差0lim (s)H(s)p s K G →=0 lim (s)H(s)v s K sG →=2 0lim (s)H(s)a s K s G →= ◎二阶系统响应的性能指标:1、上升时间r t ,响应曲线从原始工作状态出发,第一次达到稳态值所需要的时间定义为上升时间。对于过阻尼系统,上升时间定义为响应曲线从稳态值得10%上升到90%所需要的时间。2、峰值时间p t ,响应曲线达到第一个峰值所需要 的时间定义为峰值时间。3、最大超调量p M ,超调量是描述系统 相对稳定性的一个动态指标。一般用下式定义系统的最大超调量。 4、调整时间 s t 。5、振荡次数N ,在调整时间s t 内,0(t)x 穿越其稳定值0()x ∞次数的一半定义为振荡次数。(振荡次数与n ω无关,ξ 越大N 越小) ◎由此可见,系续稳定的充分必要条件是:系统特征方程的根全部具有负实部。系统的特征根就是系统闭环传递函数的极点,因此,系统稳定的充分必要条件还可以表述为系统闭环传递函数的极点全部位于[S ]平面的左半平面 线性定常系统对正弦输入的稳态响应被称为频率响应,该响应的频率与输入信号的频率相同,幅值和相位相对于输入信号随频率w 的变化而变化,反映这种变化特性的表达式0()i X X ω和-arctanTw 称系统的频率特性,它与系统传递函数的关系将G(S)中的S 用jw 歹取代,G(jw)即为系统的频率特性。

自动检测技术与装置(第二版) 复习题答案

1、检测仪表有哪几个基本的组成部分?各部分起什么作用。 答:检测仪表的组成:传感器+变送放大机构+显示器。1.传感器直接与被测量对象相联系,感受被测参数的变化,并将被测参数信号转换成相应的便于进行测量和显示的信号输出。2.变放大机构将感受件输出的信号直接传输给显示器或进行放大和转换,使之成为适应显示器的信号。 2、检测仪表的常用技术性能有哪些? 答:精度、变差、灵敏度和灵敏限、线性度、死区 3、按误差的来源分类,有哪几类?各类有何特点? 答:1检测系统误差 2随机误差 3 疏忽误差 系统误差的误差的特点是测量结果向一个方向偏离,其数值按一定规律变化。 随机误差的特点是相同条件下,对同一物理量进行多次测量,由于各种偶然因素,会出现测量值时而便大时而偏小的误差现象。随机误差既不能用实验方法消除,也不能修正,虽然他的变化无一定规律可循,但是在多次重复测量时,总体服从统计规律。 疏忽误差是指在一定的测量条件下,测得的值明显偏离其真值,既不具有确定分布规律,也不具有随机分布规律的误差,疏忽误差是由于测试人员对仪器不了解或因思想不集中,粗心大意导致错误的读数,使测量结果明显的偏离了真值的误差。 4 * 、说明弹簧管压力表的具体结构;使用中如何选择? 答:弹簧压力表也由外壳部分、指针、刻度盘。弹簧管、弯管、和传动机构等六个主要部分主成。弹簧管的内腔为封闭形式,外界压力作用于弹簧管外侧,使弹簧管变形,由传动机构带动指针转动指出环境压力。 压力表的选用原则:主要考虑量程、精度和型 5 * 、常用热电偶有哪几种?比较说明其主要的特点。 答:常用热电偶有:S (铂铑— 铂)、K (镍铬—镍硅)、E (镍铬—铜镍)三种 S 型的特点是熔点高,测温上限高,性能稳定、精度高、100度以下热电势极小,所以可不必考虑冷端温度补偿,价昂,热电势小,线性差,只适合于高温域的测量;K 型特点是热电势大,线性好,稳定性好,价廉,但材料较硬、在1000度以上长期使用会引起热电势漂移,多用于工业测量;E 型特点,热电势比K 型热电偶大50% 左右,线性好,耐高湿度,价廉,但不能用于还原性气氛,多用于工业测量。 6*、热电偶使用中为何常用补偿导线?补偿导线选择有什么条件? 答:使用补偿导线的作用,除了将热电偶的参考端从高温处移到环境温度相对稳定的地方外,同时能节约大量的价格较贵的金属和性能稳定的稀有金属,使用补偿导线也便于安装和线路铺设,用较粗直径和导电系数大的补偿导线代替电极,可以减少热电偶回路电阻以便于动圈式显示仪表的正常工作和自动控制温度。 条件:○ 1补偿导线的热电特性要与热电偶相同或相近;②材料价格比相应热偶低,来源丰富。 使用补偿导线注意问题:1、补偿导线只能在规定温度范围内与热电偶的热电势相等或相近2、不同型号的热电偶有不同的补偿导线3、热电偶和补偿导线的接口处要保持同温度4、补偿导线有正、负级,需分别与热电偶正、负极相连 5、补偿导线的作用只是延伸热电偶的自由端,当自由端的温度不等于0时,还需进行其他补偿和修正。 7*、热电偶冷端温度有哪些补偿方法? 答:冷端温度补偿的方法有:1、补偿导线法;2、计算修正法;3、自由端恒温法;4、补偿电桥法;5、仪表零点调整法 8*、常用热电阻有哪些?写出各分度号。 答:常用的热电阻有:铂电阻(Pt10、Pt100),铜电阻(Cu50、Cu100) 9、热电偶测温系统组成中需要注意哪些问题? 答:使用热电偶组成一个温度检测系统,主要有两种情况,一是热电偶直接与显示仪表相连,显示仪表显示被测温度值,二是、热电偶先接到热电偶温度变送器,变送器输出的标准信号与被测温度呈线性对应关系,并送到显示仪表显示温度值。对于第一种情况,显示仪表必须要与热电偶配套使用。对于第二种情况,温度变送器也必须要和热电偶配套使用,必须包含与热电偶对应的自由端温度补偿器,补偿器产生的电势连同热电偶一齐作为显示仪表的输入信号,由于热电势与温度之间是一个非线性关系,因此显示表的标尺上的温度刻度也是非线性的。 10 * 、写出节流式流量计的流量公式,并说明公式中各符号表示什么? 流量方程:P A q v ?=102ραε P A q m ?=102ραε α:流量系数 ε:可膨胀系数 ρ:节流前密度 0A :接流体开孔面 P ?:差压

控制工程基础应掌握的重要知识点

控制工程基础应掌握的重要知识点 控制以测量反馈为基础,控制的本质是检测偏差,纠正偏差。 自动控制系统的重要信号有输入信号、输出信号、反馈信号、偏差信号等。 输入信号又称为输入量、给定量、控制量等。 自动控制按有无反馈作用分为开环控制与闭环控制。 自动控制系统按给定量的运动规律分为恒值调节系统、程序控制系统与随动控制系统。自动控制系统按系统线性特性分为线性系统与非线性系统。 自动控制系统按系统信号类型分为连续控制系统与离散控制系统。 对控制系统的基本要求是稳定性、准确性、快速性。 求机械系统与电路的微分方程与传递函数 拉普拉斯变换: 传递函数是在零初始条件下将微分方程作拉普拉斯变换,进而运算而来, 传递函数与微分方程是等价的, 传递函数适合线性定常系统。 典型环节传递函数: 比例环节K 惯性环节 一阶微分环节振荡环节 二阶微分环节 )a s(F )t(f e at+ → -)s(F e )T t(f TS - → - 1 S+ τ 1 S 2 S2 2+ ζτ + τ

传递函数框图的化简 误差传递函数又称偏差传递函数,是偏差信号与输入信号间的传递函数。系统输出信号称为响应,时间响应由瞬态响应与稳态响应组成。 系统的特征方程是令系统闭环传递函数分母等于零而得。 特征方程的根就是系统的极点。

一阶惯性系统 的单位阶跃响应: 特征方程为: 特征方程的根(即极点)为: 单位阶跃信号 系统进入稳定状态指响应c(t)进入并永远保持在稳态值c(∞)的允许误差范围内,允许误差常取2%或5% 调整时间 二阶振荡系统: 特征方程为: 单位阶跃响应c(t): 1 063.2% 86.5% 95% 98.2% 99.3% T 2T 3T 4T 5T 0.632 t ()1t T c t e -=-() c t 斜率 1 T A 1 )t (r =???? ?±=?±=?=% 2,T 4% 5,T 3t s 1 TS 1 )S (R )S (C )S (G +==2 n n 22n 2 2 S 2S 1 TS 2S T 1 ) S (R )S (C )S (G ω+ζω+ω= +ζ+= =n ω无阻尼自由振荡频率ζ阻尼比2 n d d n 2n n 2,11,j 1j S ,,707.02 2 ,)8.0,4.0(,),(10ζ-ω=ωω±ζω-=ζ-ω±ζω-=ζζ== ζ∈ζ<ζ<有阻尼自由振荡频率为一对复极点极点过大则响应慢过小则振荡厉害最佳好统应工作在此状态具有振荡特性的二阶系欠阻尼0 S 2S 2n n 2=ω+ζω+一对复极点 欠阻尼,1j S ),(102n n 2,1ζ-ω±ζω-=<ζ<两相同实极点 临界阻尼,S ),(1n n 2,1ω-=ζω-==ζ两不同实极点过阻尼,1S ),(12 n n 2,1-ζω±ζω-=>ζ一对虚极点 无阻尼,j S ),(0n 2,1ω±==ζ不能用 系统振荡会越来越大,,0<ζ01T S =+T 1S 1- =

检测技术与过程控制

课程设计任务书 课题名称检测技术与过程控制 学院 专业建筑设施智能技术 班级 学生 学号 月日至月日

指导教师(签字)

目录 第一章过程控制课程设计任务书 (3) 第二章蒸汽压力波动是主要干扰的设计方案 (4) 一.控制方案、理论依据、控制工艺流程图 (4) 二.控制系统原理方框图 (4) 三.调节器正反作用的确定,系统工作过程概述 (4) 四.设计中用到的仪表的结构、特点说明 (5) 第三章冷水流量波动是主要干扰的设计方案 (7) 一.控制方案、理论依据、控制工艺流程图 (7) 二.控制系统原理方框图 (7) 三.调节器正反作用的确定,系统工作过程概述 (7) 四.设计中用到的仪表的结构、特点说明 (8) 第四章冷水流量和蒸汽压力均波动明显的设计方案 (10) 一.控制方案、理论依据、控制工艺流程图 (10) 二.控制系统原理方框图 (10) 三.调节器正反作用的确定,系统工作过程概述 (10) 四.设计中用到的仪表的结构、特点说明 (11) 第五章冷水流量、蒸汽压力以及进料压力波动均为主要干扰的设计方案 (13)

一.控制方案、理论依据、控制工艺流程图 (13) 二.控制系统原理方框图 (14) 三.调节器正反作用的确定,系统工作过程概述 (14) 四.设计中用到的仪表的结构、特点说明 (14) 第六章体会与感悟 (17) 参考文献 (17) 附录 (18)

第一章过程控制课程设计任务书 题目A:干燥器温度控制系统方案设计 一、工艺过程描述 某干燥器的流程所示。干燥器采用夹套加热和真空抽吸并行的方式来干燥物料。夹套通入的是经列管式加热器加热后的热水,而加热介质采用的是饱和蒸汽。为了提高干燥速度,应有较高的干燥温度θ,但θ过高会使物料的物性发生变化,这是不允许的,因此要求对干燥器温度进行严格控制。 二、设计要求 分别针对以下情况:

控制科学与工程

控制科学与工程[自动化]招生单位专业课类比本表所统计专业课的仅是“0811 控制科学与工程”一级学科下属的几个专业(二级学科)。双控=控制理论与控制工程;检测=检测技术与自动化装置;系统=系统工程;模式=模式识别与智能系统;导航=导航、制导与控制;复试——指的是复试笔试科目。 此仅为部分重点院校或重点专业;部分学校的同一名称的专业分布在不同的学院,也一并列出。 北京工业大学 421自动控制原理 复试:1、电子技术2、计算机原理 北京航空航天大学 [双控] 432控制理论综合或433控制工程综合 [检测] 433控制工程综合或436检测技术综合 [系统] 431自动控制原理或451材料力学或841概率与数理统计 [模式] (自动化学院)433控制工程综合或436检测技术综合、(宇航学院)423信息类专业综合或431自动控制原理或461计算机专业综合 [导航] (自动化学院)432控制理论综合或433控制工程综合、(宇航学院)431自动控制原理 复试:无笔试。1) 外语口语与听力考核;2) 专业基础理论与知识考核;3) 大学阶段学习成绩、科研活动以及工作业绩考核;4) 综合素质与能力考核 北京化工大学 440电路原理 复试:综合1(含自动控制原理和过程控制系统及工程)、综合2(含自动检测技术装置和传感器原理及应用)、综合3(含信号与系统和数字信号处理) 注:数学可选择301数学一或666数学(单) 北京交通大学 [双控/检测]404控制理论 [模式]405通信系统原理或409数字信号处理 复试: [电子信息工程学院双控]常微分方程 [机械与电子控制工程学院检测]综合复试(单片机、自动控制原理) [计算机与信息技术学院模式] 信号与系统或操作系统 北京科技大学 415电路及数字电子技术(电路70%,数字电子技术30%) 复试: 1.数字信号处理 2.自动控制原理 3.自动检测技术三选一 北京理工大学 410自动控制理论或411电子技术(含模拟数字部分)

检测技术与控制工程 教学大纲

检测技术与控制工程教学大纲 《检测技术与控制工程》课程教学大纲 课程编码:课程名称:学时:课程类型:0110098 检测技术与控制工程32 选修英文名称:学分:课程性质:先修课程:开课院系:Detection Technology and Control Engineering 2 专业课电工电子技术、c语言程序设计机电工程学院适用专业:机械设计制造及其自动化开课学期: 第6学期一、课程的地位、目的和任务 本课程地位: 检测技术与控制工程是高等院校机械电子工程、机械设计制造及其自动化等专业的专业课程。本课程在教学内容方面应着重于介绍机电一体化系统中传感器与检测技术与计算机控制技术的基本知识、基本理论和基本方法,在培养实践能力方面应重视设计构思、创新意识和设计技能的培养。 本课程目的: 1.学生获得传感器、自动检测方法及计算机控制系统的组成及特点等方面的基本知识和基本技能; 2.将所学到的自动检测技术与计算机控制系统灵活地应用于今后的工作、生产实践中去。本课程任务: 1.掌握各种传感器的原理及应用; 2.具备自动检测技术方面的基本知识和基本技能; 3.掌握计算机控制系统的组成和特点; 4.掌握计算机控制系统的应用程序设计及实现技术; 5.初步形成解决生产实际问题的能力。

二、本课程与其它课程的联系 前修课程:电工电子技术、c语言程序设计。后修课程:机械创新设计等。 三、教学内容及要求 第一章绪论 教学要求: 掌握机电一体化的基本概念、关键技术,了解机电一体化的典型产品与发展趋势。重点:机电一体化的基本概念、关键技术难点:机电一体化的关键技术教学内容: 第一节机电一体化的基本概念(一)机电一体化的定义(二)机电一体化系统构成要素 (三)机电一体化系统分类(四)机电一体化系统特点 第二节机电一体化技术与产品(一)机电一体化的理论与技术基础(二)机电一体化的关键技术(三)典型的机电一体化产品 第三节机电一体化的发展历史及趋势(一)机电一体化的发展历史(二)机电一体化的发展趋势 第二章传感器与检测技术 教学要求: 了解传感与检测技术的基本概念;掌握应变与应力、压力、位移、流量、温度等典型物理量的检测技术及其相应传感器的测量原理。 重点:传感器的基本概念;力传感器、压力传感器、温度传感器等的测量原理。难点:各种传感器的工作原理、适用场合及选型。教学内容: 第一节传感与检测技术概述(一)检测技术基础(二)传感器的基本概念 (三)传感器和检测系统的基本特性(四)传感与检测系统的发展趋势 第二节应变与应力的检测(一)电阻应变效应

生产过程控制和检验

生产过程控制和检验 4.1 工厂应对关键生产工序进行识别,关键工序操作人员应具备相应的能力,如果该工序没有文件规定就不能保证产品质量时,则应制定相应的工艺作业指导书,使生产过程受控。理解要点: 1) 过程控制(Process control),指从关键元器件、材料的采购,直到加工出成品的全过程中对半成品、产品的质量进行监视、修正和控制的活动; 2) 过程检验(Process testing),在过程控制中对关键元器件、材料,半成品,成品的规定参数进行的检测和验收; 3) 工厂应以明确的表达方式指明,哪些生产过程工序对认证产品的关键特性(安全、环保、EMC)起着重要的作用; 4) 工厂应对在关键工序岗位的人员能力提出具体要求,并保证在岗人员的能力符合规定的要求; 5) 并非所有的工序都需要工艺作业指导书。工艺作业指导书是否需要及其详略程度与操作人员的能力、作业活动的复杂程度等有关。只有在确认没有文件规定就不能保证认证产品质量时,工艺作业指导书才是必需的; 6) 通常,工艺作业指导书应明确工艺的步骤、方法、要求等,必要时,可包括对工艺过程监控的要求。 审查要点: 1) 通过查阅相关文件和现场观察,确认工厂是否明确了关键生产工序; 2) 通过查阅关键工序操作人员的培训记录,并结合现场调查的情况,判断操作人员是否具备相应的能力; 3) 在现场审查时,注意在规定有工艺作业指导书的工序上,工艺作业指导书是否为有效版本,是否明确了控制要求。操作人员是否按工艺作业指导书进行操作。 4.2 产品生产过程中如对环境条件有要求,工厂应保证工作环境满足规定的要求。 理解要点: 1) 环境条件包括:温度、湿度、噪声、振动、磁场、照度、洁净度、无菌、防尘等; 2) 工厂应识别认证产品生产过程中为达到其符合要求所需的工作环境,应提供和管理相应的资源以确保工作环境满足规定要求。工厂还应对这些条件作出明确的规定,包括具体的参数及控制要求(如果有); 3) 在认证产品生产过程中,必须确认规定的条件已得到满足,否则不能进行生产活动。

自动检测技术的应用与发展

自动检测技术的应用与发展 摘要 在当今经济全球化高速发展的时代,随着工业自动化技术的迅猛发展,自动检测技术被广泛地应用在工业自动化、化工、军事、航天、通讯、医疗、电子等行业,是自动化科学技术的一个格外重要的分支科学。众所周知,自动检测技术是在仪器仪表的使用、研制、生产的基础上发展起来的一门综合性技术。 自动检测系统广泛应用于各类产品的设计、生产、使用、维护等各个阶段,对提高产品性能及生产率、降低生产成本及整个生产周期成本起着重要作用。本文首先介绍自动检测系统的概念,其次通过自动检测系统的各个组成部分,详述系统的工作原理,介绍了自动检测系统组建的概念、结构以及在组建中所使用的关键技术。以此为铺垫,进而深入探讨自动检测技术在各领域间的应用与推广。 关键词:自动检测系统应用发展 第一章自动检测系统的概念与组成 自动检测技术是一种尽量减少所需人工的检测技术,是一种依赖仪器仪表,涉及物理学、电子学等多种学科的综合性技术。与传统检测技术相比,这一技术可以减少人们对检测结果有意或无意的干扰,减轻人员的工作压力,从而保证了被检测对象的可靠性,因此自动检测技术已经成为社会发展不可或缺的重要部分。自动检测技术主要有

两项职责,一方面,通过自动检测技术可以直接得出被检测对象的数值及其变化趋势等内容;另一方面,将自动检测技术直接测得的被检测对象的信息纳入考虑范围,从而制定相关决策。检测和检验是制造过程中最基本的活动之一。通过检测和检验活动提供产品及其制造过程的质量信息,按照这些信息对产品的制造过程进行修正,使废次品与反修品率降至最低,保证产品质量形成过程的稳定性及产出产品的一致性。 传统的检测和检验主要依赖人,并且主要靠手工的方式来完成。传统的检验和检测是在加工制造过程之后进行,一旦检出废次品,其损失已发生。基于人工检测的信息,经常包含人的误差影响,按这样的信息控制制造过程,不仅要在过程后才可以实施,而且也会引入误差。自动检测是以多种先进的传感技术为基础的,且易于同计算机系统结合,在合适的软件支持下,自动地完成数据采集、处理、特征提取和识别,以及多种分析与计算。而达到对系统性能的测试和故障诊断的目的。 1.1检测与检验的概念 检测是指为确定产品、零件、组件、部件或原材料是否满足设计规定的质量标准和技术要求目标值而进行的测试、测量等质量检测活动,检测有3个目标: ①实际测定产品的规定质量我及其指标的量值。 ②根据测得值的偏离状况,判定产品的质量水平,确定废次品。 ③认定测量方法的正确性和对测量活动简化是否会影响对规

相关文档
最新文档