晶闸管参数名词解释

晶闸管参数名词解释
晶闸管参数名词解释

晶闸管参数名词解释

1.反向重复峰值电压(V RRM):反向阻断晶闸管两端出现的重复最大瞬时值反向电压,包

括所有的重复瞬态电压,但不包括所有的不重复瞬态电压。

注:反向重复峰值电压(V RRM)是可重复的,值大于工作峰值电压的最大值电压,如每个周期开关引起的毛疵电压。

2.反向不重复峰值电压(V RSM):反向阻断晶闸管两端出现的任何不重复最大瞬时值瞬态

反向电压。

1)测试目的:在规定条件下,检验晶闸管的反向不重复峰值电压额定值。

2)测试条件:a)结温:25℃和125℃;b)门极断路;c)脉冲电压波形:底宽近似10mS 的正弦半波;d)脉冲重复频率:单次脉冲;e)脉冲次数:按有关产品标准规定;f)测试电压:反向不重复峰值电压

注:反向不重复峰值电压(V RSM)是外部因素偶然引起的,值一般大于重复峰值电压的最大值电压。通常标准规定V RSM=1.11V RRM。应用设计应考虑一切偶然因素引起的过电压都不得超过不重复峰值电压。

3.通态方均根电流:通态电流在一个周期内的方均根值。

4.通态平均电流:通态电流在一个周期内的平均值。

5.浪涌电流(I TSM):一种由于电路异常情况(如故障)引起的,并使结温超过额定结温

的不重复性最大通态过载电流。

1)测试目的:在规定条件下,检验晶闸管的通态(不重复)浪涌电流额定值。

2)测试条件:a)浪涌前结温:125℃;b)反半周电压:80%反向重复峰值电压;d)每次浪涌的周波数:一个周波,其导通角应在160度至180度之间

6.通态电流临界上升率(di/dt):在规定条件下,晶闸管能承受而无有害影响的最大通态

电流上升率。

1)测试目的:在规定条件下,检验晶闸管的通态电流临界上升率额定值。

2)测试条件:a)加通态电流前结温:125℃;b)门极触发条件:I GM=3~5I GT;c)开通前断态电压V DM=2/3V DRM ;d)开通后通态电流峰值:2 I T(A V)~3I T(AV);e)t1≥1us;f)重复频率:50HZ;g)通态电流持续时间:5s。

7.I2t值:浪涌电流的平方在其持续时间内的积分值。

1)测试目的:在规定条件下,检验和测量反向阻断三级晶闸管的I2t值

2)测试条件:a)浪涌前结温:125℃;b)浪涌电流波形:正弦半波;

3) I2t测试实质是持续时间小于工频正弦波(1-10ms范围)的一种不重复浪涌电流测试。

通过浪涌电流i t对其持续时间t积分∫i t2dt,即可求得I2t值。

8.门极平均值耗散功率(P G(A V)):在规定条件下,门极正向所允许的最大平均功率。

1)测试目的:在规定条件下,检验反向阻断三级晶闸管的门极平均功率额定值

2)测试条件:a)结温:125℃;b)门极功率:额定门极平均功率;c)测试持续时间:3S;

d)主电路条件:阳,阴极间断路。

3)测量程序:a)被测器件加热到规定结温;b)从零缓慢调整电源的输出,使电流表和电压表指示的数字的乘积达到额定门极平均功率P G(A V),并保持3S时间,然后将电源的输出调回零;c)测试后,进行门极触发电流和电压测量,如无异常,则P G(A V)额定值得到确认。

9.反向重复峰值电流(I RRM):晶闸管加上反向重复峰值电压时的峰值电流。

10.断态重复峰值电流(I DRM):晶闸管加上断态重复峰值电压时的峰值电流。

1)测试目的:在规定条件下,测量晶闸管的断态重复峰值电压下的断态重复峰值

电流和反向重复峰值电压下的反向重复峰值电流。

2)测试条件:a) 结温:25℃和125℃;b)断态电压和反向电压:断态重复峰值电压(V DRM)或反向重复峰值电压(V RRM);c)门极断路。

3)测量程序:A)被测器件分别在25℃和125℃下,调节交流电压源,使断态电压达到断态重复峰值电压,由示波器显示的断态电流即为所测断态重复峰值电

流(I DRM)。

B)被测器件主电极的极性交换,重复上述操作即可测得反向重复峰值电流(I RRM)。

11.峰值通态电压(V TM):晶闸管通以π倍或规定倍数额定通态平均电流值时的瞬态峰值

电压。

1)测试目的:在规定条件下,用脉冲法测量晶闸管的通态峰值电压。

2)测试条件:a)结温:出厂试验为25℃,型式试验为25℃和125℃;b)通态峰值电流:通态平均电流的π倍;c)电流脉冲可以使单次的,也可以是发热效应能

忽略的低重复频率脉冲;d)电流脉冲宽度应足够宽,以使被测器件完全开通。

3)测量程序:a)电源电压和门极触发电压先调至零。b)被测器件按规定压力和接线法接入电路中。结温调至规定值,门极电路调至规定的偏置条件。C)电源电

压由零增加,通过L,C振荡,使流过被测器件的脉冲电流整定到规定值,此

时示波器上显示的数值即为所测通态峰值电压。

12.门槛电压:由通态特性近似直线与电压轴的交点确定的通态电压值。

13.斜率电阻:由通态特性近似直线的斜率电阻确定的电阻值。

14.延迟时间:在用门极脉冲使晶闸管从断态转入通态的过程中,从门极脉冲前沿的规定点

起,至主电压下降到接近初始值的某一规定值为止的时间间隔。

15.关断时间(t q):外部使主电路转换动作后,从主电流下降至零值瞬间起,到晶闸管能

承受规定的断态电压而不致过零开通的时间间隔。

1)测试目的:在规定条件下测量晶反向阻断三极闸管的关断时间。

2)测试条件:a)通电前结温:125℃;b) 关断前通态电流:波形优选位矩形波,峰值优选为3 I TA V,上升率di/dt≤30A/us;c)通态电流持续时间:按被测器件完全导通而发热尽可能小确定,数百微秒至几毫秒;d)关断期间施加反向电压幅值为100V,最小值不小于20V;e)再加断态电压幅值V DM=2/3V DRM,其上升率dv/dt=30V/us;f)重复频率f≤50HZ。3)测量程序:a)被测器件结温控制在125℃;b)调整通态电流电源使被测器件流过规定的电流I TM,切断门极电流,持续规定的时间;c)调整反向电压电源,对被测器件施加幅值和最小值的反向电压,使其阳极电流反向并可靠地关断;d)在双迹示波器上观察,调整规定值再加断态电压施加时间,当被测器件刚能承受此电压而又不转为通态的最小时间间隔,即为所测关断时间。

16.恢复电荷(Q r):从规定的通态电流条件向规定的反向条件转换期间,晶闸管内存在的

恢复性总电荷。它包括储存的载流子和耗尽层电容两部分电荷。

1)测试目的:在规定条件下,用测量晶闸管反向恢复电流和反向恢复时间的方法求出恢复电荷。

2)测试条件:a)结温:125℃;b)换向前的通态电流;额定通态平均电流值;c)通态电流下降率:规定;d)通态电流通电时间:按被测器件完全开通,又可忽

视发热效应的原则选取;e)反向电压:50%反向重复峰值电压。

17.临界电压上升率(dv/dt):紧跟着一个方向通态电流之后,在相反方向上导致断态到通

态转换的最小主电压上升率。

1)测试目的:在规定条件下,用电压线形上升法或指数上升法,测量晶闸管的断态电压临界上升率。

2)测试条件:a)结温:125℃;b)断态峰值电压(V DM):从零开始施加2/3倍断态重复峰值电压;c)门极断路或规定偏置电阻值;d)断态电压脉冲间隔时间:

重复频率≤50HZ;

3)测试程序:被测器件加热到125℃。按示波器或峰值电压表显示,从零开始施加规定的断态电压,调整电压上升率,直至刚好开通,即电压波形突然下降,

开通前瞬间的dV/dt即为所求断态电压临界上升率。

18.门极触发电流(I GT):使晶闸管由断态转入通态所必需的最小门极电流。

19.门极触发电压(V GT):产生门极触发电流所必须的最小门极电压。

1)测试目的:在规定条件下,测量晶闸管的门极触发电流和门极触发电压。

2)测试条件:a)结温:25℃;b)断态电压:直流12V或6V;c)负载电阻(R)值:应予规定;

3)测量:被测器件在25℃下,由零开始逐渐增加门极至阴极间电压,当V1表指示的断态电压突然下降,A1表指示出通态电流的瞬间,此时毫安表A2和V2

表的指示分别为所测门极触发电流和门极触发电压。

20.门极峰值电流:包括所有门极正向瞬态电流的最大瞬时值门极正向电流。

21.门极反向峰值电压:门极反向电压的最大瞬时值,包括所有的门极反向瞬态电压。

1)测试目的:在规定条件下,检验反向阻断三级晶闸管的门极正向额定值。

2)测试条件:a)结温:125℃;b)重复频率:50HZ;c)门极脉冲波形:方波,脉冲幅值对

应的平均功率不超过其额定值;d)试验持续时间:3S;e)主电路条件:阳,阴极间断路。

3)测试程序:A)将被测器件温度加热到规定结温;B)在被测器件的门极和阴极间施加

门极触发脉冲,在示波器上观察门极伏安特性曲线,调整电源E,缓慢增大触发信号,当该曲线与额定门极正向峰值电流,额定门极正向峰值电压和额定门极正向峰值功率三条极限线的任一条相交时,在此点保持触发信号的大小持续3S时间,然后将电源输出调至零;C)测试后,进行断态和反向峰值电流,门极触发电流和电压测量,如无异常,则被测门极反向峰值电压额定值得到确认。

22.结壳热阻:结到管壳基准点的热阻。

23.壳散热阻;管壳基准点到散热器基准点的热阻。

仪器分析名词解释及简答题

仪器分析复习资料 名词解释与简答题 名词解释 1.保留值:表示试样中各组分在色谱柱中的滞留时间的数值。通常用时间或用将各组分带 出色谱柱所需载气的体积来表示。 2.死时间:指不被固定相吸附或溶解的气体(如空气、甲烷)从进样开始到柱后出现浓度 最大值时所需的时间。 3.保留时间:指被测组分从进样开始到柱后出现浓度最大值时所需的时间。 4.相对保留值:指某组分2的调整保留值与另一组分1的调整保留值之比。 5.半峰宽度:峰高为一半处的宽度。 6.峰底宽度:指自色谱峰两侧的转折点所作切线在基线上的截距。 7.固定液: 8.分配系数:在一定温度下组分在两相之间分配达到平衡时的浓度比。 9.分配比:又称容量因子或容量比,是指在一定温度、压力下,在两相间达到平衡时,组 分在两相中的质量比。 10.相比:VM与Vs的比值。 11.分离度:相邻两组分色谱峰保留值之差与两个组分色谱峰峰底宽度总和之半的比值。 12.梯度洗提:就是流动相中含有多种(或更多)不同极性的溶剂,在分离过程中按一定的 程序连续改变流动相中溶剂的配比和极性,通过流动相中极性的变化来改变被分离组分的容量因子和选择性因子,以提高分离效果。梯度洗提可以在常压下预先按一定的程序将溶剂混合后再用泵输入色谱柱,这种方式叫做低压梯度,又叫外梯度,也可以将溶剂用高压泵增压以后输入色谱系统的梯度混合室,加以混合后送入色谱柱,即所谓高压梯度或称内梯度。 13.化学键合固定相:将各种不同有机基团通过化学反应共价键合到硅胶(担体)表面的游 离羟基上,代替机械涂渍的液体固定相,从而产生了化学键合固定相。 14.正相液相色谱法:流动相的极性小于固定相的极性。 15.反相液相色谱法:流动相的极性大于固定相的极性。 16.半波电位:扩散电流为极限扩散电流一半时的电位。 17.支持电解质(消除迁移电位):如果在电解池中加入大量电解质,它们在溶液中解离为 阳离子和阴离子,负极对所有阳离子都有静电吸引力,因此作用于被分析离子的静电吸引力就大大的减弱了,以致由静电力引起的迁移电流趋近于零,从而达到消除迁移电流的目的。 18.残余电流:在进行极谱分析时,外加电压虽未达到被测物质的分解电压,但仍有微小的 电流通过电解池,这种电流称为残余电流。 19.迁移电流:由于静电吸引力而产生的电流称为迁移电流。 20.极大:在电解开始后,电流随电位的增加而迅速增大到一个很大的数值,当电位变得更 负时,这种现象就消失而趋于正常,这种现象称为极大或畸峰。 21.光谱分析:就是指发射光谱分析,或更确切地讲是原子发射光谱。 22.色散力:非极性分子间虽没有静电力和诱导力相互作用,但其分子却具有瞬间的周期变 化的偶极矩,只是这种瞬间偶极矩的平均值等于零,在宏观上显示不出偶极矩而已。这种瞬间偶极矩有一个同步电场,能使周围的分子极化,被极化的分子又反过来加剧瞬间偶极矩变化的幅度,产生所谓色散力。

(完整版)晶闸管直流调速系统参数和环节特性的测定

晶闸管直流调速系统参数和环节特性的测定一、实验目的 (1)熟悉晶闸管直流调速系统的组成及其基本结构。 (2)掌握晶闸管直流调速系统参数及反馈环节测定方法。 二、实验原理 晶闸管直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发动机组等组成。 在本实验中,整流装置的主电路为三相桥式电路,控制电路可直接由给定电压U g作为触发器的移相控制电压U ct,改变U g的大小即可改变控制角α,从而获得可调直流电压,以满足实验要求。实验系统的组成原理如图1所示。 图1 晶闸管直流调速试验系统原理图

三、实验内容 (1) 测定晶闸管直流调速系统主电路总电阻值R 。 (2) 测定晶闸管直流调速系统主电路电感值L 。 (3) 测定直流电动机-直流发电机-测速发电机组的飞轮惯量GD 2。 (4) 测定晶闸管直流调速系统主电路电磁时间常数T d 。 (5) 测定直流电动机电势常数C e 和转矩常数C M 。 (6) 测定晶闸管直流调速系统机电时间常数T M 。 (7) 测定晶闸管触发及整流装置特性()ct d U f U =。 (8) 测定测速发电机特性()n f U TG =。 四、实验仿真 晶体管直流调速实验系统原理图如图1所示。该系统由给定信号、同步脉冲触发器、晶闸管整流桥、平波电抗器、直流电动机等部分组成。图2是采用面向电气原理图方法构成的晶闸管直流调速系统的仿真模型。下面介绍各部分的建模与参数设置过程。 4.1 系统的建模和模型参数设置 系统的建模包括主电路的建模与控制电路的建模两部分。 (1)主电路的建模与参数设置 由图2可见,开环直流调速系统的主电路由三相对称交流电压源、晶闸管整流桥、平波电抗器、直流电动机等部分组成。由于同步脉冲触发器与晶闸管整流桥是不可分割的两个环节,通常作为一个组合体来讨论,所以将触发器归到主电路进行建模。 ①三相对称交流电压源的建模和参数设置。首先从电源模块组中选取一个交流电压源模块,再用复制的方法得到三相电源的另两个电压源模块,并用模块标题名称修改方法将模块标签分别改为“A 相”、“B 相”、“C 相”,然后从元件模块

晶闸管的主要参数

晶闸管的主要参数 (1) 断态不重复峰值电压U DSM 门极开路时,施加于晶闸管的阳极电压上升到正向伏安特性曲线急剧转折处所对应的电压值UDSM 。 它是一个不能重复,且每次持续时间不大于10ms的断态最大脉冲电压。 UDSM 值应小于转折电压U b0 。 (2) 断态重复峰值电压U DRM 晶闸管在门极开路而结温为额定值时,允许重复加于晶闸管上的正向断态最大脉冲电压。 每秒50次每次持续时间不大于10ms, 规定U DRM 为U DSM 的90%。 (3) 反向不重复峰值电压U RSM 门极开路,晶闸管承受反向电压时,对应于反向伏安特性曲线急剧转折处的反向 峰值电压值U RSM 。 它是一个不能重复施加且持续时间不大于10ms的反向脉冲电压。反向不重复峰 值电压U RSM 应小于反向击穿电压。 (4) 反向重复峰值电压U RRM 晶闸管在门极开路而结温为额定值时,允许重复加于晶闸管上的反向最大脉冲电压。 每秒50次每次持续时间不大于10ms。 规定U RRM 为U RSM 的90%。 (5) 额定电压UR 断态重复峰值电压UDRM和反向重复峰值电压URRM两者中较小的一个电压值规定为额定电压U R 。 在选用晶闸管时,应该使其额定电压为正常工作电压峰值U M 的2~3倍,以作为安全裕量。 (6)通态峰值电压U TM 规定为额定电流时的管子导通的管压降峰值。 一般为~,且随阳极电流的增加而略为增加。 额定电流时的通态平均电压降一般为1V左右。 (7) 通态平均电流I T (AV) 在环境温度为+40℃和规定的散热冷却条件下,晶闸管在导通角不小于170°电阻性负载的单相、工频正弦半波导电,结温稳定在额定值125°时,所允许通过的最大电流平均值。 ——允许流过的最大工频正弦半波电流的平均值。 选用一个晶闸管时,要根据所通过的具体电流波形来计算出容许使用的电流有效值,该值要小于晶闸管额定电流对应的有效值。晶闸管才不会损坏。 设单相工频正弦半波电流峰值为Im时通态平均电流为: 正弦半波电流有效值为: 有效值与通态平均电流比值为: 则有效值为: 根据有效值相等原则来计算晶闸管的额定电流。 若电路中实际流过晶闸管的电流有效值为I,平均值I d ,

可控硅电路选型分析

一、可控硅半导体结构及其工作原理:以单向可控硅为例 晶闸管(Thyristor)又叫可控硅T在工作过程中,它的阳极A和阴极K与电源和负载连接,组成晶闸管的主电路,晶闸管的门极G和阴极K与控制晶闸管的装置连接,组成晶闸管的控制电路。 晶闸管的工作条件: 1. 晶闸管承受反向阳极电压时,不管门极承受和种电压,晶闸管都处于关短状态。 2. 晶闸管承受正向阳极电压时,仅在门极承受正向电压的情况下晶闸管才导通。 3. 晶闸管在导通情况下,只要有一定的正向阳极电压,不论门极电压如何,晶闸管保持导通,即晶闸管导通后,门极失去作用。 4. 晶闸管在导通情况下,当主回路电压(或电流)减小到接近于零时,晶闸管关断。 晶闸管是四层三端器件,它有J1、J2、J3三个PN结图1,可以把它中间的NP分成两部分,构成一个PNP型三极管和一个NPN型三极管的复合管图2 当晶闸管承受正向阳极电压时,为使晶闸管导铜,必须使承受反向电压的PN结J2失去阻挡作用。图2中每个晶体管的集电极电流同时就是另一个晶体管的基极电流。因此,两个互相复合的晶体管电路,当有足够的门机电流Ig流入时,就会形成强烈的正反馈,造成两晶体管饱和导通,晶体管饱和导通。 设PNP管和NPN管的集电极电流相应为Ic1和Ic2;发射极电流相应为Ia和Ik;电流放大系数相应为a1=Ic1/Ia和a2=Ic2/Ik,设流过J2结的反相漏电电流为Ic0, 晶闸管的阳极电流等于两管的集电极电流和漏电流的总和: Ia=Ic1+Ic2+Ic0 或Ia=a1Ia+a2Ik+Ic0 若门极电流为Ig,则晶闸管阴极电流为Ik=Ia+Ig

从而可以得出晶闸管阳极电流为:I=(Ic0+Iga2)/(1-(a1+a2))(1—1)式 硅PNP管和硅NPN管相应的电流放大系数a1和a2随其发射极电流的改变而急剧变化如图3所示。 当晶闸管承受正向阳极电压,而门极未受电压的情况下,式(1—1)中,Ig=0,(a1+a2)很小,故晶闸管的阳极电流Ia≈Ic0 晶闸关处于正向阻断状态。当晶闸管在正向阳极电压下,从门极G流入电流Ig,由于足够大的Ig流经NPN管的发射结,从而提高起点流放大系数a2,产生足够大的极电极电流Ic2流过PNP管的发射结,并提高了PNP管的电流放大系数a1,产生更大的极电极电流Ic1流经NPN 管的发射结。这样强烈的正反馈过程迅速进行。从图3,当a1和a2随发射极电流增加而(a1+a2)≈1时,式(1—1)中的分母1-(a1+a2)≈0,因此提高了晶闸管的阳极电流Ia.这时,流过晶闸管的电流完全由主回路的电压和回路电阻决定。晶闸管已处于正向导通状态。 式(1—1)中,在晶闸管导通后,1-(a1+a2)≈0,即使此时门极电流Ig=0,晶闸管仍能保持原来的阳极电流Ia而继续导通。晶闸管在导通后,门极已失去作用。 在晶闸管导通后,如果不断的减小电源电压或增大回路电阻,使阳极电流Ia减小到维持电流IH 以下时,由于a1和a1迅速下降,当1-(a1+a2)≈0时,晶闸管恢复阻断状态。 二、可控硅种类 按照其工作特性又可分单向可控硅(SCR)、双向可控硅(TRIAC)。其中双向可控硅又分四象限双向可控硅和三象限双向可控硅。同时可控硅又有绝缘与非绝缘两大类,如ST的可控硅用BT名称后的“A”、与“B”来区分绝缘与非绝缘。 1、单向可控硅SCR:全称Semiconductor Controlled Rectifier(半导体整流控制器) 图2-1 2、双向可控硅TRIAC:全称Triode ACSemiconductor Switch(三端双向可控硅开关),也有厂商使用Bi-directional Controlled Rectifier(BCR)来表示双向可控硅。

照明类常用专业名词解释

照明类常用专业名词解释 照明类常用专业名词解释 来源:HCB照明网作者:HCB 1、光(light) 光是一种电磁波,是整个电磁波谱中极小范围的一部分光是能量的一种形态;光是电磁波辐射到人的眼睛,经视觉神经转换为光线,即能被肉眼看见的那部份光谱。这类射线的波长范围在360到830nm之间,仅仅是电磁辐射光谱非常小的一部份。温度远远高于50Hz工作时的温度,从而产生更高色温的白色色表和更好的显色性。 可见光:由光源发出的辐射能中的一部分,即能产生视觉的辐射能.常被称作为“可见光”。 可见光的波长:从380nm----780nm 紫外线的波长:从100nm---380nm,肉眼看不见。 红外线的波长:从780nm---1mm,肉眼看不见。 2、色温(CT-color temperature) 是将一标准黑体加热,温度升高至某一程度时,颜色开始由红—浅红-橙黄-白-蓝白-蓝,逐渐变化,利用这种光色变化的特性,某光源的光色与黑体在某一温度下呈现的光色相同时,我们将黑体当时的绝对温度称为该光源的相关色温,用绝对温度 K(kelvim)表示。黑体辐射理论是建立在热辐射基础上的,所以白炽灯一类的热辐射光源的光谱功率分布与黑体在可见区的光谱功率分布比较接近,都是连续光谱,用色温的概念完全可以描述这类光源的颜色特性。 3、显色指数(Ra) 衡量光源显现被照物体真实颜色的能力参数。 显色指数(0-100)越高的光源对颜色的再现越接近自然原色。 3.1、色温与感觉 3.2、显色性的效果与用途

4、光通量(流明Lm)Φ (luminous flux ) 光源发射并被人的眼睛接收的能量之和即为光通量。流明是光通量的单位。一般情况下,同类型的灯的功率越高,光通量也越大。例如:一只 40W的普通白炽灯的光通量为350---470lm,而一只40W的普通直管形荧光灯的光通量为2800lm左右,为白炽灯的6--8倍。(发光愈多流明数愈大) 5、光效(luminous efficacy of light source) 光源所发出的总光通量与该光源所消耗的电功率(瓦)的比值,称为该光源的光效。单位:流明 /瓦(lm/W) 光源将电能转化为可见光的效率,即光源消耗每一瓦电能所发出的光,数值越高表示光源的效率越高。从经济(能效)方面考虑,光效是一个重要的参数。 白炽灯:8-14lm/W 单端荧光灯:55-80 lm/W 自镇流荧光灯:50-70 lm/W 高压钠灯:80-140 lm/W 金卤灯:60-90 lm/W 卤钨灯: 15-20 lm/W 6、平均寿命(average life) 指一批灯燃点,当其中有50%的灯损坏不亮时所燃点的小时数。单位:小时( h) 7、经济寿命(economic life) 在同时考虑灯泡的损坏以及光束输出衰减的状况下,其综合光束输出减至一特定比例的小时数。此比例用于室外的光源为百分之七十,用于室内的光源如日光灯为百分之八十。 8、光强(luminous intensity ) 光源在某一给定方向的单位立体角内发射的光通量称为光源在该方向的发光强度,简称光强。单位:坎德拉cd 9、照度(illuminance) 单位:勒克斯 (Lux, lx) 照度是光通量与被照面之比值。照度是用来说明被照面(工作面)上被照射的程度,通常用其单位面积内所接受的光通量来表示,单位为勒克斯(lx)或流明每平方米(lm/m2)。1 lux之照度为1 lumen之光通量均匀分布在面积为一平方米之区域。单位被照面上接收到的光通量称为照度。如果每平方米被照面上接收到的光通量为 1(1m),则照度为1(1x)。单位:勒克斯(1x)。 1勒克斯(1x)相当于被照面上光通量为1流明(1m)时的照度。夏季阳光强烈的中午地面照度约5000 1x,冬天晴天时地面照度约为2000 1x,晴朗的月夜地面照度约0.2 1x。 10、亮度( luminance)

晶闸管测试 参数含义

晶闸管、二极管简易测试方法 晶闸管、二极管广泛应用于各类电力电子装置中,许多情况下,现场服务人员和维修人员需要对器件进行检测,判断其性能好坏。对器件制造企业而言,器件的检测要用到高压阻断测试仪、通态特性、动态特性测试仪等专业设备。一般来说,器件用户或使用现场是没有这些价格昂贵的测试设备的。本文就此向现场服务人员和维修人员推荐一种简易器件检测方法,用以粗略判断器件的好坏。 1.采用万用表的粗略判断法 通常用户现场最常用的检测工具是万用表,许多用户也习惯用万用表判断器件好坏。在某些情况下用万用表也确实能检测出损坏的器件。如晶闸管门极开路,用万用表可检测出门极至阴极电阻R GK无穷大;门极短路可检测出门极至阴极电阻R GK为零(或小于5W)。器件完全击穿时,用万用表检测A、K两极电阻值可以判断出来。但在器件阻断电压受损,尚未完全击穿时,万用表无法检测出来。另外,好的器件因参数分散性,用万用表检测出的A、K电阻值会有较大差别,这也会让使用者产生错误判断。因此,我们建议用户可以用万用表对器件进行一些粗略的检测,一般不建议用户采用万用表判断器件好坏。 2.推荐的简易检测方案 通常情况下,现场服务人员和维修人员最需要了解的是器件的阻断电压能力以及晶闸管的门极触发性能。根据设备现场具有的条件,我们推荐图一电路所示的简易检测方案。 图一简易检测电路 DUT为被测器件,在DUT阻断电压为1000V左右时(须大于800V),可采用交流380V电源进行测试;在一些具有660V交流电源的场合,DUT阻断电压为2000V左右(须大于1200V)时,可采用交流660V电源进行测试。D1可采用1-5A,耐压1000V以上二极管3只串联。LAMP为检测指示灯,注意灯的额定电压要与进线交流电压配合,若用220V的灯泡,可根据进线电压高低采用多只串联。被测器件为二极管时,将两只器件如虚线所示接入电路,不需要接电阻R和开关SW2。 对晶闸管,测试时,先合上开关SW1,若指示灯亮,说明该器件已被击穿或阻断电压已不够。若指示灯不亮,说明器件阻断电压正常,此时若按下按钮SW2,指示灯亮,松开按钮,指示灯熄灭,说明该器件门极触发性能正常。若按下按钮SW2,指示灯不亮,说明该器件门极已被损坏。 对二极管,测试时,合上开关SW1,若指示灯不亮,说明两只器件反向电压正常。若指示灯亮,说明两只被测器件中,有一只或两只反向电压已损坏,可更换器件做进一步判断。 3.注意 a.本文推荐的检测方法基本思路是让器件在实际使用电压环境下考核,用户在检测时须确保被测器件阻断电压高于进线电压峰值,以免在测试中损坏器件。 b. 对台基公司的平板式器件,用户在检测时须采用适当夹具,对器件A、K两极施加一定压力。否则可能会因为器件内部未能良好接触而造成错误判断。 c.采用较高的进线电压检测器件时,操作人员须采取安全措施,防止出现触电事故,保证人身安全。

晶闸管二极管主要参数及其含义

晶闸管二极管主要参数及其含义 IEC标准中用来表征晶闸管二极管性能特点的参数有数十项但用户经常用到的有十项左右本文就晶闸管二极管的主要参数做一简单介绍 1、正向平均电流I F(AV) (整流 管) 通态平均电流I T(AV) (晶闸管) 是指在规定的散热器温度T HS 或管壳温度 T C 时,允许流过器件的最大正弦半 波电流平均值此时器件的结温已达到其最高允许温度T jm 仪元公司产品手册中均 给出了相应通态电流对应的散热器温度T HS 或管壳温度 T C 值用户使用中应根据实 际通态电流和散热条件来选择合适型号的器件 2、正向方均根电流I FRMS (整流管) 通态方均根电流I TRMS (晶闸管) 是指在规定的散热器温度T HS 或管壳温度 T C 时,允许流过器件的最大有效电 流值用户在使用中须保证在任何条件下流过器件的电流有效值不超过对应壳温下的方均根电流值 3、浪涌电流I FSM (整流管)I TSM (晶闸管) 表示工作在异常情况下器件能承受的瞬时最大过载电流值用10ms底宽正弦半波峰值表示仪元公司在产品手册中给出的浪涌电流值是在器件处于最高允许 结温下施加80% V RRM 条件下的测试值器件在寿命期内能承受浪涌电流的次数是有限的用户在使用中应尽量避免出现过载现象

4、断态不重复峰值电压V DSM 反向不重复峰值电压V RSM 指晶闸管或整流二极管处于阻断状态时能承受的最大转折电压一般用单脉冲测试防止器件损坏用户在测试或使用中应禁止给器件施加该电压值以免损坏器件 5、断态重复峰值电压V DRM 反向重复峰值电压V RRM 是指器件处于阻断状态时断态和反向所能承受的最大重复峰值电压一般取器件不重复电压的90%标注高压器件取不重复电压减100V标注用户在使用中须保证在任何情况下均不应让器件承受的实际电压超过其断态和反向重复峰值电压 6、断态重复峰值漏电流I DRM 反向重复峰值漏电流I RRM 为晶闸管在阻断状态下承受断态重复峰值电压V DRM 和反向重复峰值电压V RRM 时流过 元件的正反向峰值漏电流该参数在器件允许工作的最高结温Tjm下测出 7、通态峰值电压V TM (晶闸管) 正向峰值电压V FM (整流管)

光学名词解释大全

光学名词解释大全 aperture stop(孔径阑)-限制进入光学系统之光束大小所使用的光阑。astigmatism(像散)-一个离轴点光源所发出之光线过透镜系统后,子午焦点与弧矢焦点不在同一个位置上。 marginal ray(边缘光束)-由轴上物点发出且通过入射瞳孔边缘的光线。 chief ray(主光束)-由离轴物点斜向入射至系统且通过孔径阑中心的光线。chromatic aberration(色像差)-不同波长的光在相同介质中有不的折射率,所以轴上焦点位置不同,因而造成色像差。 coma(慧差)-当一离轴光束斜向入射至透镜系统,经过孔径边缘所成之像高与经过孔径中心所成之像高不同而形成的像差。 distortion(畸变)-像在离轴及轴上的放大率不同而造成,分为筒状畸变及枕状畸变两种形式。 entrance pupil(入射瞳孔)-由轴上物点发出的光线。经过孔径阑前的组件而形成的孔径阑之像,亦即由轴上物点的位置去看孔径阑所成的像。 exit pupil(出射瞳孔)-由轴上像点发出的光线,经过孔径阑后面的组件而形成的孔径阑之像,亦即由像平面轴上的位置看孔径阑所成的的像。 field curvature(场曲)-所有在物平面上的点经过光学系统后会在像空间形成像点,这些像点所形成的像面若为曲面,则此系统有场曲。 ; field of view(视场、视角)-物空间中,在某一距离光学系统所能接受的最大物体尺寸,此量值以角度为单位。 f-number(焦数)-有效焦距除以入射瞳孔直径的比值,其定义式如下:有时候f-number也称为透镜的速度,4 f 的速度是2 f 速度的两倍。 meridional plane(子午平面)-在一个轴对称系统中,包含主光线与光轴的平面。numerical aperture(数值孔径)-折射率乘以孔径边缘至物面(像面)中心的半夹角之正弦值,其值为两倍的焦数之倒数。数ˋ值孔径有物面数值孔径与像面数值孔径两种。sagittal plan(弧矢平面、纬平面)-包含主光线,且与子午平面正交的平面。sagittal ray(弧矢光束、纬光束)-所有由物点出发而且在弧矢平面上的斜光线。 ray-intercept curve(光线交切曲线)-子午光线截在像平面上的高度相对于经过透镜系统后发出之光线的斜率之关系图;或是定义为经过透镜系统后的光线位移相对于孔径坐标的图。此两种定义法可依使用者需要选择,在OSLO 中采用后者。 spherical aberration(球面像差)-近轴光束与离轴光束在轴上的焦点位置不同而产生。vignetting(渐晕、光晕)-离轴越远(越接近最大视场)的光线经过光学系统的有效孔径阑越小,所以越离轴的光线在离轴的像面上的光强度就越弱,而形成影像由中心轴向离轴晕开。 孔径光阑:限制进入光学系统的光束大小所使用的光阑。 ※球差:近轴光束与离轴光束在轴上的焦点位置不同而产生的像差。 ※像散:一个离轴点光源所发出光线经过系统后,子午焦点与弧矢焦点不在同一位置上。※边缘光束:由轴上物点发出且通过入瞳边缘的光线。 ※主光束:由离轴物点斜向入射至系统且通过孔径光阑中心的光线。 ※色像差:不同波长的光在相同介质中有不同的折射离,所以轴上焦点位置不同,因而造成色像差。 ※角放大率:近轴像空间主光线角与近轴物空间主光线角的比率叫做角放大率,角的测量与

可控硅参数名词解释

晶闸管参数名词解释 1. 反向重复峰值电压(VRRM):反向阻断晶闸管两端出现的重复最大瞬时值反向电压,包括所有的重复瞬态电压,但不包括所有的不重复瞬态电压。 注:反向重复峰值电压(VRRM)是可重复的,值大于工作峰值电压的最大值电压,如每个周期开关引起的毛疵电压。 2. 反向不重复峰值电压(VRSM):反向阻断晶闸管两端出现的任何不重复最大瞬时值瞬态反向电压。 1)测试目的:在规定条件下,检验晶闸管的反向不重复峰值电压额定值。 2)测试条件:a)结温:25℃和125℃;b)门极断路;c)脉冲电压波形:底宽近似10mS 的正弦半波;d)脉冲重复频率:单次脉冲;e)脉冲次数:按有关产品标准规定;f)测试电压:反向不重复峰值电压 注:反向不重复峰值电压(VRSM)是外部因素偶然引起的,值一般大于重复峰值电压的最大值电压。通常标准规定VRSM =1.11VRRM。应用设计应考虑一切偶然因素引起的过电压都不得超过不重复峰值电压。 3. 通态方均根电流(IT(RMS)):通态电流在一个周期内的方均根值。 4. 通态平均电流(IT(AV)):通态电流在一个周期内的平均值。 5. 浪涌电流(ITSM):一种由于电路异常情况(如故障)引起的,并使结温超过额定结温的不重复性最大通态过载电流。 1)测试目的:在规定条件下,检验晶闸管的通态(不重复)浪涌电流额定值。 2)测试条件:a)浪涌前结温:125℃;b)反半周电压:80%反向重复峰值电压;d)每次浪涌的周波数:一个周波,其导通角应在160度至180度之间 6. 通态电流临界上升率(di/dt):在规定条件下,晶闸管能承受而无有害影响的最大通态电流上升率。 1)测试目的:在规定条件下,检验晶闸管的通态电流临界上升率额定值。 2)测试条件:a)加通态电流前结温:125℃;b)门极触发条件:IGM =3~5IGT;c)开通前断态电压VDM=2/3VDRM ;d)开通后通态电流峰值:2 IT(AV)~3IT(AV);e)t1≥1us;f)重复频率:50HZ;g)通态电流持续时间:5s。 7. I2t值:浪涌电流的平方在其持续时间内的积分值。 1)测试目的:在规定条件下,检验和测量反向阻断三级晶闸管的I2t值 2)测试条件:a)浪涌前结温:125℃;b)浪涌电流波形:正弦半波; 3) I2t测试实质是持续时间小于工频正弦波(1-10ms范围)的一种不重复浪涌电流测试。通过浪涌电流it对其持续时间t积分∫it2dt,即可求得I2t值。 8. 门极平均值耗散功率(PG(AV)):在规定条件下,门极正向所允许的最大平均功率。 1) 测试目的:在规定条件下,检验反向阻断三级晶闸管的门极平均功率额定值 2) 测试条件:a)结温:125℃;b)门极功率:额定门极平均功率;c)测试持续时间:3S;d)主电路条件:阳,阴极间断路。 3)测量程序:a)被测器件加热到规定结温;b)从零缓慢调整电源的输出,使电流表和电压表指示的数字的乘积达到额定门极平均功率PG(AV),并保持3S时间,然后将电源的输出调回零;c)测试后,进行门极触发电流和电压测量,如无异常,则PG(AV)额定值得到确认。 9. 反向重复峰值电流(IRRM):晶闸管加上反向重复峰值电压时的峰值电流。 10. 断态重复峰值电流(IDRM):晶闸管加上断态重复峰值电压时的峰值电流。

可控硅的主要参数

可控硅 可控硅是硅可控整流元件的简称,亦称为晶闸管。具有体积小、结构相对简单、功能强等特点,是比较常用的半导体器件之一。该器件被广泛应用于各种电子设备和电子产品中,多用来作可控整流、逆变、变频、调压、无触点开关等。家用电器中的调光灯、调速风扇、空调机、电视机、电冰箱、洗衣机、照相机、组合音响、声光电路、定时控制器、玩具装置、无线电遥控、摄像机及工业控制等都大量使用了可控硅器件。按其工作特性,可控硅(THYRISTOR)可分为普通可控硅(SCR)即单向可控硅、双向可控硅(TRIAC)和其它特殊可控硅。 可控硅的主要参数 非过零触发-无论交流电电压在什么相位的时候都可触发导通可控硅,常见的是移相触发,即通过可控硅的主要参数 1、额定通态平均电流IT在一定条件下,阳极---阴极间可以连续通过的50赫兹正弦半波电流的平均值。 2、正向阻断峰值电压VPF 在控制极开路未加触发信号,阳极正向电压还未超过导能电压时,可以重复加在可控硅两端的正向峰值电压。可控硅承受的正向电压峰值,不能超过手册给出的这个参数值。 3、反向阴断峰值电压VPR当可控硅加反向电压,处于反向关断状态时,可以重复加在可控硅两端的反向峰值电压。使用时,不能超过手册给出的这个参数值。 4、控制极触发电流Ig1 、触发电压VGT在规定的环境温度下,阳极---阴极间加有一定电压时,可控硅从关断状态转为导通状态所需要的最小控制极电流和电压。

5、维持电流IH在规定温度下,控制极断路,维持可控硅导通所必需的最小阳极正向电流。 近年来,许多新型可控硅元件相继问世,如适于高频应用的快速可控硅,可以用正或负的触发信号控制两个方向导通的双向可控硅,可以用正触发信号使其导通,用负触发信号使其关断的可控硅等等。 可控硅的触发 过零触发-一般是调功,即当正弦交流电交流电电压相位过零点触发,必须是过零点才触发,导通可控硅。 非过零触发-无论交流电电压在什么相位的时候都可触发导通可控硅,常见的是移相触发,即通过改变正弦交流电的导通角(角相位),来改变输出百分比。 可控硅的主要参数 可控硅的主要参数: 1 额定通态电流(IT)即最大稳定工作电流,俗称电流。常用可控硅的IT一般为一安到几十安。 2 反向重复峰值电压(VRRM)或断态重复峰值电压(VDRM),俗称耐压。常用可控硅的VRRM/VDRM一般为几百伏到一千伏。 3 控制极触发电流(IGT),俗称触发电流。常用可控硅的IGT一般为几微安到几十毫安。可控硅的常用封装形式

晶闸管参数说明

IEC标准中用来表征晶闸管、二极管性能、特点的参数有数十项,但用户经常用到的有十项左右,本文就晶闸管、二极管的主要参数做一简单介绍。 1.正向平均电流I F(A V)( 整流管) 通态平均电流I T(A V)( 晶闸管) 是指在规定的散热器温度THS或管壳温度T C时,允许流过器件的最大正弦半波电流平均值。此时,器件的结温已达到其最高允许温度Tjm。台基公司产品手册中均给出了相应通态电流对应的散热器温度THS或管壳温度T C值,用户使用中应根据实际通态电流和散热条件来选择合适型号的器件。 2.正向方均根电流I F(RMS)( 整流管) 通态方均根电流I T(RMS)( 晶闸管) 是指在规定的散热器温度THS或管壳温度TC 时,允许流过器件的最大有效电流值。用户在使用中,须保证在任何条件下,流过器件的电流有效值不超过对应壳温下的方均根电流值。3.浪涌电流I FSM(整流管)、I TSM(晶闸管) 表示工作在异常情况下,器件能承受的瞬时最大过载电流值。用10ms底宽正弦半波峰值表示,台基公司在产品手册中给出的浪涌电流值是在器件处于最高允许结温下,施加80% V RRM条件下的测试值。器件在寿命期内能承受浪涌电流的次数是有限的,用户在使用中应尽量避免出现过载现象。 4.断态不重复峰值电压V DSM 反向不重复峰值电压V RSM 指晶闸管或整流二极管处于阻断状态时能承受的最大转折电压,一般用单脉冲测试防止器件损坏。用户在测试或使用中,应禁止给器件施加该电压值,以免损坏器件。 5.断态重复峰值电压V DRM 反向重复峰值电压V RRM 是指器件处于阻断状态时,断态和反向所能承受的最大重复峰值电压。一般取器件不重复电压的90%标注(高压器件取不重复电压减100V标注)。用户在使用中须保证在任何情况下,均不应让器件承受的实际电压超过其断态和反向重复峰值电压。 6.断态重复峰值(漏)电流IDRM 反向重复峰值(漏)电流IRRM 为晶闸管在阻断状态下,承受断态重复峰值电压VDRM和反向重复峰值电压VRRM时,流过元件的正反向峰值漏电流。该参数在器件允许工作的最高结温Tjm下测出。 7.通态峰值电压V TM(晶闸管) 正向峰值电压V FM(整流管) 指器件通过规定正向峰值电流I FM(整流管)或通态峰值电流I TM(晶闸管)时的峰值电压,也称峰值压降。该参数直接反映了器件的通态损耗特性,影响着器件的通态电流额定能力。器件在不同电流值下的的通态(正向)峰值电压可近似用门槛电压和斜率电阻来表示: V TM=VTO+rT*I TM V FM=VFO+rF*I FM 台基公司在产品手册中给出了各型号器件的最大通态(正向)峰值电压及门槛电压和斜率电阻,用户需要时,可以提供该器件的实测门槛电压和斜率电阻值。 8.电路换向关断时间t q(晶闸管) 在规定条件下,在晶闸管正向主电流下降过零后,从过零点到元件能承受规定的重加电压而不至导通的最小时间间隔。晶闸管的关断时间值决定于测试条件,台基公司对所制造的快速、高频晶闸管均提供了每只器件的关断时间实测值,在未作特别说明时,其对应的测试条件如下: l 通态峰值电流ITM等于器件ITA V;

仪器分析名词解释1

绪论 1 仪器分析: 是指通过测量物质是某些物理或者物理化学性质` 参数及其变化来确定物质的组成成分含量级化学结构的分析方法。仪器分析的产生与生产实践科学技术发展的迫切需要方法核心原理发现及相关技术产生等密切相关。 2 定性分析: 鉴定式样由哪些元素、离子、基团或化合物组成,即确定物质的组成。 3 定量分析: 测定试样中各种组分(如元素、根或官能团等)含量的操作。 4 精密度: 指同一分析仪器的同一方法多次测定所得到数据间的一致程度,是表征随机误差大小的指标,亦成为重复测定结果随测定平均值的分散度,即重现性。 5 灵敏度: 仪器或分析方法灵敏度是指区别具有微小浓度差异分析物能力的度量,它取决于两个因素:即校准曲线的斜率和仪器设备的重现性或精密度。 6 检出限: 又称检测下限或最低检出量,指一定置信水平下检出分析物或组分的最小量或最低浓度。它取决于分析物产生信号与本底空白信号波动或噪声统计平均值之比。 7 动态范围: 定量测定最低浓度(LOQ)扩展到校准曲线偏离线性响应(LOL)的浓度范围。 8 选择性: 一种仪器方法的选择性是指避免试样中含有其它组分干扰组分测定的程度。

9 分辨率: 指仪器鉴别由两相近组分产生信号的能力。不同类型仪器分辨率指标各不相同,光谱仪器指将波长相近两谱线(或谱峰)分开的能力;质谱仪器指分辨两相邻质量组分质谱峰的分辨能力;色谱指相邻两色谱峰的分离度;核磁共振波谱有它独特的分辨率指标,以临二氯甲苯中特定峰,在最大峰的半宽度为分辨率大小。 10 分析仪器的校正: 仪器分析中将分析仪器产生的各种响应信号值转变成被测物质的质量或浓度的过程称为校正。一般包括分析仪器的特征性能指标和定量分析方法校正。 光谱法导论 11 电磁辐射: 电场和磁场的交互变化产生的电磁波,电磁波向空中发射或汇聚的现象,叫电磁辐射举例说,正在发射讯号的射频天线所发出的移动电荷,便会产生电磁能量。 12 电磁辐射的吸收、发射、散射、折射、干涉、衍射: (1) 吸收物质选择性吸收特定频率的辐射能,并从低能级跃迁到高能级; (2) 发射将吸收的能量以光的形式释放出; (3) 散射丁铎尔散射和分子散射; (4) 折射折射是光在两种介质中的传播速度不同; (6) 干涉干涉现象; (7) 衍射光绕过物体而弯曲地向他后面传播的现象; 13 分子光谱、原子光谱 分子光谱:分子从一种能态改变到另一种能态时的吸收或发射光谱(可包括从

晶闸管的主要参数

晶闸管的主要参数 作者:jesse 文章来源:本站原创点击数:273 更新时间:2007-12-6 ★★★【字体:小大】 晶闸管的主要电参数有正向转折电压VBO、正向平均漏电流IFL、反向漏电流IRL、断态重复峰值电压V DRM、反向重复峰值电压VRRM、正向平均压降VF、通态平均电流IT、门极触发电压VG、门极触发电流IG、门极反向电压和维持电流IH等。 (一)正向转折电压VBO 晶闸管的正向转折电压VBO是指在额定结温为100℃且门极(G)开路的条件下,在其阳极(A)与阴极(K)之间加正弦半波正向电压、使其由关断状态转变为导通状态时所对应的峰值电压。 (二)断态重复峰值电压VDRM 断态重复峰值电压VDRM,是指晶闸管在正向阻断时,允许加在A、K(或T1、T2)极间最大的峰值电压。此电压约为正向转折电压减去100V后的电压值。 (三)通态平均电流IT 通态平均电流IT,是指在规定环境温度和标准散热条件下,晶闸管正常工作时A、K(或T1、T2)极间所允许通过电流的平均值。(四)反向击穿电压VBR 反向击穿电压是指在额定结温下,晶闸管阳极与阴极之间施加正弦半波反向电压,当其反向漏电电流急剧增加时反对应的峰值电压。 (五)反向重复峰值电压VRRM 反向重复峰值电压VRRM,是指晶闸管在门极G断路时,允许加在A、K极间的最大反向峰值电压。此

电压约为反向击穿电压减去100V后的峰值电压。 (六)正向平均电压降VF 正向平均电压降VF也称通态平均电压或通态压降VT,是指在规定环境温度和标准散热条件下,当通过晶闸管的电流为额定电流时,其阳极A与阴极K之间电压降的平均值,通常为0.4~1.2V。 (七)门极触发电压VGT 门极触发VGT,是指在规定的环境温度和晶闸管阳极与阴极之间为一定值正向电压的条件下,使晶闸管从阻断状态转变为导通状态所需要的最小门极直流电压,一般为1.5V左右。 (八)门极触发电流IGT 门极触发电流IGT,是指在规定环境温度和晶闸管阳极与阴极之间为一定值电压的条件下,使晶闸管从阻断状态转变为导通状态所需要的最小门极直流电流。 (九)门极反向电压 门极反向电压是指晶闸管门极上所加的额定电压,一般不超过10V。 (十)维持电流IH 维持电流IH是指维持晶闸管导通的最小电流。当正向电流小于IH时,导通的晶闸管会自动关断。(十一)断态重复峰值电流IDR 断态重复峰值电流IDR,是指晶闸管在断态下的正向最大平均漏电电流值,一般小于100μA (十二)反向重复峰值电流IRRM 反向重复峰值电流IRRM,是指晶闸管在关断状态下的反向最大漏电电流值,一般小于100μA。

晶闸管参数名词解释

晶闸管参数名词解释 1.反向重复峰值电压(V RRM):反向阻断晶闸管两端出现的重复最大瞬时值反向电压,包 括所有的重复瞬态电压,但不包括所有的不重复瞬态电压。 注:反向重复峰值电压(V RRM)是可重复的,值大于工作峰值电压的最大值电压,如每个周期开关引起的毛疵电压。 2.反向不重复峰值电压(V RSM):反向阻断晶闸管两端出现的任何不重复最大瞬时值瞬态 反向电压。 1)测试目的:在规定条件下,检验晶闸管的反向不重复峰值电压额定值。 2)测试条件:a)结温:25℃和125℃;b)门极断路;c)脉冲电压波形:底宽近似10mS 的正弦半波;d)脉冲重复频率:单次脉冲;e)脉冲次数:按有关产品标准规定;f)测试电压:反向不重复峰值电压 注:反向不重复峰值电压(V RSM)是外部因素偶然引起的,值一般大于重复峰值电压的最大值电压。通常标准规定V RSM=1.11V RRM。应用设计应考虑一切偶然因素引起的过电压都不得超过不重复峰值电压。 3.通态方均根电流:通态电流在一个周期内的方均根值。 4.通态平均电流:通态电流在一个周期内的平均值。 5.浪涌电流(I TSM):一种由于电路异常情况(如故障)引起的,并使结温超过额定结温 的不重复性最大通态过载电流。 1)测试目的:在规定条件下,检验晶闸管的通态(不重复)浪涌电流额定值。 2)测试条件:a)浪涌前结温:125℃;b)反半周电压:80%反向重复峰值电压;d)每次浪涌的周波数:一个周波,其导通角应在160度至180度之间 6.通态电流临界上升率(di/dt):在规定条件下,晶闸管能承受而无有害影响的最大通态 电流上升率。 1)测试目的:在规定条件下,检验晶闸管的通态电流临界上升率额定值。 2)测试条件:a)加通态电流前结温:125℃;b)门极触发条件:I GM=3~5I GT;c)开通前断态电压V DM=2/3V DRM ;d)开通后通态电流峰值:2 I T(A V)~3I T(AV);e)t1≥1us;f)重复频率:50HZ;g)通态电流持续时间:5s。 7.I2t值:浪涌电流的平方在其持续时间内的积分值。 1)测试目的:在规定条件下,检验和测量反向阻断三级晶闸管的I2t值 2)测试条件:a)浪涌前结温:125℃;b)浪涌电流波形:正弦半波; 3) I2t测试实质是持续时间小于工频正弦波(1-10ms范围)的一种不重复浪涌电流测试。 通过浪涌电流i t对其持续时间t积分∫i t2dt,即可求得I2t值。 8.门极平均值耗散功率(P G(A V)):在规定条件下,门极正向所允许的最大平均功率。 1)测试目的:在规定条件下,检验反向阻断三级晶闸管的门极平均功率额定值 2)测试条件:a)结温:125℃;b)门极功率:额定门极平均功率;c)测试持续时间:3S; d)主电路条件:阳,阴极间断路。 3)测量程序:a)被测器件加热到规定结温;b)从零缓慢调整电源的输出,使电流表和电压表指示的数字的乘积达到额定门极平均功率P G(A V),并保持3S时间,然后将电源的输出调回零;c)测试后,进行门极触发电流和电压测量,如无异常,则P G(A V)额定值得到确认。 9.反向重复峰值电流(I RRM):晶闸管加上反向重复峰值电压时的峰值电流。 10.断态重复峰值电流(I DRM):晶闸管加上断态重复峰值电压时的峰值电流。 1)测试目的:在规定条件下,测量晶闸管的断态重复峰值电压下的断态重复峰值

灯光名词解释

灯光名词解释 亮度: 亮度是指围绕某表面上的一点微单位面积,在给定方向所发射的发光强度除以该单元投影到同一方向上的面积,单位是:cd/c㎡。在灯光系统中一般都不会遇到亮度的概念。 照度: 照度是指在一个面上的光通密度,它是射入单位面积内的光通量,单位是LX。照度的定义和测量比较复杂,象平均柱面照度、等效球照度、标量照度等,它们的测量条件和计算方法有所不同。在建筑和装饰工程中经常会遇到、灯光系统中偶尔也涉及到照度概念。 光通量: 光通量是指光源在单位时间离向周围空间辐射的,能引起视觉反应能量,即可见光的能量。它描述的是光源的有效辐射值,单位是1m(流明)。 同样功率的灯具的光通量可能完全不同,这是因为它们的光效不同的缘故。比如:普通照明灯泡只有10 1m/瓦,而金属卤素灯可以达到80 1m/瓦。 色温: 色温是指光源发射的颜色与黑体在某一温度下辐射的光色相同时,黑体的温度称为该光源的色温,一般以开氏k为单位。比如3200k和5600k等。 色温高,光线的颜色偏冷:色温低,光线的颜色偏暖:色温适中时,光线接近于白色。 自然界正常日照下,光线的色温一般都要高于人工灯具的色温。通常情况下,阳光的色温为5600k左右,而演播室及演出用灯具的色温都在3200k左右。(热光源)。 不过近来电视演播室兴起的冷光源布光,是对传统光源的变革。冷光源的色温高,耗能低,发热小,在进行室内外摄相时,色温转换简单,画面自然,当然冷光源对调光台的性能要求也要高些。 通道: 在现代光控制中,新产生一种通道的概念。它指的是控制回路在某个灯具上的一个集合。具体讲就是:某个灯具所具有的功能需要被单独控制(比如:聚焦、频闪、变色等),而所占有的调光台输出回路的统称就是通道。 比如:一台电脑灯的功能有光圈、颜色、频闪、调光、镜片水平运动、垂直运动、那样它们占用的通道就是6个。由此可以看出,通道的概念还是传统灯光控制回路演变而来的,只不过现代灯具是将多个通道汇集在一台设备上统一控制的。当然,灯具越高级、越复杂、动作越多,占用的通道数就可能越多,对灯光控制台的要求也越高。比如:一台108个光路,具有数字输出的调光台,它要想控制具有12个通道的电脑灯,那样它最多只能控制9台这种灯具,怎样去控制就是信号和地址分配的问题了。 灯光控制信号类型

相关文档
最新文档