可控硅的主要参数

可控硅的主要参数
可控硅的主要参数

可控硅

可控硅是硅可控整流元件的简称,亦称为晶闸管。具有体积小、结构相对简单、功能强等特点,是比较常用的半导体器件之一。该器件被广泛应用于各种电子设备和电子产品中,多用来作可控整流、逆变、变频、调压、无触点开关等。家用电器中的调光灯、调速风扇、空调机、电视机、电冰箱、洗衣机、照相机、组合音响、声光电路、定时控制器、玩具装置、无线电遥控、摄像机及工业控制等都大量使用了可控硅器件。按其工作特性,可控硅(THYRISTOR)可分为普通可控硅(SCR)即单向可控硅、双向可控硅(TRIAC)和其它特殊可控硅。

可控硅的主要参数

非过零触发-无论交流电电压在什么相位的时候都可触发导通可控硅,常见的是移相触发,即通过可控硅的主要参数

1、额定通态平均电流IT在一定条件下,阳极---阴极间可以连续通过的50赫兹正弦半波电流的平均值。

2、正向阻断峰值电压VPF 在控制极开路未加触发信号,阳极正向电压还未超过导能电压时,可以重复加在可控硅两端的正向峰值电压。可控硅承受的正向电压峰值,不能超过手册给出的这个参数值。

3、反向阴断峰值电压VPR当可控硅加反向电压,处于反向关断状态时,可以重复加在可控硅两端的反向峰值电压。使用时,不能超过手册给出的这个参数值。

4、控制极触发电流Ig1 、触发电压VGT在规定的环境温度下,阳极---阴极间加有一定电压时,可控硅从关断状态转为导通状态所需要的最小控制极电流和电压。

5、维持电流IH在规定温度下,控制极断路,维持可控硅导通所必需的最小阳极正向电流。

近年来,许多新型可控硅元件相继问世,如适于高频应用的快速可控硅,可以用正或负的触发信号控制两个方向导通的双向可控硅,可以用正触发信号使其导通,用负触发信号使其关断的可控硅等等。

可控硅的触发

过零触发-一般是调功,即当正弦交流电交流电电压相位过零点触发,必须是过零点才触发,导通可控硅。

非过零触发-无论交流电电压在什么相位的时候都可触发导通可控硅,常见的是移相触发,即通过改变正弦交流电的导通角(角相位),来改变输出百分比。

可控硅的主要参数

可控硅的主要参数:

1 额定通态电流(IT)即最大稳定工作电流,俗称电流。常用可控硅的IT一般为一安到几十安。

2 反向重复峰值电压(VRRM)或断态重复峰值电压(VDRM),俗称耐压。常用可控硅的VRRM/VDRM 一般为几百伏到一千伏。

3 控制极触发电流(IGT),俗称触发电流。常用可控硅的IGT一般为几微安到几十毫安。

可控硅的常用封装形式

常用可控硅的封装形式有TO-92、TO-126、TO-202AB、TO-220、TO-220AB、TO-3P、SOT-89、TO-251、TO-252等。改变正弦交流电的导通角(角相位),来改变输出百分比。

单向可控硅参数_单向可控硅管的主要参数

一、单向可控硅参数_额定通态平均电流IT(AV)

在环境温度为+40℃及规定的散热条件、纯电阻负载、元件导通角大于己于170°电角度时,可控硅所允许的单相工频正弦半波电流在一个周期内的最大平均值。

二、单向可控硅管的参数_通态平均电压UT(AV)

在规定环境、温度散热条件下,元件通以额定通态平均电流,结温稳定时,阳极和阴极间电压平均值。

三、单向可控硅参数_控制极触发电压UGT

在室温下,阳极和阴极间加6V电压时,使可控硅从截止变为完全导通所需的最小控制极直流电压。

四、单向可控硅管的参数_控制极触发电流IGT

在室温下,阳极和阴极间加6V电压时,使可控硅从截止变为完全导通所需的控制极最小直流电流。

五、单向可控硅参数_断态重复峰值电压UPFV

在控制极断开和正向阻断的条件下,阳极和阴极间可重复施加的正向峰值电压。其数值规定为断态下重复峰值电压UPSM 的80%。

六、单向可控硅管的参数_反向重复峰值电压UPRV

在控制极断开的条件下,阳极和阴极之间可重复施加的反向峰值电压。其数值规定为反向不重复峰值电压URSM的80%。一般把UPFV和UPRV中较小的数值作为元件的额定电压。

七、单向可控硅参数_维持电压IH

在室温和控制极断路时,可控硅从较大的通态电流降至刚好能保持元件处于通态的最小电流,一般为几十到一百多mA。如果通过的正向电流小于此值,可控硅就不能继续保持导通而自行截止。

参数符号说明:

IT(A V)--通态平均电流

VRRM--反向重复峰值电压

IDRM--断态重复峰值电流

ITSM--通态一个周波不重复浪涌电流

VTM--通态峰值电压

IGT--门极触发电流

VGT--门极触发电压

IH--维持电流

dv/dt--断态电压临界上升率

di/dt--通态电流临界上升率

Rthjc--结壳热阻

VISO--模块绝缘电压

Tjm--额定结温

VDRM--通态重复峰值电压

IRRM--反向重复峰值电流

IF(A V)--正向平均电流

单向可控硅-SCRs器件型号MCR100-6

封装形式:TO-92Package→

脚位排列:C-G-A

主要参数:电流-IT(RMS):0.8A

电压-VDRM:≥400V

触发电流:IGT:10~30μA IGT:30~60μA

元件品牌, 型号MCR100-6

电流0.8(A)

电压400(V)

触发电流10-30/30-60m(A)

结温110(℃).

单向可控硅-SCRs器件型号: MCR100-8

封装形式: TO-92 脚位排列: K-G-A

主要参数

电流-IT(RMS): 0.8A

电压-VDRM: ≥600V

触发电流:IGT: 5~15 uA IGT: 10~30 uA IGT: 30~60 uA元件.

型号MCR100-8

电流0.8(A)

电压600(V)

触发电流10-60u(A)

结温110(℃

晶闸管的主要参数

晶闸管的主要参数 (1) 断态不重复峰值电压U DSM 门极开路时,施加于晶闸管的阳极电压上升到正向伏安特性曲线急剧转折处所对应的电压值UDSM 。 它是一个不能重复,且每次持续时间不大于10ms的断态最大脉冲电压。 UDSM 值应小于转折电压U b0 。 (2) 断态重复峰值电压U DRM 晶闸管在门极开路而结温为额定值时,允许重复加于晶闸管上的正向断态最大脉冲电压。 每秒50次每次持续时间不大于10ms, 规定U DRM 为U DSM 的90%。 (3) 反向不重复峰值电压U RSM 门极开路,晶闸管承受反向电压时,对应于反向伏安特性曲线急剧转折处的反向 峰值电压值U RSM 。 它是一个不能重复施加且持续时间不大于10ms的反向脉冲电压。反向不重复峰 值电压U RSM 应小于反向击穿电压。 (4) 反向重复峰值电压U RRM 晶闸管在门极开路而结温为额定值时,允许重复加于晶闸管上的反向最大脉冲电压。 每秒50次每次持续时间不大于10ms。 规定U RRM 为U RSM 的90%。 (5) 额定电压UR 断态重复峰值电压UDRM和反向重复峰值电压URRM两者中较小的一个电压值规定为额定电压U R 。 在选用晶闸管时,应该使其额定电压为正常工作电压峰值U M 的2~3倍,以作为安全裕量。 (6)通态峰值电压U TM 规定为额定电流时的管子导通的管压降峰值。 一般为~,且随阳极电流的增加而略为增加。 额定电流时的通态平均电压降一般为1V左右。 (7) 通态平均电流I T (AV) 在环境温度为+40℃和规定的散热冷却条件下,晶闸管在导通角不小于170°电阻性负载的单相、工频正弦半波导电,结温稳定在额定值125°时,所允许通过的最大电流平均值。 ——允许流过的最大工频正弦半波电流的平均值。 选用一个晶闸管时,要根据所通过的具体电流波形来计算出容许使用的电流有效值,该值要小于晶闸管额定电流对应的有效值。晶闸管才不会损坏。 设单相工频正弦半波电流峰值为Im时通态平均电流为: 正弦半波电流有效值为: 有效值与通态平均电流比值为: 则有效值为: 根据有效值相等原则来计算晶闸管的额定电流。 若电路中实际流过晶闸管的电流有效值为I,平均值I d ,

双向可控硅好坏检测方法

双向可控硅好坏检测方法 双向可控硅是在普通可控硅的基础上发展而成的,它不仅能代替两只反极性并联的可控硅,而且仅需一个触发电路,是比较理想的交流开关器件。其英文名称TRIAC即三端双向交流开关之意。 1.双向可控硅的检测 方法一: 测量极间电阻法。将万用表置于皮R×1k档,如果测得T2-T1、T2-G之间的正反向电阻接近∞,而万用表置于R×10档测得T1-G之间的正反向电阻在几十欧姆时,就说明双向可控硅是好的,可以使用;反之,若测得T2-T1,、T2-G之间的正反向电阻较小甚或等于零.而Tl-G之间的正反向电阻很小或接近于零时.就说明双向可控硅的性能变坏或击穿损坏。不能使用;如果测得T1-G之间的正反向电阻很大(接近∞)时,说明控制极G与主电极T1之间内部接触不良或开路损坏,也不能使用。 方法二: 检查触发导通能力。万用表置于R×10档:①如图,1(a)所示,用黑表笔接主电极T2,红表笔接T1,即给T2加正向电压,再用短路线将G与T1(或T2)短接一下后离开,如果表头指针发生了较大偏转并停留在一固定位置,说明双向可控硅中的一部分(其中一个单向可控硅)是好的,如图1(b)所示,改黑表笔接主电极T1,红表笔接T2,即给T1加正向电压,再用短路线将G与T1(或T2)短接一下后离开,如果结果同上,也证明双向可控硅中的另一部分(其中的一个单向可控硅是好的。测试到止说明双向可控硅整个都是好的,即在两个方向(在不同极性的触发电压证)均能触发导通。 图1判断双向可控硅的触发导通能力 方法三: 检查触发导通能力。如图2所示.取一只10uF左右的电解电容器,将万用表置于R×10k档(V电压),对电解电容器充电3~5s后用来代替图1中的短路线,即利用电容器上所充的电压作为触发信号,然后再将万用表置于R×10档,照图2(b)连接好后进行测试。测试时,电容C的极性可任意连接,同样是碰触

晶闸管二极管主要参数及其含义

晶闸管二极管主要参数及其含义 IEC标准中用来表征晶闸管二极管性能特点的参数有数十项但用户经常用到的有十项左右本文就晶闸管二极管的主要参数做一简单介绍 1、正向平均电流I F(AV) (整流 管) 通态平均电流I T(AV) (晶闸管) 是指在规定的散热器温度T HS 或管壳温度 T C 时,允许流过器件的最大正弦半 波电流平均值此时器件的结温已达到其最高允许温度T jm 仪元公司产品手册中均 给出了相应通态电流对应的散热器温度T HS 或管壳温度 T C 值用户使用中应根据实 际通态电流和散热条件来选择合适型号的器件 2、正向方均根电流I FRMS (整流管) 通态方均根电流I TRMS (晶闸管) 是指在规定的散热器温度T HS 或管壳温度 T C 时,允许流过器件的最大有效电 流值用户在使用中须保证在任何条件下流过器件的电流有效值不超过对应壳温下的方均根电流值 3、浪涌电流I FSM (整流管)I TSM (晶闸管) 表示工作在异常情况下器件能承受的瞬时最大过载电流值用10ms底宽正弦半波峰值表示仪元公司在产品手册中给出的浪涌电流值是在器件处于最高允许 结温下施加80% V RRM 条件下的测试值器件在寿命期内能承受浪涌电流的次数是有限的用户在使用中应尽量避免出现过载现象

4、断态不重复峰值电压V DSM 反向不重复峰值电压V RSM 指晶闸管或整流二极管处于阻断状态时能承受的最大转折电压一般用单脉冲测试防止器件损坏用户在测试或使用中应禁止给器件施加该电压值以免损坏器件 5、断态重复峰值电压V DRM 反向重复峰值电压V RRM 是指器件处于阻断状态时断态和反向所能承受的最大重复峰值电压一般取器件不重复电压的90%标注高压器件取不重复电压减100V标注用户在使用中须保证在任何情况下均不应让器件承受的实际电压超过其断态和反向重复峰值电压 6、断态重复峰值漏电流I DRM 反向重复峰值漏电流I RRM 为晶闸管在阻断状态下承受断态重复峰值电压V DRM 和反向重复峰值电压V RRM 时流过 元件的正反向峰值漏电流该参数在器件允许工作的最高结温Tjm下测出 7、通态峰值电压V TM (晶闸管) 正向峰值电压V FM (整流管)

场效应管的选型及应用概览

场效应管的选型及应用概览 场效应管广泛使用在模拟电路与数字电路中,和我们的生活密不可分。场效应管的优势在于:首先驱动电路比较简单。场效应管需要的驱动电流比BJT则小得多,而且通常可以直接由CMOS或者集电极开路TTL驱动电路驱动;其次场效应管的开关速度比较迅速,能够以较高的速度工作,因为没有电荷存储效应;另外场效应管没有二次击穿失效机理,它在温度越高时往往耐力越强,而且发生热击穿的可能性越低,还可以在较宽的温度范围内提供较好的性能。场效应管已经得到了大量应用,在消费电子、工业产品、机电设备、智能手机以及其他便携式数码电子产品中随处可见。 近年来,随着汽车、通信、能源、消费、绿色工业等大量应用场效应管产品的行业在近几年来得到了快速的发展,功率场效应管更是备受关注。据预测,2010-2015年中国功率MOSFET市场的总体复合年度增长率将达到13.7%。虽然市场研究公司 iSuppli 表示由于宏观的投资和经济政策和日本地震带来的晶圆与原材料供应问题,今年的功率场效应管市场会放缓,但消费电子和数据处理的需求依然旺盛,因此长期来看,功率场效应管的增长还是会持续一段相当长的时间。 技术一直在进步,功率场效应管市场逐渐受到了新技术的挑战。例如,业内有不少公司已经开始研发GaN功率器件,并且断言硅功率场效应管的性能可提升的空间已经非常有限。不过,GaN 对功率场效应管市场的挑战还处于非常初期的阶段,场效应管在技术成熟度、供应量等方面仍然占据明显的优势,经过三十多年的发展,场效应管市场也不会轻易被新技术迅速替代。 五年甚至更长的时间内,场效应管仍会占据主导的位置。场效应管也仍将是众多刚入行的工程师都会接触到的器件,本期内容将会从基础开始,探讨场效应管的一些基础知识,包括选型、关键参数的介绍、系统和散热的考虑等为大家做一些介绍。 一.场效应管的基础选型 场效应管有两大类型:N沟道和P沟道。在功率系统中,场效应管可被看成电气开关。当在N沟道场效应管的栅极和源极间加上正电压时,其开关导通。导通时,电流可经开关从漏极流向源极。漏极和源极之间存在一个内阻,称为导通电阻RDS(ON)。必须清楚场效应管的栅极是个高阻抗端,因此,总是要在栅极加上一个电压。如果栅极为悬空,器件将不能按设计意图工作,并可能在不恰当的时刻导通或关闭,导致系统产生潜在的功率损耗。当源极和栅极间的电压为零时,开关关闭,而电流停止通过器件。虽然这时器件已经关闭,但仍然有微小电流存在,这称之为漏电流,即IDSS。 作为电气系统中的基本部件,工程师如何根据参数做出正确选择呢?本文将讨论如何通过四步来选择正确的场效应管。 1)沟道的选择。为设计选择正确器件的第一步是决定采用N沟道还是P沟道场效应管。在典型的功率应用中,当一个场效应管接地,而负载连接到干线电压上时,该场效应管就构成了低压侧开关。在低压侧开关中,应采用N沟道场效应管,这是出于对关闭或导通器件所需电压的考虑。当场效应管连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P沟道场效应管,这也是出于对电压驱动的考虑。

可控硅参数名词解释

晶闸管参数名词解释 1. 反向重复峰值电压(VRRM):反向阻断晶闸管两端出现的重复最大瞬时值反向电压,包括所有的重复瞬态电压,但不包括所有的不重复瞬态电压。 注:反向重复峰值电压(VRRM)是可重复的,值大于工作峰值电压的最大值电压,如每个周期开关引起的毛疵电压。 2. 反向不重复峰值电压(VRSM):反向阻断晶闸管两端出现的任何不重复最大瞬时值瞬态反向电压。 1)测试目的:在规定条件下,检验晶闸管的反向不重复峰值电压额定值。 2)测试条件:a)结温:25℃和125℃;b)门极断路;c)脉冲电压波形:底宽近似10mS 的正弦半波;d)脉冲重复频率:单次脉冲;e)脉冲次数:按有关产品标准规定;f)测试电压:反向不重复峰值电压 注:反向不重复峰值电压(VRSM)是外部因素偶然引起的,值一般大于重复峰值电压的最大值电压。通常标准规定VRSM =1.11VRRM。应用设计应考虑一切偶然因素引起的过电压都不得超过不重复峰值电压。 3. 通态方均根电流(IT(RMS)):通态电流在一个周期内的方均根值。 4. 通态平均电流(IT(AV)):通态电流在一个周期内的平均值。 5. 浪涌电流(ITSM):一种由于电路异常情况(如故障)引起的,并使结温超过额定结温的不重复性最大通态过载电流。 1)测试目的:在规定条件下,检验晶闸管的通态(不重复)浪涌电流额定值。 2)测试条件:a)浪涌前结温:125℃;b)反半周电压:80%反向重复峰值电压;d)每次浪涌的周波数:一个周波,其导通角应在160度至180度之间 6. 通态电流临界上升率(di/dt):在规定条件下,晶闸管能承受而无有害影响的最大通态电流上升率。 1)测试目的:在规定条件下,检验晶闸管的通态电流临界上升率额定值。 2)测试条件:a)加通态电流前结温:125℃;b)门极触发条件:IGM =3~5IGT;c)开通前断态电压VDM=2/3VDRM ;d)开通后通态电流峰值:2 IT(AV)~3IT(AV);e)t1≥1us;f)重复频率:50HZ;g)通态电流持续时间:5s。 7. I2t值:浪涌电流的平方在其持续时间内的积分值。 1)测试目的:在规定条件下,检验和测量反向阻断三级晶闸管的I2t值 2)测试条件:a)浪涌前结温:125℃;b)浪涌电流波形:正弦半波; 3) I2t测试实质是持续时间小于工频正弦波(1-10ms范围)的一种不重复浪涌电流测试。通过浪涌电流it对其持续时间t积分∫it2dt,即可求得I2t值。 8. 门极平均值耗散功率(PG(AV)):在规定条件下,门极正向所允许的最大平均功率。 1) 测试目的:在规定条件下,检验反向阻断三级晶闸管的门极平均功率额定值 2) 测试条件:a)结温:125℃;b)门极功率:额定门极平均功率;c)测试持续时间:3S;d)主电路条件:阳,阴极间断路。 3)测量程序:a)被测器件加热到规定结温;b)从零缓慢调整电源的输出,使电流表和电压表指示的数字的乘积达到额定门极平均功率PG(AV),并保持3S时间,然后将电源的输出调回零;c)测试后,进行门极触发电流和电压测量,如无异常,则PG(AV)额定值得到确认。 9. 反向重复峰值电流(IRRM):晶闸管加上反向重复峰值电压时的峰值电流。 10. 断态重复峰值电流(IDRM):晶闸管加上断态重复峰值电压时的峰值电流。

晶闸管的主要参数

晶闸管的主要参数 作者:jesse 文章来源:本站原创点击数:273 更新时间:2007-12-6 ★★★【字体:小大】 晶闸管的主要电参数有正向转折电压VBO、正向平均漏电流IFL、反向漏电流IRL、断态重复峰值电压V DRM、反向重复峰值电压VRRM、正向平均压降VF、通态平均电流IT、门极触发电压VG、门极触发电流IG、门极反向电压和维持电流IH等。 (一)正向转折电压VBO 晶闸管的正向转折电压VBO是指在额定结温为100℃且门极(G)开路的条件下,在其阳极(A)与阴极(K)之间加正弦半波正向电压、使其由关断状态转变为导通状态时所对应的峰值电压。 (二)断态重复峰值电压VDRM 断态重复峰值电压VDRM,是指晶闸管在正向阻断时,允许加在A、K(或T1、T2)极间最大的峰值电压。此电压约为正向转折电压减去100V后的电压值。 (三)通态平均电流IT 通态平均电流IT,是指在规定环境温度和标准散热条件下,晶闸管正常工作时A、K(或T1、T2)极间所允许通过电流的平均值。(四)反向击穿电压VBR 反向击穿电压是指在额定结温下,晶闸管阳极与阴极之间施加正弦半波反向电压,当其反向漏电电流急剧增加时反对应的峰值电压。 (五)反向重复峰值电压VRRM 反向重复峰值电压VRRM,是指晶闸管在门极G断路时,允许加在A、K极间的最大反向峰值电压。此

电压约为反向击穿电压减去100V后的峰值电压。 (六)正向平均电压降VF 正向平均电压降VF也称通态平均电压或通态压降VT,是指在规定环境温度和标准散热条件下,当通过晶闸管的电流为额定电流时,其阳极A与阴极K之间电压降的平均值,通常为0.4~1.2V。 (七)门极触发电压VGT 门极触发VGT,是指在规定的环境温度和晶闸管阳极与阴极之间为一定值正向电压的条件下,使晶闸管从阻断状态转变为导通状态所需要的最小门极直流电压,一般为1.5V左右。 (八)门极触发电流IGT 门极触发电流IGT,是指在规定环境温度和晶闸管阳极与阴极之间为一定值电压的条件下,使晶闸管从阻断状态转变为导通状态所需要的最小门极直流电流。 (九)门极反向电压 门极反向电压是指晶闸管门极上所加的额定电压,一般不超过10V。 (十)维持电流IH 维持电流IH是指维持晶闸管导通的最小电流。当正向电流小于IH时,导通的晶闸管会自动关断。(十一)断态重复峰值电流IDR 断态重复峰值电流IDR,是指晶闸管在断态下的正向最大平均漏电电流值,一般小于100μA (十二)反向重复峰值电流IRRM 反向重复峰值电流IRRM,是指晶闸管在关断状态下的反向最大漏电电流值,一般小于100μA。

可控硅的主要参数

可控硅 可控硅是硅可控整流元件的简称,亦称为晶闸管。具有体积小、结构相对简单、功能强等特点,是比较常用的半导体器件之一。该器件被广泛应用于各种电子设备和电子产品中,多用来作可控整流、逆变、变频、调压、无触点开关等。家用电器中的调光灯、调速风扇、空调机、电视机、电冰箱、洗衣机、照相机、组合音响、声光电路、定时控制器、玩具装置、无线电遥控、摄像机及工业控制等都大量使用了可控硅器件。按其工作特性,可控硅(THYRISTOR)可分为普通可控硅(SCR)即单向可控硅、双向可控硅(TRIAC)和其它特殊可控硅。 可控硅的主要参数 非过零触发-无论交流电电压在什么相位的时候都可触发导通可控硅,常见的是移相触发,即通过可控硅的主要参数 1、额定通态平均电流IT在一定条件下,阳极---阴极间可以连续通过的50赫兹正弦半波电流的平均值。 2、正向阻断峰值电压VPF 在控制极开路未加触发信号,阳极正向电压还未超过导能电压时,可以重复加在可控硅两端的正向峰值电压。可控硅承受的正向电压峰值,不能超过手册给出的这个参数值。 3、反向阴断峰值电压VPR当可控硅加反向电压,处于反向关断状态时,可以重复加在可控硅两端的反向峰值电压。使用时,不能超过手册给出的这个参数值。 4、控制极触发电流Ig1 、触发电压VGT在规定的环境温度下,阳极---阴极间加有一定电压时,可控硅从关断状态转为导通状态所需要的最小控制极电流和电压。

5、维持电流IH在规定温度下,控制极断路,维持可控硅导通所必需的最小阳极正向电流。 近年来,许多新型可控硅元件相继问世,如适于高频应用的快速可控硅,可以用正或负的触发信号控制两个方向导通的双向可控硅,可以用正触发信号使其导通,用负触发信号使其关断的可控硅等等。 可控硅的触发 过零触发-一般是调功,即当正弦交流电交流电电压相位过零点触发,必须是过零点才触发,导通可控硅。 非过零触发-无论交流电电压在什么相位的时候都可触发导通可控硅,常见的是移相触发,即通过改变正弦交流电的导通角(角相位),来改变输出百分比。 可控硅的主要参数 可控硅的主要参数: 1 额定通态电流(IT)即最大稳定工作电流,俗称电流。常用可控硅的IT一般为一安到几十安。 2 反向重复峰值电压(VRRM)或断态重复峰值电压(VDRM),俗称耐压。常用可控硅的VRRM/VDRM一般为几百伏到一千伏。 3 控制极触发电流(IGT),俗称触发电流。常用可控硅的IGT一般为几微安到几十毫安。可控硅的常用封装形式

晶闸管参数说明

IEC标准中用来表征晶闸管、二极管性能、特点的参数有数十项,但用户经常用到的有十项左右,本文就晶闸管、二极管的主要参数做一简单介绍。 1.正向平均电流I F(A V)( 整流管) 通态平均电流I T(A V)( 晶闸管) 是指在规定的散热器温度THS或管壳温度T C时,允许流过器件的最大正弦半波电流平均值。此时,器件的结温已达到其最高允许温度Tjm。台基公司产品手册中均给出了相应通态电流对应的散热器温度THS或管壳温度T C值,用户使用中应根据实际通态电流和散热条件来选择合适型号的器件。 2.正向方均根电流I F(RMS)( 整流管) 通态方均根电流I T(RMS)( 晶闸管) 是指在规定的散热器温度THS或管壳温度TC 时,允许流过器件的最大有效电流值。用户在使用中,须保证在任何条件下,流过器件的电流有效值不超过对应壳温下的方均根电流值。3.浪涌电流I FSM(整流管)、I TSM(晶闸管) 表示工作在异常情况下,器件能承受的瞬时最大过载电流值。用10ms底宽正弦半波峰值表示,台基公司在产品手册中给出的浪涌电流值是在器件处于最高允许结温下,施加80% V RRM条件下的测试值。器件在寿命期内能承受浪涌电流的次数是有限的,用户在使用中应尽量避免出现过载现象。 4.断态不重复峰值电压V DSM 反向不重复峰值电压V RSM 指晶闸管或整流二极管处于阻断状态时能承受的最大转折电压,一般用单脉冲测试防止器件损坏。用户在测试或使用中,应禁止给器件施加该电压值,以免损坏器件。 5.断态重复峰值电压V DRM 反向重复峰值电压V RRM 是指器件处于阻断状态时,断态和反向所能承受的最大重复峰值电压。一般取器件不重复电压的90%标注(高压器件取不重复电压减100V标注)。用户在使用中须保证在任何情况下,均不应让器件承受的实际电压超过其断态和反向重复峰值电压。 6.断态重复峰值(漏)电流IDRM 反向重复峰值(漏)电流IRRM 为晶闸管在阻断状态下,承受断态重复峰值电压VDRM和反向重复峰值电压VRRM时,流过元件的正反向峰值漏电流。该参数在器件允许工作的最高结温Tjm下测出。 7.通态峰值电压V TM(晶闸管) 正向峰值电压V FM(整流管) 指器件通过规定正向峰值电流I FM(整流管)或通态峰值电流I TM(晶闸管)时的峰值电压,也称峰值压降。该参数直接反映了器件的通态损耗特性,影响着器件的通态电流额定能力。器件在不同电流值下的的通态(正向)峰值电压可近似用门槛电压和斜率电阻来表示: V TM=VTO+rT*I TM V FM=VFO+rF*I FM 台基公司在产品手册中给出了各型号器件的最大通态(正向)峰值电压及门槛电压和斜率电阻,用户需要时,可以提供该器件的实测门槛电压和斜率电阻值。 8.电路换向关断时间t q(晶闸管) 在规定条件下,在晶闸管正向主电流下降过零后,从过零点到元件能承受规定的重加电压而不至导通的最小时间间隔。晶闸管的关断时间值决定于测试条件,台基公司对所制造的快速、高频晶闸管均提供了每只器件的关断时间实测值,在未作特别说明时,其对应的测试条件如下: l 通态峰值电流ITM等于器件ITA V;

场效应管在开关电路中的应用

场效应管在开关电路中的应用 场效应管在mpn中,它的长相和我们前面讲的三极管极像,所以有不少修mpn的朋友好长时间还分不清楚,统一的把这些长相相同的三极管、场效应管、双二极管、还有各种稳压IC统统称作“三个脚的管管”,呵呵,如果这样麻木不分的话,你的维修技术恐怕很难快速提高的哦! 好了,说到这里场效应管的长相恐怕我就不用贴图了,在电路图中它常用 表示,关于它的构造原理由于比较抽象,我们是通俗化讲它的使用,所以不去多讲,由于根据使用的场合要求不同做出来的种类繁多,特性也都不尽相同;我们在mpn 中常用的一般是作为电源供电的电控之开关使用,所以需要通过电流比较大,所以是使用的比较特殊的一种制造方法做出来了增强型的场效应管(MOS型),它的电路图符号: 仔细看看你会发现,这两个图似乎有差别,对了,这实际上是两种不同的增强型场效应管,第一个那个叫N沟道增强型场效应管,第二个那个叫P沟道增强型场效应管,它们的的作用是刚好相反的。前面说过,场效应管是用电控制的开关,那么我们就先讲一下怎么使用它来当开关的,从图中我们可以看到它也像三极管一样有三个脚,这三个脚分别叫做栅极(G)、源极(S)和漏极(D),mpn中的贴片元件示意图是这

个样子: 1脚就是栅极,这个栅极就是控制极,在栅极加上电压和不加上电压来控制2脚和3脚的相通与不相通,N沟道的,在栅极加上电压2脚和3脚就通电了,去掉电压就关断了,而P沟道的刚好相反,在栅极加上电压就关断(高电位),去掉电压(低电位)就相通了! 我们常见的2606主控电路图中的电源开机电路中经常遇到的就是P沟道MOS管: 这个图中的SI2305就是P沟道MOS管,由于有很多朋友对于检查这一部分的故障很茫然,所以在这里很有必要讲一下它的工作原理,来加深一下你的印象! 图中电池的正电通过开关S1接到场效应管Q1的2脚源极,由于Q1是一个P沟道管,它的1脚栅极通过R20电阻提供一个正电位电压,所以不能通电,电压不能继续通过,3v稳压IC输入脚得不到电压所以就不能工作不开机!这时,如果我们按下SW1开机按键时,正电通过按键、R11、R23、D4加到三极管Q2的基极,三极管Q2的基极得到一个正电位,三极管导通(前面讲到三极管的时候已经讲过),由于三极管的发射极直接接地,三极管Q2导通就相当于Q1的栅极直接接地,加在它上面的通过R20电阻的

可控硅参数列表

March 2008 Rev. 21/9 AN2703 Application note Parameter list for SCRs, TRIACs, AC switches, and DIACS Introduction All datasheet parameters are rated as minimum or maximum values, corresponding to the product parameter distribution. In each datasheet, two classes of parameters are available:■ Absolute ratings, corresponding to critical parameters, not to be exceeded for safe operation. If the absolute rating is exceeded, the component may be damaged.■Electrical, thermal and static characteristics, defining limits on product https://www.360docs.net/doc/a47098279.html,

Parameters AN2703 1 Parameters 2/9

AN2703Parameters 3/9I GM Peak gate current This is the maximum peak current allowed through gate and cathode, defined for a 20 μs pulse duration. If the absolute rating is exceeded, the component may be damaged. P G(AV)Average gate power dissipation This is the maximum average power that can be dissipated by the gate junction. If the absolute rating is exceeded, the component may be damaged. V RGM Peak reverse gate voltage This parameter is only defined for SCRs. It is the maximum reverse voltage than can be applied across gate and cathode terminals, without risk of destruction of the gate to cathode junction. V GM Peak positive gate voltage (with respect to the pin "COM") This parameter is only defined for ACSs. It is the maximum voltage than can be applied across gate and COM terminals without risk of destruction of the gate to COM junction.Table 2.Electrical characteristics parameters Parameter Name and description P Average power dissipation This is the average power dissipated by current conduction through the device for one full cycle operation. I GT Triggering gate current This is the current to apply between gate and cathode (or gate and electrode A1 for TRIAC) to turn-on the device. This parameter defines the sensitivity of the component. For a SCR, the gate current has always to be sunk by the gate. For a TRIAC, I GT is define for 3 or 4 quadrants corresponding to the different polarities of A2, A1 and gate: - Q1: I g sunk by the gate, V A2-A1 > 0 - Q2: I g sourced by the gate, V A2-A1 > 0 - Q3: I g sourced by the gate, V A2-A1 < 0 - Q4: I g sunk by the gate, V A2-A1 < 0 The I GT value is higher in Q4 quadrant. For ACS types, I GT is defined in two quadrants (Q2 and Q3). V GT Triggering gate voltage This is the voltage to apply across gate and cathode (or gate and electrode A1 for TRIAC) to reach the IGT current and then to trigger the device. V GD Non-triggering gate voltage V GD is the maximum voltage which can be applied across gate and cathode (or gate and electrode A1 for TRIAC) without causing undesired turn-on. This parameter is specified, for the worst case scenario, at the maximum junction temperature.Table 1.Absolute ratings parameters (continued) Parameter Name and description

晶闸管的主要参数教程文件

晶闸管的主要参数

晶闸管的主要参数 (1) 断态不重复峰值电压U DSM 门极开路时,施加于晶闸管的阳极电压上升到正向伏安特性曲线急剧转折处所对应的电压值UDSM 。 它是一个不能重复,且每次持续时间不大于10ms的断态最大脉冲电压。 UDSM 值应小于转折电压U b0。 (2) 断态重复峰值电压U DRM 晶闸管在门极开路而结温为额定值时,允许重复加于晶闸管上的正向断态最大脉冲电压。 每秒50次每次持续时间不大于10ms, 规定U DRM 为U DSM 的90%。 (3) 反向不重复峰值电压U RSM 门极开路,晶闸管承受反向电压时,对应于反向伏安特性曲线急剧转折处的反向峰值电压值U RSM。

它是一个不能重复施加且持续时间不大于10ms的反向脉冲电压。反向不重复峰值电压U RSM应小于反向击穿电压。 (4) 反向重复峰值电压U RRM 晶闸管在门极开路而结温为额定值时,允许重复加于晶闸管上的反向最大脉冲电压。 每秒50次每次持续时间不大于10ms。 规定U RRM 为U RSM 的90%。 (5) 额定电压UR 断态重复峰值电压UDRM和反向重复峰值电压URRM两者中较小的一个电压值规定为额定电压U R。 在选用晶闸管时,应该使其额定电压为正常工作电压峰值U M 的2~3倍,以作为安全裕量。 (6)通态峰值电压U TM 规定为额定电流时的管子导通的管压降峰值。 一般为1.5~2.5V,且随阳极电流的增加而略为增加。 额定电流时的通态平均电压降一般为1V左右。 (7) 通态平均电流I T (AV) 在环境温度为+40℃和规定的散热冷却条件下,晶闸管在导通角不小于170°电阻性负载的单相、工频正弦半波导电,结温稳定在额定值125°时,所允许通过的最大电流平均值。 ——允许流过的最大工频正弦半波电流的平均值。

可控硅的应用参数

图1b电路为MOC3061的典型功率扩展电路,在控制功率较大的电机时,应考虑使用功率扩展电路。制作时,可参考图示参数选择器件。由于电源采用电容压降方式,请自制时注意安全,人体不能直接触摸电路板。 电路见图1a。电路中NE555接成占空比可调的方波发生器,调节RW可改变占空比。在NE555的3脚输出高电平期间,过零通断型光电耦合器MOC3061初级得到约10mA正向工作电流,使内部硅化镓红外线发射二极管发射红外光,将过零检测器中光敏双向开关于市电过零时导通,接通电风扇电机电源,风扇运转送风。在NE555的3脚输出低电平期间,双向开关关断,风扇停转。 MOC3061本身具有一定驱动能力,可不加功率驱动元件而直接利用 MOC3061的内部双向开关来控制电风扇电机的运转。RW为占空比调节电位器,

RC电路用来降低DV/DT防止误触发 MOC3061参数:技术文档数据: 触发电流在Ift=15mA到maxIf=60mA之间。 Led触发电流:Ift=15mA, A ll d evices a re gu a r a ntee d to trigger a t a n I F v a lue less th a n or equ a l to m ax I FT.Therefore,recommen d e d oper a ting I F lies b et w een m ax I FT(15m A for MOC3061-M, 10m A for MOC3062-M&MOC3162-M,5m A for MOC3063-M&MOC3163-M)a n d ab solute m ax I F(60m A). D v/D t=Pe a k B locking Current 保持通态的最小电流:IH=500u A,MT1-MT2volt a ge ab ove w hich d evice w ill not trigger 抑制电压:VINH=12(T Y P)-20(M AX)MT1-MT2VOLT A GE AB OVE W HICH D EVICE W ILL NOT TRIGGER 通态重复峰值电压V D RM=600v D V/D T=600V/US(MIN),1500(T Y P). The39ohm resistor a n d0.01μF c a p a citor a re for snu bb ing of the tri a c a n d is often,b ut not a l way s, necess a r y d epen d ing upon the p a rticul a r tri a c a n d lo ad use d. Suggeste d metho d of firing t w o,ba ck-to-ba ck SCR’s B T A16-800B:负载电流IT=16A. 维持通态电流:IH=50m A 断态电压临界上升率:D v/D t=250v/us Igt=50m A, V D RM,VRRM=800V Vgt=1.5v

晶闸管 整流二极管主要参数及含义

作者:广州晶泰电子来源:https://www.360docs.net/doc/a47098279.html, 发布时间:2012年01月28日 一、晶闸管定义: 晶闸管(Thyristor)是晶体闸流管的简称,又可称做可控硅整流器,以前被简称为可控硅. 1957年美国通用电器公司开发出世界上第一款晶闸管产品,并于1958年将其商业化;晶闸管是PNPN四层半导体结构,它有三个极:阳极,阴极和门极;晶闸管工作条件为:加正向电压且门极有触发电流;其派生器件有:快速晶闸管,双向晶闸管,逆导晶闸管,光控晶闸管等。它是一种大功率开关型半导体器件,在电路中用文字符号为“V”、“VT”表示(旧标准中用字母“SCR”表示)。 晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。

二、主要参数及含义 1.正向平均电流I F(AV)( 整流管) 通态平均电流I T(AV)( 晶闸管) 是指在规定的散热器温度T HS或管壳温度T C时,允许流过器件的最大正弦半波电流平均值。此时,器件的结温已达到其最高允许温度T jm。广州晶泰产品手册中均给出了相应通态电流对应的散热器温度T HS或管壳温度T C值,用户使用中应根据实际通态电流和散热条件来选择合适型号的器件。 2.正向方均根电流I F(RMS)( 整流管) 通态方均根电流I T(RMS)( 晶闸管) 是指在规定的散热器温度T HS或管壳温度 T C时,允许流过器件的最大有效电流值。用户在使用中,须保证在任何条件下,流过器件的电流有效值不超过对应壳温下的方均根电流值。 3.浪涌电流I FSM(整流管)、I TSM(晶闸管) 表示工作在异常情况下,器件能承受的瞬时最大过载电流值。用10ms底宽正弦半波峰值表示,晶泰电子在产品手册中给出的浪涌电流值是在器件处于最高允许结温下,施加80% V RRM条件下的测试值。器件在寿命期内能承受浪涌电流的次数是有限的,用户在使用中应尽量避免出现过载现象。 4.断态不重复峰值电压V DSM 反向不重复峰值电压V RSM 指晶闸管或整流二极管处于阻断状态时能承受的最大转折电压,一般用单脉冲测试防止器件损坏。用户在测试或使用中,应禁止给器件施加该电压值,以免损坏器件。5.断态重复峰值电压V DRM 反向重复峰值电压V RRM 是指器件处于阻断状态时,断态和反向所能承受的最大重复峰值电压。一般取器件不重复电压的90%标注(高压器件取不重复电压减100V标注)。用户在使用中须保证在任何情况下,均不应让器件承受的实际电压超过其断态和反向重复峰值电压。 6.断态重复峰值(漏)电流I DRM

第三章 场效应管及其应用

高起专网络教材—《模拟电子技术》-场效应管及其应用 主编:周雪,西安电子科技大学出版社 Frequently Asked Question(FAQ) 1.场效应管具有哪些优点? 解:场效应管不仅具有一般半导体三极管体积小、重量轻、耗电省、寿命长等特点,而且还具有输入电阻高、噪声低、抗辐射能力强、功耗小、热稳定性好、制造工艺简单。易于集成等优点。 2.JFET的栅极与沟道间的PN结在一般作为放大器件工作时,能用正向偏置吗? BJT的发射结呢? 解:JFET工作时,栅极与沟道间的PN结要反向偏置。而BJT工作时,发射结要正向偏置。 3.在低噪声电路的设计中,试说明为什么选用JFET而不用BJT? 解:JFET的一个优点是其噪声系数很小,可达1.5dB以下;而BJT的噪声系数比起JFET而言要高些。因此,在低噪声电路的设计中要选用JFET而不用BJT。4.场效应管的输出特性曲线分几部分? 解:输出特性曲线分四部分:可变电阻区、恒流区、击穿区和夹断区。 5.为什么MOSFET的输入电阻比JFET还高? 解:JFET的输入电阻从本质上来说是PN结的反向电阻,PN结反向偏置时总会有一些反向电流存在,这就限制了输入电阻的进一步提高。而MOSFET是利用半导体表面的电场效应进行工作时。由于它的栅极处于不导电状态,因此输入电阻大为提高。 6.JFET与耗尽型MOSFET同属于耗尽型,为什么JFET的V GS只能有一种极性,而 耗尽型MOSFET的V GS可以有两种极性? 解:以N沟道为例,N沟道JFET,当V GS>0时,将使PN结处于正向偏置而产生较大的栅流,破坏了它对漏极电流i0的控制作用。但是N沟道耗尽型MOSFET在V as>0时,由于绝缘层的存在,并不会产生PN结的正向电流,而是在沟道中感应出更多的负电荷。在V DS作用下,i0将有更大的数值。所以,N沟道耗尽型MOSFET可以在正或负的栅源电压下工作,而且基本上无栅流。 7.试解释为什么N沟道增强型绝缘栅场效应管中,靠近漏极的导电沟道较窄,而 靠近源极的较宽? 解:当V GS>V GS(th)时,在源极与漏极间形成了自由电子导电沟道(反型层),在漏极电源V D的作用下,这些载流子由源极向漏极扩散,而源极区的自由电子不断向沟道内扩散,在靠近漏极的沟道内自由电子则漂移到漏极区被电源吸收,所以靠近漏极的导电沟道较窄,而靠近源极的较宽。自由电子在沟道内扩散形成了梯度,所以沟道从源极到漏极是由宽度窄逐渐变化的。 8.为什么在场效应管低频放大电路中,输入端耦合电容通常取得较小(0.01 F~

可控硅的工作原理(带图)

可控硅的工作原理(带图)

可控硅的工作原理(带图) 一.可控硅是可控硅整流器的简称。它是由三个PN结四层结构硅芯片和三个电极组成的半导体器件。图3-29是它的结构、外形和图形符号。 可控硅的三个电极分别叫阳极(A)、阴极(K)和控制极(G)。当器件的阳极接负电位(相对阴极而言)时,从符号图上可以看出PN结处于反向,具有类似二极管的反向特性。当器件的阳极上加正电位时(若控制极不接任何电压),在一定的电压范围内,器件仍处于阻抗很高的关闭状态。但当正电压大于某个电压(称为转折电压)时,器件迅速转变到低阻通导状态。加在可控硅阳极和阴极间的电压低于转折电压时,器件处于关闭状态。此时如果在控制极上加有适当大小的正电压(对阴极),则可控硅可迅速被激发而变为导通状态。可控硅一旦导通,控制极便失去其控制作用。就是说,导通后撤去栅极电压可控硅仍导通,只有使器件中的电流减到低于某个数值或阴极与阳极之间电压减小到零或负值时,器件才可恢复到关闭状态。 图3-30是可控硅的伏安特性曲线。 图中曲线I为正向阻断特性。无控制极信号时,可控硅正向导通电压为正向转折电压(U B0);当有控制极信号时,正向转折电压会下降(即可以在较低正向电压下导通),转折电压随控制极电流的增大而减小。当控制极电流大到一定程度时,就不再出现正向阻断状态了。 曲线Ⅱ为导通工作特性。可控硅导通后内阻很小,管子本身压降很低,外加电压几乎全部降在外电路负载上,并流过比较大的负载电流,特性曲线与二极管正向导通特性相似。若阳极电压减小(或负载电阻增加),致使阳极电流小于维持电流I H时,可控硅从导通状态立即转为正向阻断状态,回到曲线I状态。 曲线Ⅲ为反向阻断特性。当器件的阳极加以反向电压时,尽管电压较高,但可控硅不会导通(只有很小的漏电流)。只有反向电压达到击穿电压时,电流才突然增大,若不加限制器件就会烧毁。正常工作时,外加电压要小于反向击穿电压才能保证器件安全可靠地工作。 可控硅的重要特点是:只要控制极中通以几毫安至几十毫安的电流就可以触发器件导通,器件中就可以通过较大的电流。利用这种特性可用于整流、开关、变频、交直流变换、电机调速、调温、调光及其它自动控制电路中。

晶闸管的主要参数

jesse 文章 本站点击数:273更新时间:2007-12-6 体: 小大】★★★【字晶闸管的主要电参数有正向转折电压VBO、正向平均漏电流IFL、反向漏电流IRL、断态重复峰值电压VDRM、反向重复峰值电压VRRM、正向平均压降V F、通态平均电流IT、门极触发电压V G、门极触发电流IG、门极反向电压和维持电流IH等。 (一)正向转折电压VBO 晶闸管的正向转折电压VBO是指在额定结温为100℃且门极(G)开路的条件下,在其阳极(A)与阴极(K)之间加正弦半波正向电压、使其由关断状态转变为导通状态时所对应的峰值电压。 (二)断态重复峰值电压VDRM 断态重复峰值电压VDRM,是指晶闸管在正向阻断时,允许加在 A、K(或T 1、T2)极间最大的峰值电压。此电压约为正向转折电压减去100V后的电压值。 (三)通态平均电流IT 通态平均电流IT,是指在规定环境温度和标准散热条件下,晶闸管正常工作时 A、K(或T 1、T2)极间所允许通过电流的平均值。

(四)反向击穿电压VBR 反向击穿电压是指在额定结温下,晶闸管阳极与阴极之间施加正弦半波反向电压,当其反向漏电电流急剧增加时反对应的峰值电压。 (五)反向重复峰值电压VRRM 反向重复峰值电压VRRM,是指晶闸管在门极G断路时,允许加在 A、K极间的最大反向峰值电压。此电压约为反向击穿电压减去100V后的峰值电压。 (六)正向平均电压降VF 正向平均电压降VF也称通态平均电压或通态压降VT,是指在规定环境温度和标准散热条件下,当通过晶闸管的电流为额定电流时,其阳极A与阴极K 之间电压降的平均值,通常为 0.4~ 1.2V。 (七)门极触发电压VGT 门极触发VGT,是指在规定的环境温度和晶闸管阳极与阴极之间为一定值正向电压的条件下,使晶闸管从阻断状态转变为导通状态所需要的最小门极直流电压,一般为 1.5V左右。 (八)门极触发电流IGT 门极触发电流IGT,是指在规定环境温度和晶闸管阳极与阴极之间为一定值电压的条件下,使晶闸管从阻断状态转变为导通状态所需要的最小门极直流电流。 (九)门极反向电压

相关文档
最新文档