非线性方程求根的方法简介与例题

非线性方程求根的方法简介与例题
非线性方程求根的方法简介与例题

非线性方程()

f x=0求根主要可以采用下面三种方法,下面简单介绍下,并附例题,让解法更一目了然。

1)二分法简介:

计算步骤如下:

例题:

2)不动点迭代,也叫简单迭代。

隐式化为显式,迭代法是一种逐次逼近法;

其中()

f x'<1才能满足上述迭代格式。

继续迭代。

3)牛顿迭代法,实际上也叫切线法,

是通过下面的方式推导出来的。

上述题目很简单,用牛顿法迭代就可以达到目的。 我们先设()cos f x x x =-=0 由公式得cos sin x x

x x x

0-=-

1+ 我们用二分法的原理,我们取x π0=, 得cos sin x x x x x ππ00100-+1

=-

=-=11+1

cos cos .sin sin x x x x x 11211-1-1

=-

=1-=09998

1+1+1

cos cos ..sin sin .x x x x x 22322-1-09998

=-

=1-=099981+1+09998

x x 32=,并具有四位有效数字,所以只需迭代两次就可以达到

题目所需的精度要求

线性代数第3章_线性方程组习题解答

习题3 3-1.求下列齐次线性方程组的通解: (1)?? ? ??=--=--=+-087305302z y x z y x z y x . 解 对系数矩阵施行行初等变换,得 ???? ? ??-----?→?????? ??-----=144072021 1873153211A )(000720211阶梯形矩阵B =???? ? ??-?→? ??? ?? ??-?→?0002720211)(000271021101行最简形矩阵C =????? ? ???→? , 与原方程组同解的齐次线性方程组为 ??? ??? ?=+=+02702 11 z y z x , 即 ??? ??? ?-=-=z y z x 272 11(其中z 是自由未知量), 令1=z ,得到方程组的一个基础解系 T )1,2 7,211(-- =ξ, 所以,方程组的通解为

,)1,2 7,211(T k k -- =ξk 为任意常数. (2)??? ??=+++=+++=++++0 86530543207224321 432154321x x x x x x x x x x x x x . 解 对系数矩阵施行行初等变换,得 ???? ? ??--?→?????? ??=21202014101072211086530543272211A )(7000014101072211阶梯形矩阵B =????? ??-?→? ???? ? ??-?→?70000141010211201 )(100000101001201行最简形矩阵C =???? ? ???→?, 与原方程组同解的齐次线性方程组为 ??? ??==+=++00 025 42431x x x x x x , 即 ??? ??=-=--=025 4 2431x x x x x x (其中43,x x 是自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T ,得到方程组的一个基础解系 T )0,0,1,0,2(1-=ξ,T )0,1,0,1,1(2--=ξ, 所以,方程组的通解为

线性代数第四章线性方程组复习题()

(A). 有唯一解;(B). 有无穷多解; (C). 无解; (D). 可能无解。 3. 当( )时,齐次线性方程组?????=λ++=+λ+=++λ000321 321321x x x x x x x x x ,有非零解 (A) 1或2 (B) -1或-2 (C) 1或-2 (D) -1或2 4. 设A 为n 阶方阵,且秩12() 1.,A n αα=-是非齐次方程组AX B =的两个不同的解向量,则AX =0的通解为( ) A 、1αk B 、2αk C 、)(21αα-k D 、)(21αα+k 5. A 、B 均为n 阶方阵,X 、Y 、b 为1?n 阶列向量,则方程??? ? ??=???? ?????? ??b O Y X O A B O 有 解的充要条件是( ) A 、n B r =)( B 、n A r <)( C 、)()(b A r A r = D 、n A r =)( 6. 若有 1133016,02135k k k ?????? ??? ?= ??? ? ??? ?--?????? 则k 等于 (A) 1 (B) 2 (C) 3 (D) 4 计算题:(共60分) 1.求 123412341 23420363051050x x x x x x x x x x x x ++-=??+--= ??++-=? 的通解

2. 求齐次线性方程组???????=+-+=++-=+-+-=-+-7 7931 83332154321432143214321x x x x x x x x x x x x x x x x 的通解.

3.求非齐次线性方程组 1234 1234 1234 1234 52 234 388 3976 x x x x x x x x x x x x x x x x -+-= ? ?+-+= ? ? -++= ? ?+-+= ? 的通解. 4. 求非齐次线性方程组 1234 1234 1234 1234 50 232 382 3974 x x x x x x x x x x x x x x x x -+-= ? ?+-+= ? ? -++= ? ?+-+= ? 的通解.

非线性方程求根word版

第7章 非线性方程求根 本章主要内容: 1.区间二分法. 2切线法. 3.弦位法. 4.一般迭代法. 重点、难点 一、区间二分法 区间二分法是求方程f(x)=0根的近似值的常用方法。 基本思想:利用有根区间的判别方法确定方程根的区间[a,b] ,将有根区间平分为二;再利用有根区间的判别方法判断那一个区间是有根区间;重复上述步骤,直到小区间端点差的绝对值小于等于精度要求的数值,则用将上一区间的分半值作为方程的根的近似值。 区间二分法的计算步骤如下: 1. 计算区间端点的函数值f(a) , f(b)(不妨设f(a)<0,f(b)>0); 确定初始有根区间[a,b]. 2.二分有根区间[a,b],并计算)2( b a f + 取2 1b a x += 3.判断: 若0)(1=x f ,则方程的根为1x x =* ; 若 0)(1>x f ,则有根区间为[]1,x a x ∈* ;令[]],[,111b a x a = 若 0)(1

12 ln ln )ln(---≥ ε a b n 确定应二分的次数。 例1 用区间二分法求方程0353 =+-x x 在某区间内实根的近似值(精确到0.001) 【思路】参见上述区间二分法的计算步骤 解 ∵f(1.8)=-0.168<0, f(1.9)=0.359>0 ∴f(x)在区间[1.8 ,1.9]内有一个根。 由公式 644.512 ln 001 .0ln 1.0ln 12ln ln )ln(=--=---≥ εa b n 取n=6, 计算结果列表如下: 则方程在区间[1.8,1.9]内所求近似值为x * ≈ x = 1.8328125 区间二分法的优点是计算程序简单,只要f (x )在区间[a,b]上连续,区间二分法就可使用,但区间二分法不能用来求偶次重根,由于区间二分法收敛比较慢,在实际计算中,区间二分法常用来求比较好的含根区间和初始近似值,以便进一步使用收敛更快的迭代法求出更精确的近似值。 迭代序列收敛阶的概念

3线性方程组典型习题解析

3 线性方程组 3、1 知识要点解析(关于线性方程组的常用表达形式) 3.1.1 基本概念 1、方程组1111221n 1211222 2n 2m11m22mn m x x b x x b x x b a a a a a a a a a +++=??+++=? *???++ +=? 称为含n 个未知量m 个方程的线性方程组, i)倘若12m b ,b ,....,b 不全为零,则该线性方程组称为非齐次线性方程组; ii)若12m b =b = =b 0=,则该线性方程组就就是齐次线性方程组, 这时,我们也把该方程组称为1111221n 1211222 2n 2m11m22mn m x x x x x x a a a a a a a a a ++ +=??+++=? ???++ +=?c c c 的导出组, (其中12m c ,c ,...c 不全为零) 2、记1111 1221 n m x b x b ,x ,b x b n m mn a a A a a ???? ?? ? ? ? ? ?== ? ? ? ? ? ??? ???? = 则线性方程组(*)又可以表示为矩阵形式 x b A =** 3、又若记 1j 2j j mj ,j 1,2, n a a a α?? ? ? == ? ? ??? 则上述方程游客一写成向量形式 1122n n x x x b. ααα++ +=***。 同时,为了方便,我们记(,b)A A =,称为线性方程组(*)的增广矩阵。 3.1.2 线性方程组解的判断

1、齐次线性方程组x 0A =,(n=线性方程组中未知量的个数 对于齐次线性方程组,它就是一定有解的(至少零就就是它的解), i)那么,当r n A =秩()=时,有唯一零解; ii)当r n A =秩()<时,又非零解,且线性无关解向量的个数为n-r 、 2、非齐次线性方程组x b A = ()<() ()=()=n, ()=()()=()() A A A A A A A A A A A ?? ???????? ? ?秩秩无解;秩秩有唯一解, 秩秩秩秩有无穷多解,且基础解系个数为 -秩秩秩不可能 3.1.3 线性方程组的解空间 1、齐次线性方程组的解空间 (作为线性方程组的一个特殊情形,在根据其次线性方程与非齐次线性方程组解 的关系,我们这里首先讨论齐次线性方程组的解空间) 定理:对于数域K 上的n 元齐次线性方程组的解空间W 的维数为 A dim(W)=n-秩()=n-r , 其中A 就是方程组的系数矩阵。那么,当齐次线性方程组[(*)--ii)] 有 非零解时,它的每个基础解系所含解向量的数目都等于A n-秩()。 2、 非齐次线性方程组的解空间 我们已知线性方程组的解与非齐次线性方程组的解的关系,那么我们可 首先求出非齐次线性方程组的一个解γ0(称其为方程组特解);然后在求对应的导出组的解空间(设该解空间的基础解系为ηηη12n-r ,,...),则(*)解空间的维数为n-r,且非齐次线性方程组的每一个解都可以表示为: 2.................()k k k γηηη+?0112n-r n-r ++...+ 我们称其为该非齐次线性方程组(*)的通解、

线性方程组-练习

1.设向量组123,,ααα线性无关,向量1β可由123,,ααα线性表示,而向量2β不能由123,,ααα线性表示,则对于任意常数k ,必有( )A (A) 12312,,,k αααββ+线性无关; (B )12312,,,k αααββ+线性相关; ( C) 12312,,,k αααββ+线性无关; (D) 12312,,,k αααββ+线性相关 2.n 维向量组)1(,,,21n s s ≤≤ααα 线性无关的充要条件是 ( D ) (A) 存在一组不全为零的s k k k ,,21 ,使得02211=+++s s k k k ααα (B) s ααα ,,21 中的任何两个向量都线性无关 (C) s ααα ,,21 中存在一个向量,它不能被其余向量线性表示 (D) s ααα ,,21 中的任何一个向量都不能被其余向量线性表示 3. (1)若两个向量组等价,则它们所含向量的个数相同; (2)若向量组}{21r ααα,,, 线性无关,1+r α可由r ααα ,21,线性表出,则向量组}{121+r ααα,,, 也线性无关; (3)设}{21r ααα,,, 线性无关,则}{121-r ααα,,, 也线性无关; (4)}{21r ααα,,, 线性相关,则r α一定可由121,-r ααα ,线性表出;以上说法正确的有( A )个。 A .1 个 B .2 个 C .3 个 D .4个 4.向量组A :12,,,n ααα 与B :12,,,m βββ 等价的充要条件为( C ). A .()()R A R B =; B .()R A n =且()R B m =; C .()()(,)R A R B R A B ==; D .m n = 5.讨论a ,b 取什么值时,下面方程组有解,对有解的情形,求出一般解。 1234123423412341322235433x x x x x x x x a x x x x x x x b +++=??+++=??++=??+++=?。 答案:a =0,b =2有解;其他无解。 (-2,3,0,0)’+k1(1,-2,1,0)’+k2(1,-2,0,1)’ 6.试就k 的取值情况讨论以下线性方程组的解,并在有无穷的解时求出通解:

线性方程组练习题

线性方程组练习题 §1 向量的线性关系 1.判断下列向量组是否线性无关: (1)????? ??-11 2,????? ??-840,????? ??-311; (2)??????? ??01014,??????? ??1521,??????? ??1202,?????? ? ??7024。 2.讨论下面向量组的线性相关性: ???????? ??12211,???????? ??-15120,???????? ??-141b a 。 3.设????? ??=1111a ,????? ??=3211a ,???? ? ??=t 311a 。 (1)问当t 为何值时,321,,a a a 线性相关? (2)问当t 为何值时,321,,a a a 线性无关? (3)当321,,a a a 线性相关时,问3a 是否可以由1a ,2a 线性表示?若能,写出具体表达式。 4.设有向量组 ??????? ??+=11111t a ,??????? ??+=22222t a ,??????? ??+=33333t a ,?????? ? ??+=t 44444a 。 问:(1)当t 为何值时,4321,,,a a a a 线性相关? (2)当t 为何值时,4321,,,a a a a 线性无关? 5.设321,,a a a 线性无关,问当参数l ,m 满足何种关系时,12a a -l ,23a a -m ,31a a -也线性无关? 6.设m a a a ,,,21 线性无关,作 211a a b +=,322a a b +=,…,m m m a a b +=--11,1a a b +=m m 。 判别m b b b ,,,21 的线性相关性。 7.设21,a a 线性无关,b a b a ++21,线性相关,问b 能否由21,a a 线性表示? 8.设321,,a a a 线性相关,432,,a a a 线性无关。问: (1)1a 能否由32,a a 线性表示; (2)4a 能否由321,,a a a 线性表示。 9.若T k k ),,0(2=b 能由T k )1,1,1(1+=a ,T k )1,1,1(2+=a ,T k )1,1,1(3+=a 唯一

非线性方程求根问题

计算机学院上机实践报告 一、目的 1.通过本实验,帮助加深对非线性方程求根方法的构造过程的理解; 2.能将各种方法编写为程序并上机实现; 3.比较各种方法在求解同一非线性方程根时,在收敛情况上的差异。 二、容与设计思想 1.用二分法求方程f(x)=x3-2x-5=0在区间[2 , 3]的根。 2.方程f(x)=2x3-5x2-19x+42=0在x=3.0附近有根,试写出其三种不同的等价形式以构成三种不同的迭代格式,再用简单迭代法求根,观察这三种迭代是否收敛。 三、使用环境 1. 硬件环境 微型计算机(Intel x86系列CPU)一台 2. 软件环境 Windows2000/XP操作系统 VC++6.0或其它的开发工具。 四、核心代码及调试过程 1.用二分法求方程f(x)=x3-2x-5=0在区间[2 , 3]的根主要代码: void bisect(double a,double b,int max_B) { double root, ya,yb,yroot; int i,actual_B; ya=f(a);yb=f(b); if(ya*yb>0) { printf("method failed!\n"); exit(0); } for(i=1;i<=max_B;i++) { root=(a+b)/2;yroot=f(root); //取当前含根区间的中点 if(yroot==0) { a=root;b=root;} else if(yb*yroot>0) //取含根区间为[a,(a+b)/2]

{ b=root;yb=yroot;} Else //取含根区间为[(a+b)/2,b] { a=root;ya=yroot;} if(fabs(b-a)b)) { printf("re_select a proper initial value x0!\n"); exit(0); } if(fabs(x1-x0)

实验二 非线性方程求根实验报告

实验报告 学院:电子信息工程 实验课程:计算方法 学生姓名: 学号: 专业班级:通信工程 实验二非线性方程求根 1 目的与要求 (1)进一步熟练掌握求解非线性方程的二分法与Newton迭代法。 (2)掌握二分法与Newton迭代法的算法,能运用程序设计语言和此方法编制软件求出任意指定一元三次方程在给定点附近的根。 2 实验内容 用二分法和Newton迭代法求方程 310 x x --=在 1.5 附近的根,精确到 3 10-,输出每次的迭代结果

并统计所用的迭代次数。 3 实验原理 (1)二分法实验原理 取[a,b]区间二等分的中点x1 =(a+b)/2 (1)若f(x1)=0,则x1是f(x)=0的实根。 (2)若f(a)f(x1)<0 成立,则x* 必在区间(a, x1)内,取a1=a,b1= x1;否则x*必在区间(x1,b)内,则取a1= x1,b1=b,这样,得到新区间[a1,b1],其长度为[a,b]的一半。 (3)如此继续下去,进行n次等分 (2)Newton迭代法实验原理 4 程序设计 (1)流程图 二分法程序流程图

Newton迭代法程序流程图

(2)程序代码 ①二分法求非线性方程根#include #include double fun1(double x) {

return x*x*x-x-1; } double fun2(double x1,double x2) { return (x1+x2)/2; } main() { int n=1; float a,b,c; printf("二分法求非线性方程的根\n"); scanf("a=%f,b=%f",&a,&b); if (fun1(a)*fun1(b)<0) { while(fabs(b-a)>1e-3) { c=fun2(a,b); if (fun1(a)*fun1(c)<0) { b=c;

线性方程组练习题(免费下载)

《线性代数》第三章练习题 一、思考题 1、设有线性方程组b AX =,其中A 为n 阶方阵,j A 为A 中第j 列元素换为b 所得行列式的值,判断下列命题是否正确? (1)若0≠A ,则b AX =有唯一解; (2)若0=A ,且至少有一)1(0n j A j ≤≤≠,则b AX =无解; (3)若0=A ,且),,2,1(0n j A j ==,则b AX =有无穷多解。 2、判断下列命题是否正确?其中A 为n m ?矩阵。 (1)非齐次线性方程组b AX =,当n m <时,有无穷多解;当n m =时,有唯一解;当n m >时,无解; (2)齐次线性方程组0=AX ,当n m <时,必有非零解; (3)非齐次线性方程组b AX =,当m A r =)(时,必相容。 3、设向量组4321,,,αααα线性无关,判断向量组14433221,,,αααααααα++++是否也线性无关。 4、判断下列命题是否正确? (1)若向量组m ααα,,,21 线性相关,则存在全不为零的数m k k k ,,,21 ,使得 02211=+++m m k k k ααα ; (2)若向量组m ααα,,,21 线性相关,且有02211=+++m m k k k ααα ,则 m k k k ,,,21 必不全为零; (3)若当数021====m k k k 时,02211=+++m m k k k ααα ,则向量组m ααα,,,21 线性无关; (4)若02211=+++m m k k k ααα ,必有021====m k k k ,则向量组m ααα,,,21 线性无关; (5)向量β不能由m ααα,,,21 表示,则βααα,,,,21m 线性无关; (6)若向量组m ααα,,,21 线性无关,则其中每一个向量都不能表示成其余向量的线性组合; (7)若向量组m ααα,,,21 线性无关,向量组s βββ,,,21 线性无关,则向量组 m ααα,,,21 ,s βββ,,,21 线性无关。 二、单项选择题 1. 设321,,X X X 是b AX =的三个特解,则下列哪个也是b AX =的解 ( ) (A )332211X k X k X k ++; (B )332211X k X k X k ++,1321=++k k k ; (C )321)(X X X k ++ ; (D ) 32211)(X k X X k +-。 2.设321,,ξξξ是0=AX 的一组基础解系,则下列哪组也是0=AX 的一基础解系( ) (A )133221,,,ξξξξξξ+-; (B )312321,,ξξξξξξ++-; (C ) 13321,ξξξξξ-++ ; (D ) 3121,,ξξξξ- 。 3.设A 是n 阶矩阵,并且0=A ,则A 的列向量中 ( ) (A )必有一个向量为零向量 ; (B)必有两个向量的对应分量成比例; (C )必有一个向量是其余向量的线性组合 ; (D )任一向量是其余向量的线性组合。 4.如果4),,,(21=m r ααα ,则下列正确的是 ( ) (A )如果 m ααα,,,21 的一个部分组线性无关 ,则该部分组包含的向量个数一定不超过4;

线性方程组解题方法技巧与题型归纳

线性方程组解题方法技巧与题型归纳 题型一 线性方程组解的基本概念 【例题1】如果α1、α2是方程组 123131233231 2104 x x ax x x x ax x --=?? -=??-++=? 的两 个不同的解向量,则a 的取值如何 解: 因为α1、α2是方程组的两个不同的解向量,故方程组有无穷多解,r(A)= r(Ab)<3, 对增广矩阵进行初等行变换: 21131132031022352104002314510a a a a a a a ----???? ? ?-→-- ? ? ? ?-----???? 易见仅当a=-2时,r(A)= r(Ab)=2<3, 故知a=-2。 【例题2】设A 是秩为3的5×4矩阵, α1、α2、 α3是非齐次线性方程组Ax=b 的三个不同的解,若α1+α2+2α3=(2,0,0,0)T , 3α1+α2= (2,4,6,8)T ,求方程组Ax=b 的通解。 解:因为r(A)= 3,所以齐次线性方程组Ax=0的基础解系由4- r(A)= 1个向量构成, 又因为(α1+α2+2α3)-(3α1+α2) =2(α3-α1)=(0,-4,-6,-8)T , 是Ax=0的解, 即其基础解系可以是(0,2,3,4)T , 由A (α1+α2+2α3)=Aα1+Aα2+2Aα3=4b 知1/4

(α1+α2+2α3)是Ax=b 的一个解, 故Ax=b 的通解是 ()1,0,0,00,2,3,42T T k ?? + ??? 【例题3】已知ξ1=(-9,1,2,11)T ,ξ2=(1,- 5,13,0)T ,ξ3=(-7,-9,24,11)T 是方程组 12234411223441 234432332494x a x x a x d x b x x b x x x x c x d +++=?? +++=??+++=?的三个解,求此方程组的通解。 分析:求Ax=b 的通解关键是求Ax=0的基础解系,判断r(A)的秩。 解:A 是3×4矩阵, r(A)≤3,由于A 中第2,3两行不成比例,故r(A)≥2,又因为 η1=ξ1-ξ2=(-10,6,-11,11)T , η2=ξ2-ξ3= (8,4,-11,-11)T 是Ax=0的两个线性无关的解向量, 于是4- r(A)≥2,因此r(A)=2,所以ξ1+k 1η1+k 2η2是通解。 总结: 不要花时间去求方程组,太繁琐,由于ξ1-ξ2,ξ1-ξ3或ξ3-ξ1,ξ3-ξ2等都可以构成齐次线性方程组的基础解系,ξ1,ξ2,ξ3都是特解,此类题答案不唯一。 题型2 线性方程组求解

非线性方程求根

第二章非线性方程求根 线性方程是方程式中仅包含未知量的一次方项和常数项的方程,除此之外的方程都是非线性方程(nonlinear equation). 例如,大家熟知的“一元二次方程”就是一个非线性方程. 多元线性方程组的求解是数值计算领域的一个重要问题,在后续几章将专门讨论. 本章介绍求解非线性方程的数值方法,主要针对实数域,重点是单个非线性方程的求根问题. 2.1引言 2.1.1非线性方程的解 记要求解的单变量非线性方程为 f(x)=0(2.1) 其中函数f: ?→?. 一般而言,非线性方程的解的存在性和个数是很难确定的,它可能无解,也可能有一个或多个解. 例2.1 (非线性方程的解):分析下列非线性方程的解是否存在和解的个数. (1) e x+1=0. 此方程无解. (2) e?x?x=0. 此方程有一个解. (3) x2?4sinx=0. 此方程有两个解. (4) x3?6x2+5x=0. 此方程有三个解. (5) cosx=0. 此方程有无穷多个解. 在实际问题中,往往要求的是自变量在一定范围内的解,比如限定x∈[a,b]. 函数f一般为连续函数,则可记为f(x)∈C[a,b],C[a,b]表示区间[a,b]上所有连续实函数的集合. 假设在区间[a, b]上方程(2.1)的根为x?,也称x?为函数f(x)的零点. 方程的根可能不唯一,而且同一个根x?也可能是方程(2.1)的多重根. 定义2.1:对光滑函数f,若f(x?)=f′(x?)=?=f(m?1)(x?)=0,但f(m)(x?)≠0,则称x?为方程(2.1)的m重根. 当m=1时,即f(x?)=0,f′(x?)≠0时,称x?为单根. 对于多项式函数f(x),若x?为m重根,则f(x)可因式分解为 f(x)=(x?x?)m g(x) 其中g(x)也是多项式函数,且g(x?)≠0. 很容易验证,f(x?)=f′(x?)=?=f(m?1)(x?)=0,但f(m)(x?)≠0,即多项式方程重根的概念与定义2.1是一致的. 对一般的函数f,x?是方程(2.1)的重根的几何含义是,函数曲线在x?处的斜率为0,且在该点处与x轴相交. 非线性方程的一个特例是n次多项式方程(n≥2),根据代数基本定理可知,n次方程在复数域上有n个根(m重根计为m个根). 当n=1, 2时,方程的求解方法是大家熟知的. 当 n=3, 4时,虽然也有求根公式,但已经很复杂,在实际计算时并不一定适用. 当n≥5时,不存在一般的求根公式,只能借助数值求解方法来求根. 2.1.2问题的敏感性 根据问题敏感性的定义,这里需要考虑输入数据的扰动对方程的根有多大影响. 要分析敏感性首先应假设问题中的数据如何扰动,一种易于分析的情况是将非线性方程写成: f(x)=y 的形式,然后讨论y在0值附近的扰动造成的问题敏感性. 此时,求根问题变成了函数求值

(完整版)线性方程组单元练习题

线性方程组单元练习题 1(96年,数学一,6分).?? ???=++=-+=++的基础解系求齐次方程组00054332152 1x x x x x x x x x 分析:求基础解系分三步:系数矩阵行变换到最简,写出通解方程组,自由变量取定值。 .10101,00011,10,01;0.,,235)(010001010010011~010001010010011~11100001111001121524 5 352152????? ?? ? ??--=???????? ??-=???? ?????? ??=??? ? ????? ??==--==-=-????? ??????? ??--????? ??-ξξ则基础解系为通解方程组为:自由变量为解:x x x x x x x x x x A R n 2.(98年,数学一,5分) ?? ?????=+++=+++=+++?? ?????=+++=+++=+++的通解,并说明理由 试写出线性方程组的一个基础解系为 已知线性方程组0 00)(;),,(,),,(,),,(000)(22,221122,222212122,12121112,212,222212,1121122,221122,222212122,1212111n n n n n n n n n T n n n n T n T n n n n n n n n n n y b y b y b y b y b y b y b y b y b B b b b b b b b b b x a x a x a x a x a x a x a x a x a A ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ T n n n n T n T n T T T T T T T a a a a a a a a a n B By A A AB BA AB B Ax B B B B A A ),,,(,),,,(,),,,()(0,0)(0 0)()(2,212,222212,11211ΛΛΛΛΛΘ个解的一组方程组的解。由此得到的每一行是的每一列即又满足的解,所以的每一列都是即的每一行。由于的系数矩阵为,的系数矩阵为解:设方程组=∴====, ,)(2)(A ,)()()(),,(,),,(,),,(2,212,222212,11211线性无关的行向量组即)的解的结构由(的基础解系,故是由于A n S R n A R n S R B R A b b b b b b b b b A A T n n n n T n T n =-===ΛΛΛΛΛ

实验一 非线性方程求根

石家庄经济学院2014/2015学年第一学期 数值分析实验报告 班级: 5141090301 学号: 514109030105 姓名:张倩 指导教师: 张敬敏

实验一非线性方程求根 一、实验题目 1. 求方程f(x)=3x2-e x=0一个正根,并使误差不大于10-5。(p22第3题) 2. 计算√5,结果具有5位有效数字。 3. 求方程f(x)=x3-x-1=0在区间[1.0,1.5]内的一个实根,误差不大于10-5。(选做) 二、程序功能 1. 使用迭代法求方程f(x)=3x2-e x=0一个正根,并使误差不大于10-5。 2. 用牛顿法计算√5,结果具有5位有效数字。 3. 利用二分法求方程f(x)=x3-x-1=0在区间[1.0,1.5]内的一个实根,精度为10-5。 三、算法 算法1. 使用迭代法求方程f(x)=3x2-e x=0一个正根,并使误差不大于10-5。 算法2. 用牛顿法计算√5,结果具有5位有效数字。 for k=2,3,4….N do 1)compute x:x g(x) 四、重要标识符说明 程序1. 重要标识符说明 程序2. 重要标识符说明 Error确定有效位数,abs取绝对值,for 迭代次数 五、程序运行实例 在matlab 6.5环境中,运行程序1,结果如图1所示。

图1 程序1运行结果在matlab 6.5环境中,运行程序2,结果如图2所示。 图2 程序2运行结果六、源程序 程序1源程序: 程序2源程序: Error=1e-5; x=2; for k=2:10 xk=x; x=x/2+5/(2*x); if (abs(xk - x)<=Error) break; end end

实验3非线性方程求根问题

西华数学与计算机学院上机实践报告 课程名称:计算方法A年级:上机实践成绩: 指导教师:严常龙姓名: 上机实践名称:非线性方程求根问题学号:上机实践日期: 上机实践编号:1上机实践时间: 一、目的 1.通过本实验的编程练习,加深对非线性方程求根方法之二分法、简单迭代法、、牛顿迭代法等的构造过程的理解; 2.能将各种方法的算法描述正确地改编为程序并上机实现; 3.比较各种方法在求解同一非线性方程根时,在收敛情况上的差异。 二、内容与设计思想 自选求根问题,分别用二分法、简单迭代法、埃特金加速收敛法和牛顿迭代法求解其根,然后完成编程作业(注意把同一求根问题的几种不同方法放在一个程序之内)。以下求根问题供参考和选择,也可自行选择其他求根问题: 1.用二分法求方程f(x)=x3-2x-5=0在区间[2 , 3]内的根。 2.方程f(x)=2x3-5x2-19x+42=0在x=3.0附近有根,试写出其三种不同的等价形式以构成三种不同的迭代格式,再用简单迭代法求根,观察这三种迭代是否收敛及收敛的快慢。 3.用牛顿迭代法求方程f(x)=x3+2x2+10x-20=0在区间[1 , 1.5]上的根。 4.Cosx=x在区间[0 , /2]上的根。 三、使用环境 操作系统:Windows XP 软件环境:Microsoft Visual C++ 四、核心代码及调试过程 第一题:用二分法求方程f(x)=x3-2x-5=0在区间[2 , 3]内的根。 方程的近似解是:x=2.094552。 #include #include #define N 25 void main() { int k; float a[N],b[N],c[N],fa[N],fb[N],fc[N]; float x,y; printf("请输入a[0]的数值:"); scanf("%f",&x); printf("\n请输入b[0]的数值:"); scanf("%f",&y);

非线性方程求根

实验七 非线性方程求根 实验7.1(迭代法、初始值与收敛性) 实验目的:初步认识非线性问题的迭代法与线性问题迭代法的差别,探讨迭代法及初始值与迭代收敛性的关系。 问题提出:迭代法是求解非线性方程的基本思想方法,与线性方程的情况一样,其构造方法可以有多种多样,但关键是怎样才能使迭代收敛且有较快的收敛速度。 实验内容:考虑一个简单的代数方程 012=--x x 针对上述方程,可以构造多种迭代法,如 )1.7(1 2 1-=+n n x x )2.7(111n n x x + =+ )3.7(1 1+=+n n x x 在实轴上取初始值x 0,请分别用迭代(7.1)-(7.3)作实验,记录各算法的迭代过程。 实验要求: (1)取定某个初始值,分别计算(7.1)-(7.3)迭代结果,它们的收敛性如何?重复选取不同的初始值,反复实验。请自选设计一种比较形象的记录方式(如利用MATLAB 的图形功能),分析三种迭代法的收敛性与初值选取的关系。 (2)对三个迭代法中的某个,取不同的初始值进行迭代,结果如何?试分析迭代法对不同的初值是否有差异? (3)线性方程组迭代法的收敛性是不依赖初始值选取的。比较线性与非线性问题迭代的差异,有何结论和问题。 实验过程: 第一问: 针对迭代函数 11n n x x +=- 程序 disp(' 请输入初始迭代值为') x=[]; a=[];

b=[]; x(1)=input(''); for i=2:30 x(i)=x(i-1)^2-1; end for i=2:30 a(i-1)=x(i-1); b(i)=x(i); end a b i=1:30; plot(i,x) title('x(n+1)=x(n)^2-1') 数值实验结果及分析: 选择初始值为1时,每次迭代的波动情况如下:

计算方法非线性方程求根

计算方法第7章 非线性方程求根 本章主要内容: 1.区间二分法. 2切线法. 3.弦位法. 4.一般迭代法. 重点、难点 一、区间二分法 区间二分法是求方程f(x)=0根的近似值的常用方法。 基本思想:利用有根区间的判别方法确定方程根的区间[a,b] ,将有根区间平分为二;再利用有根区间的判别方法判断那一个区间是有根区间;重复上述步骤,直到小区间端点差的绝对值小于等于精度要求的数值,则用将上一区间的分半值作为方程的根的近似值。 区间二分法的计算步骤如下: 1. 计算区间端点的函数值f(a) , f(b)(不妨设f(a)<0,f(b)>0); 确定初始有根区间[a,b]. 2.二分有根区间[a,b],并计算)2( b a f + 取2 1b a x += 3.判断: 若0)(1=x f ,则方程的根为1x x =*; 若 0)(1>x f ,则有根区间为[]1,x a x ∈* ;令[]],[,111b a x a = 若 0)(1

12 ln ln )ln(---≥ ε a b n 确定应二分的次数。 例1 用区间二分法求方程0353 =+-x x 在某区间内实根的近似值(精确到0.001) 【思路】参见上述区间二分法的计算步骤 解 ∵f(1.8)=-0.168<0, f(1.9)=0.359>0 ∴f(x)在区间[1.8 ,1.9]内有一个根。 由公式 644.512 ln 001 .0ln 1.0ln 12ln ln )ln(=--=---≥ εa b n 取n=6, 计算结果列表如下: 则方程在区间[1.8,1.9]内所求近似值为x * ≈ x = 1.8328125 区间二分法的优点是计算程序简单,只要f (x )在区间[a,b]上连续,区间二分法就可使用,但区间二分法不能用来求偶次重根,由于区间二分法收敛比较慢,在实际计算中,区间二分法常用来求比较好的含根区间和初始近似值,以便进一步使用收敛更快的迭代法求出更精确的近似值。 迭代序列收敛阶的概念 设迭代序列{}n x 收敛于* x ,如果存在实数1≥p 与正常数c ,使得

齐次和非齐次线性方程组的解法(整理)

线性方程组解的结构(解法) 一、齐次线性方程组的解法 【定义】 r (A )= r 时,若()r A n ≤,则存在齐次线性方程组的同解方程组; 若()r A n >,则齐次线性方程组无解。 1、求AX = 0(A 为m n ?矩阵)通解的三步骤 (1)?? →A C 行 (行最简形); 写出同解方程组CX =0. (2) 求出CX =0的基础解系,,,n r -12ξξξ; (3) 写出通解n r n r k k k --=+++1122X ξξξ其中k 1,k 2,…, k n-r 为任意常数.

线性方程组练习题

第一章 练习题 一、选择题 1、向量组r ααα,,,21 线性相关,且秩为s ,则( ) A.s r = B .s r ≤ C.r s ≤ D .r s < 2、设A 为m ×n 矩阵,齐次线性方程组0=Ax 有非零解的充分必要条件是( ) A .A 的列向量组线性相关 B .A 的列向量组线性无关 C .A 的行向量组线性相关 D .A 的行向量组线性无关 3、设3元非齐次线性方程组b Ax =的两个解为T T )3,1,1(,)2,0,1(-=β=α,且系数矩 阵A 的秩2)(=A r ,则对于任意常数21,,k k k ,方程组的通解可表为( ) A .T 2T 1)3,1,1()2,0,1(-+k k B .T T )3,1,1()2,0,1(-+k C .T T )1,1,0()2,0,1(-+k D .T T )5,1,2()2,0,1(-+k 4、设矩阵)2,1(=A ,???? ??=4321B ,??? ? ??=654321C 则下列矩阵运算中有意义的是( ) A .AC B B .AB C C .BAC D .CBA 5、r ααα,,,21 线性无关?( ) A.存在全为零的实数r k k k ,,,21 ,使得02211=α++α+αr r k k k . B.存在不全为零的实数r k k k ,,,21 ,使得02211≠α++α+αr r k k k . C.每个i α都不能用其他向量线性表示. D.有线性无关的部分组. 6、设向量组321,,ααα线性无关,421,,ααα线性相关,则( ) A. 1α必可由432,,ααα线性表示 B.2α必不可由431,,ααα线性表示 C. 4α必可由321,,ααα线性表示 D.4α必不可由321,,ααα线性表示 7、设4321,,,αααα是三维实向量,则( ) A.4321,,,αααα一定线性无关 B.1α一定可由432,,ααα线性表出 C.4321,,,αααα一定线性相关 D.321,,ααα一定线性无关

相关文档
最新文档