二次函数交点式练习题

二次函数交点式练习题
二次函数交点式练习题

二次函数交点式练习题

一、选择

1.如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是3,那么c 的值等于( )

(A )8 (B )14

(C )8或14 (D )-8或-14

2.二次函数y=x 2-(12-k)x+12,当x>1时,y 随着x 的增大而增大,当x<1时,y

随着x 的增大而减小,则k 的值应取( )

(A )12 (B )11 (C )10 (D )9

3.若0

(A )第一象限(B )第二象限

(C )第三象限(D )第四象限

4.不论x 为何值,函数y=ax 2+bx+c(a ≠0)的值恒大于0的条件是( )

A.a>0,△>0

B.a>0, △<0

C.a<0, △<0

D.a<0, △<0

5.若抛物线

22y x x a =++的顶点在x 轴的下方,则a 的取值范围是( ) A.1a > B.1a <

C.1a ≥ D.1a ≤

二、填空

1、已知一条抛物线的开口大小、方向与2x y =均相同,且与x 轴的交点坐标是

(-2,0)、(-3,0),则该抛物线的关系式是 .

2.已知一条抛物线的形状与22x y =相同,但开口方向相反,且与x 轴的交点坐

标是(1,0)、(4,0),则该抛物线的关系式是 .

3.已知一条抛物线与x 轴的两个交点之间的距离为3,其中一个交点坐标是

(1,0)、则另一个交点坐标是 ,该抛物线的对称轴

是 .

4.二次函数()()43---=x x y 与x 轴的交点坐标是 ,对称轴

是 .

5.已知二次函数的图象与x 轴的交点坐标是(-1,0),(5,0),且函数的最值

是-3.则该抛物线开口向 ,当x 时,y 随的增大而增大.

6.请写出一个开口向下、与x 轴的交点坐标是(1,0)、(-3,0)的二次函数关系式: .

/7、把二次函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的解析

式为( ).

8.已知二次函数)1(3)1(2-++-=a a x x a y 的图象过原点则a 的值为

9.二次函数432--=x x y 关于Y 轴的对称图象的解析式为 关于X

轴的对称图象的解析式为 关于顶点旋转180度的图象的解析式为

10. 二次函数y=2(x+3)(x-1)的x 轴的交点的个数有__个,交点坐标为_______。

11.已知二次函数222--=x ax y 的图象与X 轴有两个交点,则a 的取值范围是

12.二次函数y=(x-1)(x+2)的顶点为___,对称轴为 _。

13.抛物线y=(k-1)x 2+(2-2k)x+1,那么此抛物线的对称轴是直线_________,它

必定经过________和____

三、解答题

1.已知二次函数的图象与x 轴有两个交点,其中一个交点坐标是(0,0),对称轴是直线2=x ,且函数的最值是4.

⑴求另一个交点的坐标.

⑵求出该二次函数的关系式.

2.抛物线y= (k 2-2)x 2+m-4kx 的对称轴是直线x=2,且它的最低点在直线y= -2

1x+2上,求函数解析式。

3.y= ax 2+bx+c 图象与x 轴交于A 、B 与y 轴交于C ,OA=2,OB=1 ,OC=1,求函数解析式

4. 抛物线562-+-=x x y 与x 轴交点为A ,B ,(A 在B 左侧)顶点为C.与Y 轴交于点D

(1)求△ABC 的面积。

(2)若在抛物线上有一点M ,使△ABM 的面积是△ABC 的面积的2倍。求M 点坐标。

(3)在该抛物线的对称轴上是否存在点Q ,使得△QAD 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.

5、(2012山东济南3分)如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx .小强骑自行车从拱梁一端O 沿直线匀速穿过拱梁部分的桥面OC ,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC 共需多少秒?

/6、(2012江苏扬州12分)已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,

0)、C(0,3)三点,直线l是抛物线的对称轴.

(1)求抛物线的函数关系式;

(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;

(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.

7、(2012黑龙江大庆6分)将一根长为16 厘米的细铁丝剪成两段.并把每段铁丝围成圆,设所得两圆半径分别为

r和2r.

1

(1)求

r与2r的关系式,并写出1r的取值范围;

1

(2)将两圆的面积和S表示成

r的函数关系式,求S的最小值.

1

用待定系数法解二次函数解析式教案

用待定系数法解二次函数 解析式教案 Prepared on 24 November 2020

宝坻区中学课堂教学教案

教学教学内容教师活动学生活动 例题讲解合 作 探 究 通过例题讲解让学生 熟悉二次函数解析式的求 法。 例1、已知一个二次函数 的图象过点三点,求这个 函数的解析式 例2、已知抛物线的顶点 为,与轴交点为求抛物线 的解析式 例3、已知抛物线与轴交 于并经过点,求抛物线的 解析式 教师出示问题,引导让学 生先以小组为单位自学、 讨论。 师板书:根据题意 a-b+c=10 a+b+c=4 4a+2b+c=7 去解这个三元一次方程组 得: a=2,b=-3,c=5; 所求二次函数 5 3- 22+ =x x y 师分析:二次函数y=ax2 +bx+c通过配方可得y =a(x-h)2+k的形式称为 顶点式,(h,k)为抛物线 的顶点坐标,因为这个二 次函数的图象顶点坐标是 -1,-3),因此,可以设 函数关系式为:y= a(x+1)2-3 由于二次函数的图象过点 (0,-5),代入所设函数 关系式,即可求出a的 值。 师:二次函数y=ax2+bx +c与x轴的两个交点为 所以应设二次函数y=a (x-x1)(x-x2) (a≠0)再把01 M(,) 代入求a的值。 锻炼学生会根据题目中不 同条件设不同的解析式的 能力。 学生动手自主操解出二次函 数解析式 锻炼学生的计算能力

教学环节教学内容教师活动学生活动 巩固提升达标检测课堂小结1.已知二次函数当x=-3时, 有最大值-1,且当x=0时,y =-3,求二次函数的关系式。 1.已知抛物线的顶点坐标为(- 1,-3),与y轴交点为(0,- 5),求二次函数的关系式。 2.函数y=x2+px+q的最小值 是4,且当x=2时,y=5,求 p和q。 3.若抛物线y=-x2+bx+c的 最高点为(-1,-3),求b和 c。 4.已知二次函数y=ax2+bx+ c的图象经过A(0,1),B(- 1,0),C(1,0),那么此函数 的关系式是______。如果y随x 的增大而减少,那么自变量x 的变化范围是______。 5.已知二次函数y=ax2+bx+ c的图象过A(0,-5),B(5, 0)两点,它的对称轴为直线x= 2,求这个二次函数的关系式。 小结:让学生讨论、交流、归 纳得到:已知二次函数的最大 值或最小值,就是已知该函数 顶点坐标,应用顶点式求解方 便,用一般式求解计算量较 大。 教师与学生一起回顾本节课内容, 并请学生回答:想一想,你的收获是 什么困惑有哪些说出来,与同学们分 享。 1. 让学生体验用不 同的方法解决问 题。 教师适时引导、 点拨,然后由小 组推荐学生板书 问题,其他小组 学生评价。 让学生理清求二 次函数 c bx ax y+ + =2 解析式的研究内 容和方法,让学 生会分析问题、 解决问题的方 法。 学生在自主探究的 基础上,尝试解决 问题。 学生梳理本节课学 习内容,方法及获 得结果,感受过程 体验成功。

二次函数的特殊形式专题(交点式)

《二次函数的特殊形式》专题 班级 姓名 人的心灵在不同的时期有着不同的内容。 2.用十字相乘法分解因式: ①322 --x x ②342 ++x x ③6822 ++x x 3.若一元二次方程02 =++c bx ax 有两实数根21x x 、,则抛物线c bx ax y ++=2 与x 轴交点坐标是 . 【自主探究】 1.根据上面第3题的结果,改写下列二次函数: ①322 --=x x y ②342 ++=x x y ③6822 ++=x x y = = = 2.求出上述抛物线与x 轴的交点坐标: ①322 --=x x y ②342 ++=x x y ③6822 ++=x x y 归纳: ⑴若二次函数c bx ax y ++=2 与x 轴交点坐标是(01,x )、(02,x ),则该函数还可以表 示为 的形式; ⑵反之若二次函数是()()21x x x x a y --=的形式,则该抛物线与 x 轴的交点坐标 是 ,故我们把这种形式的二次函数关系式称为 式. ⑶二次函数的图象与x 轴有2个交点的前提条件是 ,因此这也 是 式存在的前提条件.

【练习】把下列二次函数改写成交点式,并写出它与坐标轴的交点坐标. ⑴232+-=x x y ⑵232-+-=x x y ⑶4622+-=x x y 与x 轴的交点坐标是: 与y 轴的交点坐标是: 例1.已知二次函数的图象与x 轴的交点坐标是(3,0),(1,0),且函数的最值是3. ⑴求对称轴和顶点坐标. ⑵在下列平面直角坐标系中画出它的简图. ⑶求出该二次函数的关系式. ⑷若二次函数的图象与x 轴的交点坐标是(3,0),(-1,0),则对称轴是 ; 若二次函数的图象与x 轴的交点坐标是(-3,0),(1,0),则对称轴是 ; 若二次函数的图象与x 轴的交点坐标是(-3,0),(-1,0),则对称轴是 .

二次函数交点式的研究 专题

二次函数交点式 【问题提出】已知二次函数经过三点13,24A ?? ??? ,(1,3)B -,(2,3)C ,求解析式. 法:由,B C 的纵坐标相等知,1 1x =-,22x =是方程()30f x -=的两个根,可设 零点式()3(1)(2)f x a x x -=+-. 把A 代入,得1a =,从而()(1)(2)3f x x x =+-+,化简即得2 ()1f x x x =-+. 【探究拓展】 探究1:如图,已知二次函数c bx ax y ++=2(a ,b ,c 为实数,0≠a )的图象过点)2,(t C ,且与x 轴交于A ,B 两点,若BC AC ⊥,则a 的值 为 . 探究2:设函数f (x )=x 2+2bx +c (c

c +12<1?-30, ∴f (m -4)的符号为正. 变式1:已知函数c bx ax x f ++=2)(,且c b a >>,0=++c b a ,则以下四个命题中真命题的序号为__________. (1)()1,0∈?x ,都有0)(>x f ;(2)()1,0∈?x ,都有0)(x f . 变式2:已知函数c bx ax x f ++=2)(,且c b a >>,0=++c b a ,集合{}0)(<=m f m A ,则以下四个命题真命题的序号为__________. (1)A m ∈?,都有0)3(>+m f ;(2)A m ∈?,都有0)3(<+m f ; (3)A m ∈?0,使得0)3(0=+m f ;(4)A m ∈?0,使得0)3(0<+m f . 探究3:设二次函数2 ()(0)f x ax bx c a =++>,方程()0f x x -=的两个根12,x x 满足 121 0x x a <<< . (1)当1 (0,)x x ∈时,证明:1 ()x f x x <<; (2)设函数()f x 的图象关于直线0 x x =对称,证明:10 2 x x < . 【答案】(1)欲证1 ()x f x x <<,只须证1 0()f x x x x <-<-,

求二次函数的解析式优秀教案

§26.2.3求二次函数解析式(一) 一、教学目标 知识与技能目标: 1.通过对用待定系数法求二次函数表达式的探究,理解二次函数的三种表达式. 2. 能根据不同的条件正确选择表达式,利用待定系数法求二次函数的表达式. 方法与过程目标:让学生经历观察、比较、归纳、应用以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法. 情感、态度与价值观:通过学习,让学生养成既能自主探索,又能合作探究的良好学习习惯。从学习过程中体会学习数学知识的价值,从而提高学习数学知识的兴趣. 二、教学重难点 重点:求二次函数的函数关系式. 难点:根据不同的条件正确选择表达式 三、教学过程 (一)问题引入 1.问题:如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶.它的拱宽AB为4 m,拱高CO为0.8 m.施 工前要先制造建筑模板,怎样画出模板的轮廓线呢? 2.揭示课题 (二)温故而知新1.二次函数常见的几种表达方式 ①一般式②顶点式转化 顶点坐标③交点式 2.求函数表达式的常见方法是什么?用待定系数法求函数表达式的基本步骤有哪些? (三)探究新知 例1.已知二次函数的图象过A(0,1),B(2,4),C(3,10)三点,求这个二次函数解析式. 变式练习:已知某抛物线是由抛物线y=x2-x-2平移得到的,且该抛物线经过点A(1,1), B(2,4),求其函数关系式. 例2.已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的表达式. 变式练习:已知某抛物线经过点(2, -1)和( - 1,5)两点,且关于直线x= 1对称,求此二次函数的表达式. 例 3.已知二次函数的图象与x轴交于(2,0) 、(-1,0)两点,且过点(0,-2),求此二次函数的表达式. (四)能力提升 抛物线的图像经过(0,0)与(12,0)两点, 且顶点的纵坐标是3,求它的函数表达式.

二次函数交点式练习题

二次函数交点式练习题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

二次函数交点式练习题 一、选择 1.如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是3,那么c 的值等于() (A )8(B )14 (C )8或14(D )-8或-14 2.二次函数y=x 2-(12-k)x+12,当x>1时,y 随着x 的增大而增大,当x<1时,y 随着x 的增大而减小,则k 的值应取() (A )12(B )11(C )10(D )9 3.若00,△>0 B.a>0,△<0 C.a<0,△<0 D.a<0,△<0 5.若抛物线 22y x x a =++的顶点在x 轴的下方,则a 的取值范围是( ) A.1a > B.1a < C.1a ≥ D.1a ≤ 二、填空 1、已知一条抛物线的开口大小、方向与2x y =均相同,且与x 轴的交点坐标是 (-2,0)、(-3,0),则该抛物线的关系式是. 2.已知一条抛物线的形状与22x y =相同,但开口方向相反,且与x 轴的交点坐 标是(1,0)、(4,0),则该抛物线的关系式是. 3.已知一条抛物线与x 轴的两个交点之间的距离为3,其中一个交点坐标是 (1,0)、则另一个交点坐标是,该抛物线的对称轴是. 4.二次函数()()43---=x x y 与x 轴的交点坐标是,对称轴是. 5.已知二次函数的图象与x 轴的交点坐标是(-1,0),(5,0),且函数的最值 是-3.则该抛物线开口向,当x 时,y 随的增大而增大. 6.请写出一个开口向下、与x 轴的交点坐标是(1,0)、(-3,0)的二次函数关系式:. /7、把二次函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的解析 式为(???). 8.已知二次函数)1(3)1(2-++-=a a x x a y 的图象过原点则a 的值为 9.二次函数432--=x x y 关于Y 轴的对称图象的解析式为 关于X 轴的对称图象的解析式为 关于顶点旋转180度的图象的解析式为 10.二次函数y=2(x+3)(x-1)的x 轴的交点的个数有__个,交点坐标为 _______。 11.已知二次函数222--=x ax y 的图象与X 轴有两个交点,则a 的取值范围是 12.二次函数y=(x-1)(x+2)的顶点为___,对称轴为_。

《二次函数图像和性质(交点式)》专题

《二次函数与坐标轴交点》专题 2014年( )月( )日 班级: 姓名 大多数人想要改造这个世界,但却罕有人想改造自己。 1.直线42-=x y 与y 轴交于点 ,与x 轴交于点 。 我们知道:①一次函数与x 轴的交点的求法 ②一次函数与y 轴的交点的求法 那么:③二次函数与x 轴的交点的求法 ④二次函数与y 轴的交点的求法 【归纳】(1)函数与x 轴y 轴交点的求法是:__________ ______________________ (2)反比例函数与坐标轴没有交点的原因是______________________________ 2.一元二次方程02 =++c bx ax ,当Δ 时,方程有两个不相等的实数根; 当Δ 时,方程有两个相等的实数根;当Δ 时,方程没有实数根; 3.解下列方程 (1)0322=--x x (2)0962=+-x x (3)0322 =+-x x 5.对比第3题各方程的解,你发现什么? 一元二次方程02 =++c bx ax 的实数根就是对应的二次函数c bx ax y ++=2 与x 轴交 点的 .(即把0=y 代入c bx ax y ++=2 )

1. 二次函数232 +-=x x y ,当x =1时,y =______;当y =0时,x =______. 2.抛物线342+-=x x y 与x 轴的交点坐标是 ,与y 轴的交点坐标是 ; 3.二次函数642 +-=x x y ,当x =________时,y =3. 4.如图,一元二次方程02=++c bx ax 的解为 。 5.如图,一元二次方程32 =++c bx ax 的解为 。 6. 已知抛物线922 +-=kx x y 的顶点在x 轴上,则k =____________. 7.已知抛物线122-+=x kx y 与x 轴有两个交点,则k 的取值范围是_________ (4) (5)

二次函数解析式的确定教案

二次函数解析式的确定教案 0.3二次函数解析式的确定 一.知识要点 若已知二次函数的图象上任意三点坐标,则用一般式求 解析式。 若已知二次函数图象的顶点坐标,则应用顶点式,其中为顶点坐标。 若已知二次函数图象与x轴的两交点坐标,则应用交点式,其中为抛物线与x轴交点的横坐标 二.重点、难点: 重点:求二次函数的函数关系式 难点:建立适当的直角坐标系,求出函数关系式,解决实际问题。 三.教学建议: 求二次函数的关系式,应恰当地选用二次函数关系式的形式,选择恰当,解题简捷;选择不当,解题繁琐;解题时,应根据题目特点,灵活选用。 典型例题 例1.已知某二次函数的图象经过点A,B,c三点,求其函数关系式。 分析:设,其图象经过点c,可得,再由另外两点建立

关于的二元一次方程组,解方程组求出a、b的值即可。 解:设所求二次函数的解析式为 因为图象过点c,「? 又因为图象经过点A, B,故可得到: ???所求二次函数的解析式为 说明:当已知二次函数的图象经过三点时,可设其关系式为,然后确定a、b、c的值即得,本题由c可先求出c的值,这样由另两个点列出二元一次方程组,可使解题过程简便。 例2.已知二次函数的图象的顶点为,且经过点 求该二次函数的函数关系式。 分析:由已知顶点为,故可设,再由点确定a的值即可解:,则 ???图象过点, 即: 说明:如果题目已知二次函数图象的顶点坐标,一般设,再根据其他条件确定a的值。本题虽然已知条件中已设,但我们可以不用这种形式而另设这种形式。因为在这种形式中,我们必须求a、b、c的值,而在这种形式中,在顶点已知的条件下,只需确定一个字母a的值,显然这种形式更能使我们快捷地求其函数关系式。

二次函数的几种解析式及求法教学设计

二次函数的几种解析式及求法教学设计 福泉一中:齐庆方 一、指导思想与理论依据 (一)指导思想:本次课的教学设计以新课程标准关于数学教学的核心理念为基本遵循,坚持以教师为主导,以学生为主体,以培养能力为基准,采取符合学生学习特点的多样式的学习方法,通过教学容和教学过程的实施,帮助学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,促进学生学会用数学的思考方式解决问题、认识世界. (二)理论依据:本次课的教学设计以新课程标准关于数学教育的理论为基本依据,主要把握了两个方面的理论: 1、新课程标准关于数学整体性的理论.教学中注意沟通各部分之间的联系,通过类比、联想、知识的迁移和应用等方式,使学生体会知识之间的联系,感受数学的整体性,进一步理解数学的本质,提高解决问题的能力. 2、新课程标准关于教师教学的理论.教师应该更加关注:1)科学的基本态度之一是疑问,科学的基本精神之一是批判.要注意培养学生科学的质疑态度和批判性的思维习惯;2)提出问题是数学学习的重要组成部分,更是数学创新的出发点.要注意培养学生提出问题的能力;3)在教学中更加关注学生知识的储备、能力水平、思维水平等;4)关注学生的学习态度、学习方法、学习习惯,在思维的最近发展区设计教学容.

二、教学背景分析 (一)学习容分析 “待定系数法”是数学思想方法中的一种重要的方法,在实际生活和生产实践中有着广泛的应用.学生对于“待定系数法”的学习渗透在不同的学习阶段,初中阶段要求学生初步学会用待定系数法求函数解析式;因此这节课的学习既是初中知识的延续和深化,又为后面的学习奠定基础,起着承前启后的作用.另外,待定系数法作为解决数学实际问题的基本方法和重要手段,在其他学科中也有着广泛的应用. (二)学生情况分析 对于初三学生来说,在学习一次函数的时候,学生对于用待定系数法求函数解析式的方法已经有所认识,他们已经积累了一定的学习经验.在学习完一次函数后继续学习用待定系数法求函数解析式,学生已经具备了更多的函数知识,同时,初三的学生已经具备了一定的分析问题、解决问题能力和创新意识,这些对本节课的学习都很有帮助.在今后高中的数学学习中,学生还会继续运用待定系数法解决相关问题.新课标对学生在探究问题的能力,合作交流的意识等方面有了更高的要求,在教学中还有待加强相应能力的培养. (三)教学方式与教学手段、技术准备以及前期的教学状况、问题、对策说明

二次函数的交点式

二次函数之交点式 【课前自习】 2.用十字相乘法分解因式: ①322 --x x ②342 ++x x ③6822 ++x x 3.若一元二次方程02 =++c bx ax 有两实数根21x x 、,则抛物线c bx ax y ++=2 与x 轴 交点坐标是 . 【课堂学习】 一、探索归纳: 1.根据《课前自习》第3题的结果,改写下列二次函数: ①322 --=x x y ②342 ++=x x y ③6822 ++=x x y = = = 2.求出上述抛物线与x 轴的交点坐标: ①322 --=x x y ②342 ++=x x y ③6822 ++=x x y 坐标: 3.你发现什么? 4.归纳: ⑴若二次函数c bx ax y ++=2 与x 轴交点坐标是(01,x )、(02,x ),则该函数还可以 表示为 的形式; ⑵反之若二次函数是()()21x x x x a y --=的形式,则该抛物线与x 轴的交点坐标是 ,故我们把这种形式的二次函数关系式称为 式. ⑶二次函数的图象与x 轴有2个交点的前提条件是 ,因此这也 是 式存在的前提条件.

练习.把下列二次函数改写成交点式,并写出它与坐标轴的交点坐标. ⑴232 +-=x x y ⑵232 -+-=x x y ⑶4622 +-=x x y 与x 轴的交点坐标是: 与y 轴的交点坐标是: 二、典型例题: 例1.已知二次函数的图象与x 轴的交点坐标是(3,0),(1,0),且函数的最值是3. ⑴求对称轴和顶点坐标. ⑶求出该二次函数的关系式. ⑷若二次函数的图象与x ,则对称轴是 ; 若二次函数的图象与x 轴的交点坐标是(-3,0),(1,0),则对称轴是 ; 若二次函数的图象与x 轴的交点坐标是(-3,0),(-1,0),则对称轴是 . 归纳:若抛物线c bx ax y ++=2 与x 轴的交点坐标是(01,x )、(02, x )则,对称轴是 ,顶点 坐标是【拓展提升】 已知二次函数的图象与x 轴的交点坐标是(⑴求对称轴和顶点坐标. ⑶求出该二次函数的关系式.

用待定系数法求二次函数解析式教学设计及反思

用待定系数法求二次函数解析式教学设计及反思 胡可 一、知识目标 通过用待定系数法求二次函数解析式的探究,让学生掌握求二次函数解析式的方法。 二、能力目标 能灵活的根据条件恰当地选择解析式的模式,体会二次函数解析式之间的转化。 三、情感价值观 从学习过程中体会学习函数知识的价值,从而提高学习函数知识的兴趣。四、教学重点 会根据不同的条件,利用待定系数法求二次函数的函数关系式 五、教学难点 在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质解决生活中的实际问题 六、教学过程 1、情境导入 我们前面几节课学习了二次函数(抛物线)图形及性质,主要有那两种形式:一般式:_______________ (a≠0)顶点式:_______________ (a≠0) 在函数关系式中有几个独立的系数,需要有相同个数的独立条件才能求出函数关系式.例如:我们在确定一次函数的关系式时,通常需要两个独立的条件,在确立正比例函数的解析式时,也只要一个条件就行了,下面我们来探讨,要确定二次函数的解析式,需要几个条件? 2、新知探索 例1.根据下列条件,分别求出对应的二次函数的关系式 (1)已知二次函数的图象经过点A(-1,10),B(1,4),C(2,7)。 (设为三点式可解) (2)已知抛物线的顶点为(2,-4),且与y轴交于点(0,3); (设为顶点式可解) 3、练一练 根据下列条件求二次函数解析式 (1)已知二次函数的图象过A(0,-5),B(5,0)两点,它的对称轴为直线x =2; (2)已知二次函数的图象经过点(2,-1),并且当x=5时有最大值4; (3)已知抛物线顶点(2,8),且抛物线经过点(1,–2) 4、归纳总结 二次函数解析式常用的形式: (1)、一般式:_______________ (a≠0) (2)顶点式:_______________ (a≠0) 2、用待定系数法求函数解析式,应注意根据不同的条件选择合适的解析式形式, (1)当已知抛物线上任意三点时,通常设为一般式的形式。

初中数学二次函数复习求函数解析式优质课教案优质课教案教学设计

二次函数专题(一)——求二次函数表达式教学目标 会通过待定系数法求二次函数的关系式; 教学过程 二次函数是初中数学的一个重要内容,也是高中数学的一个重要基础。熟练地求出二次函数的解析式是解决二次函数问题的重要保证。 二次函数的解析式有三种基本形式: 1、一般式:y=ax2 +bx+c (a≠0)。 2、顶点式:y=a(x-m)2 +k (a≠0),其中点(h,k)为顶点,对称轴为x=h。 3、交点式:y=a(x-x 1)(x-x 2) (a≠0),其中x 1,x 2是抛物线与x轴的交点的横坐标。 求二次函数的解析式一般用待定系数法,但要根据不同条件,设出恰当的解析式:1、若给出抛物线上任意三点,通常可设一般式。 2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式。 3、若给出抛物线与x轴的交点或对称轴或与x轴的交点距离,通常可设交点式。 探究问题,典例指津:

例1、已知二次函数的图象经过(0,1),(2,4),(3,10)三点,请你用待定系数法求这个函数的解析式。 例2、已知二次函数的图象经过(0,1),它的顶点坐标是(8,9),求这个函数的解析式。 练习、已知抛物线的顶点在原点,且过(2,8),求这个函数的解析式。 例3、已知抛物线与x轴交于A(-1,0)、B(1,0),并经过M(0,1),求抛物线的解析式. 练习1:根据下列已知条件,求二次函数的解析式: (1)抛物线过点(0,2),(1,1),(3,5) (2)抛物线顶点为M(-1,2)且过点N(2,1) (3)抛物线过原点,且过点(3,-27),(-1,1) (4)已知二次函数的图象经过点(1,0),(3,0),(0,6)求二次函数的解析式。 例4、已知抛物线y=ax2+bx+c与x轴相交于点A(-3,0),对称轴为x=-1,顶点M到x轴的距离为2,求此抛物线的解析式. 练习2:根据下列已知条件,求二次函数的解析式: (1)抛物线y=ax2+bx+c经过(0,0)与(12,0),最高点的纵坐标是3,求这条抛物线的解析式。 (2)已知当x=2是,函数有最小值为3,且过点(1,5) (3)二次函数的图像经过点(3,-8)对称轴为直线x=2,抛物线与X轴两个交点之间的距离为6课堂小结 本节课是用待定系数法求函数解析式,应注意根据不同的条件选择合适的解析式形式

【精品讲义】二次函数一般式、顶点式、交点式

二次函数一般式、顶点式、交点式 这节课我们学什么 1. 会用待定系数法求二次函数的解析式; 2. 会平移二次函数2(0)y ax a =≠的图象得到二次函数2()y a x h k =-+的图象; 了解特殊与一般相互联系和转化的思想; 3. 根据交点求解解析式.

知识点梳理 1、顶点式:()2y a x h k =-+的图像与性质 2、交点式:12()()y a x x x x =--的图像与性质 1x 、2x 分别是二次函数与x 轴的两个交点坐标,如果二次函数与x 轴的交点坐标已知,则我们可以设解析式为12()()y a x x x x =--,然后再根据条件求出a 即可; 3、一般式2y ax bx c =++的性质 对于一般式:2(0)y ax bx c a =++≠,我们怎么能知道二次函数的对称轴以及顶点坐标呢? 将一般式配方成顶点式: 2y ax bx c =++=2 ()b c a x x a a ++=22222()44b b b c a x x a a a a ++-+ =222(())()22b b c b a x x a a a a +++- =222424b b ac a x a a -??+= ?? ? 所以,任意二次函数,其对称轴方程为:直线2b x a =-;顶点坐标为2424b ac b a a ??-- ??? , 1. 当0a >时,抛物线开口向上,对称轴为直线2b x a =-,顶点坐标为2424b ac b a a ??-- ???,. 当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大; 2. 当0a <时,抛物线开口向下,对称轴为直线2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;

二次函数的特殊形式

6.3.3二次函数的特殊形式 【学习目标】 1.经历探索二次函数交点式的过程,体会方程与函数之间的联系; 2.渗透数形结合的数学思想. 【课前预习】 2.用十字相乘法分解因式: ①322 --x x ②342 ++x x ③6822 ++x x 3.若一元二次方程02 =++c bx ax 有两实数根21x x 、,则抛物线c bx ax y ++=2 与x 轴 交点坐标是 . 一、探索归纳: 1.根据《课前预习》第3题的结果,改写下列二次函数: ①322 --=x x y ②342 ++=x x y ③6822 ++=x x y = = = 2.求出上述抛物线与x 轴的交点坐标: ①322 --=x x y ②342 ++=x x y ③6822 ++=x x y 坐标: 3.你发现什么? 4.归纳: ⑴若二次函数c bx ax y ++=2 与x 轴交点坐标是(01,x )、(02,x ),则该函数还可以 表示为 的形式; ⑵反之若二次函数是()()21x x x x a y --=的形式,则该抛物线与x 轴的交点坐标是 ,故我们把这种形式的二次函数关系式称为 式. ⑶二次函数的图象与x 轴有2个交点的前提条件是 ,因此这也 是 式存在的前提条件. 练习.把下列二次函数改写成交点式,并写出它与坐标轴的交点坐标. ⑴232 +-=x x y ⑵232 -+-=x x y ⑶4622 +-=x x y

与x 轴的交点坐标是: 与y 轴的交点坐标是: 二、尝试练习: 1.已知二次函数的图象与x 轴的交点坐标是(3,0),(1,0),且函数的最值是3. ⑴求对称轴和顶点坐标. ⑶求出该二次函数的关系式. ⑷若二次函数的图象与x 轴的交点坐标是(3,0),(-1,0),则对称轴是 ; 若二次函数的图象与x 轴的交点坐标是(-3,0),(1,0),则对称轴是 ; 若二次函数的图象与x 轴的交点坐标是(-3,0),(-1,0),则对称轴是 . 归纳:若抛物线c bx ax y ++=2与x 轴的交点坐标是(01,x )、(02, x )则,对称轴是 ,顶点 坐标是 . 2.已知一条抛物线的开口大小、方向与2x y -=均相同,且与x 轴的交点坐标是(2,0)、(-3,0),则该抛物线的关系式是 . 3.已知一条抛物线与x 轴有两个交点,其中一个交点坐标是(-1,0)、对称轴是直线1=x ,则另一个交点坐标是 . 4.已知一条抛物线与x 轴的两个交点之间的距离为4,其中一个交点坐标是(0,0)、则另 一个交点坐标是 ,该抛物线的对称轴是 . 5.二次函数()()43-+-=x x y 与x 轴的交点坐标是 ,对称轴是 . 6.请写出一个二次函数,它与x 轴的交点坐标是(-6,0)、(-3,0): . 7.已知二次函数的图象与x 轴的交点坐标是(-1,0),(5,0),且函数的最值是3.求出该二 次函数的关系式.(用2种方法) 解法1: 解法2:

二次函数专题讲解

二次函数专题讲解 一、知识综述: 1. 定义:一般地,如果 y ax 2 bx c (a,b,c 是常数, a 0) ,那么 y 叫做 x 的二次函数 2. 二次函数 y ax 2 bx c 用配方法可化成: y a x h 2 k 的形式,其中 h b ,k 4ac b 2a 3. 求抛物线的顶点、对称轴的方法 y a x h 2 k 的形式,得到顶点为 ( h , k ) ,对称轴是直 线 x h . 4. 二次函数由特殊到一般, 可分为以下几种形式: ① y ⑤ y ax 2 bx c . 它们的图像特征如下: 开口大小与| a |成反比,| a |越大,开口越小;| a |越小,开口越大。 5. 用待定系数法求二次函数的解析式 1)一般式: y ax 2 bx c . 已知图像上三点或三对 x 、 y 的值,通常选择一般式 2)顶点式: y a x h 2 k . 已知图像的顶点或对称轴,通常选择顶点式 ( 3)交点式:已知图像与 x 轴的交点坐标 x 1、 x 2 ,通常选用交点式: y a x x 1 x x 2 . 6. 二次函数图象的平移 左加右减(对 X ),上加下减(对 Y )。 二、考点分析及例题解析 考点一:二次函数的概念 4a 1)公式法: y ax 2 bx c a x b 2 2 2 b 4a c b2 ,∴顶点是( 2b a , 4ac 4a b 2 ),对称轴是直线 2a 4a x 2a 2)配方法:运用配方的方法,将抛物线的解析式化为 2 2 2 2 ax 2 ;② y a x 2 k ;③ y a x h 2 ;④ y a x h 2 k ;

《二次函数》参考教案

22.1.1 二次函数 一、教学目标 1.知识与技能目标: (1).使学生理解并掌握二次例函数的概念 (2).能判断一个给定的函数是否为二次例函数,并会用待定系数法求函数解析式 (3).能根据实际问题中的条件确定二次例函数的解析式,体会函数的模型思想 2.过程与方法目标; 通过“探究----感悟----练习”,采用探究、讨论等方法进行。 3.情感态度与价值观: 通过对几个特殊的二次函数的讲解,向学生进行一般与特殊的辩证唯物主义教育 二、教学重、难点 1.重点:理解二次例函数的概念,能根据已知条件写出函数解析式 2.难点:理解二次例函数的概念 . 三、教学过程 1、知识回顾 (1).一元二次方程的一般形式是什么? (2).回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的 2、合作学习,探索新知: 问题1: 正方体的六个面是全等的正方形 ,如果正方形的棱长为x,表面积为y,那么y 与x 的关系可表示为? y=6x 2 问题2:n 个球队参加比赛,每两队之间进行一场比赛 .比赛的场次数m 与球队数n 有什么关系? m=21 1 22n n 问题3: 某工厂一种产品现在的年产量是 20件,计划今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的数量 y 将随计划所定的x

的值而定,y 与x 之间的关系怎样表示? y=20x 2 +40x+20 观察以上三个问题所写出来的三个函数关系式有什么特点? 经化简后都具有y=ax2+bx+c 的形式,(a,b,c 是常数, a ≠0 ). 我们把形如y=ax2+bx+c(其中a,b,c 是常数,a ≠0)的函数叫做二次函数 称:a 为二次项系数,ax 2叫做二次项;b 为一次项系数,bx 叫做一次项;c 为常数项. 又例:y=x2 + 2x – 3 满足什么条件时 当, 是常数其中函数c b,a,)c b,a,c(bx ax y 2(1)它是二次函数? (2)它是一次函数?(3)它是正比例函数?3、巩固练习: 1.下列函数中,哪些是二次函数? (1)y=3x-1 ; (2)y=3x 2+2; (3)y=3x 3+2x 2; (4)y=2x 2-2x+1; (5)y=x 2-x(1+x); (6)y=x -2+x. 2.做一做: (1)正方形边长为x (cm ),它的面积y (cm2)是多少? (2)矩形的长是4厘米,宽是3厘米,如果将其长增加 x 厘米,宽增加2x 厘米,则面积增加到y 平方厘米,试写出y 与x 的关系式. 4、例题讲解: 例1: 关于x 的函数 m m x m y 2)1(是二次函数, 求m 的值. 解: 由题意可得 122m m m 时,函数为二次函数。 当解得,22m m 注意:二次函数的二次项系数不能为零 例2:已知关于x 的二次函数,当x=-1时,函数值为10,当x=1时,函数值为4,当x=2时,函数值为7,求这个二次函数的解析式.(待定系数法)

二次函数交点式专题

交点式专题 知识点;二次函?轴* y轴的交点的求法:分别令严①沪0;二次两離9—次及反比例甬数第的相交:赢立聘孑喙数表达式,脾方程. 制I、己期抛物钱y=J-2K TL "}求证’课抛物线与*轴-定有两个交点,并求⑷这两牛交点的坐标. <2> Z'i^抛物线UK轴的两牛交点为九臥H它的顶总为H求ZUBF的而积 例2、如閤,肖建I经过A〔3, 0), B^O, 3)闫点,11与二次函数严F+l的I炖姒,在第一魏班内相空于点C求: (|^厶人*的唧积: (2) 一次竭歡图會明点峪点A, B粗咸的三篇形的而和. 例3、?朗期抛物线>? = /十脈-c绘过血线y =文一3,崎坐林轴时朗牛交点A * B-此抛物纽崎戈轴的另希交恵为0抛物歿浚魚宵U. (1)求此哋物线的解析成; C2)点P为甩伽线上的卜初点.-我便吃】S^;ti= 5 ’ 4的点P的坐标. D

M 4*已知抛物钱y■丄][抵-?? 2 2 <1)用配方法求它的顶点唯标和对称轴” (2)若该拋物线峙艾轴的烧个交点为九B,我缕段AB的I匕 例5、已知抛物线yW-F (3-2m) x+m-2 (m^0> Fjx轴冇時牛不同的交点. (1) 求m的取就范帽: (2) 料断点P (I, 1)是否在抛物线上; C3)卅尸1时,求抛物线的顶点Q及卩点关于礎物线的对称轴对称的点P'的坐标■并过P' > 4卩二点.回出哋物级臥團■ 例氐已知一次函数y?一57) x-mffj图邃址抛物线*如图2S-10. <1)试求n为何愼时,抛物线与x轴的购牛交点阿的距离是3? <2)当皿为何值时,方程忙一(D]-3> x-m-0的悶个根均为负数?

《二次函数解析式的确定》word版 公开课一等奖教案 (2)

当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料。这些资料因为用的比较少,所以在全网范围内,都不易被找到。您看到的资料,制作于2021年,是根据最新版课本编辑而成。我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品。 本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品。本作品为珍贵资源,如果您现在不用,请您收藏一下吧。因为下次再搜索到我的机会不多哦! 20.3二次函数解析式的确定 一.知识要点 1. 若已知二次函数的图象上任意三点坐标,则用一般式(a≠0)求解析式。 2. 若已知二次函数图象的顶点坐标(或对称轴最值),则应用顶点式,其中(h,k)为顶点坐标。 3. 若已知二次函数图象与x轴的两交点坐标,则应用交点式,其中为抛物线与x轴交点的横坐标 二. 重点、难点: 重点:求二次函数的函数关系式 难点:建立适当的直角坐标系,求出函数关系式,解决实际问题。 三. 教学建议: 求二次函数的关系式,应恰当地选用二次函数关系式的形式,选择恰当,解题简捷;选择不当,解题繁琐;解题时,应根据题目特点,灵活选用。 典型例题 例1. 已知某二次函数的图象经过点A(-1,-6),B(2,3),C(0,-5)三点,求其函数关系式。 分析:设,其图象经过点C(0,-5),可得,再由另外两点建立关于的二元一次方程组,解方程组求出a、b的值即可。 解:设所求二次函数的解析式为 因为图象过点C(0,-5),∴ 又因为图象经过点A(-1,-6),B(2,3),故可得到: ∴所求二次函数的解析式为 说明:当已知二次函数的图象经过三点时,可设其关系式为,然后确定a、b、c的值即得,本题由C(0,-5)可先求出c的值,这样由另两个点列出二元一次方程组,可使解题过程简便。 例2. 已知二次函数的图象的顶点为(1,),且经过点 (-2,0),求该二次函数的函数关系式。 分析:由已知顶点为(1,),故可设,再由点(-2,0)确定a的值即可 解:,则 ∵图象过点(-2,0), ∴

二次函数的交点式

二次函数的交点式标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

二次函数之交点式 【课前自习】 1.根据二次函数的图象和性质填表: 2.用十字相乘法分解因式: ①322--x x ②342++x x ③6822++x x 3.若一元二次方程02=++c bx ax 有两实数根21x x 、,则抛物线 c bx ax y ++=2与x 轴交点坐标是 . 【课堂学习】 一、探索归纳: 1.根据《课前自习》第3题的结果,改写下列二次函数: ①322--=x x y ②342++=x x y ③6822++=x x y 2.求出上述抛物线与x 轴的交点坐标: ①322--=x x y ②342++=x x y ③6822++=x x y

坐标: 3.你发现什么 4.归纳: ⑴若二次函数c bx ax y ++=2与x 轴交点坐标是(01, x )、(02,x ),则该函数还可以 表示为 的形式; ⑵反之若二次函数是()()21x x x x a y --=的形式,则该抛物线与x 轴的交点坐标是 ,故我们把这种形式的二次函数关系式称为 式. ⑶二次函数的图象与x 轴有2个交点的前提条件是 ,因此这也 是 式存在的前提条件. 练习.把下列二次函数改写成交点式,并写出它与坐标轴的交点坐标. ⑴232+-=x x y ⑵232-+-=x x y ⑶ 4622+-=x x y 与x 轴的交点坐标是: 与y 轴的交点坐标是:

二、典型例题: 例1.已知二次函数的图象与x 最值是3. ⑴求对称轴和顶点坐标. ⑶求出该二次函数的关系式. ⑷若二次函数的图象与x 轴是 ; 若二次函数的图象与x 轴的交点坐标是(-3,0),(1,0),则对称轴是 ; 若二次函数的图象与x 轴的交点坐标是(-3,0),(-1,0),则对称 轴是 . 归纳:若抛物线c bx ax y ++=2与x 轴的交点坐标是(01, x )、(02,x )则,对称轴是 ,顶点【拓展提升】 已知二次函数的图象与x 值是4. ⑴求对称轴和顶点坐标.

二次函数交点式练习题

二次函数交点式练习题 一、选择 1.如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是3,那么c 的值等于() (A )8(B )14 (C )8或14(D )-8或-14 2.二次函数y=x 2-(12-k)x+12,当x>1时,y 随着x 的增大而增大,当x<1时,y 随着x 的增大而减小,则k 的值应取() (A )12(B )11(C )10(D )9 3.若00,△>0 B.a>0,△<0 C.a<0,△<0 D.a<0,△<0 5.若抛物线 22y x x a =++的顶点在x 轴的下方,则a 的取值范围是( ) A.1a > B.1a < C.1a ≥ D.1a ≤ 二、填空 1、已知一条抛物线的开口大小、方向与2x y =均相同,且与x 轴的交点坐标是 (-2,0)、(-3,0),则该抛物线的关系式是. 2.已知一条抛物线的形状与22x y =相同,但开口方向相反,且与x 轴的交点坐 标是(1,0)、(4,0),则该抛物线的关系式是. 3.已知一条抛物线与x 轴的两个交点之间的距离为3,其中一个交点坐标是 (1,0)、则另一个交点坐标是,该抛物线的对称轴是. 4.二次函数()()43---=x x y 与x 轴的交点坐标是,对称轴是. 5.已知二次函数的图象与x 轴的交点坐标是(-1,0),(5,0),且函数的最值 是-3.则该抛物线开口向,当x 时,y 随的增大而增大. 6.请写出一个开口向下、与x 轴的交点坐标是(1,0)、(-3,0)的二次函数关系式:. /7、把二次函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的解析 式为(???). 8.已知二次函数)1(3)1(2-++-=a a x x a y 的图象过原点则a 的值为 9.二次函数432--=x x y 关于Y 轴的对称图象的解析式为 关于X 轴的对称图象的解析式为 关于顶点旋转180度的图象的解析式为 10.二次函数y=2(x+3)(x-1)的x 轴的交点的个数有__个,交点坐标为_______。 11.已知二次函数222--=x ax y 的图象与X 轴有两个交点,则a 的取值范围是 12.二次函数y=(x-1)(x+2)的顶点为___,对称轴为_。 13.抛物线y=(k-1)x 2+(2-2k)x+1,那么此抛物线的对称轴是直线_________,它 必定经过________和____

相关文档
最新文档