物理化学 公式集

物理化学 公式集
物理化学 公式集

第一章 气体的pVT 关系

1.

理想气体状态方程式

nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m

式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位

为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。

此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成

摩尔分数 y B (或x B ) = ∑A A

B /n

n

体积分数

/

y B m,B B *=V ?∑*A

V

y A

m,A

式中

∑A A n 为混合气体总的物质的量。A

m,*V

表示在一定T ,p 下纯气体A 的摩尔体积。

∑*A

A

m,A

V

y 为在一定T ,p 下混合之前各纯组分体积的总和。

(2) 摩尔质量

∑∑∑===B

B

B

B B B

B mix //n M n m M y M

式中 ∑=

B

B

m

m 为混合气体的总质量,∑

=

B

B n n 为混合气体总的物质的量。上述各式适用

于任意的气体混合物。

(3) V V p p n n y ///B B B B *

===

式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。*

B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律

p B = y B p ,∑=

B

B

p

p

上式适用于任意气体。对于理想气体

V RT n p /B B =

4.

阿马加分体积定律 V RT n V /B B =*

此式只适用于理想气体。

5. 范德华方程 RT b V V a p =-+))(/(m 2m

nRT nb V V an p =-+))(/(22 式中a 的单位为Pa · m 6 · mol -2,b 的单位为m 3 · mol -1,a 和b 皆为只与气体的种类有关的常数,

称为范德华常数。

此式适用于最高压力为几个MPa 的中压范围内实际气体p ,V ,T ,n 的相互计算。 6. 压缩因子的定义

)/()/(m RT pV nRT pV Z ==

Z 的量纲为一。压缩因子图可用于查找在任意条件下实际气体的压缩因子。但计算结果常产生较大的误差,只适用于近似计算。

第二章 热力学第一定律

1. 热力学第一定律的数学表示式

W Q U +=?

或 'amb δδδd δdU Q W Q p V W =+=-+

规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中 p amb 为环境的压力,W ’

为非体积功。上式适用于封闭体系的一切过程。

2. 焓的定义式

3. 焓变

(1) )(pV U H ?+?=?

式中)(pV ?为pV 乘积的增量,只有在恒压下)()(12V V p pV -=?在数值上等于体积功。 (2)

2

,m 1

d p H nC T ?=?

此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。 4. 热力学能(又称内能)变

此式适用于理想气体单纯pVT 变化的一切过程。 5. 恒容热和恒压热

V Q U =? (d 0,'0)V W == p Q H =? (d 0,'0)p W == 6. 热容的定义式

(1)定压热容和定容热容

δ/d (/)p p p C Q T H T ==??

δ/d (/)V V V C Q T U T ==??

(2)摩尔定压热容和摩尔定容热容

,m m /(/)p p p C C n H T ==??

,m m /(/)V V V C C n U T ==??

上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。 (3)质量定压热容(比定压热容) 式中m 和M 分别为物质的质量和摩尔质量。 (4) ,m ,m p V C C R -= 此式只适用于理想气体。

(5)摩尔定压热容与温度的关系

2

3

,m p C a bT cT dT =+++ 式中a , b , c 及d 对指定气体皆为常数。 (6)平均摩尔定压热容

21,m ,m 21d /()T

p p T C T T T C =-?

7.

摩尔蒸发焓与温度的关系

,m //p p p c C m C M ==pV U H +=

2

1

vap m 2vap m 1vap ,m ()()d T p T H T H T C T

?=?+??

或 v a p

m

v a p

(/)p p H T C ???=?

式中 vap ,m p C ? = ,m p C (g) —,m p C (l),上式适用于恒压蒸发过程。

8.

体积功

(1)定义式

V p W d amb -=?

或 V p W d amb ∑

-

=

(2) )()(1221T T nR V V p W --=--= 适用于理想气体恒压过程。

(3) )(21a m b V V p W --= 适用于恒外压过程。 (4) )/ln()/ln(d 12122

1

p p nRT V V nRT V p W V V =-=-

=?

适用于理想气体恒温可逆过

程。

(5) ,m 21()V W U nC T T =?=- 适用于,m V C 为常数的理想气体绝热过程。

9. 理想气体可逆绝热过程方程

,m 2121(/)

(/)1V C R T T V V =

,m

2121(/)

(/)1p C R T T p p -=

1)/)(/(1212=r V V p p

上式中,,m ,m /p V C C γ=称为热容比(以前称为绝热指数),适用于,m V C 为常数,理想气体可逆绝热过程p ,V ,T 的计算。 10. 反应进度

B B /νξn ?=

上式是用于反应开始时的反应进度为零的情况,B,0B B n n n -=?,B,0n 为反应前B 的物质的量。

B ν为B 的反应计量系数,其量纲为一。ξ的量纲为mol 。

11. 标准摩尔反应焓

θ

θθ

r m B

f m B c m (B,)(B,)H H H ν

βνβ?=

?=-?∑∑

式中θf m (B,)H β?及θ

c m (B,)H β?分别为相态为β的物质B 的标准摩尔生成焓和标准摩尔燃烧

焓。上式适用于ξ=1 mol ,在标准状态下的反应。

12. θ

m r H ?与温度的关系

2

1

θθr m 2r m 1r ,m ()()d T p T H T H T C T ?=?+??

式中 r ,m ,m B

(B)p p C C ν

?=

∑,适用于恒压反应。

13. 节流膨胀系数的定义式

J T (/)H T p μ-=??

T J -μ又称为焦耳-汤姆逊系数。

第三章

热力学第二定律

1.

热机效率

1211211/)(/)(/T T T Q Q Q Q W -=+=-=η

式中1Q 和2Q 分别为工质在循环过程中从高温热源T 1吸收的热量和向低温热源T 2放出的热。W 为在循环过程中热机中的工质对环境所作的功。此式适用于在任意两个不同温度的热源之间一切可逆循环过程。

2. 卡诺定理的重要结论

2211//T Q T Q +??

?=<可逆循环不可逆循环

,,00

任意可逆循环的热温商之和为零,不可逆循环的热温商之和必小于零。 3. 熵的定义

4. 克劳修斯不等式

d S {

//Q T Q T =>δ, δ, 可逆

不可逆

5. 熵判据

amb

sys iso S S S ?+?=?{0, 0, >=不可逆可逆

式中iso, sys 和amb 分别代表隔离系统、系统和环境。在隔离系统中,不可逆过程即自发过程。可逆,即系统内部及系统与环境之间皆处于平衡态。在隔离系统中,一切自动进行的过程,都是向熵增大的方向进行,这称之为熵增原理。此式只适用于隔离系统。 6. 环境的熵变

7. 熵变计算的主要公式

2

22r

111δd d d d Q U p V H V p S T T T

+-?===??? 对于封闭系统,一切0=W δ的可逆过程的S ?计算式,皆可由上式导出

(1)

,m 2121ln(/)ln(/)V S nC T T nR V V ?=+ ,m 2112ln(/)ln(/)p S nC T T nR p p ?=+ ,m 21,m 21ln(/)ln(/)V p S nC p p nC V V ?=+

上式只适用于封闭系统、理想气体、,m V C 为常数,只有pVT 变化的一切过程 (2)

T 2112ln(/)ln(/)S nR V V nR p p ?==

此式使用于n 一定、理想气体、恒温过程或始末态温度相等的过程。 (3)

,m 21ln(/)p S nC T T ?=

此式使用于n 一定、,m p C 为常数、任意物质的恒压过程或始末态压力相等的过程。

d δ/S Q T =amb

ys amb amb amb //S T Q T Q s -==?

8. 相变过程的熵变

此式使用于物质的量n 一定,在α和β两相平衡时衡T ,p 下的可逆相变化。

9. 热力学第三定律

或 0)0K ,(m =*完美晶体

S 上式中符号*代表纯物质。上述两式只适用于完美晶体。

10. 标准摩反应熵

)

B (B

m B m r ∑=?θ

θνS S

2r m 2r m 1r ,m 1

()()(/)d p S T S T C T T θθ?=?+??

上式中r ,m p C ?=

B

,m B

(B)p C ν

∑,适用于在标准状态下,反应进度为1 mol 时,任一化学反应在

任一温度下,标准摩尔反应熵的计算。

11. 亥姆霍兹函数的定义 12.

r d δ'T A W =

此式只适用n 一定的恒温恒容可逆过程。

13. 亥姆霍兹函数判据

V T A ,???

?=<平衡自发

,0,0 只有在恒温恒容,且不做非体积功的条件下,才可用A ?作为过程的判据。

14. 吉布斯函数的定义 15.

,r d δ'T P G W =

此式适用恒温恒压的可逆过程。 16. 吉布斯函数判据

?

??=<平衡自发,,00

只有在恒温恒压,且不做非体积功的条件下,才可用G ?作为过程的判据。 17. 热力学基本方程式

d d d d d d d d d d d d U T S p V H T S V p A S T p V G S T V p

=-=+=--=-+

热力学基本方程适用于封闭的热力学平衡系统所进行的一切可逆过程。说的更详细些,它们不仅适用于一定量的单相纯物质,或组成恒定的多组分系统发生单纯p , V , T 变化的过程。也可适用于相平衡或化学平衡的系统,由一平衡状态变为另一平衡态的过程。 18. 克拉佩龙方程

m m d /d /()

p T H T V ββαα=?? 0)(lim m =*

→完美晶体S T 0

T

H S /βαβα?=?TS U A -=TS H G -=,T p

G ?

此方程适用于纯物质的α相和β相的两相平衡。 19. 克劳修斯-克拉佩龙方程

2vap 21vap m 12d ln(/[])(/)d ln(/)(/)(1/1/)

p p H RT T p p H R T T =?=?-

此式适用于气-液(或气-固)两相平衡;气体可视为理想气体;(l)m *V 与(g)m *

V 相比可忽略不计,在21T T -的温度范围内摩尔蒸发焓可视为常数。

对于气-固平衡,上式vap m H ?则应改为固体的摩尔升华焓。 20. ))(/Δ(/ln(m fus m fus )1212p p H ΔV T T -=

式中fus 代表固态物质的熔化。m fus ΔV 和m fus H Δ为常数的固-液两相平衡才可用此式计算外压对熔点的T 的影响。 21. 麦克斯韦关系式

(/)(/)(/)(/)(/)(/)(/)(/)S p S V V T p T

T p V S T V p S p T S V V T S p ??=??-??=????=??-??=??

适用条件同热力学基本方程。

第四章 多组分系统热力学

1. 偏摩尔量:

定义: C

n p,T,n X X ?

???

????=B B (1) 其中X 为广延量,如V ﹑U ﹑S ......

全微分式:d ??????

=++ ? ?

??????∑B B B B B

d d d p,n T,n X X X T p X n T p (2) 总和: ∑=B

B B

X n

X (3)

2. 吉布斯-杜亥姆方程

在T ﹑p 一定条件下,

0d B

B

B =∑X

n , 或

0d B

B

B =∑X

x 。

此处,x B 指B 的摩尔分数,X B 指B 的偏摩尔量。

3. 偏摩尔量间的关系

广延热力学量间原有的关系,在它们取了偏摩尔量后,依然存在。

例:H = U + PV ? H B = U B + PV B ; A = U - TS ? A B = U B - TS B ; G = H – TS ? G B = H B - TS B ;…

...S T G ;S T G ;V p G V p G n p,p n T,T

B B B B B

B -=??? ?????-=???

????=???? ?????=?

??? ?

???

4. 化学势

定义 C

n p,T,n

G G μB B ?

???

????==B

5. 单相多组分系统的热力学公式

∑+-=B

B

B d d d d n μV p S T U

∑++=B B

B d d d d n μp V S T H

∑+-=B

B B d d d d n μV p T S -A

∑++=B

B

B d d d d n μp V T S -G

C

C

C C

B B B B B n p,T,n V,T,n p,S,n V,S,n G n A n H n U μ?

??? ?????

??? ?????

??? ?????

??? ????==

=

=

但按定义,只有 C

B n p,T,n G ?

??? ????才是偏摩尔量,其余3个均不是偏摩尔量。

6. 化学势判据

在d T = 0 , d p = 0 δW ’= 0 的条件下,???

??≤α=<∑∑平衡自发,,00α0 )()d (αB

B

B n μ 其中,

α

指有多相共存,)(αB μ指

α相内的B 物质。

7. 纯理想气体B 在温度T ﹑压力p 时的化学势

=+00pg)g)ln(

)*p μ(μ(RT p

pg 表示理想气体,* 表示纯态,(g)0μ为气体的标准化学势。真实气体标准态与理想气体标准态均规定为纯理想气体状态,其压力为标准压力 0

p = 100 kPa 。

8. 理想气体混合物中任一组分B 的化学势

)ln(

(g (pg)0B

B B p p RT )μμ+=

其中,总p y p B B =为B 的分压。

9. 纯真实气体B 在压力为p 时的化学势

*

m =++-?0

00

(g)(g)ln()[(g)]d p

*

p RT μμRT V p p p

其中,

(g)*

m V 为纯真实气体的摩尔体积。低压下,真实气体近似为理想气体,故积分项为零。

10. 真实气体混合物中任一组分B 的化学势

?-++=p

p p RT V p p RT μμ0B 0B 0

B B d ](g)[)ln((g)(g)总

其中,V B (g)为真实气体混合物中组分B 在该温度及总压B p 下的偏摩尔体积。低压下,真实气

体混合物近似为理想气体混合物,故积分项为零。

11. 拉乌尔定律与亨利定律(对非电解质溶液)

拉乌尔定律: A *

A A x p p =

其中,*

A p 为纯溶剂A 之饱和蒸气压,A p 为稀溶液中溶剂A 的饱和蒸气分压,x A 为稀溶液中A 的摩尔分数。

亨利定律: B B B B B B B c k b k x k p c,b,x,=== 其中,B p 为稀溶液中挥发性溶质在气相中的平衡分压,B B B c ,b ,x ,k k ,

k 及为用不同单位表示浓

度时,不同的亨利常数。

12. 理想液态混合物

定义:其任一组分在全部组成范围内都符合拉乌尔定律的液态混合物。 B B B x p p *=

其中,0≤x B ≤1 , B 为任一组分。

13. 理想液态混合物中任一组分B 的化学势

)ln((l)(l)B *

B B x RT μμ+=

其中,(l)*

B μ为纯液体B 在温度T ﹑压力p 下的化学势。

若纯液体B 在温度T ﹑压力0p 下标准化学势为

(l)0

B μ,则有: m =+≈?*

00

B

B

B B (l)(l)(l)d (l)

p

*,p μμV p μ 其中,m B (l)

*

,V 为纯液态B 在温度T 下的摩尔体积。

14. 理想液态混合物的混合性质

① 0Δm i x =V

; ② 0Δm i x

=H ; ③ B

=-∑∑mix B

B B

B

Δ(

)ln()S n

R

x x

④ S T G

m i x m i x ΔΔ-=

15. 理想稀溶液 ① 溶剂的化学势:

m =++?0

A A

A A

(l )(l )l n ()(l )d

p

*

,

p μμ

R T

x V p 当p 与0

p 相差不大时,最后一项可忽略。

② 溶质B 的化学势:

)ln(ln((g)ln((g))ln(

(g)(g)(0

B 00B 0B

0B B 0

B 0B

B B B b b

RT )p b k RT μ)

p

b k RT μp p RT μμμb,b,++=+=+==溶质)

我们定义:

?∞+=+p

p b,b,0

p

V μ)p b k RT μd ln((g)B 0

B 00

B 0B

(溶质)(溶质)

同理,有:

??∞∞+=++=+p p x,x,p p c,c 00p

V μp k RT μp

V μ)p c k RT μd (溶质)(溶质)d (溶质)(溶质)B 0

B 0B

B

B 0

B 00B ,0B )ln((g)ln((g)

???∞∞∞

++=++=++=p p x,p

p c,p

p b,0

p

V x RT μ

p V c c RT μp V b b RT μμd ()ln()(d )()ln()(d )()ln(B B 0

B

B 0

B 0

B B 0B 0B B 溶质)溶质溶质溶质溶质(溶质)(溶质)

注:(1)当p 与0

p 相差不大时,最后一项积分均可忽略。

(2)溶质B 的标准态为0

p 下B 的浓度分别为...x ,c c ,b b 1B 0B 0B === , 时,B 仍然

遵循亨利定律时的假想状态。此时,其化学势分别为)(0

B

,溶质b μ﹑)(0B

,溶质c μ﹑)(0

B ,溶质x μ。

16. 分配定律

在一定温度与压力下,当溶质B 在两种共存的不互溶的液体α﹑β间达到平衡时,若B 在α﹑β两相分子形式相同,且形成理想稀溶液,则B 在两相中浓度之比为一常数,即分配系数。

ααββ=

=

B B B B ()

()

()

()

b c K ,K b c

17. 稀溶液的依数性

溶剂蒸气压下降:B *

A A Δx p p =

② 凝固点降低:(条件:溶质不与溶剂形成固态溶液,仅溶剂以纯固体析出)

A m,fus A

f f B

f f ΔH ΔM )R(T k b k T 2*==

③ 沸点升高:(条件:溶质不挥发)

A m,vap A

b b B

b b ΔΔH M )R(T k b k T 2*==

④ 渗透压: Π=B V n R T

18. 逸度与逸度因子

气体B 的逸度~

p B ,是在温度T ﹑总压力总p 下,满足关系式:

)ln(

(g)(g)0B

B B p p RT μμ~

+=

的物理量,它具有压力单位。其计算式为:

}

d ](g)[exp{B B B p p RT V p p p

0~

总1

-=?

逸度因子(即逸度系数)为气体B 的逸度与其分压力之比:

B

B B p p ~

=

? 理想气体逸度因子恒等于1 。

19. 逸度因子的计算与普遍化逸度因子图

p p RT V p

d ]1

(g)[

ln B B -=??

用V m = ZRT / p 代V B ,(Z 为压缩因子)有:

?-=r

p 0

r r

p p Z d 1)

(ln B ?

不同气体,在相同对比温度T r ﹑对比压力p r 下,有大致相同的压缩因子Z ,因而有大致相

同的逸度因子?。

20. 路易斯-兰德尔逸度规则

混合气体中组分B 的逸度因子等于该组分B 在该混合气体温度及总压下单独存在时的逸度因子。

B B *B

B B B B y p y p y p p p ~

~

总总====???总

适用条件:由几种纯真实气体在恒温恒压下形成混合物时,系统总体积不变。即体积有加和性。

21. 活度与活度因子

对真实液态混合物中溶剂:

B B *

B B *B B ln (l)ln (l)(l)f x RT μa RT μμ+=+= ,且有:1lim B

1

B =→f x ,其中a B 为组分B

的活度,f B 为组分B 的活度因子。

若B 挥发,而在与溶液平衡的气相中B 的分压为B p ,则有

B

B

B

B

B B

x

p p x

a f

*

=

=

,且 *p p a B

B B =

对温度T 压力p 下,真实溶液中溶质B 的化学势,有:

∞=++?0

B B B B B 0ln(()d p

p γb μμRT )V p b (溶质)(溶质)溶质

其中,??

?

??=0B B B b b a γ/为B 的活度因子,且 1

B

lim =∑→γ B

B b 0 。

当p 与0p 相差不大时,

B 0

B B ln )(a RT μμ+=溶质(溶质),对于挥发性溶质,其在气相中分压为:B B b k γp b =,则,

==

B B

B B B

b

b p

p a γk k b 。 第五章 化学平衡

1.

化学反应亲和势的定义

A 代表在恒温、恒压和'0W =的条件下反应的推动力,A >0反应能自动进行;A =0处于平衡态;A < 0反应不能自动进行。

2.

摩尔反应吉布斯函数与反应进度的关系

()B B r m ,B

G T p G ξνμ??==?∑

式中的()p ξ??T,G 表示在T ,p 及组成一定的条件下,反应系统的吉布斯函数随反应进度的变化率,称为摩尔反应吉布斯函数变。

3.

化学反应的等温方程 式中 νμ?=

∑θ

θ

r m B B

G ,称为标准摩尔反应吉布斯函数变;()B

B B

p J p p ν=∏θ ,称为反应的压力商,其单位为1。此式适用理想气体或低压下真实气体,,在T ,p 及组成一定,反应进

度为1 mol 时的吉布斯函数变的计算。

4.

标准平衡常数的表达式 式中eq

B p 为参加化学反应任一组分B 的平衡分压力,γB 为B 的化学计量数。K θ量纲为一。若已知平衡时参加反应的任一种物质的量n B ,摩尔分数y B ,系统的总压力p ,也可采用下式计算θ

K :

()}

{()

B

B

B

B

B B

B B

B

K n p

p n y p p

νννν∑∑=∏?=?∑∏θ

θ

θ

r m

A G =-?p J ln RT G G θm r m r +?=?()

B θeq

B B

θνp p K ∏=

式中∑B n 为系统中气体的物质的量之和,∑B

ν

为参加反应的气态物质化学计量数的代数和。

此式只适用于理想气体。

5. 标准平衡常数的定义式 或 θ

θ

r m exp()K G RT =-?

6.

化学反应的等压方程——范特霍夫方程

微分式 θθ

2r m dln d K T H RT =?

积分式 θθθ21r m 2121ln()()K K H T T RT T =?- 不定积分式 θθr m ln K H RT C =-?+

对于理想气体反应,θr m r m H H ?=?,积分式或不定积分式只适用于r m H ?为常数的理想气体

恒压反应。若r m H ?是T 的函数,应将其函数关系式代入微分式后再积分,即可得到θ

ln K 与T 的函数关系式。

7.

真实气体的化学平衡

上式中eq

B p ,~eq B

p

,eq

B ?分别为气体B 在化学反应达平衡时的分压力、逸度和逸度系数。θ

K 则

为用逸度表示的标准平衡常数,有些书上用θ

f K 表示。

上式中 ~e q e q e q B

B B p p ?=?。

1.

吉布斯相律

2+-=P C F

式中F 为系统的自由度数(即独立变量数);P 为系统中的相数;“2”表示平衡系统只受温度、压力两个因素影响。要强调的是,C 称为组分数,其定义为C =S -R -R ′,S 为系统中含有的化学物质数,称物种数;R 为独立的平衡化学反应数;'R 为除任一相中

∑=1B

x

(或1B =ω)。

同一种物质在各平衡相中的浓度受化学势相等限制以及R 个独立化学反应的标准平衡常数θ

K

对浓度限制之外,其他的浓度(或分压)的独立限制条件数。

RT G K θ

m r θln ?-=B

B B

~eq eq eq B

B

B

B

B

B

()()()

K p

p p

p ννν?=∏?∏=∏θ

θθ

大学物理化学公式集

电解质溶液 法拉第定律:Q =nzF m = M zF Q dE r U dl ++ = dE r U dl --= t +=-+I I =-++r r r +=-+U U U ++=∞∞ +Λm ,m λ=() F U U F U ∞∞+∞+-+ r +为离子移动速率,U +( U -)为正(负)离子的电迁移率(亦称淌度)。 近似:+∞+≈,m ,m λλ +∞ +≈,m ,m U U m m Λ≈Λ∞ (浓度不太大的强电解质溶液) 离子迁移数:t B = I I B =Q Q B ∑B t =∑+t +∑-t =1 电导:G =1/R =I/U =kA/l 电导率:k =1/ρ 单位:S ·m -1 莫尔电导率:Λm =kV m =k/c 单位S ·m 2·mol -1 cell l R K A ρ ρ== cell 1K R kR ρ== 科尔劳乌施经验式:Λm =() c 1 m β-∞Λ 离子独立移动定律:∞Λm =()m,m,+U U F λλ∞∞∞∞ +-- +=+ m U F λ∞∞+,+= 奥斯特瓦儿德稀释定律:Φc K =() m m m 2 m c c ΛΛΛΛ∞∞Φ - 平均质量摩尔浓度:±m =() v 1v v m m - - ++ 平均活度系数:±γ=() 1v v -- +γγ+ 平均活度:±a =() v 1v v a a - - ++=m m γ± ± Φ 电解质B 的活度:a B =v a ±=v m m ?? ? ??Φ±±γ +v v v B + a a a a ± -- == m +=v +m B m -=v -m B ( ) 1 v v v B m v v m +±+-- = 离子强度:I = ∑i 2i i z m 21 德拜-休克尔公式:lg ±γ=-A|z +z --|I

大学物理化学试题及答案

物理化学 试卷一 一、选择题 ( 共15题 30分 ) 1. 下列诸过程可应用公式 dU = (Cp- nR)dT进行计算的是: ( C ) (A) 实际气体等压可逆冷却 (B) 恒容搅拌某液体以升高温度 (C) 理想气体绝热可逆膨胀 (D) 量热弹中的燃烧过程 2. 理想气体经可逆与不可逆两种绝热过程: ( B ) (A) 可以从同一始态出发达到同一终态因为绝热可逆ΔS = 0 (B) 从同一始态出发,不可能达到同一终态绝热不可逆S > 0 (C) 不能断定 (A)、(B) 中哪一种正确所以状态函数 S 不同 (D) 可以达到同一终态,视绝热膨胀还是绝热压缩而定故终态不能相同 3. 理想气体等温过程的ΔF。 ( C ) (A)>ΔG (B) <ΔG (C) =ΔG (D) 不能确定 4. 下列函数中为强度性质的是: ( C ) (A) S (B) (G/p)T (C) (U/V)T 容量性质除以容量性质为强度性质 (D) CV 5. 273 K,10p下,液态水和固态水(即冰)的化学势分别为μ(l) 和μ(s),两者的关系为:( C ) (A) μ(l) >μ(s) (B) μ(l) = μ(s) (C) μ(l) < μ(s) (D) 不能确定

6. 在恒温抽空的玻璃罩中封入两杯液面相同的糖水 (A) 和纯水 (B)。经历若干

时间后,两杯液面的高度将是(μ(纯水)>μ(糖水中水) ,水从(B) 杯向(A) 杯转移 ) ( A ) (A) A 杯高于 B 杯 (B) A 杯等于 B 杯 (C) A 杯低于 B 杯 (D) 视温度而定 7. 在通常情况下,对于二组分物系能平衡共存的最多相为: ( D ) (A) 1 (B) 2 (C) 3 (D) 4 * Φ=C+2-f=2+2-0=4 8. 硫酸与水可形成H2SO4·H2O(s)、H2SO4·2H2O(s)、H2SO4·4H2O(s)三种水合物,问在 101325 Pa 的压力下,能与硫酸水溶液及冰平衡共存的硫酸水合物最多可有多少种? ( C ) (A) 3 种 (B) 2 种 (C) 1 种 (D) 不可能有硫酸水合物与之平衡共存。 * S = 5 , R = 3 , R' = 0,C= 5 - 3 = 2 f*= 2 -Φ+ 1 = 0, 最大的Φ= 3 , 除去硫酸水溶液与冰还可有一种硫酸水含物与之共存。 9. 已知 A 和 B 可构成固溶体,在 A 中,若加入 B 可使 A 的熔点提高,则B 在此固溶体中的含量必 _______ B 在液相中的含量。 ( A ) (A) 大于 (B) 小于 (C) 等于 (D)不能确定 10. 已知反应 2NH3= N2+ 3H2在等温条件下,标准平衡常数为 0.25,那么,在此条件下,氨的合成反应 (1/2) N2+(3/2) H2= NH3 的标准平衡常数为: ( C ) (A) 4 (B) 0.5 (C) 2 K (D) 1 * $p(2) = [K $p(1)]= (0.25)= 2 11. 若 298 K 时,反应 N2O4(g) = 2NO2(g) 的 K $p= 0.1132,则: (1) 当 p (N2O4) = p (NO2) = 1 kPa 时,反应将 _____( B )_____; (2) 当 p (N2O4) = 10 kPa,p (NO2) = 1 kPa 时,反应将 ____( A )____ 。

大学物理化学主要公式

第一章 气体的pVT 关系 主要公式及使用条件 1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 / y B m,B B * =V ?∑* A V y A m ,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩 尔体积。∑*A A m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上 述各式适用于任意的气体混合物。 (3) V V p p n n y ///B B B B * === 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。* B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律

p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体 V RT n p /B B = 4. 阿马加分体积定律 V RT n V /B B =* 此式只适用于理想气体。 5. 范德华方程 RT b V V a p =-+))(/(m 2m nRT nb V V an p =-+))(/(22 式中a 的单位为Pa · m 6 · mol -2,b 的单位为m 3 · mol -1,a 和b 皆为只与气体的种类有关的常数,称为范德华常数。 此式适用于最高压力为几个MPa 的中压范围内实际气体p ,V ,T ,n 的相互计算。 6. 维里方程 ......)///1(3m 2m m m ++++=V D V C V B RT pV 及 ......)1(3'2''m ++++=p D p C p B RT pV 上式中的B ,C ,D,…..及B’,C’,D’….分别称为第二、第三、第四…维里系数,它们皆是与气体种类、温度有关的物理量。 适用的最高压力为1MPa 至2MPa ,高压下仍不能使用。 7. 压缩因子的定义 )/()/(m RT pV nRT pV Z == Z 的量纲为一。压缩因子图可用于查找在任意条件下实际气体的压缩因子。但计算结果常产生较大的误差,只适用于近似计算。 第二章 热力学第一定律

物理化学公式大全

物理化学公式集 热力学第一定律 功:δW=δW e+δW f (1)膨胀功δW e=p外dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f=xdy 非膨胀功为广义力乘以广义位移。如δW(机械功)=fdL,δW(电功)=EdQ,δW(表面功)=rdA。热Q:体系吸热为正,放热为负。 热力学第一定律:△U=Q—W 焓H=U+pV 理想气体的内能和焓只是温度的单值函数。 热容C=δQ/dT (1)等压热容:C p=δQ p/dT=(?H/?T)p (2)等容热容:C v=δQ v/dT=(?U/?T)v 常温下单原子分子:C v,m=C v,m t=3R/2 常温下双原子分子:C v,m=C v,m t+C v,m r=5R/2 等压热容与等容热容之差: (1)任意体系C p—C v=[p+(?U/?V)T](?V/?T)p (2)理想气体C p—C v=nR 理想气体绝热可逆过程方程: pVγ=常数TVγ-1=常数p1-γTγ=常数γ=C p/ C v 理想气体绝热功:W=C v(T1—T2)=(p1V1—p2V2) 理想气体多方可逆过程:W=(T1—T2) 热机效率:η=冷冻系数:β=-Q1/W 可逆制冷机冷冻系数:β=

焦汤系数:μJ-T==- 实际气体的ΔH和ΔU: ΔU=+ΔH=+ 化学反应的等压热效应与等容热效应的关系:Q p=Q V+ΔnRT 当反应进度ξ=1mol时,Δr H m=Δr U m+RT 化学反应热效应与温度的关系: 热力学第二定律 Clausius不等式: 熵函数的定义:dS=δQ R/T Boltzman熵定理:S=klnΩ Helmbolz自由能定义:F=U—TS Gibbs自由能定义:G=H-TS 热力学基本公式: (1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程: dU=TdS-pdV dH=TdS+Vdp dF=-SdT-pdV dG=-SdT+Vdp (2)Maxwell关系: ==- (3)热容与T、S、p、V的关系: C V=T C p=T Gibbs自由能与温度的关系:Gibbs-Helmholtz公式=- 单组分体系的两相平衡: (1)Clapeyron方程式:=式中x代表vap,fus,sub。 (2)Clausius-Clapeyron方程式(两相平衡中一相为气相):= (3)外压对蒸汽压的影响:p g是在惰性气体存在总压为p e时的饱和蒸汽压。

(完整word版)大学物理化学公式大全,推荐文档

热力学第一定律 功:δW =δW e +δW f (1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移。如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。 热 Q :体系吸热为正,放热为负。 热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。 热容 C =δQ/dT (1)等压热容:C p =δQ p /dT = (?H/?T )p (2)等容热容:C v =δQ v /dT = (?U/?T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2 常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差: (1)任意体系 C p —C v =[p +(?U/?V )T ](?V/?T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程: pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=1 1 -γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1 nR -δ(T 1—T 2) 热机效率:η= 2 1 2T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β= 1 21 T T T - 焦汤系数: μJ -T =H p T ???? ????=-()p T C p H ?? 实际气体的ΔH 和ΔU : ΔU =dT T U V ??? ????+dV V U T ??? ???? ΔH =dT T H P ??? ????+dp p H T ???? ???? 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑B B γRT 化学反应热效应与温度的关系:()()()dT B C T H T H 2 1 T T m p B 1m r 2m r ? ∑??,+=γ 热力学第二定律

物理化学公式大全

1. 热力学第一定律的数学表示式 W Q U +=?或 'amb δδδd δdU Q W Q p V W =+=-+ 系统得功为正,对环境作功为负。上式适用于封闭体系的一切过程。 2. 焓的定义式 3. 焓变 (1) )(pV U H ?+?=? 式中)(pV ?为pV 乘积的增量,只有恒压下)()(12V V p pV -=?在数值上等于体积功。 (2) 2 ,m 1 d p H nC T ?=? 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。 4. 热力学能(又称内能)变 此式适用于理想气体单纯pVT 变化的一切过程。 5. 恒容热与恒压热 V Q U =? (d 0,'0)V W == p Q H =? (d 0,'0)p W == 6. 热容的定义式 (1)定压热容与定容热容 δ/d (/)p p p C Q T H T ==?? δ/d (/)V V V C Q T U T ==?? (2)摩尔定压热容与摩尔定容热容 ,m m /(/)p p p C C n H T ==?? ,m m /(/)V V V C C n U T ==?? 上式分别适用于无相变变化、无化学变化、非体积功为零的恒压与恒容过程。 (3)质量定压热容(比定压热容) 式中m 与M 分别为物质的质量与摩尔质量。 (4) ,m ,m p V C C R -= 此式只适用于理想气体。 7. 摩尔蒸发焓与温度的关系 2 1 vap m 2vap m 1vap ,m ()()d T p T H T H T C T ?=?+?? 式中 vap ,m p C ? = ,m p C (g) —,m p C (l),上式适用于恒压蒸发过程。 8. 体积功 ,m //p p p c C m C M ==pV U H +=2 ,m 1d V U nC T ?=?

大学物理化学必考公式总结

物理化学期末重点复习资料

热力学第一定律 功:δW =δW e +δW f (1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移。如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。 热 Q :体系吸热为正,放热为负。 热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。 热容 C =δQ/dT (1)等压热容:C p =δQ p /dT = (?H/?T )p (2)等容热容:C v =δQ v /dT = (?U/?T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2 常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差: (1)任意体系 C p —C v =[p +(?U/?V )T ](?V/?T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程: pV γ=常数 TV γ-1=常数 p 1-γT γ =常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=1 1 -γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1 nR -δ(T 1—T 2) 热机效率:η= 2 1 2T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=1 21T T T - 焦汤系数: μ J -T =H p T ???? ????=-()p T C p H ?? 实际气体的ΔH 和ΔU : ΔU =dT T U V ??? ????+dV V U T ??? ???? ΔH =dT T H P ??? ????+dp p H T ???? ? ??? 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑B B γRT 化学反应热效应与温度的关系:()()()dT B C T H T H 2 1 T T m p B 1m r 2m r ? ∑??,+=γ 热力学第二定律

大学物理化学公式大全

热力学第一定律 功:δW=δW e+δWf (1)膨胀功δWe=p 外 dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移.如δW(机械功)=fdL,δW(电功)=EdQ,δW(表面功)=rdA。 热Q:体系吸热为正,放热为负. 热力学第一定律:△U=Q—W 焓H=U+pV 理想气体得内能与焓只就是温度得单值函数. 热容C=δQ/dT (1)等压热容:C p=δQ p/dT= (?H/?T)p (2)等容热容:Cv=δQ v/dT= (?U/?T)v 常温下单原子分子:C v ,m =C v,m t=3R/2 常温下双原子分子:C v,m=C v ,m t+C v,m r=5R/2 等压热容与等容热容之差: (1)任意体系C p -Cv=[p+(?U/?V)T](?V/?T)p (2)理想气体Cp—C v=nR 理想气体绝热可逆过程方程: pVγ=常数TVγ-1=常数p1-γTγ=常数γ=Cp/ C v 理想气体绝热功:W=C v(T1—T2)=(p1V1—p2V2) 理想气体多方可逆过程:W=(T 1 -T2) 热机效率:η= 冷冻系数:β=-Q1/W 可逆制冷机冷冻系数:β= 焦汤系数: μJ- T ==- 实际气体得ΔH与ΔU: ΔU=+ΔH=+ 化学反应得等压热效应与等容热效应得关系:Q p=Q V+ΔnRT 当反应进度ξ=1mol时,Δr H m=ΔrUm+RT 化学反应热效应与温度得关系: 热力学第二定律 Clausius不等式: 熵函数得定义:dS=δQ R /TBoltzman熵定理:S=klnΩ Helmbolz自由能定义:F=U-TS Gibbs自由能定义:G=H-TS 热力学基本公式: (1)组成恒定、不作非膨胀功得封闭体系得热力学基本方程:dU=TdS-pdVdH=TdS+Vdp dF=—SdT-pdV dG=-SdT+Vdp (2)Maxwell关系: ==- (3)热容与T、S、p、V得关系: CV=T C p =T Gibbs自由能与温度得关系:Gibbs-Helmholtz公式=-

大学物理化学核心教学方案计划教案第二版(沈文霞)课后标准参考答案第4章

第四章多组分系统热力学 一.基本要求 1.了解混合物的特点,熟悉多组分系统各种组成的表示法。 2.掌握偏摩尔量的定义和偏摩尔量的加和公式及其应用。 3.掌握化学势的狭义定义,知道化学势在相变和化学变化中的应用。 4.掌握理想气体化学势的表示式,了解气体标准态的含义。 5.掌握Roult定律和Henry定律的含义及用处,了解它们的适用条件和不同之处。 6.了解理想液态混合物的通性及化学势的表示方法,了解理想稀溶液中各组分化学势的表示法。 7.了解相对活度的概念,知道如何描述溶剂的非理想程度,和如何描述溶质在用不同浓度表示时的非理想程度。 8.掌握稀溶液的依数性,会利用依数性来计算未知物的摩尔质量。 二.把握学习要点的建议 混合物是多组分系统的一种特殊形式,各组分平等共存,服从同一个经验规律(即Rault定律),所以处理起来比较简单。一般是先掌握对混合物的处理方法,然后再扩展到对溶剂和溶质的处理方法。先是对理想状态,然后扩展到对非理想的状态。 偏摩尔量的定义和化学势的定义有相似之处,都是热力学的容量性质在一定的条件下,对任一物质B的物质的量的偏微分。但两者有本质的区别,主要体现在“一定的条件下”,即偏微分的下标上,这一点初学者很容易混淆,所以在学习时一定要注意它们的区别。偏摩尔量的下标是等温、等压和保持除B以外的其他组成不变(C B )。化学势的下标是保持热力学函数的两个特征变量和保持除B以外的其他组成不变。唯独偏摩尔ibbs自G由能与狭义化学势是一回事,因为Gibbs自由能的特征变量是,T p,偏摩尔量的下标与化学势定义式的下标刚好相同。 多组分系统的热力学基本公式,比以前恒定组成封闭系统的基本公式,在 d n时所引起的相应热最后多了一项,这项表示某个组成B的物质的量发生改变 B

物理化学公式汇总

第一章 气体的pVT 关系 主要公式及使用条件 1、 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 此式适用于理想气体,近似地适用于低压的真实气 体。 式中p ,V ,T 及n 单位分别为Pa,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8、314510 J · mol -1 · K -1,称为摩尔气体常数。 2、 气体混合物 (1) (1) 组成 摩尔分数 y B (或x B ) = ∑A A B / n n 体积分数 /y B m,B B *=V ?∑*A V y A m ,A 式中∑A A n 为混合气体总的物质的量。A m,*V 表示在一定T ,p 下纯气体A 的摩尔体积。∑* A A m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总与。 (2) (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上述各式适用于任 意的气体混合物。 (3) V V p p n n y ///B B B B *=== 式中p B 为气体B,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3、 道尔顿定律 p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体 V RT n p /B B = 5、 范德华方程 RT b V V a p =-+))(/(m 2m

大学物理化学知识点归纳

第一章气体的pvT关系 一、理想气体状态方程 pV=(m/M)RT=nRT (1.1) 或pV m =p(V/n)=RT (1.2) 式中p、V、T及n的单位分别为 P a 、m3、K及mol。V m =V/n称为气 体的摩尔体积,其单位为m3·mol。R=8.314510J·mol-1·K-1称为摩尔气体常数。 此式适用于理想,近似于地适用于低压下的真实气体。 二、理想气体混合物 1.理想气体混合物的状态方程(1.3) pV=nRT=(∑ B B n)RT pV=mRT/M mix (1.4) 式中M mix 为混合物的摩尔质量,其可表示为 M mix def ∑ B B y M B (1.5) M mix =m/n=∑ B B m/∑ B B n (1.6) 式中M B 为混合物中某一种组分B 的摩尔质量。以上两式既适用于各种 混合气体,也适用于液态或固态等均 匀相混合系统平均摩尔质量的计算。 2.道尔顿定律 p B =n B RT/V=y B p (1.7) P=∑ B B p (1.8) 理想气体混合物中某一种组分B 的分压等于该组分单独存在于混合气 体的温度T及总体积V的条件下所具 有的压力。而混合气体的总压即等于 各组分单独存在于混合气体的温度、 体积条件下产生压力的总和。以上两 式适用于理想气体混合系统,也近似 适用于低压混合系统。

3.阿马加定律 V B *=n B RT/p=y B V (1.9) V=∑V B * (1.10) V B *表示理想气体混合物中物质B 的分体积,等于纯气体B在混合物的温度及总压条件下所占有的体积。理想气体混合物的体积具有加和性,在相同温度、压力下,混合后的总体积等于混合前各组分的体积之和。以上两式适用于理想气体混合系统,也近似适用于低压混合系统。 三、临界参数 每种液体都存在有一个特殊的温度,在该温度以上,无论加多大压力,都不可能使气体液化,我们把 这个温度称为临界温度,以T c 或t c 表 示。我们将临界温度T c 时的饱和蒸气 压称为临界压力,以p c 表示。在临界温度和临界压力下,物质的摩尔体积 称为临界摩尔体积,以V m,c 表示。临 界温度、临界压力下的状态称为临界 状态。 四、真实气体状态方程 1.范德华方程 (p+a/V m 2)(V m -b)=RT (1.11) 或(p+an2/V2)(V-nb)=nRT (1.12) 上述两式中的a和b可视为仅与 气体种类有关而与温度无关的常数, 称为范德华常数。a的单位为Pa·m 6·mol,b的单位是m3mol.-1。该方 程适用于几个兆帕气压范围内实际气 体p、V、T的计算。 2.维里方程 Z(p,T)=1+Bp+Cp+Dp+… (1.13) 或Z(V m, ,T)=1+B/V m +C / V m 2 +D/ V m 3 +… (1.14)

大学物理化学公式集[整理版]9页word文档

大学物理化学公式集 热力学第一定律 热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。 热容 C =δQ/dT (1)等压热容:C p =δQ p /dT = (?H/?T )p (2)等容热容:C v =δQ v /dT = (?U/?T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2 常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差: (1)任意体系 C p —C v =[p +(?U/?V )T ](?V/?T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程: pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=1 1 -γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1 nR -δ(T 1—T 2) 热机效率:η= 2 1 2T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=1 21 T T T - 实际气体的ΔH 和ΔU : ΔU =dT T U V ??? ????+dV V U T ??? ???? ΔH =dT T H P ??? ????+dp p H T ???? ???? 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑B B γRT 化学反应热效应与温度的关系:()()()dT B C T H T H 2 1 T T m p B 1m r 2m r ? ∑??,+=γ 热力学第二定律 Clausius 不等式:0T Q S B A B A ≥?∑ →δ— 熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:A =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:

热力学公式汇总

物理化学主要公式及使用条件 第一章 气体的pVT 关系 主要公式及使用条件 1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 /y B m,B B * =V ?∑*A V y A m ,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩 尔体积。∑*A A m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上 述各式适用于任意的气体混合物。 (3) V V p p n n y ///B B B B * ===

式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。* B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律 p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体 V RT n p /B B = 4. 阿马加分体积定律 V RT n V /B B =* 此式只适用于理想气体。 第二章 热力学第一定律 主要公式及使用条件 1. 热力学第一定律的数学表示式 W Q U +=? 或 'amb δδδd δdU Q W Q p V W =+=-+ 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中 p amb 为环境的压力,W ’为非体积功。上式适用于封闭体系的一切过程。 2. 焓的定义式 3. 焓变 pV U H +=

大学物理化学汇总..

物理化学习题汇总 一、填空题 1.一定量的某理想气体,经过节流膨胀,此过程的ΔU =0 ,ΔH =0,ΔS >0,ΔG <0.(填>,<,=0或无法确定) 热力学第三定律可表示为:在绝对0K,任何物质完美晶体的熵值为零。 2.理想气体状态方程的适用条件:理想气体;高温低压下的真实气体。 3.可逆膨胀,体系对环境做最大功;可逆压缩。环境对体系做最小功。 4.可逆相变满足的条件:恒温,恒压,两相平衡。 5.可逆循环的热温商之和等于零,可逆过程的热温商 = dS. 6.自发过程都有做功的能力,反自发过程需环境对系统做功,自发过程的终点是平衡态。 10.理想气体在等温条件下反抗恒定外压膨胀,该变化过程中系统的熵变ΔSsys > 0 及环境的熵变ΔSsur < 0 。 (理想气体等温膨胀,体积增加,熵增加,但要从环境吸热,故环境的熵减少。)11.在50℃时,液体A的饱和蒸汽压是液体B的饱和蒸汽压的3倍,A和B两液体形成理想液态混合物,达气液平衡时,液相中A的摩尔分数为0.5,则气相中B的摩尔分数yB为______。 0.25yB=PB/P=PB*xB/(PA*xA+PB*xB) 13.道尔顿定理的内容:混合气体的总压力等于各组分单独存在于混合气体的温度体积条件下所产生压力的总和。 14.热力学第二定理表达式 ds ≧ &Q / T 。 15.熵增原理的适用条件绝热条件或隔离系统。 16.353.15K时苯和甲苯的蒸气压分别为100KPa和38.7KPa二者形成混合物,其平衡气相的组成Y苯为0.30,则液相的组成X苯为 0.142 。 17.在室温下,一定量的苯和甲苯混合,这一过程所对应的DH大约为 0 。 18.反应能否自发进行的判据。 答案:dS条件是绝热体系或隔离系统,(dA)T,V,Wf=o0,(dG)T,P,Wf。 20.节流膨胀的的定义。 答案:在绝热条件下气体的的始末态压力分别保持恒定不变情况下的膨胀过程。

大学物理化学下册第五版傅献彩知识点分析归纳

第八章电解质溶液

第九章 1.可逆电极有哪些主要类型?每种类型试举一例,并写出该电极的还原反应。对于气体电极和氧化还原电极在书写电极表示式时应注意什么问题? 答:可逆电极有三种类型: (1)金属气体电极如Zn(s)|Zn2+ (m) Zn2+(m) +2e- = Zn(s) (2)金属难溶盐和金属难溶氧化物电极如Ag(s)|AgCl(s)|Cl-(m), AgCl(s)+ e- = Ag(s)+Cl-(m) (3)氧化还原电极如:Pt|Fe3+(m1),Fe2+(m2) Fe3+(m1) +e- = Fe2+(m2) 对于气体电极和氧化还原电极,在书写时要标明电极反应所依附的惰性金属。 2.什么叫电池的电动势?用伏特表侧得的电池的端电压与电池的电动势是否相同?为何在测电动势时要用对消法? 答:正、负两端的电势差叫电动势。不同。当把伏特计与电池接通后,必须有适量的电流通过才能使伏特计显示,这样电池中发生化学反应,溶液浓度发生改变,同时电池有内阻,也会有电压降,所以只能在没有电流通过的情况下才能测量电池的电动势。 3.为什么Weslon标准电池的负极采用含有Cd的质量分数约为0.04~0.12的Cd一Hg齐时,标准电池都有稳定的电动势值?试用Cd一Hg的二元相图说明。标准电池的电动势会随温度而变化吗? 答:在Cd一Hg的二元相图上,Cd的质量分数约为0.04~0.12的Cd一Hg齐落在与Cd一Hg固溶体的两相平衡区,在一定温度下Cd一Hg齐的活度有定值。因为标准电池的电动势在定温下只与Cd一Hg齐的活度有关,所以电动势也有定值,但电动势会随温度而改变。 4.用书面表示电池时有哪些通用符号?为什么电极电势有正、有负?用实验能测到负的电动势吗? 答:用“|”表示不同界面,用“||”表示盐桥。电极电势有正有负是相对于标准氢电极而言的。不能测到负电势。5.电极电势是否就是电极表面与电解质溶液之间的电势差?单个电极的电势能否测

大学物理化学知识整理

第一章 理想气体 1、理想气体:在任何温度、压力下都遵循PV=nRT 状态方程的气体。 2、分压力:混合气体中某一组分的压力。在混合气体中,各种组分的气体分子分别占有相同的体积(即容器的总空间)和具有相同的温度。混合气体的总压力是各种分子对器壁产生撞击的共同作用的结果。每一种组分所产生的压力叫分压力,它可看作在该温度下各组分分子单独存在于容器中时所产生的压力B P 。 P y P B B =,其中∑=B B B B n n y 。 分压定律:∑=B B P P 道尔顿定律:混合气体的总压力等于与混合气体温度、体积相同条件下各组分单独存在时所产生的压力的总和。 ∑=B B V RT n P ) /( 3、压缩因子Z Z=)(/)(理实m m V V 4、范德华状态方程 RT b V V a p m m =-+ ))((2 nRT nb V V an p =-+))((22 5、临界状态(临界状态任何物质的表面张力都等于0) 临界点C ——蒸气与液体两者合二为一,不可区分,气液界面消失; 临界参数: (1)临界温度c T ——气体能够液化的最高温度。高于这个温度,无论如何加压 气体都不可能液化; (2)临界压力c p ——气体在临界温度下液化的最低压力; (3)临界体积c V ——临界温度和临界压力下的摩尔体积。 6、饱和蒸气压:一定条件下,能与液体平衡共存的它的蒸气的压力。取决于状

态,主要取决于温度,温度越高,饱和蒸气压越高。 7、沸点:蒸气压等于外压时的温度。 8、对应状态原理——处在相同对比状态的气体具有相似的物理性质。 对比参数:表示不同气体离开各自临界状态的倍数 (1)对比温度c r T T T /= (2)对比摩尔体积c r V V V /= (3)对比压力c r p p p /= 9、r r r c r r r c c c T V p Z T V p RT V p Z =?= 10、压缩因子图:先查出临界参数,再求出对比参数r T 和r p ,从图中找出对应的Z 。 11、阿玛格定律:B B Vy V = p RT n V B B /= 12、单原子理想气体 R C m p 25,= ,双原子理想气体R C m p 27,= 第二章 热力学第一定律 1、热力学第一定律:自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递过程中能量的总和不变,△U=Q+W (适用于非开放系统)。 2、 广度性质(有加和性):U,H,S,G,A,V 系统的某一性质等于各部分该性质之和 强度性质(无加和性):P,T 系统中不具加和关系的性质 3、恒容热:U Q v ?=(dV=0,W ’=0) 恒压热:H Q p ?=(dP=0,W ’=0),非体积功不为0时'W H Q p -?=

初中物理化学公式大全

初中物理化学公式大全物理 1、匀速直线运动的速度公式: 求速度:v=s/t 求路程:s=vt 求时间:t=s/v 2、变速直线运动的速度公式:v=s/t 3、物体的物重与质量的关系:G=mg (g=9.8N/kg) 4、密度的定义式 求物质的密度:ρ=m/V 求物质的质量:m=ρV 求物质的体积:V=m/ρ 4、压强的计算。 定义式:p=F/S(物质处于任何状态下都能适用) 液体压强:p=ρgh(h为深度) 求压力:F=pS 求受力面积:S=F/p 5、浮力的计算 称量法:F浮=G—F 公式法:F浮=G排=ρ排V排g 漂浮法:F浮=G物(V排<V物) 悬浮法:F浮=G物(V排=V物) 6、杠杆平衡条件:F1L1=F2L2 7、功的定义式:W=Fs 8、功率定义式:P=W/t 对于匀速直线运动情况来说:P=Fv (F为动力) 9、机械效率:η=W有用/W总 对于提升物体来说: W有用=Gh(h为高度) W总=Fs 10、斜面公式:FL=Gh 11、物体温度变化时的吸热放热情况 Q吸=cmΔt (Δt=t-t0) Q放=cmΔt (Δt=t0-t) 12、燃料燃烧放出热量的计算:Q放=qm 13、热平衡方程:Q吸=Q放 14、热机效率:η=W有用/ Q放(Q放=qm) 15、电流定义式:I=Q/t (Q为电量,单位是库仑) 16、欧姆定律:I=U/R 变形求电压:U=IR 变形求电阻:R=U/I 17、串联电路的特点:(以两纯电阻式用电器串联为例) 电压的关系:U=U1 U2

电流的关系:I=I1=I2 电阻的关系:R=R1 R2 18、并联电路的特点:(以两纯电阻式用电器并联为例) 电压的关系:U=U1=U2 电流的关系:I=I1 I2 电阻的关系:1/R=1/R1 1/R2 19、电功的计算:W=UIt 20、电功率的定义式:P=W/t 常用公式:P=UI 21、焦耳定律:Q放=I2Rt 对于纯电阻电路而言:Q放=I2Rt =U2t/R=UIt=Pt=UQ=W 22、照明电路的总功率的计算:P=P1 P1 …… 化学 化合反应 1、镁在空气中燃烧:2Mg O2 点燃2MgO 2、铁在氧气中燃烧:3Fe 2O2 点燃Fe3O4 3、铝在空气中燃烧:4Al 3O2 点燃2Al2O3 4、氢气在空气中燃烧:2H2 O2 点燃2H2O 5、红磷在空气中燃烧:4P 5O2 点燃2P2O5 6、硫粉在空气中燃烧:S O2 点燃SO2 7、碳在氧气中充分燃烧:C O2 点燃CO2 8、碳在氧气中不充分燃烧:2C O2 点燃2CO 9、二氧化碳通过灼热碳层:C CO2 高温2CO 10、一氧化碳在氧气中燃烧:2CO O2 点燃2CO2 11、二氧化碳和水反应(二氧化碳通入紫色石蕊试液):CO2 H2O === H2CO3 12、生石灰溶于水:CaO H2O === Ca(OH)2 13、无水硫酸铜作干燥剂:CuSO4 5H2O ==== CuSO4·5H2O 14、钠在氯气中燃烧:2Na Cl2点燃2NaCl 分解反应 15、实验室用双氧水制氧气:2H2O2 MnO2 2H2O O2↑ 16、加热高锰酸钾:2KMnO4 加热K2MnO4 MnO2 O2↑ 17、水在直流电的作用下分解:2H2O 通电2H2↑ O2 ↑ 18、碳酸不稳定而分解:H2CO3 === H2O C O2↑ 19、高温煅烧石灰石(二氧化碳工业制法):CaCO3 高温CaO CO2↑ 置换反应 20、铁和硫酸铜溶液反应:Fe CuSO4 == FeSO4 Cu 21、锌和稀硫酸反应(实验室制氢气):Zn H2SO4 == ZnSO4 H2↑ 22、镁和稀盐酸反应:Mg 2HCl === MgCl2 H2↑ 23、氢气还原氧化铜:H2 CuO 加热Cu H2O 24、木炭还原氧化铜:C 2CuO 高温2Cu CO2↑ 25、甲烷在空气中燃烧:CH4 2O2 点燃CO2 2H2O 26、水蒸气通过灼热碳层:H2O C 高温H2 CO

物理化学公式大全

1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 /y B m,B B * =V ?∑*A V y A m ,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩尔体积。∑*A A m ,A V y 为 在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上述各式适用于任意的 气体混合物。 (3) V V p p n n y ///B B B B * === 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。* B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律 p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体 V RT n p /B B = 4. 阿马加分体积定律 V RT n V /B B =* 此式只适用于理想气体。 第二章 热力学第一定律 主要公式及使用条件 1. 热力学第一定律的数学表示式

W Q U +=? 或 'amb δδδd δdU Q W Q p V W =+=-+ Q 吸正放负 W外对内正 内对外负 2. 焓的定义式 3. 焓变 (1) )(pV U H ?+?=? 式中)(pV ?为pV 乘积的增量,只有在恒压下)()(12V V p pV -=?在数值上等于体积功。 (2) 2 ,m 1d p H nC T ?=? 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。 4. 热力学能变 此式适用于理想气体单纯pVT 变化的一切过程。 5. 恒容热和恒压热 V Q U =? (d 0,'0)V W == p Q H =? (d 0,'0)p W == 6. 热容的定义式 (1)定压热容和定容热容 δ/d (/)p p p C Q T H T ==?? δ/d (/)V V V C Q T U T ==?? (2)摩尔定压热容和摩尔定容热容 ,m m /(/)p p p C C n H T ==?? ,m m /(/)V V V C C n U T ==?? 上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。 (3)质量定压热容(比定压热容) 式中m 和M 分别为物质的质量和摩尔质量。 (4) ,m ,m p V C C R -= (5)摩尔定压热容与温度的关系 23,m p C a bT cT dT =+++ ,m //p p p c C m C M ==pV U H +=2 ,m 1d V U nC T ?=?

相关文档
最新文档