制备氯代环己烷的反应精馏耦合工艺研究

制备氯代环己烷的反应精馏耦合工艺研究
制备氯代环己烷的反应精馏耦合工艺研究

 万方数据

 万方数据

 万方数据

 万方数据

制备氯代环己烷的反应精馏耦合工艺研究

作者:徐骏, 乔旭, 崔咪芬, 汤吉海, 张进平

作者单位:南京工业大学,化学化工学院,江苏,南京,210009

刊名:

石油化工

英文刊名:PETROCHEMICAL TECHNOLOGY

年,卷(期):2005,34(1)

被引用次数:10次

参考文献(4条)

1.章思规精细有机化学品技术手册 1991

2.刘琳;张亨氯代环己烷的合成[期刊论文]-氯碱工业 2000(01)

3.Taylor R;Krishna R Modelling Reactive Distillation[外文期刊] 2000(22)

4.Malone M F;Doherty M F Reactive Distillation[外文期刊] 2000(11)

本文读者也读过(8条)

1.李鑫.王日杰.杨晓霞多相催化反应精馏制备碳酸二甲酯的研究[会议论文]-2002

2.丁克鸿.程晓曦.杨树斌.缪荣荣.顾志强.Ding Kehong.Cheng Xiaoxi.Yang Shubin.Miao Rongrong.Gu Zhiqiang 光对环己烷氯化制备氯代环己烷的影响[期刊论文]-化工时刊2010,24(1)

3.田景芝.荆涛.姜虹.TIAN Jing-zhi.JING Tao.JIANG Hong固体酸催化反应精馏法合成酯的研究[期刊论文]-化学工程师2006,20(12)

4.马晓华.许振良.袁海宽渗透汽化耦合乙酸乙酯反应精馏过程的研究[会议论文]-2008

5.张永良.李满喜.陆棋.周寻利用废醋酸生产醋酸乙酯[期刊论文]-杭州化工2010,40(3)

6.刘勇晶.郭延红.高彩虹.赵海燕.LIU Yong-jing.GUO Yan-hong.GAO Cai-hong.ZHAO Hai-yan磷钨酸催化反应精馏合成乙酸乙酯的研究[期刊论文]-化学与生物工程2011,28(2)

7.袁钢.叶孔萌.吴嘉.Yuan Gang.Ye Kongmeng.Wu Jia磷钼酸/磷酸复合催化合成乙酸乙酯动力学及其缓蚀性能[期刊论文]-化学反应工程与工艺2008,24(6)

8.李柏春.张克强.杨振生.张倩瑜.娄孟坛.Li Baichun.Zhang Keqiang.Yang Zhensheng.Zhang Qianyu.Lou Mengtan反应精馏法制备高纯度醋酸甲酯[期刊论文]-石油化工2007,36(1)

引证文献(10条)

1.李建修生产氯代环己烷的工艺研究[期刊论文]-广州化工 2011(14)

2.丁克鸿.程晓曦.杨树斌.缪荣荣.顾志强光对环己烷氯化制备氯代环己烷的影响[期刊论文]-化工时刊 2010(1)

3.程晓曦.丁克鸿.顾克军.顾志强二氯环己烷的一种综合利用方法[期刊论文]-氯碱工业 2010(3)

4.刘彬彬.汤吉海.乔旭.崔咪芬新型反应精馏集成过程与传统反应精馏过程的比较[期刊论文]-南京工业大学学报(自然科学版) 2008(5)

5.柏杨进.薄翠梅.丁良辉.乔旭.张公民运用HYSYS对背包式反应精馏过程控制的仿真[期刊论文]-化工自动化及仪表 2011(6)

6.徐骏.乔旭.崔咪芬.汤吉海.张进平环己烷直接氯化制取氯代环己烷反应过程分析[期刊论文]-过程工程学报2005(6)

7.吴济民.李建修.唐皓玮.任保增氯代环己烷绿色合成工艺的研究[期刊论文]-化学世界 2012(8)

8.周娇.汤吉海.乔旭.崔咪芬背包式反应器与精馏塔耦合合成醋酸甲酯的模拟[期刊论文]-南京工业大学学报(自然科学版) 2006(5)

9.李鸿滨氯代环己烷的合成与应用进展[期刊论文]-精细化工中间体 2012(1)

10.罗淑娟.李东风催化精馏技术新进展[期刊论文]-石油化工 2011(1)

本文链接:https://www.360docs.net/doc/5b437143.html,/Periodical_syhg200501009.aspx

正戊烷精馏塔工艺计算

正戊烷精馏塔工艺计算 1全塔物料平衡计算 1.1 原始数据获取: 表3-1 原料各组分数据汇总 .1.2物料衡算 物料的年处理量= 77100001000/8000 1299/580.3720.35860.251000.1 kmol h ??=?+?+?+? 根据设计要求选择05n C -为轻关键组分,06n C -正己烷为重关键组分,0 4n C -为轻组分,07n C -为重组分,轻组分和清关键组分从塔顶流出,重组分和重关键组 分从塔釜流出。假定为清晰分割, 4,w x ≈0,7,D x ≈0,则根据物料衡算关系列出下表:

表3-2 各组分物料衡算关系 联立物料衡算式方程: 1383D W += 389.7454.650.050.05W D D +-+= 0.05324.750.05129.9W D W +-+= 表3-3 清晰分割物料衡算计算结果汇总 1.3用泡点方程计算塔底温度: 对于压力低于200kpa 和分子结构相似的组分所构成的系统可按理想物系处理,汽液平衡常数仅与系统的温度和压力有关,与溶液的组成无关。当已知压力和温度时,由P-T-K 图可以直接查得平衡常数。 初设w t =70℃,由K-P-T 图按P=101.3kpa 查得各组分的i k 值, 求得各组分相平衡常数值,计算结果如下表3-3:

表3-4 泡点方程计算塔底温度结果 在所设的72℃条件下,1 |1|0.0030.01c i iW i k X =-=<∑,符合要求。 1.4露点方程计算塔顶温度 ∴塔底温度为72℃。 因为本塔采用全凝气,所以塔顶温度就是塔顶产品的露点温度。 初设d t =30℃,由K-P-T 图按P=101.3kpa,查得t=30℃时各组分相平衡常数值,计算结果如下表3-4: 表3-5 露点方程计算塔顶温度结果 i 1 |(/)1|0.0050.01c D i i X k =-=<∑,符合要求。 ∴塔顶温度为28℃。

精馏塔的工艺标准计算

2 精馏塔的工艺计算 2.1精馏塔的物料衡算 2.1.1基础数据 (一)生产能力: 10万吨/年,工作日330天,每天按24小时计时。 (二)进料组成: 乙苯212.6868Kmol/h ;苯3.5448 Kmol/h ;甲苯10.6343Kmol/h 。 (三)分离要求: 馏出液中乙苯量不大于0.01,釜液中甲苯量不大于0.005。 2.1.2物料衡算(清晰分割) 以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。 01.0=D HK x ,005.0=W LK x , 表2.1 进料和各组分条件 由《分离工程》P65式3-23得: ,1 ,,1LK i LK W i HK D LK W z x D F x x =-=--∑ (式2. 1) 2434.13005 .001.01005 .0046875.0015625.08659.226=---+? =D Kmol/h W=F-D=226.8659-13.2434=213.6225Kmol/h 0681.1005.06225.21322=?==W X W ,ωKmol/h 编号 组分 i f /kmol/h i f /% 1 苯 3.5448 1.5625 2 甲苯 10.6343 4.6875 3 乙苯 212.6868 93.7500 总计 226.8659 100

5662.90681.16343.10222=-=-=ωf d Kmol/h 132434.001.02434.1333=?==D X D d ,Kmol/h 5544.212132434.06868.212333=-=-=d f ωKmol/h 表2-2 物料衡算表 2.2精馏塔工艺计算 2.2.1操作条件的确定 一、塔顶温度 纯物质饱和蒸气压关联式(化工热力学 P199): C C S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=- 表2-3 物性参数 注:压力单位0.1Mpa ,温度单位K 编号 组分 i f /kmol/h 馏出液i d 釜液i ω 1 苯 3.5448 3.5448 0 2 甲苯 10.6343 9.5662 1.0681 3 乙苯 212.6868 0.1324 212.5544 总计 226.8659 13.2434 213.6225 组份 相对分子质量 临界温度C T 临界压力C P 苯 78 562.2 48.9 甲苯 92 591.8 41.0 乙苯 106 617.2 36.0 名称 A B C D

2、卤代烃的制备和性质

第一节第二课时限时提升 (建议用时:45分钟) 1.要检验某溴乙烷中的溴元素,正确的实验方法是() A.加入氯水振荡,观察水层是否有红棕色出现 B.滴入AgNO3溶液,再加入稀硝酸,观察有无浅黄色沉淀生成 C.加入NaOH溶液共热,然后加入稀硝酸使溶液呈酸性,再滴入AgNO3溶液,观察有无浅黄色沉淀生成 D.加入NaOH溶液共热,冷却后加入AgNO3溶液,观察有无浅黄色沉淀生成 【解析】要检验溴乙烷中的溴元素,必须先将溴乙烷中的溴原子通过水解或消去反应,变为溴离子,再滴入AgNO3溶液检验,但要注意必须先用硝酸中和水解或消去反应后的溶液,调节溶液呈酸性再加入AgNO3溶液。 【答案】 C 2.有机物分子l能发生的反应有() ①取代反应;②加成反应;③消去反应;④使溴水退色;⑤使酸性高锰酸钾溶液退色;⑥与AgNO3溶液生成白色沉淀;⑦聚合反应。 A.以上反应均可发生B.只有⑦不能发生 C.只有⑥不能发生D.只有②不能发生 【解析】由于在该分子中存在碳碳双键,所以该物质有烯烃的典型性质,即易加成、易氧化、易聚合等,同时分子中还存在卤素原子,所以也具有卤代烃的典型性质,易水解、易消去等。卤代烃是一种难溶于水的有机物,另外卤代烃是一种非电解质,在与水混合过程中也不可能发生电离,所以不可能有卤素离子,也就不可能与AgNO3溶液反应生成沉淀。所以由上述分析可得所给的反应中只有⑥反应不能发生。

3.3-氯戊烷是一种有机合成中间体,下列有关3-氯戊烷的叙述正确的是() A.3-氯戊烷的分子式为C6H9Cl3 B.3-氯戊烷属于烷烃 C.3-氯戊烷的一溴代物共有3种 D.3-氯戊烷的同分异构体共有6种 【解析】3-氯戊烷的分子式为C5H11Cl,A项错误;烷烃分子中只含有碳元素和氢元素,故3-氯戊烷不属于烷烃,B项错误;3-氯戊烷的一溴代物共有3种,C项正确;3-氯戊烷的同分异构体共有7种,D项错误。 【答案】 C 4.如图表示4-溴环己烯所发生的4个不同反应。其中,产物只含有一种官能团的反应是() A.①②B.②③ C.③④D.①④ 【解析】反应①,双键能被酸性高锰酸钾溶液氧化,双键所连碳原子被氧化为羧基,为除原官能团溴原子之外的又一种官能团;反应②为卤代烃的水解反应,溴原子在题目所给条件下发生水解,溴原子被羟基取代,连同原有的碳碳双键共两种官能团;反应③为卤代烃的消去反应,生成小分子HBr和双键,故产物中只有一种官能团;反应④为双键的加成反应,在碳环上加一个溴原子,原来也是官能团溴原子,故产物中只有一种官能团。

精馏塔设计流程

在一常压操作的连续精馏塔内分离水—乙醇混合物。已知原料的处理量为2000吨、组成为36%(乙醇的质量分率,下同),要求塔顶馏出液的组成为82%,塔底釜液的组成为6%。 设计条件如下: 操作压力 5kPa(塔顶表压); 进料热状况 自选 ; 回流比 自选; 单板压降 ≤; 根据上述工艺条件作出筛板塔的设计计算。 【设计计算】 (一)设计方案的确定 本设计任务为分离水—乙醇混合物。对于二元混合物的分离,应采用连续精馏流程。 设计中采用泡点进料,将原料液通过预料器加热至泡点后送入精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内其余部分经产品冷却器冷却后送至储罐。该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的倍。塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。 (二)精馏塔的物料衡算 1. 原料液及塔顶、塔底产品的摩尔分率 乙醇的摩尔质量 A M =46.07kg/kmol 水的摩尔质量 B M =18.02kg/kmol F x =18.002 .1864.007.4636.007 .4636.0=+= D x =64.002.1818.007.4682.007 .4682.0=+= W x =024.002 .1894.007.4606.007 .4606.0=+= 2.原料液及塔顶、塔底产品的平均摩尔质量 F M =×+×=23.07kg/kmol D M =×+×=35.97kg/kmol W M =×+×=18.69kg/kmol 3.物料衡算 以每年工作250天,每天工作12小时计算 原料处理量 F = 90.2812 25007.231000 2000=???kmol/h 总物料衡算 =W D + 水物料衡算 ×=+W

卤代烃1氯甲基-溴己烷1二甲基-3氯-5溴环己

第五章卤代烃 1、(1) 3-氯甲基-2-溴己烷(2) 1,1-二甲基-3氯-5溴环己烷 (3) 4-氯甲基环己烯(4) (Z)-1-溴-2-丁烯 (5) 2-(3-氯苯基)-3-氯丁烷(6) 1-(3-硝基苯基)-1-氯乙烷2、(1)CH2CH CH2Br (2)CH2CH 2CH CH CH CH3 33Cl (3)CH3C C CH CH 2 3 (4)CH2CH2 (5)CBr2I2(6) CHI3 3、(1)CH3CH2OCH3 S N2 (2)s—BuOH SN1 (3) MeCN S N2 (4) H2NCH2CH2NH2S N2 (5)n—PrSCN S N2 (6)CH2=CH—CH2OOCCH3 S N1 (7)CH C CH3 CH3 CH3 SH S N1 (8)i—BuC≡CH S N2(9)CH3C≡CH S N2 (10)t—BuOH S N1 4、(1) C H3CH CH2I 3 比 C H3CH CH2Cl 3 反应快,因为碘离子比氯离子是更好的离去基团。 (2) (CH3)3CBr比CH3CH2CH(CH3)CH2Br反应快,S N1反应,前者形成的碳正离子中间体更稳定。

(3) CH 3CH 2CH 2CH 2Br 比CH 3CH 2CH(CH 3)CH 2Br,S N 2反之,亲核试剂进攻 时前者受到的空间阻力更小。 (4) NaOH(OH -)是比CH 3COO -更好的亲核试剂,其亲核性更强。 5、(1) CH CN (2) (CH 3CH 2)2C==CHCH 3 (3) CH 2CH CH C Br N (4) N + CH 3 C H 3Br - (5) (CH 3)2CHCH 2N 3 (6) (CH 3)2CHCH 2CH 2NO 2 (7) CH 3 CH 3 很难进行 (8) CH 3CH 2C CH 6、 (1) CH 2CH CH 2 > CH 3CH 2CH 2 >CH 3CH 2Br (2) Br > Br > Br (3) a) CH 2Br > CH CH 3 > C CH 3 CH 3

精馏塔工艺工艺设计方案计算

第三章 精馏塔工艺设计计算 塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的气液传质设备。根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。 板式塔内设置一定数量的塔板,气体以鼓泡或喷射形势穿过板上的液层,进行传质与传热,在正常操作下,气象为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。 本次设计的萃取剂回收塔为精馏塔,综合考虑生产能力、分离效率、塔压降、操作弹性、结构造价等因素将该精馏塔设计为筛板塔。 3.1 设计依据[6] 3.1.1 板式塔的塔体工艺尺寸计算公式 (1) 塔的有效高度 T T T H E N Z )1( -= (3-1) 式中 Z –––––板式塔的有效高度,m ; N T –––––塔内所需要的理论板层数; E T –––––总板效率; H T –––––塔板间距,m 。 (2) 塔径的计算 u V D S π4= (3-2) 式中 D –––––塔径,m ; V S –––––气体体积流量,m 3/s u –––––空塔气速,m/s u =(0.6~0.8)u max (3-3) V V L C u ρρρ-=max (3-4) 式中 L ρ–––––液相密度,kg/m 3

V ρ–––––气相密度,kg/m 3 C –––––负荷因子,m/s 2 .02020?? ? ??=L C C σ (3-5) 式中 C –––––操作物系的负荷因子,m/s L σ–––––操作物系的液体表面张力,mN/m 3.1.2 板式塔的塔板工艺尺寸计算公式 (1) 溢流装置设计 W OW L h h h += (3-6) 式中 L h –––––板上清液层高度,m ; OW h –––––堰上液层高度,m 。 3 2100084.2??? ? ??=W h OW l L E h (3-7) 式中 h L –––––塔内液体流量,m ; E –––––液流收缩系数,取E=1。 h T f L H A 3600= θ≥3~5 (3-8) 006.00-=W h h (3-9) ' 360000u l L h W h = (3-10) 式中 u 0ˊ–––––液体通过底隙时的流速,m/s 。 (2) 踏板设计 开孔区面积a A : ??? ? ??+-=-r x r x r x A a 1222sin 1802π (3-11)

制备氯代环己烷的反应精馏耦合工艺研究

万方数据

万方数据

万方数据

万方数据

制备氯代环己烷的反应精馏耦合工艺研究 作者:徐骏, 乔旭, 崔咪芬, 汤吉海, 张进平 作者单位:南京工业大学,化学化工学院,江苏,南京,210009 刊名: 石油化工 英文刊名:PETROCHEMICAL TECHNOLOGY 年,卷(期):2005,34(1) 被引用次数:10次 参考文献(4条) 1.章思规精细有机化学品技术手册 1991 2.刘琳;张亨氯代环己烷的合成[期刊论文]-氯碱工业 2000(01) 3.Taylor R;Krishna R Modelling Reactive Distillation[外文期刊] 2000(22) 4.Malone M F;Doherty M F Reactive Distillation[外文期刊] 2000(11) 本文读者也读过(8条) 1.李鑫.王日杰.杨晓霞多相催化反应精馏制备碳酸二甲酯的研究[会议论文]-2002 2.丁克鸿.程晓曦.杨树斌.缪荣荣.顾志强.Ding Kehong.Cheng Xiaoxi.Yang Shubin.Miao Rongrong.Gu Zhiqiang 光对环己烷氯化制备氯代环己烷的影响[期刊论文]-化工时刊2010,24(1) 3.田景芝.荆涛.姜虹.TIAN Jing-zhi.JING Tao.JIANG Hong固体酸催化反应精馏法合成酯的研究[期刊论文]-化学工程师2006,20(12) 4.马晓华.许振良.袁海宽渗透汽化耦合乙酸乙酯反应精馏过程的研究[会议论文]-2008 5.张永良.李满喜.陆棋.周寻利用废醋酸生产醋酸乙酯[期刊论文]-杭州化工2010,40(3) 6.刘勇晶.郭延红.高彩虹.赵海燕.LIU Yong-jing.GUO Yan-hong.GAO Cai-hong.ZHAO Hai-yan磷钨酸催化反应精馏合成乙酸乙酯的研究[期刊论文]-化学与生物工程2011,28(2) 7.袁钢.叶孔萌.吴嘉.Yuan Gang.Ye Kongmeng.Wu Jia磷钼酸/磷酸复合催化合成乙酸乙酯动力学及其缓蚀性能[期刊论文]-化学反应工程与工艺2008,24(6) 8.李柏春.张克强.杨振生.张倩瑜.娄孟坛.Li Baichun.Zhang Keqiang.Yang Zhensheng.Zhang Qianyu.Lou Mengtan反应精馏法制备高纯度醋酸甲酯[期刊论文]-石油化工2007,36(1) 引证文献(10条) 1.李建修生产氯代环己烷的工艺研究[期刊论文]-广州化工 2011(14) 2.丁克鸿.程晓曦.杨树斌.缪荣荣.顾志强光对环己烷氯化制备氯代环己烷的影响[期刊论文]-化工时刊 2010(1) 3.程晓曦.丁克鸿.顾克军.顾志强二氯环己烷的一种综合利用方法[期刊论文]-氯碱工业 2010(3) 4.刘彬彬.汤吉海.乔旭.崔咪芬新型反应精馏集成过程与传统反应精馏过程的比较[期刊论文]-南京工业大学学报(自然科学版) 2008(5) 5.柏杨进.薄翠梅.丁良辉.乔旭.张公民运用HYSYS对背包式反应精馏过程控制的仿真[期刊论文]-化工自动化及仪表 2011(6) 6.徐骏.乔旭.崔咪芬.汤吉海.张进平环己烷直接氯化制取氯代环己烷反应过程分析[期刊论文]-过程工程学报2005(6) 7.吴济民.李建修.唐皓玮.任保增氯代环己烷绿色合成工艺的研究[期刊论文]-化学世界 2012(8) 8.周娇.汤吉海.乔旭.崔咪芬背包式反应器与精馏塔耦合合成醋酸甲酯的模拟[期刊论文]-南京工业大学学报(自然科学版) 2006(5)

化工原理课程设计正戊烷和正己烷

课程设计说明书题目: 分离正戊烷-正己烷用筛板精馏塔设计

安徽理工大学课程设计(论文)任务书 机械工程学院过控教研室

目录 前言 (5) 1.概论 1.1 设计目的 (5) 1.2 塔设备简介 (6) 2.流程简介................... 错误!未定义书签。 3.工艺计算 (7) 3.1物料衡算 (8) 3.2理论塔板数的计算 (9) 3.2.1由正戊烷-正己烷的汽液平衡数据绘出x-y图, (9) 3.2.2 q线方程 (9) 3.2.3平衡线 (10) 3.2.4求最小回流比及操作回流比 (11) 3.2.5求精馏塔的气、液相负荷 (11) 3.2.6操作线方程 (12) 3.2.7逐板法求理论板 (11) 3.2.8实际板层数的求取 (13) 4.塔的结构计算 (13) 4.1混合组分的平均物性参数的计算 (13) 4.1.1平均温度t (13) m 4.1.2平均摩尔质量 (14) (15) 4.1.3平均压强p m 4.1.4平均密度 (15) 4.1.5液体的平均粘度 (17) 4.1.6液相平均表面张力 (18) 4.2塔高的计算 (18) 4.2.1最大空塔气速和空塔气速 (18) 4.2.2塔径 (19) 4.2.3 塔径的圆整 (21) (21) 4.2.4塔截面积A T 4.2.5实际空塔气速u (21) 4.3精馏塔有效高度的计算 (22)

5.塔板主要工艺尺寸的计算 (22) 5.1溢流装置计算 (22) 5.1.1堰长l w (22) 5.1.2溢流堰高度h w 溢流堰高度计算公式 (22) 5.1.3弓形降液管宽度W d 及截面积A f (23) 5.1.4降液管底隙高度h (24) 5.2塔板布置筛板数目与排列 (24) 5.2.1塔板的分块 (24) 5.2.2边缘区宽度确定 (25) 5.2.3开孔面积的计算 (25) 5.2.筛孔计算及其排列............................. 错误!未定义书签。 6.筛板的流体力学验算 (24) 6.1气相通过筛板塔板的压降...................... 错误!未定义书签。4 6.1.1干板电阻 hc .. (26) 6.1.2板上充气液层阻力h 1 (26) 6.2、液泛验算 (26) 6.2.1与气体通过塔板的压降相当的液柱高度h p (27) 6.2.2液体通过降液管的压头损失h D , (27) 6.2.3板上液层高度,取h L =0.05m ................... 错误!未定义书签。 6.3液沫夹带 (27) 6.4漏液的验算 (27) 7.塔板负荷性能图 (27) 7.1漏液线 (27) 7.2液沫夹带线 (28) 7.3液相负荷下限线 (28) 7.4液相负荷上限 (28) 7.5液泛线 (29) 8.精馏塔的工艺设计结果总表 (32) 9.塔附件设计 (33) 9.1 接管—进料管 (331) 9.2 法兰 (34) 9.3筒体与封头 (34)

环己烷直接氯化合成一氯代环己烷_吴明书

科 研与 开发 文章编号:1002-1124(2001)04-0017-02 环己烷直接氯化合成一氯代环己烷吴明书1 张想竹1 张继昌1 马长春2 石蔚云1 (1 安阳大学化工系 455000) (2 安阳市经济贸易委员会 455000) 摘 要:本文采用氯气与环己烷直接反应的方法,制得了一氯代环己烷,并着重讨论了温度、物料配比、不同光源对收率的影响,得出了适宜的反应条件:温度为40 ,环己烷与氯气摩尔比为4 1,光照采用 蓝光,收率为83%,纯度为98%。 关键词:一氯代环己烷;合成;环己烷 中图分类号:TQ031 2 文献标识码:A Direct Synthesis of Monochllorocyclohexane with The C yciohexane and Chlorine Wu Mingshu Zhang Xian gzhu Zhang Jichang Ma Chan gchun Shi Weiyun (Department Of Chemical Engineeri ng,Anyang University455000) (Econmic Tade Commttee Of Anyang City) Abstract:A method for direct conversion of cyclohexane and chlorine to monochlorocyclohexane is described in the article.The influences of reaction temperature,mole ratio of matarials and different ligh ts were investigated.The reacti on sui table conditions are follows:reation temperature is40 ,mole ratio of cyclohexane and chlori ne is4 1,the light is blue,the yield is98%. Keywords:Monocyclohexane;Synthesis;Cyclohexane 1 前言 一氯代环己烷是一种无色液体,沸点143 ,相对密度1 000(20/4 )[1]。用于医药、农药、橡胶、塑料助剂等精细化工领域,在分子结构中引入环己基。据文献报道,该产物的合成大都采用环己醇与盐酸缩水反应制得。[2]上述方法所用原料成本高,生产周 收稿日期:2001-01-20 作者简介:吴明书,男,1987年毕业于河南师范大学化学系,硕士,副教授,现在河南,安阳大学化工系任教,主要从事医药,农药等精细化工产品的研制和开发,发表论文多篇,参编教材二部,签定省厅级项目三项。 片扫过的范围;另外,适当提高搅拌器的搅拌速度,提高搅拌雷诺数,增加其湍动程度,加速反应物料的分散和合并,提高反应物料的传热和传质速度。 4 3 调整生产控制工艺 改进了生产控制工艺,适当延长低温反应时间,使反应放热平稳进行,尽量减少副反应的发生。 4 4 控制原料粘度指标 双酚A型环氧树脂由于生产厂家的不同,其产品质量各有差异,虽然环氧当量在185~190之间,但是粘度范围有的在Pa/25 ,有的在Pa/25 ,若原料粘度大,则产品的粘度也大,同时亦增加生产过程中胶凝的机会。故应控制原料粘度指标在Pa/ 25 之间较佳。 5 产品质量指标 我们通过对丙烯酸改性双酚A型环氧树脂生产工艺进行一系列的调整和完善,生产出来的产品质量基本达到德国Hankel(汉高)公司同类产品(PHOTOMER 016)的水平,如表1: 表1 产品质量技术指标 检验项目本公司产品PHOTOMER 3016 色泽/APHA of Garder22 酸值/mgKOH/g 2 5 粘度/Pa/60 9000~110004500~10000 环氧值/eq/100g 0 012 6 结论 通过改进丙烯酸改性双酚A型环氧树脂生产工艺,不仅有效地控制反应过程中的胶凝而且得到了质量稳定的产品,产品质量技术指标达到德国Hankel (汉高)公司同类产品(PHOTOMER 016)的水平。 参 考 文 献(略) Sum85No 4 化学工程师 Chemical Engi neer 2001年8月

化工设计氯代环己烷

化工过程开发与设计 题目氯代环己烷绿色合成工艺的研究 姓名 xxx 学号 xxx 专业班级化学工程与工艺101班 指导教师 xxx 学院 xxx 完成日期 xxx

目录 摘要 (4) 关键词 (4) 1前言 (4) 2氯代环己烷的应用 (4) 2.1生产橡胶防焦剂CTP中间体二环己基二硫化物 (4) 2.2 制备盐酸苯海索 (5) 2.3 生产三环锡 (5) 2.4合成环己胺 (5) 2.5 小结 (6) 3国内外发展现状 (6) 4技术路线的确定 (6) 4.1环己醇氯化氢取代法 (6) 4.2 环己烯氯化氢加成法 (7) 4.3 环己烷氯化法 (8) 4.4 优缺点分析: (9) 4.5 方案确定 (9) 5可行性分析 (9) 6研究内容 (11) 7实验室研究 (11) 7.1 仪器及试剂 (11) 7.2 实验 (12) 7.2.1 苯部分加氢制备环己烯 (12) 7.2.2 无催化剂时环己烯与氯化氢加成反应 (12) 7.2.3 苯加氢产物与氯化氢催化加成反应 (12) 8结果与讨论 (12) 8.1 反应机理分析 (12) 8.2 无催化剂时环己烯与氯化氢反应研究 (13) 8.2.1 反应温度对收率的影响 (13) 8.2.2 反应时间对收率的影响 (13) 8.2.3 搅拌转速对收率的影响 (14) 8.3苯部分加氢产物与氯化氢催化反应研究 (15) 8.3.1 反应温度对收率的影响 (15) 8.3.2 反应时间对收率的影响 (15) 8.3.3 搅拌转速对收率的影响 (16) 8.4结论 (16) 9小试 (17) 9.1实验部分 (17) 9.1.1实验装置及流程 (17) 9.1.2 操作方法和步骤 (18) 9.1.3 氯代产品的定性与定量分析 (18) 9.2 结果与讨论 (18) 9.2.1 反应精馏塔中温度及浓度分布规律 (19)

精馏塔再沸器工艺计算

目录 目录 (1) 精馏塔再沸器工艺课程设计 (2) 1.设计任务及设计条件 (2) 2.方案论证 (2) 3.估算设备尺寸 (3) 4.传热系数校核 (3) 5.循环流量校核 (7) 6.设计结果汇总 (12) 7.工艺流程图 (13) 8.带控制点的工艺流程图 (13)

精馏塔再沸器工艺设计 1.设计任务及设计条件 (1) 设计任务:精馏塔塔釜,设计一台再沸器 (2) 再沸器壳层和管层的设计条件: 潜热γ 0=812.24kJ/kg 热导率λ =0.023W/(m?K) 粘度=0.361mPa?s 密度ρ0=717.4kg/m3 管层流体83℃下的物性数据: 潜热γi=31227.56kJ/kg 液相热导率λi=0.112 W/(m?K) 液相粘度=0.41 mPa?s 液相密度=721 kg/m3 液相定压比热容=2.094kJ/(kg?K) 表面张力=1.841×10-2N/m 汽相粘度=0.0067 mPa?s 汽相密度=0.032 kg/m3 蒸汽压曲线斜率(Δt/Δp)s=2.35×10-3m2?K/kg 2.方案论证 立式热虹吸再沸器是利用塔底釜液与换热器传热管内汽液混合物的密度差形成循环推动力,使得釜液在精馏塔底与再沸器间流动循环。 立式热虹吸再沸器具有传热系数高,结构紧凑,安装方便,釜液在加热段的停留时间短,不易结垢,调节方便,占地面积小,设备及运行费用低等显著优点。由于结垢原因,壳层不能采用机械方法清洗,因此壳层不适宜用高黏度或较脏的加热介质,本设计中壳层介质为乙醇蒸汽,较易清洗。

3.估算设备尺寸 计算热流量Φ为 )(1038.33600/100024.81215005W q b m b ?=??==Φγ 计算传热温差m t ?为 (11583)(8583) 10.82()(11583)(8583) m t K Ln ---?= =-- 假设传热系数K=XX ,估算传热面积A p 为 拟用传热管规格230?φ,管长L=3000m ,计算总传热管数N T N T = 10063 03.014.334 .2840=??= L d A p π 若将传热管按正三角形排列,则可用N T =3a(a+1)+1,b=2a+1,D=t(b-1)+(2~3)d 0计算壳径D 为 D=32×(37-1)+3×30≈1400mm 取管程进口管径Di=250mm ,出口管直径D 0=600mm 。 4.传热系数校核 (1)显热段传热系数K CL 设传热管出口处汽化率xe =0.048,则可计算循环流量q mt : )/(72.34048 .06000 s kg x q q e mb mt === ① 显热段管内表面传热系数 则计算传热管内质量流速G 为 )(534.01006026.04 14 .34 )]/([03.65534 .072.342222m N di Si s m kg S q G T i mt =??= = ?===π 雷诺数Re 为

环己烷废气处理方法

近年来,我国的经济速度稳步发展,工业化进度加快,大量工业废气产生,其中挥发性有机化合物(VOCs)在我国的环境污染中占据的比例越来越大,化工行业面临环保压力,挥发性有机物整治要求不断提高,废气处理技术成为化工企业的必然选择。 目前常见的VOCs 末端治理工艺有直接燃烧法、催化燃烧法、吸附法、吸收法、低温等离子技术、生物过滤技术等。其中吸附法、燃烧法已经比较成熟,并且有了工程技术规范,但某些方法中存在不足。 VOCs吸附是利用吸附剂对气体中某种溶剂进行吸附,使其富集到吸附剂孔道内的过程,从而实现挥发性溶剂的回收和废气达标治理(或为后续达标减负);脱附是吸附的逆过程,即在一定条件下将被吸附的溶剂从吸附剂中解析出来,从而吸附剂得以再生(重新用于吸附)。 具体工艺如下:

VOCs吸附、再生工艺相对比较简单,该工艺的核心技术是吸附材料本身,针对不同VOCs的理化特性,采用不同孔结构、表面性质的吸附剂,实现VOCs高效吸附回收和达标处理,确保吸附材料工程化应用的可靠性和稳定性。 相比于市场上广泛使用的活性碳(纤维)等传统吸附剂具有以下优点: ①材料有效比表面积高达1000m2/g以上,吸附容量高; ②材料孔结构均一,并可根据被处理气体的特性进行调控(炭质吸附剂孔结构不均,其中的微孔容易堵塞而失活); ③材料官能团多样,可根据被处理气体的特性进行选择; ④材料具有良好的物理化学稳定性,耐酸、碱和有机溶剂、具有较高的热稳定性和机械强度,耐磨损(炭质吸附剂结构较脆,使用过程中容易磨损、破碎、或出现塌孔); ⑤材料表面呈现高疏水性,湿度对VOCs的吸附性能无影响(炭质吸附剂灰分较多,表面呈现亲水性,湿度对其吸附性能影响很大); ⑥材料容易再生且吸附性能稳定(炭质吸附剂再生不彻底,多次再生后吸附性能衰减较快); ⑦材料表面无催化作用,可用于吸附氯代烃类等易分解的有机气体(炭质等吸附材料由于表面含有金属等杂元素,具有一定的催化作用,吸附氯代烃后发生化学反应生成HCL,腐蚀设备和管阀)。 ⑧材料具有较高的化学惰性,可用于吸附酮类、醚类和酯类等化学性质活泼的物质(炭质材料吸附时会发生化学反应导致床层着火,存在安全隐患)。 案例介绍湖南某石化企业环己烷废气治理项目 该公司采用吸附工艺处理其生产过程中产生的环己烷废气,废气风量为600Nm3/h,废气浓度~60000mg/m3,采用我公司废气处理工艺,环己烷废气浓度可降低至100

化工原理课程设计利用浮阀塔分离正戊烷与正己烷的工艺的设计副本

理工大学 课程设计说明书 设计题目:化工原理课程设计 学院、系:机械工程学院 专业班级:过程装配与控制工程 学生:王旦 指导教师:雪斌 成绩: 2013年12月27日 设计任务书

(一)设计题目: 利用浮阀塔分离正戊烷与正己烷的工艺设计分离要求:试设计一座正戊烷—正己烷连续精馏浮阀塔,要求年产纯度99%的正己烷4.5万吨,塔顶馏出液中含正己烷不得高于1%,原料液中含正己烷55%(以上均为质量分数)。(二)操作条件:塔顶压力:4kPa(表压) 进料状态:泡点进料 回流比:1.4Rmin 塔釜加热蒸汽压力:0.5MPa(表压) 单板的压降: 0.7kPa 全塔效率:52% (3)塔板类型:浮阀塔板(F1型) (4)工作日: 330天/年(一年中有一个月检修) (5)厂址:地区 (六)设计容 ①精馏塔的物料衡算 ②塔板数的确定 ③精馏塔的工艺条件及有关物性数据的计算 ④塔体工艺条件尺寸 ⑤塔板负荷性能图 目录

第1章序言 (3) 第2章精馏塔的物料衡算 (6) 2.1. 物料衡算 (6) 2.2. 常压下正戊烷—正己烷气、液平衡组成与温度的关系 (7) 第3章塔板数的确定 (8) N的确定 (8) 3.1. 理论板数 T 3.2. 实际板数的确定 (9) 第4章精馏塔的工艺条件及有关物性数据 (9) 4.1. 操作压力的计算 (9) 4.2. 密度的计算 (10) 4.3. 表面力的计算 (11) 4.4. 混合物的粘度 (12) 4.5. 相对挥发度 (12) 第5章塔体工艺条件尺寸 (13) 5.1. 气、液相体积流量计算 (13) 5.2. 塔径的初步设计 (14) 5.3. 溢流装置 (16) 5.4. 塔板布置及浮阀数目与排列 (17) 第6章塔板负荷性能图 (20) 6.1. 物沫夹带线 (20) 6.2. 液泛线 (21) 6.3. 液相负荷上限 (22) 6.4. 漏液线 (22) 6.5. 液相负荷下限 (23) 第7章结束语 (24)

苯氯苯板式精馏塔的工艺设计工艺计算书

苯-氯苯板式精馏塔的工艺设计工艺计算书(精馏段部分) 化学与环境工程学院 化工与材料系 2004年5月27日

课程设计题目一——苯-氯苯板式精馏塔的工艺设计 一、设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为99.8%的氯苯50000t/a,塔顶馏出液中含氯苯不高于2%。原料液中含氯苯为35%(以上均为质量%)。 二、操作条件 1.塔顶压强4kPa(表压); 2.进料热状况,自选; 3.回流比,自选; 4.塔釜加热蒸汽压力506kPa; 5.单板压降不大于0.7kPa; 6.年工作日330天,每天24小时连续运行。 三、设计内容 1.设计方案的确定及工艺流程的说明; 2.塔的工艺计算; 3.塔和塔板主要工艺结构的设计计算; 4.塔内流体力学性能的设计计算; 5.塔板负荷性能图的绘制; 6.塔的工艺计算结果汇总一览表; 7.辅助设备的选型与计算; 8.生产工艺流程图及精馏塔工艺条件图的绘制; 9.对本设计的评述或对有关问题的分析与讨论。 四、基础数据 1.组分的饱和蒸汽压οi p(mmHg)

2.组分的液相密度ρ(kg/m 3) 纯组分在任何温度下的密度可由下式计算 苯 t A 187.1912-=ρ 推荐:t A 1886.113.912-=ρ 氯苯 t B 111.11127-=ρ 推荐:t B 0657.14.1124-=ρ 式中的t 为温度,℃。 3.组分的表面张力σ(mN/m ) 双组分混合液体的表面张力m σ可按下式计算: A B B A B A m x x σσσσσ+= (B A x x 、为A 、B 组分的摩尔分率) 4.氯苯的汽化潜热 常压沸点下的汽化潜热为35.3×103kJ/kmol 。纯组分的汽化潜热与温度的关系可用下式表示: 38 .01238.012??? ? ??--=t t t t r r c c (氯苯的临界温度:C ?=2.359c t ) 5.其他物性数据可查化工原理附录。 附参考答案:苯-氯苯板式精馏塔的工艺计算书(精馏段部分)

中北大学有机化学答案

2012-9-15 徐寿昌编《有机化学》第二版习题参考答案 第二章烷烃 1、用系统命名法命名下列化合物 (1)2,3,3,4-四甲基戊烷(2)3-甲基-4-异丙基庚烷(3)3,3,-二甲基戊烷(4)2,6-二甲基-3,6-二乙基辛烷(5)2,5-二甲基庚烷(6)2-甲基-3-乙基己烷(7)2,2,4-三甲基戊烷(8)2-甲基-3-乙基庚烷 2、试写出下列化合物的结构式 (1) (CH3)3CC(CH2)2CH2CH3 (2) (CH3)2CHCH(CH3)CH2CH2CH2CH3 (3) (CH3)3CCH2CH(CH3)2 (4) (CH3)2CHCH2C(CH3)(C2H5)CH2CH2CH3 (5)(CH3)2CHCH(C2H5)CH2CH2CH3 (6)CH3CH2CH(C2H5)2 (7) (CH3)2CHCH(CH3)CH2CH3 (8)CH3CH(CH3)CH2CH(C2H5)C(CH3)3 3、略 4、下列各化合物的系统命名对吗?如有错,指出错在哪里?试正确命名之。 均有错,正确命名如下: (1)3-甲基戊烷(2)2,4-二甲基己烷(3)3-甲基十一烷 (4)4-异丙基辛烷(5)4,4-二甲基辛烷(6)2,2,4-三甲基己烷 5、(3)>(2)>(5)>(1) >(4) 6、略 7、用纽曼投影式写出1,2-二溴乙烷最稳定及最不稳定的构象,并写出该构象的名称。 8、构象异构(1),(3)构造异构(4),(5)等同)2),(6) 9、分子量为72的烷烃是戊烷及其异构体 (1) C(CH3)4(2) CH3CH2CH2CH2CH3(3) CH3CH(CH3)CH2CH3 (4) 同(1) 10、分子量为86的烷烃是己烷及其异构体 (1) (CH3)2CHCH(CH3)CH3 (2) CH3CH2CH2CH2CH2CH3 , (CH3)3CCH2CH3 (3)CH3CH2CH(CH3)CH2CH3 (4)CH3CH2CH2CH(CH3)2 14、(4)>(2)>(3)>(1) 第三章烯烃 1、略 2、(1)CH2=CH—(2)CH3CH=CH—(3)CH2=CHCH2— 3、(1)2-乙基-1-戊烯(2) 反-3,4-二甲基-3-庚烯(或(E)-3,4-二甲基-3-庚烯 (3) (E)-2,4-二甲基-3-氯-3-己烯(4) (Z)-1-氟-2-氯-2-溴-1-碘乙烯 (5) 反-5-甲基-2-庚烯或(E)-5-甲基-2-庚烯(6) 反-3,4-二甲基-5-乙基-3-庚烯 (7) (E) -3-甲基-4-异丙基-3-庚烯(8) 反-3,4-二甲基-3-辛烯

正戊烷-正己烷混合液板式精馏塔设计

正戊烷-正己烷混合液板式精馏塔设计 08(2)班 08233214 缪建芸 [摘要]化工设计在化学工程项目建设的整个过程中,是一个极其重要的环节,是工程建设的灵魂。化工设计是一门综合性很强的专业知识,同时又是一项政策性很强的工作,需要设计工作者拥有坚实的化学知识及化工常识。本文设计了一个常压浮阀精馏塔,分离含正戊烷45%(以下皆为质量分数)的正戊烷—正己烷混合液,其中混合液进料量为12626kg/h,进料温度为35℃,要求获得99%的塔顶产品和小于2%的塔釜产品,再沸器用0.25Mpa(表压)的水蒸汽作为加热介质,塔顶全凝器采用20℃冷水为冷凝介质. 通过翻阅大量的资料进行物性数据处理、塔板计算、结构计算、流体力学计算、画负荷性能图以及计算接管壁厚对浮阀塔展开了全方面的设计。 [关键词]化工设计,常压浮阀塔,物性,塔板

目录 摘要 .................................................... 错误!未定义书签。第一章概论 .. (4) 1.1 塔设备在化工生产中的作用和地位: (4) 1.2 塔设备的分类及一般构造 (4) 1.3 对塔设备的要求 (5) 1.4 塔设备的发展及现状: (5) 1.5 塔设备的用材 (5) 1.6 板式塔的常用塔型及其选用 (5) 1.6.1 泡罩塔 (5) 1.6.2 筛板塔 (6) 1.6.3 浮阀塔 (6) 1.7 塔型选择一般原则 (7) 1.7.1 与物性有关的因素 (7) 1.7.2 与操作条件有关的因素 (8) 1.7.3 其他因素 (8) 1.8 板式塔的强化 (8) 第二章塔板计算 (9) 2.1 设计任务与条件 (9) 2.2 设计计算 (10) 2.2.1 设计方案的确定 (10) 2.2.2 精馏塔的物料衡算 (10) 2.2.3 塔板数的确定 (11) 第三章精馏塔的工艺条件及有关物性数据的计算 (14) 3.1 操作压力 (14) 3.2 操作温度 (14) 3.3 平均摩尔质量.................................... 错误!未定义书签。4 3.4 平均密度......................................... 错误!未定义书签。 3.5 液相平均表面张力................................. 错误!未定义书签。 3.6 液相平均黏度 (19) 3.7物性数据总汇 (21) 第四章精馏塔的塔体、塔板工艺尺寸计算 ................... 错误!未定义书签。 4.1 塔径的计算....................................... 错误!未定义书签。 4.2 精馏塔高度的计算................................. 错误!未定义书签。 4.3 溢流装置计算..................................... 错误!未定义书签。 4.4 塔板布置及浮阀数目与排列 (26) 第五章塔板流体力学验算 (28) 5.1气相通过浮阀塔板的压降 (28) 5.2 淹塔 (28) 5.3 雾沫夹带 (29) 第六章负荷性能图 ....................................... 错误!未定义书签。 6.1雾沫夹带线 ....................................... 错误!未定义书签。 6.2液泛线 ........................................... 错误!未定义书签。 6.3 液相负荷上限线................................... 错误!未定义书签。

环己烷

环己烷 别名六氢化苯,为无色有刺激性气味的液体。不溶于水,溶于多数有机溶剂。极易燃烧。一般用作一般溶剂、色谱分析标准物质及用于有机合成,可在树脂、涂料、脂肪、石蜡油类中应用,还可制备环己醇和环己酮等有机物。 1基本信息 中文名称环己烷 中文同义词六氢化苯 英文名称cyclohexane 英文同义词Cicloesano 俄文名称Циклогексан分子式C6H12 相对分子质量84.16 化学品类别有机物--环烷烃 管制类型不管制 储存密封保存 CAS号110-82-7 EINECS号203-806-2 Mol文件110-82-7.mol

NIST化学物质信息Cyclohexane(110-82-7) EPA化学物质信息Cyclohexane(110-82-7) 2理化性质 物理性质 熔点(℃) 6.5 相对密度(水=1)0.78 沸点(℃) 80.7 闪点(℃) -16.5 折射率 1.42662 相对蒸气密度(空气=1) 2.90 饱和蒸气压(kPa) 13.098(25.0℃) 临界温度(℃) 280.4 临界压力(MPa) 4.05 辛醇/水分配系数的对数值7(计算值) 外观与性状:无色液体,有刺激性气味。 溶解性:不溶于水,溶于乙醇、乙醚、苯、丙酮等多数有机溶剂[2]。状态:为有汽油气味的无色流动性液体,不溶于水,可与乙醇、乙醚、丙酮、苯等多种有机溶剂混溶,在甲醇中的溶解度为100份甲醇可溶解57份环己烷(25℃)。 化学性质

易挥发和极易燃烧,蒸气与空气形成爆炸性混合物,爆炸极限1.3~8.3%(体积)。遇明火、高热极易燃烧爆炸。与氧化剂接触发生强烈反应,甚至引起燃烧。在火场中,受热的容器有爆炸危险。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。对酸、碱比较稳定,与中等浓度的硝酸或混酸在低温下不发生反应,与稀硝酸在100℃以上的封管中发生硝化反应,生成硝基环己烷。在铂或钯催化下,350℃以上发生脱氢反应生成苯。与氧化铝、硫化钼、钴、镍、铝一起于高温下发生异构化,生成甲基戌烷。与三氯化铝在温和条件下则异构化为甲基环戊烷。 环己烷也可以发生氧化反应,在不同的条件下所得的主要产物不同。例如在185~200℃,10~40大气压下,用空气氧化时,得到90%的环己醇。若用脂肪酸的钴盐或锰盐作催化剂在120~140℃、18~24大气压下,用空气氧化,则得到环己醇和环己酮的混合物。高温下用空气、浓硝酸或二氧化氮直接氧化环己烷得到己二酸。在钯、钼、铬、锰的氧化物存在下,进行气相氧化则得到顺丁烯二酸。在日光或紫外光照射下与卤素作用生成卤化物。与氯化亚硝酰反应生成环己肟。用三氯化铝作催化剂将环己烷与乙烯反应生成乙基环己烷、二甲基涣、二乙基环己烷和四甲基环己烷等。 3物质毒性

相关文档
最新文档