高考综合复习振动和波专题

高考综合复习振动和波专题
高考综合复习振动和波专题

高考综合复习——振动和波专题●知识网络

●高考考点

考纲要求:

知识点

求说明

弹簧振子,简谐运动,简谐运动的振幅、周期和频率,

简谐运动的位移-时间图象

Ⅱ单摆,在小振幅条件下单摆做简谐运动.周期公式.Ⅱ

振动中的能量转化.Ⅰ自由振动和受迫振动,受迫振动的振动频率.共振及其Ⅰ

复习指导:

本章综合运用运动学、动力学和能的转化等方面的知识讨论了两种常见的运动形式—机械振动和机械波的特点和规律,以及它们之间的联系及区别。对于这两种运动,既要认识到它们的共同点—运动的周期性,如振动物体的位移、速度、加速度、回复力、能量等都呈周期性变化,更重要的是搞清它们的区别:振动研究的是一个孤立质点的运动规律,而波动研究的是波的传播方向上参及波动的一系列质点的运动规律。其中振动的周期、能量、波速、波长及频率的关系,机械波的干涉、衍射等知识,对后面交变电流、电磁振荡、电磁波的干涉、衍射等内容的复习都具有较大的帮助。

本章内容是历年高考的必考内容,其中命题频率最高的知识点是波的图象、频率、波长、波速的关系,其次是单摆周期。题型多以选择题、填空题形式出现,试题信息容量大,综合性强,一道题往往考

查多个概念和规律。特别是通过波的图象综合考查对波的理解能力、推理能力和空间想象能力,更应在复习中予以重视。涉及波的图像的题目在近几年的高考中重现率为100%,一般以选择题的形式出现,常常和质点的振动以及波速公式结合在一起考查,另外,围绕波的干涉、衍射现象、多普勒效应等内容,以新的背景出题的可能性也在不断的增大。

●要点精析

☆机械振动:

1. 机械振动的意义:

物体(或物体的一部分)在某一中心位置两侧所做的往复运动,叫机械振动。

回复力:使偏离平衡位置的振动物体回到平衡位置的力,叫回复力。

回复力总是指向平衡位置,它是根据作用效果命名的,类似于向心力。

振动物体所受的回复力可能是物体所受的合外力,也可能是物体所受的某一个力的分力。

2. 描述振动的物理量:

(1)位移x:由平衡位置指向振动质点所在位置的有向线段表示振动位移,是矢量。

(2)振幅A:振动物体离开平衡位置的最大距离,是标量。表示振动的强弱。

(3)周期T和频率f:物体完成一次全振动所需的时间叫周期,而频率则等于单位时间内完成全振动的次数.它们是表示振动快慢的

物理量.二者互为倒数关系:。当T和f是由振动系统本身的性质决定时(非受迫振动),则叫做固有周期和固有频率。

☆简谐运动:

1. 简谐运动的特征:

物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动。

(1)受力特征:回复力-.

(2)运动特征:加速度-,方向及位移方向相反,总指向平衡位置.简谐运动是一种变加速运动.在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大;远离平衡位置的过程

中,位移x增大,回复力F增大,a增大,a及v反向故v减小,动能减小;靠近平衡位置的过程中,位移x减小,回复力F减小,a减小,但a及v同向,故速率v增大,动能增大;经过同一位置时位移、回复力、加速度、速率、动能一定相同,但速度、动量不一定相同,方向可相反.

判断一个振动是否为简谐运动,依据就是看它是否满足上述受力特征或运动特征.

(3)振动能量:对于两种典型的简谐运动—单摆和弹簧振子,其振动能量及振幅有关,振幅越大,能量越大.简谐运动过程中动能和势能相互转化,机械能守恒.

(4)物体做简谐运动时,其位移、回复力、加速度、速度等矢量都随时间做周期性变化,它们的变化周期就是简谐运动的周期T. 物体的动能和势能也随时间做周期性变化,其变化周期为2.

(5)简谐运动的对称性、多解性:

①简谐运动的多解性:作简谐运动的质点,在运动上是一个变加速度的运动,质点运动相同的路程所需的时间不一定相同,它是一个周期性的运动,若运动的时间及周期的关系存在整数倍的关系,则质点运动的路程就不会是唯一的.若是运动时间为周期的一半,运动的

路程具有唯一性,若不是具备以上条件,质点运动的路程也是多解的,这是必须要注意的.

②简谐运动的对称性:作简谐运动的质点,在距平衡位置等距离的两点上时,具有大小相等的速度和加速度,在平衡位置点左右相等的距离上的运动时间也是相同的。

2. 弹簧振子的周期:

弹簧振子的周期和频率只取决于弹簧的劲度系数和振子的质量,及其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星上,是水平放置、倾斜放置还是竖直放置,振幅是大还是小,只要还是该振子,那么它的周期就还是T.

3. 单摆

(1)单摆:在一条不可伸长、忽略质量的细线下端拴一可视为质点的小球,上端固定,构成的装置叫单摆.

(2)单摆振动可看作简谐运动的条件:摆角α<10°.

(3)周期公式:,摆长指悬点到小球重心的距离,重力加速度为单摆所在处的测量值.

周期公式的说明:单摆的周期公式是惠更斯从实验中总结出来的.单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力,偏角越大回复力越大,加速度(α)越大.由于摆球的轨迹是圆弧,所以除最高点外,摆球的回复力并不等于合外力.在有些振动系统中不一定是绳长,g也不一定为9.8 2,因此出现了等效摆长和等效重力加速度的问题.

①等效摆长:在下图中,

三根等长的绳1、2、3共同系住一密度均匀的小球m,球直径为d,2、3及天花板的夹角α<30°.若摆球在纸面内做小角度的左右摆动,则摆动圆弧的圆心在O1处,故等效摆长为12,周期

,若摆球做垂直纸面的小角度摆动,则摆动圆弧的圆心在O处,故等效摆长为1+2α+2,周期。

②等效重力加速度:公式中的g由单摆所在的空间位置决定.由

知,g随地球表面不同位置、不同高度而变化,在不同星球

上也不相同,因此应求出单摆所在处的等效值g’,代入公式,即g 不一定等于9.8 2.g还由单摆系统的运动状态决定,如单摆处在向上加速发射的航天飞机内,沿圆弧切线方向的回复力变大,摆球质量不变,则重力加速度的等效值g等=g+a,再如,单摆若在轨道上运行的航天飞机内,摆球完全失重,回复力为零,则重力加速度的等效值g等=0,所以周期为无穷大,即单摆将不再摆动.当单摆有竖直向上的加速度a时,等效重力加速度为g等=g+a;当单摆有竖直向下的加速度a(a

当单摆有水平加速度a时(如加速运动的车厢内),等效重力加速g等=,平衡位置已经改变.

(4)单摆的等时性:在振幅很小的条件下,单摆的振动周期跟振幅无关(单摆的振动周期跟振子的质量也没关系).

(5)单摆的应用:

A. 计时器.(摆钟是靠调整摆长而改变周期,使摆钟及标准时间同步)

B. 测重力加速度:

4. 简谐运动的位移-时间图象:

(1)简谐运动的图象,它反映了振子的位移随时间变化的规律,而其轨迹并非正弦曲线。

(2)根据简谐运动的规律,利用图象可以得出以下判定:

①振幅A、周期T以及各时刻振子的位置.

②各时刻回复力、加速度、速度、位移的方向.

③某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.

④某段时间内振子的路程.

☆受迫振动和共振:

1. 受迫振动:

物体在周期性驱动力作用下的振动.做受迫振动的物体,它的周期或频率等于驱动力的周期或频率,而及物体的固有周期或频率无关.

2. 共振:

做受迫振动的物体,它的固有频率及驱动力的频率越接近,其振

幅就越大,当二者相等时,振幅达到最大,这就是共振现象.

☆机械波:

1. 机械波的产生:

机械振动在介质中的传播过程叫机械波.机械波产生的条件有两个:一是要有做机械振动的物体作为波源,二是要有能够传播机械振动的介质.

2. 横波和纵波:

质点的振动方向及波的传播方向垂直的叫横波.凸起部分叫波峰,凹下部分叫波谷.质点的振动方向及波的传播方向在同一直线上的叫纵波.质点分布密的叫密部,分布疏的叫疏部.

3. 描述机械波的物理量:

(1)波长λ:两个相邻的、在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长.在横波中,两个相邻波峰(或波谷)间的距离等于波长.在纵波中,两个相邻密部(或疏部)间的距离等于波长.在一个周期内机械波传播的距离等于波长.

(2)频率f:波的频率由波源决定,在任何介质中频率不变.

(3)波速v:单位时间内振动向外传播的距离.波速及波长和频

率的关系:λf,波速大小由介质决定.

4. 机械波的特点:

(1)每一质点都以它的平衡位置为中心做简谐运动;后一质点的振动总是落后于带动它的前一质点的振动.

(2)波传播的只是运动形式(振动)和振动能量,介质中的质点并不随波迁移.

5. 声波:

一切振动着发声的物体叫声源.声源的振动在介质中形成纵波.频率为20到20000 的声波能引起听觉.频率低于20 的声波为次声波,频率高于20000 的声波为超声波.超声波的应用十分广泛,如声呐,B超、探伤仪等.声波在空气中的传播速度约为340 ,声波具有反射、干涉、衍射等波的特有现象.

☆机械振动和机械波的联系和区别:

1.有机械波必有机械振动,有机械振动不一定有机械波,但是,已经形成的波跟波源无关,在波源停止振动时仍会继续传播,直到机械能耗尽后停止.

2.波速及振速:波源振动几个周期,波就向外传播几个波长,

这个比值就表示了波形(或能量)向外平移的速度,即波速.在同一均匀介质中波动的传播是匀速的,及波动频率无关.波动中各质点都在平衡位置附近做周期性振动,是变加速运动,质点并没沿波的传播方向随波迁移.要区分开这两个速度。

3.振动图象和波的图象:振动是一个质点随时间的推移而呈现的现象,波动是全部质点联合起来共同呈现的现象.简谐运动和其引起的简谐波的振幅、频率相同,二者的图象有相同的正弦(余弦)曲线形状,但两图象是有本质区别的.见表:

振动图象波动图象

研究对象一振动质点沿波传播方向所有质点

研究内容

一质点的位移随时间变化规

律某时刻所有质点的空间分

布规律

图线

物理意义表示一质点在各时刻的位移表示某时刻各质点的位移

图线变化

随时间推移图象延续,但已

有形状不变随时间推移,图象沿传播

方向平移

一完整曲线占横

坐标距离

表示一个周期表示一个波长

大学物理习题解答8第八章振动与波动(1)

第八章 振动与波动 本章提要 1. 简谐振动 · 物体在一定位置附近所作的周期性往复运动称为机械振动。 · 简谐振动运动方程 ()cos x A t ω?=+ 其中A 为振幅,ω 为角频率,(ωt+?)称为谐振动的相位,t =0时的相位? 称为初相位。 · 简谐振动速度方程 d ()d sin x v A t t ωω?= =-+ · 简谐振动加速度方程 222d ()d cos x a A t t ωω?==-+ · 简谐振动可用旋转矢量法表示。 2. 简谐振动的能量 · 若弹簧振子劲度系数为k ,振动物体质量为m ,在某一时刻m 的位移为x ,振动速度为v ,则振动物体m 动能为 212 k E mv = · 弹簧的势能为 212 p E kx = · 振子总能量为 P 22222211 ()+()221=2sin cos k E E E m A t kA t kA ωω?ω?=+= ++ 3. 阻尼振动

· 如果一个振动质点,除了受弹性力之外,还受到一个与速度成正比的阻尼作用,那么它将作振幅逐渐衰减的振动,也就是阻尼振动。 · 阻尼振动的动力学方程为 22 2d d 20d d x x x t t βω++= 其中,γ是阻尼系数,2m γ β= 。 (1) 当22ωβ>时,振子的运动一个振幅随时间衰减的振动,称阻尼振动。 (2) 当22ωβ=时,不再出现振荡,称临界阻尼。 (3) 当22ωβ<时,不出现振荡,称过阻尼。 4. 受迫振动 · 振子在周期性外力作用下发生的振动叫受迫振动,周期性外力称驱动力 · 受迫振动的运动方程为 22 P 2d d 2d d cos x x F x t t t m βωω++= 其中,2k m ω=,为振动系统的固有频率;2C m β=;F 为驱动力振幅。 · 当驱动力振动的频率p ω等于ω时,振幅出现最大值,称为共振。 5. 简谐振动的合成与分解 (1) 一维同频率的简谐振动的合成 若任一时刻t 两个振动的位移分别为 111()cos x A t ω?=+ 222()cos x A t ω?=+ 合振动方程可表示为 ()cos x A t ω?=+ 其中,A 和? 分别为合振动的振幅与初相位 221112212()cos A A A A A ??=++-

专题八 机械振动和机械波(2022高考物理)新高考版

专题八机械振动和机械波 考点1 简谐运动规律和图像描述单摆测重力加速度 高考帮·揭秘热点考向 1.[2018天津,8,6分,多选]一振子沿x轴做简谐运动,平衡位置在坐标原点.t=0时振子的位移为-0.1 m,t=1 s时位移为0.1 m,则() A.若振幅为0.1 m,振子的周期可能为 s B.若振幅为0.1 m,振子的周期可能为 s C.若振幅为0.2 m,振子的周期可能为4 s D.若振幅为0.2 m,振子的周期可能为6 s 2.[2019全国Ⅱ,34(1),5分]如图,长为l的细绳下方悬挂一小球a,绳的另一端固定在天花板上O点处,在O点正下 方l的O'处有一固定细铁钉.将小球向右拉开,使细绳与竖直方向成一小角度(约为2°)后由静止释放,并从释放时开始计时.当小球a摆至最低位置时,细绳会受到铁钉的阻挡.设小球相对于其平衡位置的水平位移为x,向右为正.下列图像中,能描述小球在开始一个周期内的x-t关系的是 () A B C D 拓展变式 1.[新题型——与教材相联系][2020江苏徐州检测]如图所示,一劲度系数为k的轻

弹簧的上端固定,下端与小球相连接,小球的质量为m,小球静止于O点.现将小球拉到O点下方距离为A的位置,由静止释放,此后运动过程中始终未超过弹簧的弹性限度.规定平衡位置处为重力势能和弹簧弹性势能的零点.以平衡位置O为坐标原点建立如图所示的竖直向下的一维坐标系Ox'.忽略空气阻力的影响. (1)从运动与相互作用观点出发,解决以下问题: a.求小球处于平衡状态时,弹簧相对原长的伸长量s; b.证明小球做简谐运动. (2)从教科书中我们明白了由v-t图像求直线运动位移的思想和方法;从机械能的学习中,我们理解了重力做功的特点进而引入重力势能,由此可以得到重力做功与重力势能变化量之间的关系.图像法和比较法是研究物理问题的重要方法,请你借鉴此方法,从功与能量的观点出发,解决以下问题: a.小球运动过程中,小球相对平衡位置的位移为x(x始终在弹性限度内)时,证明系统具有的重力势能E p G和弹性势能E p弹的总和E p的表达式为E p=kx2; b.求小球在振动过程中,运动到平衡位置O点下方距离为时的动能E k.并根据小球运动过程中速度v与相对平衡位置的位移x的关系式,画出小球运动的全过程中速度随振动位移变化的v-x图像. 2.[多选]甲、乙两弹簧振子,振动图像如图所示,则可 知() A.两弹簧振子完全相同 B.两弹簧振子所受回复力最大值之比F甲∶F乙=2∶1 C.振子甲速度为零时,振子乙速度最大 D.两振子的振动频率之比f甲∶f乙=1∶2 3.[2020北京海淀二模]某小组利用频闪照相的方法研究单摆的运动过程,即用在同一张底片上多次曝光的方法,在远处从与单摆摆动平面垂直的视角拍摄单摆在摆动过程中的多个位置的照片.从摆球离开左侧最高点A开始,每隔相

振动和波典型例题

【例1】如图所示,在质量为M的无下底的木箱顶部用一轻弹簧悬挂质量均为m(M≥m)的D、B两物体.箱子放在水平地面上,平衡后剪断D、B间的连线,此后D将做简谐运动.当D运动到最高点时,木箱对地压力为() A、Mg; B.(M-m)g; C、(M+m)g ; D、(M+2m)g 【解析】当剪断D、B间的连线后,物体D与弹簧一起可当作弹簧振 子,它们将作简谐运动,其平衡位置就是当弹力与D的重力相平衡时的 位置.初始运动时D的速度为零,故剪断D、B连线瞬间D相对以后的平 衡位置的距离就是它的振幅,弹簧在没有剪断D、B连线时的伸长量为x1=2 mg/k,在振动过程中的平衡位置时的伸长量为x2=mg/k,故振子振动过程中的振幅为 A=x2-x1= mg /k D物在运动过程中,能上升到的最大高度是离其平衡位移为A的高度,因为D振动过程中的平衡位置在弹簧自由长度以下mg/k处,刚好弹簧的自由长度处就是物D运动的最高点,说明了当D运动到最高点时,D对弹簧无作用力,故木箱对地的压力为木箱的重力Mg.出当振子速度为零时的位置,这两个位置间的距离就是振幅.本题侧重在弹簧振子运动的对称性.解答本题还能够通过求D物运动过程中的最大加速度,它在最高点具有向下的最大加速度,说明了这个系统有部分失重,从而确定木箱对地面的压力 【例2】在光滑的水平面上停放着一辆质量为M的小车,质量为m的物体与劲度系数为k的一轻弹簧固定相连.弹簧的另一端与小车左端固定连接,将弹簧压缩x0后用细绳将m 栓住,m静止在小车上的A点,如图所示,m与M 间的动摩擦因数为μ,O 点为弹簧原长位置,将细绳烧断后,m、M开始运动.求:①当m位于O点左侧还是右侧且跟O点多远时,小车的速度最大?并简要说明速度为最大的理由.②判断m与M的最 终运动状态是静止、匀速运动还是相对往复的运动? 【解析】①在细线烧断时,小球受水平向左的弹力F与水平向右的摩擦力f作用,开始时F必大于f.m相对小车右移过程中,弹簧弹力减小,而小车所受摩擦力却不变,故小车做加速度减小的加速运动.当F=f时车速达到最大值,此时m必在O点左侧。设此时物体在O点左侧x处, 则kx=μmg。所以,当x=μmg/k时,小车达最大速度. ②小车向左运动达最大速度的时刻,物体向右运动也达最大速度,这时物体还会继续向右运动,但它的运动速度将减小,即小车和物体都在做振动.因为摩擦力的存有,小车和物体的振动幅度必定持续减小,设两物体最终有一共同速度v,因两物体组成的系统动量守恒,且初始状态的总动量为零,故v=0,即m与M的最终运动状态是静止的

振动图像与波的图像及多解问题专题

振动图像与波的图像及多解问题 一、振动图象和波的图象 振动是一个质点随时间的推移而呈现的现象,波动是全部质点联合起来共同呈现的现象. 简谐运动和其引起的简谐波的振幅、频率相同,二者的图象有相同的正弦(余弦)曲线形状,但二图象是有本质区别的.见表: 振动图象波动图象 研究对象一振动质点沿波传播方向所有质点 研究内容一质点的位移随时间的变化规律某时刻所有质点的空间分布规律 图线 物理意义表示一质点在各时刻的位移表示某时刻各质点的位移 图线变化随时间推移图延续,但已有形状不变随时间推移,图象沿传播方向平移 一完整曲线占横坐标距离表示一个周期表示一个波长 例题精选: 例题1:如图6—27所示,甲为某一波动在t=1.0s时的图象,乙为参与该波动的P质点的振动图象 (1)说出两图中AA/的意义? (2)说出甲图中OA/B图线的意义? (3)求该波速v=? (4)在甲图中画出再经3.5s时的波形图 (5)求再经过3.5s时p质点的路程S和位移 解析:(1)甲图中AA/表示A质点的振幅或1.0s时A质点的位移大小为0.2m,方向为负.乙图中AA/’表示P质点的振幅,也是P质点在0.25s的位移大小为0.2m,方向为负. (2)甲图中OA/B段图线表示O 到B之间所有质点在1.0s时的位移、方向均为负.由乙图看出P质点在1.0s时向一y方向振动,由带动法可知甲图中波向左传播,则OA/间各 质点正向远离平衡位置方向振动,A/B间各质点正向靠近平衡位置方向振 动. (3)甲图得波长λ=4 m,乙图得周期T=1s 所以波速v=λ/T=4m/s (4)用平移法:Δx=v·Δt=14 m=(3十?)λ

专题振动图像和波动图像教(学)案

专题·振动图像和波动图像·教案 一、教学目标 1.通过对比振动图像和波动图像的联系与区别,使学生进一步深刻地认识到两种图像的不同的物理意义,培养学生的分析能力. 2.熟练掌握振动图像与波动图像的特点,能够正确识图并判断图形的变化. 二、重点、难点 1.重点是正确认识波动图像和振动图像,能从图像辨认位移、振幅、周期、波长,以及振动加速度、速度的方向、大小的比较;及速度、加速度、位移的变化的趋势;波的传播方向,并能结合其他条件计算波速,研究波动图线的变化等问题. 2.难点是正确区分振动图像和波动图像,明确它们不同的物理意义,区分质点的振动与波的传播.

三、教具 演示用沙摆振动图像仪;计算机;自制演示振动、波动图形关系软件;投影仪、投影胶片,长绳子. 四、主要教学过程 (一)引入新课 在高一年级,我们已分别学习过振动的图像和波动图像,这两种图像的物理意义有什么不同,它们的联系又是什么,如何应用这两种图像解决振动和波动问题,就是这节课所要研究的内容. (二)教学过程设计 1.振动图像和波动图像的区别和联系. (1)振动图像的演示. 用沙摆演示振动图像的形成,说明由于木板做匀速直线运动,其位移s∝时间t,所以可用木板中线上的不同位置代表不同的时刻,振动图像记录的是一个质点在不同时刻的振动位移.

(2)波动图像的演示. 用长绳演示波动图像的形成,说明长绳不动时,其上各点表示的是振动质点的平衡位置,波动图像记录的是在同一时刻,不同平衡位置质点的振动位移. (3)振动图像与波动图像的区别. 引导学生回忆并总结两种图像的区别,展示投影片1,其内容如下: 振动图像波动图像 研究对象①② 横轴的物理意义③④ 周期性⑤⑥ 相邻波峰(谷)间距离⑦⑧ 图形与时间的关系⑨⑩ 图形斜率的物理意义 教师指导并组织学生填写,表格内从①~的内容分别为: ①单个质点;②无数质点;③表示时间;④表示振动质点的平衡位置;⑤表示质点位移随时间变化的周期性;⑥表示质点位移随空间变化的周期性;⑦表示一个周期;⑧表示一个波长;⑨随着时间的推移,图形不发生变化;⑩随 着时间的推移,图形沿波的传播方向平移;斜率的大小表示振动速度的大 小;斜率无物理意义. (4)振动图像与波动图像的相似点.

高中物理 振动和波

2016届呼和浩特市段考物理圈题 题组11 振动和波 (一)考法解法 命题特点分析 机械振动和机械波是选修3-4的重点内容,也是考试命题的热门考点,命题形式也多样化,选择题、计算题、填空题都会有所涉及。考题综合性比较强,往往是机械振动和机械波综合在一起。其中简谐振动注重于力学内容的考察,比如相对平衡位置的位移、回复力、加速度以及振动图像等。对机械波的考查着重放在如下几个方面:其一是波的形成过程即由质点的振动在介质中传播而形成机械波,以及描述机械波的波长、波速、周期、频率等相关物理量之间的关系;其二是波动图像和振动图像的结合,有振动图像分析波动过程,或者由波动图像分析质点的振动;其三,波动图像的多解问题,根据机械波传播方向的不确定以及周期性的重复而产生的波速的多解。除此以外,单摆的周期性振动以及利用单摆测量重力加速度,简谐振动的共振问题,机械波的叠加和波的多普勒效应在部分填空题和选择题中也会涉及到。 解题方法荟萃 质点振动方向和波的传播方向的判定 (1)在波形图中,由波的传播方向确定媒质中某个质点(设为质点A) 的振动方向(即振动时的速度方向):逆着波的传播方向,在质点A的 附近找一个相邻的质点B.若质点B的位置在质点A的负方向处,则A 质点应向负方向运动,反之。则向正方向运动如图中所示,图中的质 点A应向y轴的正方向运动(质点B先于质点A振动.A要跟随B振 动). (2)在波形图中.由质点的振动方向确定波的传播方向,若质点C是沿Y轴负方向运动,在C质点位置的负方向附近找一相邻的质点D.若质点D在质点C位置X轴的正方向,则 波由X轴的正方向向负方向传播:反之.则向X轴的正方向传播.如图 所示,这列波应向X轴的正方向传播(质点c要跟随先振动的质点D 的振动) 具体方法为:①带动法:根据波的形成,利用靠近波源的点带动它邻近 的离波源稍远的点的道理,在被判定振动方向的点P附近(不超过λ/4) 图象上靠近波源一方找另一点P/,若P/在P上方,则P/带动P向上运动 如图,若P/在P的下方,则P/带动P向下运动. ②上下坡法:沿着波的传播方向走波形状“山路”,从“谷”到“峰” 的上坡阶段上各点都是向下运动的,从“峰”到“谷”的下坡阶段上各 点都是向上运动的,即“上坡下,下坡上”

高三物理振动和波知识点归纳

2019高三物理振动和波知识点归纳 精品学习高中频道为各位同学整理了高三物理振动和波知识点归纳,供大家参考学习。更多各科知识点请关注新查字典物理网高中频道。 振动和波(机械振动与机械振动的传播) 1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向} 2.单摆周期T=2(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角100;lr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=f=/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率

与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身; (2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处; (3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式; (4)干涉与衍射是波特有的; (5)振动图象与波动图象; (6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。

(八)机械振动和机械波专题

2012高三物理专题复习——机械振动和机械波专题 一、知识结构 。 三、【典型例题分析】 【例1】一弹簧振子做简谐运动,振动图象如图6—3所示。振子依次振动到图中a 、b 、c 、d 、e 、f 、g 、h 各点对应的时刻时, (1)在哪些时刻,弹簧振子具有:沿x 轴正方向的最大加速度;沿x 轴正方向的最大速度。 (2)弹簧振子由c 点对应x 轴的位置运动到e 点对应x 轴的位置,和由e 点对应x 轴的位置运动到g 点对应x 轴的位置所用时间均为0.4s 。弹簧振子振动的周期是多少? (3)弹簧振子由e 点对应时刻振动到g 点对应时刻,它在x 轴上通过的路程是6cm ,求弹簧振子振动的振幅。 分析:(1)弹簧振子振动的加速度与位移大小成正比,与位移方向相反。振子具有沿x 轴正方向最大加速度,必定是振动到沿x 轴具有负向的最大位移处,即图中f 点对应的时刻。 振子振动到平衡位置时,具有最大速度,在h 点时刻,振子速度最大,再稍过一点时间,振子的位移为正值,这就说明在h 点对应的时刻,振子有沿x 轴正方向的最大速度。 (2)图象中c 点和e 点,对应振子沿x 轴从+7cm 处振动到-7cm 处。e 、f 、g 点对应振子沿x 轴,从-7cm 处振动到负向最大位移处再返回到-7cm 处。由对称关系可以得出,振子从c 点对应x 轴位置振动到g 点对应x 轴位置,振子振动半周期,时间为0.8s ,弹簧振子振动周期为T =1.6s 。 (3)在e 点、g 点对应时间内,振子从x 轴上-7cm 处振动到负向最大位移处,又返回-7cm 处行程共6cm ,说明在x 轴上负向最大位移处到-7cm 处相距3cm ,弹簧振子的振幅A =10cm 。 解答:(1)f 点;h 点。(2)T =1.6s 。(3)A =10cm 。 说明:本题主要考察结合振动图象如何判断在振动过程中描述振动的各物理量及其变化。讨论振子振动方向时,可以把振子实际振动情况和图象描述放在一起对比,即在x 轴左侧画一质点做与图象描述完全相同的运动形式。当某段图线随时间的推移上扬时,对应质点的振动方向向上;同理若下降,质点振动方向向下。振动图象时间轴各点的位置也是振子振动到对应时刻平衡位置的标志,在每个时刻振子的位移方向永远背离平衡位置,而回复力和加速度方向永远指向平衡位置,这均与振动速度方向无关。因为振子在一个全振动过程中所通过的路程等于4倍振幅,所以在t 时间内振子振动n 个周期,振子通过的路程就为4nA 。 【例2】 一弹簧振子做简谐运动,周期为T ,以下说法正确的是( ) A. 若t 时刻和(t +Δt )时刻振子运动位移的大小相等、方向相同,则Δt 一定等于T 的整数倍 B. 若t 时刻和(t +Δt )时刻振子运动速度的大小相等、方向相反,则Δt 一定等于T /2的整数倍 C. 若Δt =T /2,则在t 时刻和(t +Δt )时刻振子运动的加速度大小一定相等 D. 若Δt =T /2,则在t 时刻和(t +Δt )时刻弹簧的长度一定相等 分析:如图所示为物体做简谐运动的图象。由图象可知,在t 1、t 2两个时刻,振子在平衡位置同侧的同一位置,即位移大小相等,方向相同,而T t t t <-=?12, 所以选项A 错误。 在t 1时刻振子向远离平衡位置方向振动,即具有正向速度,在 t 2时刻振子向平衡位置方向振动,即具有负向速度,但它们速度大 小相等。而2 12T t t t < -=?。所以选项B 错误。 因为T t t t =-=?14,振子在这两个时刻的振动情况完全相同,所以具有相同的加速度,选项C 正确。 因为2 13T t t t = -=?,振子在这两个时刻位于平衡位置的两侧,即若t 1时刻弹簧处于伸长状态,则t 3时刻弹簧处于压缩状态。所以选项D 错误。 解答:选项C 正确。 说明:做简谐运动的物体具有周期性,即物体振动周期的整数倍后,物体的运动状态与初状态完全相

振动和波

振动与波习题 1 、简谐运动中,0=t 的时刻是( ) (A )质点开始运动的时刻(B )开始观察计时的时刻 (C )离开平衡位置的时刻(D )速度等于零的时刻 2 、简谐运动的x -t 曲线如图所示,则简谐运动周期为( ) (A )2.62s (B )2.40s (C )0.42s (D )0.382s 3 、有一个用余弦函数表示的简谐运动, 若其速度v 与时间t 的关系曲线如图所示, 则该简谐运动的初相位为( ) (A )π/6 (B )π/3 (C )π/2 (D )/32π 4 、一弹簧振子系统竖直挂在电梯内,当电梯静止时,振子的频率为f,现使电梯以加速度a 向上作匀加速运动,则弹簧振子的频率将 ( ) (A )不变 (B )变大 (C)变小 (D )变大变小都有可能 5 、将一个弹簧振子分别拉离平衡位置1cm 和2cm 后,由静止释放(弹性形变在弹性限度内),则它们作简谐运动时的( ) (A )周期相同 (B )振幅相同 (C )最大速度相同 (D )最大加速度相同 6 、一弹簧振子的固有频率为υ,若将弹簧剪去一半,振子质量也减半,组成新的弹簧振子,则新的弹簧振子的固有频率等于 ( ) (A )υ (B )2/2υ (C )υ2 (D )υ2 7、两个完全相同的弹簧下挂着两个质量不同的振子,若它们以相同的振幅作简 谐运动,则它们的 ( ) (A )周期相同 (B )频率相同 (C )振动总能量相同 (D )初相位必相同 8、如图所示,一下端被夹住的长带形钢弹簧的顶端固定着一个2千克的小球。 把球移到一边的0.1米处需要4牛顿的力。当球被拉开一点然后释放时, 小球就作简谐运动,其周期是多少秒 ( ) (A )0.3 (B )0.7 (C )1.4 (D )2.2 9、 有两个沿x 轴作简谐运动的质点,其频率、振幅相同, 当第一个质点自平衡位置向负方向运动时,第二个质点在 2A x -=处 (A 为振幅)也向负方向运动,则两者的相位差12??-为( )

振动和波动计算题及答案

振动和波动计算题 1..一物体在光滑水平面上作简谐振动,振幅是12 cm ,在距平衡位置 6 cm 处速度是24 cm/s ,求 (1)周期T; (2)当速度是12 cm/s 时的位移. 解:设振动方程为x A c os t ,则v A sin t (1) 在x = 6 cm,v = 24 cm/s 状态下有 6 12 cos t 24 12 sin t 解得4/ 3,∴T 2 / 3 / 2s 2.72 s 2 分 (2) 设对应于v =12 cm/s 的时刻为t2,则由 v A sin t 得12 12 (4/ 3) sin t , 2 解上式得sin t 0.1875 2 2 相应的位移为x cos 1 sin 10.8 cm 3 分 A t2 A t 2 2. 一轻弹簧在60 N 的拉力下伸长30 cm .现把质量为 4 kg 的物体悬挂在该弹簧的下端并 使之静止,再把物体向下拉10 cm ,然后由静止释放并开始计时.求 (1) 物体的振动方程; (2) 物体在平衡位置上方 5 cm 时弹簧对物体的拉力; (3) 物体从第一次越过平衡位置时刻起到它运动到上方 5 cm 处所需要的最短时间. 解:k = f/x =200 N/m , k / m 7.07 rad/s 2 分 (1) 选平衡位置为原点,x 轴指向下方(如图所示),t = 0 时,x0 = 10A c os ,v0 = 0 = - A sin . 解以上二式得 A = 10 cm,= 0. 2 分 ∴振动方程x = 0.1 cos(7.07t) (SI) 1 分 (2) 物体在平衡位置上方 5 cm 时,弹簧对物体的拉力 f = m( g- a ),而 a = - 2x = 2.5 m/s2 ∴ f =4 (9.8-2.5) N= 29.2 N 3 分 5 c m O (3) 设t1 时刻物体在平衡位置,此时x = 0,即 0 = Acos t1 或cos t1 = 0.

振动和波 (5)

头头(尾尾)相对法: 在波形图的波峰(或波谷)上画出一个箭头表示波的传播方向,波峰(或波谷)两边波形上分别画出两个箭头表示质点的振动方向,那么这三个箭头总是头头相对,尾尾相对,如图(丙)所示: 平移法: 将原波形(实线)沿波的传播方向平移λ/4后(虚线),则从原波形中平衡位置沿y轴指向虚线最大位移处的方向,表示原波形中质点的振动方向.图 ( 丁)所示 (4)已知振幅A和周期T,求振动质点在Δt时间内的路程和位移: 求振动质点在Δt时间内的路程和位移,由于牵扯质点的初始状态,用正弦函数较复杂,但Δt 若为半周期T/2的整数倍则很容易.在半周期内质点的路程为2A.若,n=1,2,3...... 则路程s=2A·n,其中。当质点的初始位移(相对平衡位置)为x1=x0时,经T/2的奇数倍时x2=x0,经T/2的偶数倍时x1=x0。 (5)应用Δx= v·Δt时注意: ①因为Δx=nλ+x,Δt= nT+t,应用时注意波动的重复性;v有正有负,应用时注意波传播的双向性. ②由Δx,Δt求v时注意多解性. ☆波的干涉和衍射:

1. 波的叠加: 几列波相遇时,每列波都能够保持各自的状态继续传播而不互相干扰.只是在重叠的区域里,任一质点的总位移等于各列波分别引起的位移的矢量和. 2. 衍射: 波绕过障碍物继续传播的现象.产生明显衍射现象的条件是:障碍物或孔的尺寸比波长小或与波长相差不多. 3. 干涉: 频率相同的两列波叠加,使某些区域的振动加强,使某些区域的振动减弱,并且振动加强和振动减弱的区域相互间隔的现象.产生稳定的千涉现象的必要条件:两列波的频率相同. 4.干涉和衍射是波所特有的现象.波同时还可以发生反射,如回声. 5.干涉图样:两列波在空间相遇发生干涉,其稳定的干涉图样如下图所示. 其中a点是两列波的波峰,相遇点为加强的;点,b点为波峰和波谷的相遇点,是减弱的点.加强的点只是振幅大了,并非任一时刻的位移都大;减弱的点只是振幅小了,也并非任一时刻的位移都最小. 若两波源的振动步调一致,某点到两波源的距离之差为波长的整数倍,则该点为加强点;某点到两波源的距离为半波长的奇数倍,则该点为减弱点.

机械振动和机械波知识点总结

机械振动和机械波 一、知识结构 二、重点知识回顾 1机械振动 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。(二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中

“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。 1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在圆弧切线方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。 (六)机械振动的应用——受迫振动和共振现象的分析

2021高考物理二轮复习专题8振动和波动光学案202102232121

专题八振动和波动光 考情速览·明规律 高考命题点命题轨迹情境图 机械振动 和机械波 2016 Ⅰ卷34 Ⅱ卷34 17(1)34题 17(3)34题 18(1)34题 18(3)34题 19(1)34题2017 Ⅰ卷34 Ⅲ卷34 2018 Ⅰ卷34 Ⅲ卷34 2019 Ⅰ卷34 Ⅱ卷34 2020 Ⅱ卷34 Ⅲ卷34

19(2)34题 20(3)34题 光的折射 和全反射 2016 Ⅰ卷34 Ⅲ卷34 16(1)34题16(3)34题 17(1)34题 17(2)34题 17(3)34题 18(1)34题 2017 Ⅰ卷34 Ⅱ卷34 Ⅲ卷34 2018 Ⅰ卷34 Ⅱ卷34 Ⅲ卷34 2019 Ⅰ卷34 Ⅲ卷34 2020 Ⅰ卷34 Ⅱ卷34 Ⅲ卷34

18(2)34题 18(3)34题 19(1)34题 19(3)34题 20(1)34题 20(2)34题

20(3)34题 光(波)的特有现象、电磁波 2019 Ⅱ卷34 19(2)34题 2020 Ⅰ卷34 核心知识·提素养 “物理观念”构建 一、机械振动与机械波 1.知识体系 2.波的叠加规律 (1)两个振动情况相同的波源形成的波,在空间某点振动加强的条件为Δx =n λ,振动减弱的条件为Δx =n λ+λ 2 .两个振动情况相反的波源形成的波,在空间某点振动加强的条件为Δx = n λ+λ 2 ,振动减弱的条件为Δx =n λ.

(2)振动加强点的位移随时间而改变,振幅最大. 二、光的折射、光的波动性、电磁波与相对论 1.知识体系 2.光的波动性 (1)光的干涉产生的条件:发生干涉的条件是两光源频率相等,相位差恒定. (2)两列光波发生稳定干涉现象时,光的频率相等,相位差恒定,条纹间距Δx=l d λ. (3)发生明显衍射的条件是障碍物或小孔的尺寸跟光的波长相差不多或比光的波长小. “科学思维”展示 一、机械振动与机械波 1.分析简谐运动的技巧 (1)物理量变化分析:以位移为桥梁,位移增大时,振动质点的回复力、加速度、势能均增大,速度、动能均减小;反之,则产生相反的变化. (2)矢量方向分析:矢量均在其值为零时改变方向. 2.波的传播问题中四个问题 (1)沿波的传播方向上各质点的起振方向与波源的起振方向一致. (2)传播中各质点随波振动,但并不随波迁移.

专题14 振动和波(原卷版)

11年高考(2010-2020)全国1卷物理试题分类解析(原卷版) 专题14 机械振动和机械波 2020年高考 [物理——选修3-4] 15.在下列现象中,可以用多普勒效应解释的有__________。 A. 雷雨天看到闪电后,稍过一会儿才能听到雷声 B. 超声波被血管中的血流反射后,探测器接收到的超声波频率发生变化 C. 观察者听到远去的列车发出的汽笛声,音调会变低 D. 同一声源发出的声波,在空气和水中传播的速度不同 E. 天文学上观察到双星(相距较近、均绕它们连线上某点做圆周运动的两颗恒星)光谱随时间的周期性变化 16.一振动片以频率f做简谐振动时,固定在振动片上的两根细杆同步周期性地触动水面上a、b两点,两波源发出的波在水面上形成稳定的干涉图样。c是水面上的一点,a、b、c间的距离均为l,如图所示。已知除 c点外,在ac连线上还有其他振幅极大的点,其中距c最近的点到c的距离为3 8 l。求: (i)波的波长; (ii)波的传播速度。 一、选择题 1.(2011年)34.(1)(6分) 一振动周期为T,振幅为A。位于x=0点的波源从平衡位置沿y轴正方向开始做简谐运动,该波源产生的一维简谐横波沿x轴正向传播,波速为v,传播过程中无能量损失。一段时间后,该振动传播到某质点P,关于质点P振动的说法正确的是(选对1个给3分,选对2个给4分,选对3个给6分,每选错1个扣3分,最低得分为0分)

A. 振幅一定为A B. 周期一定为T C. 速度的最大值一定为v D. 开始振动的方向沿y轴向上或向下取决于它离波源的距离 E.若P点离波源距离s=vT,则质点P的位移与波源相同 2.(2013年)34.【物理—选修3-4】(1)(6分) 如图,a、b、c、d是均匀介质中x轴上的四个质点。相邻两点的间距依次为2m、4m和6m一列简谐横波以2m/s的波速沿x轴正向传播,在t=0时刻到达质点a处,质点a由平衡位置开始竖直向下运动,t=3s时a 第一次到达最高点。下列说法正确的是(填正确答案标号。选对1个得3分,选对2个得4分,选对3个得6分。每选错1个扣3分,最低得分为0分。) A.在t=6s时刻波恰好传到质点d处 B.在t=5s时刻质点c恰好到达最高点 C.质点b开始振动后,其振动周期为4s D.在4s

机械振动与机械波相结合的综合应用(教案)

机械振动与机械波相结合的综合应用 【教学目标】 1、通过对比简谐运动与简谐波,掌握简谐运动与简谐波的特征及描述方法。 2、知道简谐运动与简谐波相结合的综合题的题型,掌握解决此类问题的基本方法。【教学过程】 一、核心知识 1、研究对象:简谐运动、简谐波 2、简谐运动与简谐波的对比 学生活动:学生先讨论课前独立填写的学案中的下表中红色内容(2分钟),然后 学生活动:①学生先小组讨论学案上按要求完成的内容(每一类问题2分钟),然后展示要难点问题,提请全班讨论解决。②第三类题型讨论完后,总结合归纳解题基本方法。 老师活动:①老师对重点突破共同难点问题,突破方法是通过提前预设的PPT进行分析。②对学生归纳的解题方法进行提炼和深化。③强调解题规范。 1、已知波的传播和波上质点振动的部分信息,分析问题 【例1】(2016年全国Ⅲ卷,34(1))(5分)由波源S形成的简谐横波在均匀介质中向左、右传播。波源振动的频率为20 Hz,波速为16 m/s。已知介质中P、Q两质点位于波源S的两侧,且P、Q和S的平衡位置在一条直线上,P、Q的平衡位置到S的平衡位置之间的距离分别为m、m,P、Q开始震动后,下列判断

正确的是_____。(填正确答案标号。选对1个得2分,选对2个得4分,选对3个得5分。每选错1个扣3分,最低得分为0分) A .P 、Q 两质点运动的方向始终相同 B .P 、Q 两质点运动的方向始终相反 C .当S 恰好通过平衡位置时,P 、Q 两点也正好通过平衡位置 、 D .当S 恰好通过平衡位置向上运动时,P 在波峰 E .当S 恰好通过平衡位置向下运动时,Q 在波峰 【答案】BDE 【考点】波的图像,波长、频率和波速的关系 【解析】根据题意信息可得1s 0.05s 20 T ==,16m/s v =,故波长为0.8m vT λ==,找P 点关于S 点的对称点P ',根据对称性可知P '和P 的振动情况完全相同,P '、 Q 两点相距15.814.630.80.82x λλ???=-= ??? ,为半波长的整数倍,所以两点为反相点,故P '、Q 两点振动方向始终相反,即P 、Q 两点振动方向始终相反,A 错误B 正确; P 点距离S 点3194 x λ=,当S 恰好通过平衡位置向上振动时,P 点在波峰,同理Q 点距离S 点1184 x λ'=,当S 恰好通过平衡位置向下振动时,Q 点在波峰,DE 正确。 巩固练习:(2016年全国Ⅱ卷,34(2)))(10分)一列简谐横波在介质中沿x 轴正向传播,波长不小于10cm .O 和A 是介质中平衡位置分别位于x =0和x=5cm 处的两个质点.t=0时开始观测,此时质点O 的位移为y =4cm ,质点A 处于波峰位置;1 s 3 t =时,质点O 第一次回到平衡位置,t=1s 时,质点A 第一次回到平衡位置.求: (ⅰ)简谐波的周期、波速和波长;(ⅱ)质点O 的位移随时间变化的关系式. 【答案】(i )T =4s ,v =s ,λ=30cm (ii )50.08sin(t )26y ππ=+或者10.08cos(t )23 y ππ=+ 【解析】(i )t =0s 时,A 处质点位于波峰位置 t =1s 时,A 处质点第一次回到平衡位置可知 1s 4 T =,T =4s … 1s 3 t =时,O 第一次到平衡位置,t =1s 时,A 第一次到平衡位置 可知波从O 传到A 用时2s 3 ,传播距离x =5cm 故波速7.5cm /s x v t ==,波长λ=vT =30cm (ⅱ)设0sin(t )y A ω?=+,可知2rad/s 2T ππω== 又由t =0s 时,y =4cm ;1s 3t =,y =0,代入得A =8cm ,再结合题意得056 ?π= 故50.08sin(t )26y ππ=+或者10.08cos(t )23 y ππ=+ 2、已知两个时刻的波形图和部分信息,分析问题

振动图像与波的图像(课堂参照)

振动图象和波的图象 振动是一个质点随时间的推移而呈现的现象,波动是全部质点联合起来共同呈现的现象.简谐运动和其引起的简谐波的振幅、频率相同,二者的图象有相同的正弦(余弦)曲线形状,但二图象是有本质区别的.见表: 振动图象波动图象 研究对象一振动质点沿波传播方向所有质点 研究内容一质点的位移随时间的变化规律某时刻所有质点的空间分布规律 图线 物理意义表示一质点在各时刻的位移表示某时刻各质点的位移 图线变化随时间推移图延续,但已有形状 不变 随时间推移,图象沿传播方向平 移 一完整曲线占横坐 标距离 表示一个周期表示一个波长

2012届高考二轮复习专题 :振动图像与波的图像及多解问题 【例1】如图6—27所示,甲为某一波动在t=1.0s 时的图象,乙为参与该波动的P 质点的振动图象 (1)说出两图中AA / 的意义? (2)说出甲图中OA / B 图线的意义? (3)求该波速v=? (4)在甲图中画出再经3.5s 时的波形图 (5)求再经过3.5s 时p 质点的路程S 和位移 解析:(1)甲图中AA / 表示A 质点的振幅或1.0s 时A 质点的位移大小为0.2m ,方向为负.乙 图中AA / ’表示P 质点的振幅,也是 P 质点在 0.25s 的位移大小为0.2m ,方向为负. (2)甲图中OA / B 段图线表示O 到B 之间所有质点在1.0s 时的位移、方向均为负.由乙图 看出P 质点在1.0s 时向一y 方向振动,由带动法可知甲图中波向左传播,则OA / 间各质点 正向远离平衡位置方向振动,A / B 间各质点正向靠近平衡位置方向振动. (3)甲图得波长λ=4 m ,乙图得周期 T =1s 所以波速v=λ/T=4m/s (4)用平移法:Δx =v ·Δt =14 m =(3十?)λ 所以只需将波形向x 轴负向平移?λ=2m 即可,如图所示 (5)求路程:因为n= 2 /T t =7,所以路程S=2An=2×0·2×7=2。8m 求位移:由于波动的重复性,经历时间为周期的整数倍时.位移不变·所以只需考查从图示时刻,p 质点经T/2时的位移即可,所以经3.5s 质点P 的位移仍为零. 【例2】如图所示,(1)为某一波在t =0时刻的波形图,(2)为参与该波动的P 点的振动图象,则下列判断正确的是 A . 该列波的波速度为4m /s ; B .若P 点的坐标为x p =2m ,则该列波沿x 轴正方向传播 C 、该列波的频率可能为 2 Hz ; D .若P 点的坐标为x p =4 m ,则该列波沿x 轴负方向传播; 解析:由波动图象和振动图象可知该列波的波长λ=4m ,周期T =1.0s ,所以波速v =λ/T =4m /s . 由P 质点的振动图象说明在t=0后,P 点是沿y 轴的负方向运动:若P 点的坐标为x p =2m ,则说明波是沿x 轴负方向传播的;若P 点的坐标为x p =4 m ,则说明波是沿x 轴的正方向传播的.该列波周期由质点的振动图象被唯一地确定,频率也就唯一地被确定为f = l /t =0Hz .综上所述,只有A 选项正确. 点评:当一列波某一时刻的波动图象已知时,它的波长和振幅就被唯一地确定,当其媒

第5章 振动和波动课后答案

第5章振动和波动 5-1一个弹簧振子0.5kg m =,50N m k =,振幅0.04m A =,求 (1)振动的角频率、最大速度和最大加速度; (2)振子对平衡位置的位移为x =0.02m 时的瞬时速度、加速度和回复力; (3)以速度具有正的最大值的时刻为计时起点,写出振动方程。 解:(1))s rad (105 .050 === m k ω (2) 设 当(3) 5-2 解: ν= 5-3式中1,k 10x ,弹簧2所受的合外力为 由牛顿第二定律得2122d ()d x m k k x t =-+ 即有2122() d 0d k k x x t m ++ = 上式表明此振动系统的振动为简谐振动,且振动的圆频率为

振动的频率为2π ω ν= = 5-4如图所示,U 形管直径为d ,管内水银质量为m ,密度为ρ,现使水银面作无阻尼自由振动,求振动周期。 振动周期5-5 5-6如图所示,轻弹簧的劲度系数为k ,定滑轮的半径为R 、转动惯量为J ,物体质量为m ,将物体托起后突然放手,整个系统将进入振动状态,用能量法求其固有周期。 习题

解:设任意时刻t ,物体m 离平衡位置的位移为x ,速率为v ,则振动系统的总机械能 式中 于是5-7已知5-8平衡位置距O '点为:000l x l k +=+ 以平衡位置为坐标原点,如图建立坐标轴Ox ,当物体运动到离开平衡位置的位移为x 处时,弹簧的伸长量就是x x +0,所以物体所受的合外力为 物体受力与位移成正比而反向,即可知物体做简谐振动国,此简谐振动的周期为 5-9两质点分别作简谐振动,其频率、振幅均相等,振动方向平行。在每次振动过程中,它们在经过振幅的一半的地方时相遇,而运动方向相反。求它们相差,并用旋转矢量图表示出来。 习题5-6图

相关文档
最新文档