任意三维裂纹扩展分析-0319

任意三维裂纹扩展分析-0319
任意三维裂纹扩展分析-0319

任意三维疲劳裂纹扩展分析

1.前言

在工程实际中,真实的结构总是存在众多缺陷或裂纹,对于一个含裂纹或缺陷的构件,多在其服役荷载远低于容许强度的情况下就发生了破坏。实际工程结构在经受长时间多因素综合作用下,产生变形、裂纹等缺陷,从而导致整个结构的失效。结构的失效主要由疲劳引起,其最终失效形式即为断裂,有大约80%以上的工程结构的断裂与疲劳有关,由疲劳引起的巨大经济损失及灾难性的后果不胜枚举。

我们通常不能仅仅因为某个构件出现了裂纹就简单的认为该构件不安全或不可靠,尤其是对于大型设备的重要构件,因为这将使企业耗费高昂的成本。对于出现的裂纹,以往多采用以下几种处理办法:一是对出现裂纹的构件进行更换,这对于含裂纹但仍能工作的构件是一个巨大的浪费。二是强行停止使用进行维修,这样会带来巨大的经济损失;三是冒险继续使用,但这样会带来巨大风险,甚至会造成人员伤亡。所以,人们更想知道,出现的裂纹是否会在既定载荷(包括疲劳载荷在内的任意载荷)下扩展成不安全或失效的临界尺寸,因此,出现了疲劳裂纹扩展分析。疲劳裂纹扩展分析是采用断裂力学的理论和方法对含裂纹等缺陷构件的失效过程进行分析,以评估产品的安全性和可靠性,可以进行损伤容限评估和剩余寿命预测等,已经在化工机械、飞行器、核工业等各个工程领域得到了广泛应用,并得到了世界各国政府及学术机构的重视。

2.疲劳裂纹扩展分析软件

在工程实践中,疲劳裂纹扩展分析已成为评估产品性能、改良产品设计和提高服役寿命的一个重要工具。目前,疲劳裂纹扩展分析主要有解析法和数值法这样两种方法,下面分别介绍这两种方法。

1)解析法

解析法主要依据相应的规范和经验公式,将复杂的三维问题简化为二维问题,并对复杂的裂纹形状和荷载状态进行简化,然后用经验的方法对裂纹安全性进行评估。但对于大量结构复杂的工程实际问题却无能为力,况且其简化后的分析准确度及是否真实逼近服役情况也值得探讨。

目前,工程上有几款基于解析法而开发的裂纹扩展分析软件,它们主要应用于航空标准结构的裂纹扩展分析,包括DARWIN、NASGRO、AFGROW等。这些软件内嵌了航空结构多种形式的标准裂纹库,通过修改相应的模型尺寸、边界条件、载荷、裂纹位置和尺寸等参数即可根据内含的公式或内插表快速得出断裂力学结果,用来计算或查找标准航空结构中给定裂纹尺寸、载荷和形状的应力强度因子,仅能计算裂纹库里已有的裂纹模型的应力强度因子,并且适用于相对简单的几何和载荷,往往忽略真实的条件,如温度、非平面裂纹、复杂形状的裂纹、几何形状复杂的部件、部件之间的接触、残余应力和局部应力集中等。如要获得较为准确的结果,需要利用实验数据或其它方法对计算结果进行修正,但修正系数的取值往往很难确定,要靠经验来判断,并不具备求解复杂结构中三维裂纹扩展的能力。

2)数值法

近年来,随着有限元软件的发展,基于数值法的裂纹扩展分析软件已成功应用于解决工

程实际问题。市场上已有几款用于裂纹扩展分析的商用软件,它对含裂纹等缺陷产品进行计算机仿真,模拟产品的失效过程,由于计算精度高,使用方便,在工程应用上使用较为广泛。

裂纹扩展分析软件是疲劳裂纹扩展分析的一个强有力工具,在工业设计和设备安全性评估中有着重要的地位和作用,有着巨大的市场和广阔的发展前景。其主流发展方向是基于有限元法的三维裂纹扩展分析软件,包括基于扩展有限元法(XFEM)的ABAQUS、采用自适应网格划分的新一代FRANC3D、使用Crack-Block技术的Zencrack及等。

ABAQUS XFEM、新一代FRANC3D和Zencrack分别代表了三种裂纹网格建模技术,其中,Zencrack软件由于没有自己的用户界面,使得易用性受到很大限制,其采用的Crack-Block 技术并不能保证网格的质量,在复杂三维结构中的裂纹网格更新往往不能实现,因此,本文主要基于前两种软件来做探讨。

3.三维疲劳裂纹扩展分析的关键要素

在工程应用上,几乎所有的裂纹扩展都是三维的,使用数值方法计算三维裂纹扩展有许多困难和不确定性因素,其中有两个要素必须具备:

1)精确计算三维裂纹前缘的应力强度因子

2)根据裂纹在三维空间扩展的判据计算裂纹扩展寿命

任何裂纹扩展分析都必须基于断裂力学参数的计算和使用,而疲劳裂纹扩展寿命对应力强度因子等断裂力学参数较敏感,有一个公认的法则,即一个应力强度因子(SIF)25%的偏差,将会成倍增加(或减少)裂纹扩展的寿命。因此,如何获得精确的应力强度因子的结果,成为考虑损伤容限和剩余强度等现代设计的重要输入条件。

对于疲劳裂纹扩展寿命预测,通常需要两步来进行。首先,计算裂纹尺寸和应力强度因子之间的关系;其次,利用裂纹扩展速率公式来计算裂纹尺寸和施加载荷循环次数之间的关系。而如何获得裂纹尺寸和应力强度因子的关系曲线至关重要,这是准确计算疲劳裂纹扩展寿命的基础,而实际工程结构的裂纹扩展是空间三维的,如何合理地确定三维裂纹扩展的K vs. a关系曲线是准确计算三维裂纹扩展寿命的关键。

4.三维疲劳裂纹扩展分析的建模方法

进行三维裂纹扩展分析的前提是获得精确的应力强度因子的结果(我们将精确定义为与基准/解析解的误差在1-1.5%或更小的范围内),而利用有限元法计算精确的应力强度因子,是比较困难的,这就对其建模和计算方法提出了更高的要求。总体来说,计算精确的SIF的关键因素包括:在裂纹尖端植入奇异单元;在裂纹区域划分足够密的网格;使用保守的积分计算应力强度因子以及采用对称网格来减少局部离散误差等。

4.1在裂纹尖端植入奇异单元

对于传统的有限元来说,这意味着在裂纹尖端布置1/4节点的奇异单元,可以是退化的20节点六面体单元(a)或15节点的楔形单元,这两类单元均可给出精确的结果。

对于扩展有限元(XFEM ),这意味着奇异附加函数: []???

???=ψ2cos sin ,2sin sin ,2sin ,2cos θθθ

θθ

θr

4.2 裂纹区域的网格密度

对于裂纹区域的网格密度,有一个通用的“经验法则”,即,如果要采用有限元法来获得精确的结果,单元的尺寸应该至少10倍小于要划分网格的特征尺寸。对于局部裂纹区域网格划分来说这仍然是一个一般原则。

自适应网格划分方法会自动在裂纹尖端划分细化的网格,而在远离裂纹的位置使用普通结构分析中常用的网格单元尺寸,细化网格单元会过渡或“tie ”到远离裂纹的较大单元上。

在裂纹扩展过程中,自适应网格划分方法会继续沿着预测的裂纹路径来细化网格,保证

裂纹区域具有足够密的网格。

传统有限元分析中的单元尺寸原则同样适用于XFEM ,要想获得精确的应力强度因子结果,理想的局部裂纹区域的单元尺寸应该是至少10倍小于特征裂纹尺寸。

4.3 计算应力强度因子的保守积分

目前,计算应力强度因子的方法包括J-积分和M 积分(也称为交互积分),这种两种方法的等效域方程是计算应力强度因子最精确的方法。其中,J-积分适用于纯I 型裂纹问题,只能计算单调加载的情况,而M-积分可分别给出各项同性和一般各向异性材料中KI, KII,和KIII 的值,比J 积分更具通用性。

J 积分和M 积分的表达式分别为:

??????? ??-??=ds x q W x u J j

j

ij 11δσ

??????? ??-??+??=ds x q W x u x u M j j ij ij 1)2,1(1)1()2(1)2()1(δσσ

新一代FRANC3D 采用M-积分来计算应力强度因子,它对围绕裂纹前缘的两个单元环执行保守积分计算,积分域包括一个15节点奇异楔形单元的内环和一个20节点六面体单元的外环。FRANC3D 采用的自适应网格划分,还会在裂纹前缘周围布置第三个环,由六面体单元组成,但不参与积分计算。

保守积分的等效域方程需要使用一个物理上可以被解释为虚拟裂纹扩展的加权函数。在FRANC3D 中,通过在裂纹前缘生成没有径向畸变的奇异单元来实现该加权函数的定义,而在奇异单元周围的单元环均为标准的20节点六面体单元。

4.4 局部网格对称

由于裂纹前缘的积分只在少量的单元中进行,因此,这些单元对离散误差是高度敏感的。因为裂纹前缘区域是关于裂纹面对称和反对称的,将网格关于裂纹面和其垂直面进行对称将消除一些离散误差。不幸的是,XFEM 难以利用此对称来抵消离散误差,因此其计算精度要低于FRANC3D 的精度。

5. 任意三维裂纹扩展分析的步骤

新一代FRANC3D 分三个步骤来预测三维裂纹扩展:计算裂纹前缘上每个节点的局部裂纹扩展方向,或称扭转角度;计算每个节点的局部裂纹扩展距离;对扩展之后的新裂纹前缘进行光顺化处理,以减少不必要的数值“噪音”,并将裂纹前缘延伸到结构自由表面外。

5.1计算扭转角度(Kink Angle)

在大多数情况下,预测裂纹的扭转角度和扩展轨迹会相对来说会非常容易,特别是对疲劳裂纹的扩展计算。计算扭转角度有很多准则可以选择,包最大张应力准则、最大能量释放率准则、局部对称准则、最小应变能密度准则等。这些准则,包括任何倾向于最小化KII的准则,都能给出相似的并且精确的预测。下图为FRANC3D盲算获得的裂纹扩展趋势的结果和实际观察到的裂纹扩展的比较。

盲算结果观察到的裂纹扩展

然而,有一些情况会使得预测裂纹的扩展轨迹变得更加复杂,如裂纹扩展各向异性的阻力、非比例载荷(包括残余应力)、非常高的II型载荷(对有些材料)等。如下图为20世纪90年代初,波音公司做过的一个全尺寸窄体板测试,展示了各向异性材料对裂纹扩展趋势的影响。

5.2计算局部裂纹扩展距离

一般情况下,裂纹前缘上每个节点的扩展距离是不同的,使用疲劳裂纹扩展速率模型来计算局部裂纹扩展距离,有两个选项可供选择:

1) 指定位于应力强度因子中值(median)上的节点的扩展增量,所有其它节点的扩展

距离通过适当缩放获得,计算公式可表达为

()

()???

?

?

?

?

?

?

?

?

=

?

...

,

,

,

,

...

,

,

,

,

max

max

th

m

th

i

m

i K

K

R

K

f

K

K

R

K

f

a

a

2) 指定载荷的循环次数,从裂纹扩展速率公式直接计算所有节点的扩展距离,可表达

()...

,

,

,

,

max th

i

i

K

K

R

K

Nf

a?

?

?

=

?

指定扩展增量指定载荷循环次数

对于这两种方法来说,应注意局部裂纹扩展的增量不能设置的太小,这样会导致效率的

低下;也不能设置的过大,这样会导致裂纹前缘的不稳定。因此,应根据分析目的不同而合理设置裂纹局部扩展增量,如果要进行进精确寿命计算,可采用较小的增量,如果只需要查看裂纹扩展的趋势,则可设置较大的增量,以提高效率。

小的裂纹扩展步(稳定的裂纹前缘形状)

大的裂纹扩展步(不稳定的裂纹前缘形状)

5.3裂纹前缘拟合

预测的裂纹前缘点是一系列的数值计算的结果,将这些点连线作为新裂纹前缘有时会出现振荡,甚至呈锯齿形,利用多项式曲线来拟合裂纹前缘可以消除这些振荡。我们已经尝试了各种多项式和样条拟合曲线,遗憾的是,没有任何一种曲线能很好地拟合所有的情况,需要根据特定情况进行具体分析后选择合适的拟合方法。

6. 任意三维疲劳裂纹扩展寿命的计算和挑战

疲劳裂纹扩展寿命的计算通常需要两步来进行:

1) 计算裂纹尺寸和应力强度因子之间的关系;

2) 整合裂纹扩展速率模型来计算裂纹尺寸和施加载荷循环次数之间的关系,公式为()???= ,,,),(max th K K R a K f da

N 。

其中,如何合理地确定三维裂纹扩展的K vs. a 关系曲线是任意三维裂纹扩展寿命计算的关键。因为K vs. a 曲线是一个单自由度的曲线,而每条裂纹前缘上的应力强度因子分布是不均匀的,选取哪个点的结果作为本扩展步的K 值是不容易确定的;另外,对于裂纹扩展的距离a ,如果是两维问题,可以很容易获得,但对于三维裂纹扩展来说,问题变的很复杂,因为裂纹扩展路径是三维的,裂纹前缘上的每个节点的扩展距离和扭转方向都不一样,很难准确定义裂纹扩展的尺寸。

通常的做法是采用某种规则定义穿过裂纹前缘的一个“路径”,提取裂纹前缘与该路径交点处的K 值作为应力强度因子的历程数据。将该路径的长度定义成裂纹扩展的距离a ,从而生成K vs. a 曲线。这些规则包括:

1) 每条裂纹前缘恒定位置处(如每条裂纹前缘的中间位置)的直线连线形成路径

2) 找到距离前一条裂纹前缘指定位置最近的点,以此类推,形成路径

3) 定义一个平面,与裂纹前缘交点的连线形成路径

但是,利用每种规则都可以产生多个路径,应该如何选择单自由度路径,它如何影响三维疲劳裂纹扩展的寿命,还有待研究,因为,不同的路径预测出来的寿命并不同。下图为在拉弯载荷下的角裂纹,选择不同路径预测出来的寿命曲线对比情况。

另外,这些准则在一些复杂的情况下并不适用,或并不精确,如下图所示的情况,定义裂纹扩展的距离就很难。

为了解决以上问题,康奈尔大学断裂工作组提出了一个改进的新方法,比传统的方法更具有通用性,步骤如下:

1.对于裂纹前缘上的每个节点,找出其垂直投影到下一个裂纹前缘上的交点;

2.通过插值计算出这些点的K;

3.假设DK在当前和下一个裂纹前缘的点之间为线性变化,并通过积分获得预测的载

荷循环次数;

4.对每个裂纹扩展步的每个裂纹前缘单元预测的N进行平均,得到一个“N vs. 裂纹

扩展步”曲线。

但是,这种方法仍然是通过减少全三维的K数据来预测疲劳寿命,知识在现有的方法基础上进行得一个改进,最好方法仍然是一个开放性问题,还有待进一步研究解决。

7.结论

1.选择一个数值方法(自适应网格划分、XFEM等)只是执行疲劳寿命预测的第一步;

2.采用适当的单元、网格划分和积分技术,有限元法是可以获得精确的SIF结果的;

3.预测裂纹扭转方向和扩展轨迹是相对容易的;

4.预测的裂纹前缘形状对选择的扩展步长比较敏感;

5.通过减少全三维的K数据来预测疲劳寿命的最好方法仍然是一个值得解决的问题。

基于ANSYS的三维贯穿裂纹的断裂参数计算

基于ANSYS的三维贯穿裂纹的断裂参数计算 据一些工业化国家统计,因材料和结构的破坏所造成的损失占国民经济生产总值的8%-12%多。破坏事故所造成的人员伤亡的损失更不可估量。我国作为一个发展中国家,在这方面的情况比西方发达国家更严重。因此无论是为了减少破坏事故的损失还是研发满足现代工业所需要的新材料,都要求对材料的破断过程有科学的、全面的、定量化的认识。 三维裂纹作为工程中常见的裂纹形式,早在六十年代初就有不少研究者开始研究,到现在已有大量的文献资料论及这一问题,出现了一些有特点的分析方法。工程上常见的表面裂纹的断裂分析,由于其实质是三维问题,也几乎同时开始被人们所关注。三维裂纹问题的危害极大,断裂造成了大量的灾难性事故发生,这使得断裂力学在机械工程、海洋工程、核工程,特别是今天的航空航天工程中受到更广泛的重视和深入研究。 因此对含三维裂纹结构断裂特性尤其对三维裂纹体的应力强度因子的研究有重要的现实意义。本文使用ANSYS成功的计算了三维贯穿裂纹的应力强度因子,为计算三维裂纹提供了一种便捷方式。 1.模型的建立 图1 三维贯穿裂纹模型

本文三维裂纹模型长度为L,高度为H,宽度为W,裂纹半长为a,裂纹位于模型的中心部位。几何参数见表1。模型的为线弹性材料,其弹性模量为2.1E11Pa,泊松比为0.3。模型的边界条件为:底端固定,顶端承受拉应力σ为2E6Pa。 表1 模型的几何参数 本文采用二维奇异单元PLANE183建立二维的裂纹模型,然后通过拉伸并使用三维奇异单元SOLID186来建立三维贯穿裂纹模型。图2-图5给出了二维裂纹模型和三维裂纹模型。 在13.0中对应力强度因子的计算增加了一种计算方法即互动积分法(Interaction Integrals ),这种方法与计算J积分的主域积分法类似。在二维问题进行面积分,在三维问题中进行体积分来获得应力强度因子。这种方法与传统的位移扩展法相比精度高,需要的单元数少。 图2 二维裂纹模型图3 二维裂纹模型 裂纹尖端网格

混凝土裂缝深度检测技术

混凝土裂缝深度检测技术

目录 1测试的意义 (2) 2测试方法和原理 (3) 2.1标准测试方法 (3) 2.2独创测试方法(表面波法) (6) 2.3裂缝延伸方向的测试 (8) 3模型、现场验证 (9) 3.1基础试验(1998-2006) (9) 3.2现场验证(1998-2006) (11) 4特点和适用范围 (14) 4.1特点 (14) 4.2适用范围 (14) 4.3影响因素 (14) 4.4与超声波方法相比的优越性 (15)

1测试的意义 混凝土结构是最重要的土木、建筑结构,在社会基础设施中占据举足轻重的地位。然而,由于各种原因(如干燥收缩、温度应力、外荷载、基础变形等),裂缝是混凝土结构中最常见的缺陷或损伤现象。 由于裂缝的成因、状态、发展以及在结构中的位置等的不同,对结构的危害性也有很大的区别。严重的裂缝可能危害结构的整体性和稳定性,对结构的安全运行产生很大影响。另一方面,也有些裂缝,如表面温度变化或干燥收缩引起的浅裂缝则无大的影响。此外,根据大量的观测资料,在混凝土结构物中出现的裂缝,大多数在竣工后1-2年内已产生。如果这些裂缝处于稳定状态,其对结构的影响程度要小得多。此外,对于裂缝的修补,如裂缝充填(往裂缝中注入水泥砂浆或者环氧树脂等充填材料,以防内部钢筋锈蚀)和裂缝补强(裂缝表面粘贴钢板等)都需要在明确裂缝的状态、成因的基础上才能合理、有效地进行。 因此,为了确定裂缝的状态、发展和成因,以及合理评价裂缝对结构物的影响,选择适当的修补方案和时机,掌握其深度与其长度、宽度都是非常重要的。所不同的是,裂缝的深度测试较之长度和宽度测试要困难得多,通常需要采用钻孔取样的方法加以直接测试。但是,钻孔取样的方法除费时费力,对结构也有一定的损害以外,对深裂缝由于取样困难往往难以测试。同时,对于裂缝的发展也难以监测,因此,采用合理的无损检测方法是非常必要的。 裂缝深度的无损检测方法有多种,长期以来,研究人员开发了多种测试方法,大致可以分为: 1)基于超声波的检测方法; 2)基于冲击弹性波的检测方法 然而,由于混凝土结构及裂缝的特殊性,使得裂缝深度的无损检测变得非常困难。同时,目前常用的裂缝深度的无损检测技术大多是从金属材料的裂缝深度检测中发展而来,在应用于混凝土结构中会遇到各种问题,使得测试结果常常较实际深度偏浅很多,因此难以在实际工程中推广应用。当然,对裂缝深度方向的发展的监测迄今尚无有效的手段。

abaqus扩展有限元(xfem)例子(裂缝发展) ()

Abaqus扩展有限元(XFEM)例子(裂缝发展) part模块中的操作: 1. 生成一个新的part,取名为plate,本part选取3D deformable solid extrusion类型(如图1) 2.通过Rectangle工具画出一长3,高6的矩形。考虑使用工具栏add-dimension和edit dimension来画出精确长度的模型。强烈建议此矩形的左上角坐标为(0,3),右下角坐标为(3,-3)(如图2) 3. 完成后拉伸此矩形,深度为1.(如图3) 4. 生成一个新的part,取名为crack,本part选取3D deformable shell extrusion类型(如图4)

5.生成一条线,此线的左端点坐标为(0,0.08),右端点坐标为(1.5,0.08) 6 . 完成后拉伸此线,深度为1.(如图6) 7.保存此模型为XFEMtutor(如图7),以后经常保存模型,不再累述。 8. 在part Plate中分别创建4个集合,分别为:all,bottom,top和fixZ,各部分的内容如图

8~11所示 Material模块中的操作: 1 创建材料elsa,其弹性参数为E=210GPa,泊松比为0.3(如图12) 2 最大主应力失效准则作为损伤起始的判据,最大主应力为84.4MPa(如图13)

3.损伤演化选取基于能量的、线性软化的、混合模式的指数损伤演化规律,有关参数为G1C= G2C= G3C=42200N/m,a=1.(如图14) 4.创建一个Solid Homogeneous 的section,名为solid(如图15),此section与材料elsa相

基于ANSYS有限元软件裂纹扩展模拟

万方数据

万方数据

56基于ANSYS有限元软件裂纹扩展模拟 【鬈I2子模型有限几删韬幽 (plane82),如图1所示。模型中裂纹长度为10mm,几何尺寸如图2所示。材料的弹性模量在2.017×105MPa上下变化,泊松比为o.3。顶端从侧端的一端起在长度为20mm的线上承受一200N/mm的压力。侧端从距裂纹处10mm开始在长度为20nlm的线上承受looN/mm的压力。这只是其中某一种状态,可以根据构件的实际受力状况,改变子模型的边界条件和受 匝墨巫巫匦圃 I得到应变能仞始值【,o ’ 图3ANsYs二次tH:发模拟流程力状况。 3ANSYS二次开发程序基本思路和模拟结果用上述的八NsYS二次开发的源程序对图1所示的子模型结构的疲劳裂纹扩展进行模拟,模拟流程见图3。由于模拟构件疲劳裂纹扩展从开始到失稳,裂纹扩展长度大,因而程序运行时间长。为此笔者只模拟了五步,模拟的结果见表1和图4。图4中的粗黑线为裂纹扩展路径。 表1疲劳裂纹扩展模拟所得的路径参数 (a)模拟一步裂纹扩展路径 (b)模拟二步裂纹扩展路径 (c)模拟三步裂纹扩展路径 万方数据

《化工装备技术》第27卷第1期2006年57 (d)模拟四步裂纹扩展路径 【e)模拟止步裂纹扩展路径剧4订限厄模拟的裂纹扩展路径 (a)一步裂纹扩展竖A疗向的应力云图(b,二步裂纹扩腱竖A方f川的臆力西矧(c)三步裂纹扩展悭直方向的应力云图 (d)四步裂纹扩展竖^力‘向的应JJ云图 (e)五步裂纹扩展竖直方向的应力云图 图5模拟裂纹扩展过程巾竖直方向的应力云图 4结束语 ANSYS软件是一个功能非常强大的有限元计算软件,其本身又是一个开放型软件,可以进行二次开发。利用最大能量释放率作为判 断方向基准,笔者对ANSYS进行二次开发,能动态地描述2D构件在复合加载状况下疲劳裂纹的扩展路径。对ANsYs软件进行二次开发来模拟疲劳裂纹的扩展迄今未见报道。本文通过对2D构件疲劳裂纹扩展路径的模拟,为下一步3D构件的模拟打下了好的基础。 参考文献 1W01fgangBrocks.Num时icaIinves“gatlonsonthesignifi~ canceofJforlargestablecrad‘growth.E“gineeri“gFrac~tureMech.1989,32:459~468 2杨庆生,杨卫.断裂过程的有限元模拟.计算力学学报, 1997,14(4):407412 3HellenT.0nthemethodofvirtualcrackextensions.Int JNumMethEngn,1975(9):187—207 4傅祥炯,周岳泉.何字廷.疲劳裂纹扩展全寿命模型.第八届全国断裂学术会议论文集,1996:155~252 5011the ene。gy releaserateandtheJ—int。gralfor3一Dcrackconfiguratiolls.IntJournofFracture.1982,l9:183~1936ClaydonPW.MaximumenergvreleaseratedistributionfromageneraIized3Dvirtualcrackextensionmethod.En~ginee““gFractureMechanics,1992,42(6):96l~9697TimbrellC.eta1.Simulationofcrackpropagationinrub~ber.ThirdEuroDeanConferenceonConstitutiveModelsforRubber.1517SeDtember2003London,UK. (收稿日期:2005一07—28) 万方数据

裂纹扩展的扩展有限元(xfem)模拟实例详解

基于ABAQUS 扩展有限元的裂纹模拟 化工过程机械622080706010 李建 1 引言 1.1 ABAQUS 断裂力学问题模拟方法 在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。 断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。 损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。 1.2 ABAQUS 裂纹扩展数值模拟方法 考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。 debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。 cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。这样就避免了裂纹尖端的奇异性。Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。 此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。被誉为最具有前途的裂纹数值模拟方法。本文将利用abaqus6.9版本中的扩展有限元法功能模拟常见的Ⅰ型裂纹的扩展。 2 Ⅰ型裂纹的扩展有限元分析 本文针对断裂力学中的平面Ⅰ型裂纹扩展问题用abaqus中的扩展有限元方法进行数值模拟,获得了裂纹扩展的整个过程,裂尖单元的应力变化曲线,以及裂纹尖端塑性区的形状。在此基础上绘制裂纹扩展的能量历史曲线变化趋势图。

裂缝深度检测意义与特点

裂缝深度检测的意义与特点(宁波升拓检测技术有限公司浙江宁波 NCIT) 对应的仪器:上图:混凝土多功能检测仪(SCE-MATS) 下图:混凝土超声波检测仪(SCU-PWT)

概述: 混凝土结构是最重要的土木、建筑结构,在社会基础设施中占据举足轻重的地位。然而在使用过程中,不可避免地出现各种老化、劣化现象(如裂缝、混凝土强度降低等)。同时,如果施工质量得不到很好的保证,会加速结构的劣化,从而造成社会经济的损失。为此,升拓检测历时10余年,与国内外相关机构合作开发了一整套针对混凝土的浇筑质量、结构的缺陷的综合解决方案和技术体系。该方案基于无损检测技术,具有测试效率高、可靠性好、对结构无损伤等特点,可以大大地提高混凝土材料及结构的质量。该技术体系的检测内容主要包括: 1) 裂缝深度; 2) 混凝土构件质量(强度及刚度); 3) 结构尺寸 4) 表面剥离、脱空及内部缺陷; 5) 岩体力学特性及分级测试 测试意义: 整个技术体系采用冲击弹性波作为测试媒介,并集成到测试设备中(混凝土多功能检测仪,SCE-MATS)。其测试精度和效率达到工程要求,已在国内外数百个各类工程中得到了实际应用。我们具有相关技术的全部知识产权,并申请和获得了多项国家发明专利,产品出口到日本等海外。 混凝土结构是最重要的土木、建筑结构,在社会基础设施中占据举足轻重的地位。然而,由于各种原因(如干燥收缩、温度应力、外荷载、基础变形等),裂缝是混凝土结构中最常见的缺陷或损伤现象。由于裂缝的成因、状态、发展以及在结构中的位置等的不同,对结构的危害性也有很大的区别。严重的裂缝可能危害结构的整体性和稳定性,对结构的安全运行产生很大影响。另一方面,也有些裂缝,如表面温度变化或干燥收缩引起的浅裂缝则无大的影响。此外,根据大量的观测资料,在混凝土结构物中出现的裂缝,大多数在竣工后1-2年内已产生。如果这些裂缝处于稳定状态,其对结构的影响程度要小得多。此外,对于裂缝的修补,如裂缝充填(往裂缝中注入水泥砂浆或者环氧树脂等充填材料,以防内部钢筋锈蚀)和裂缝补强(裂缝表面粘贴钢板等)都需要在明确裂缝的状态、成因的基础上才能合理、有效地进行。因此,为了确定裂缝的状态、发展和成因,以及合理评价裂缝对结构物的影响,选择适当的修补方案和时机,掌握其深度与其长度、宽度都是非常重要的。所不同的是,裂缝的深度测试较之长度和宽度测试要困难得多,通常需要采用钻孔取样的方法加以直接测试。但是,钻孔取样的方法除费时费力,对结构也有一定的损害以外,对深裂缝由于取样困难往往难以测试。同时,对于裂缝的发展也难以监测,因此,采用合理的无损检测方法是非常必要的。 裂缝种类允许最大宽度(mm)深度要求 例如,在《公路桥 梁养护技术规范》 (2004)中,对裂 缝深度做了如下规

ABAQUS平台的扩展有限元方法模拟裂纹实现

ABAQUS平台的扩展有限元方法模拟裂纹实现 1.1 扩展有限元方法(XFEM)在ABAQUS上的实现 ABAQUS中XFEM的实现,两个步骤最为关键: 1、选择模型中可能出现的裂纹区域,将其单元设为具有扩展有限元性质的enrichment element. 2、其次重要的是选择恰当的破坏准则,使单元在达到给定的条件破坏,裂纹扩展。 在ABAQUS中模拟裂纹扩展的操作中,需要注意的是: 1、在Property模块,添加损伤演化参数、破坏法则、损伤稳定性参数 2、在Interaction模块,主菜单Special中创建XFEM的enrichment element 对于固定的裂纹模型,采用ABAQUS/STANDARD中使用奇异渐进函数。针对移动的裂纹问题,在XFEM中,有一种方法基于traction-separation cohesive behavior,即使用虚拟节点连续片段法进行移动裂纹建模,ABAQUS/STANDAR D 中用于计算脆性或韧性材料的裂纹初始化和扩展过程的模拟。另外一种cohesive segments method (粘性片段方法)可用于bulk material中的任意路径的裂纹初始化模拟扩展过程,由于裂纹扩展不依赖于单元边界,在XFEM中,裂纹每扩展一次需要通过一个完整单元,避免尖端应力奇异性。除此之外,ABAQUS为拥护提供了自定义子程序,来满足不同建模的需要。ABAQUS/STANDARD中的任意力学本构模型均可用来模拟扩展裂纹的力学特性。 由于XFEM采用的形函数在求解过程中,很容易造成逼近线性相关,极大的增加了收敛难度,到目前为止,能够实现扩展有限元的商业软件只有ABAQUS,但是ABAQUS为了减少求解难度,做了大量简化,因此用ABAQUS 扩展有限元模拟裂纹扩展时,有一些局限[16]: 1.扩展单元内不能同时存在两条裂纹,所以ABAQUS不能模拟分叉裂 纹; 2.在裂纹扩展分析过程中,每一个增量步的裂纹转角不允许超过90度; 3.自适应的网格是不被支持的; 4.固定裂纹中,只有各向同性材料的裂纹尖端渐进场才被考虑。 1.2 数值算例

三维裂纹J积分求解

一、建part 草图尺寸100,建草图为矩形(-10,50)、(50,-10) 拉伸厚度10,ok,得到六面体板

二、材料属性,具体参数自己设置吧,一步步都应该清楚。 3、装配(creat instance) 装配要用第二个(独立的),装配之后要切出一条缝,为后面定义seam,用下图右边的那个

这个是选择分割草图的一条边这里应该选择红色面的右边, 这个是分割需要的草图,黄色的线就是分割线,然后,分割tool-partition 选择cell-extrude/sweep edges 选择红色的圈 这个选择

选中的这个然后选择z轴,看好方向如果方向正确就选ok,如果不正确就选flip然后再选 按住shfit选择涂黄的两条线(就是裂纹线) (1)先定义seam,special-creat-assign选择红色的区域,就定义了seam (2)定义crake,special-creat-crake,用围线积分继续,这里选择 的时候容易选择的只是一个面 所以先隐藏那个小圆面,选择的那个就是隐藏的命令,隐藏小圆面后就可以选择crake front了。

Crake Front 亮红色的就是选择的裂纹线 学裂纹尖端有奇异性,所以这儿要按下图设置,不懂的看理论吧。此时crake定义好了 5、荷载步 按静力学分析,继续默认设置就行,谈后在历史输出步中要编辑

Domain这个要选择之前定义的crake-1下面的围线数我一般用的是8,这个我感觉8左右就行,但是不能就2,3个,也不必要太多(路径无关性)。 6、load 这个我简单加载两端均布拉力,做好加一个约束边界条件,这里我加了一个右边的UZ 7、划分网格, 感觉断裂最麻烦的就是划分网格了,划分网格之前必须对实体分割能比较规则的,而且在裂纹尖端需要时放射状,其实尖端是四边形也能算,但是所有的例子都是放射状的。 因为划分网格比较麻烦我就补一步步的说了那个之前做的例子来示意一下 最好是按照下图进行分割, 矩形里面最好再分一个圆这样可以有效保证网格效果比较好。

岩石裂纹扩展过程的动态监测研究

第25卷第3期岩石力学与工程学报V ol.25 No.3 2006年3月Chinese Journal of Rock Mechanics and Engineering March,2006 岩石裂纹扩展过程的动态监测研究 刘冬梅1,2,蔡美峰1,周玉斌3,陈志勇3 (1. 北京科技大学土木与环境工程学院,北京 100083;2. 浙江理工大学建筑工程学院,浙江杭州 310018; 3. 江西理工大学,江西赣州 341000) 摘要:利用实时全息干涉法、高分辨率数字摄像机与计算机图像处理系统相链接的三位一体化测量系统,连续动态观测了单轴受压砂岩、花岗岩和压剪受荷砂岩试样裂纹扩展与变形破坏过程;基于动态干涉条纹的定量分析,描述了岩石微裂纹孕育起裂、扩展与闭合的动态交替演化过程,计算了岩石裂纹扩展速度与蠕变扩展速率和裂纹面的扩展变形量与蠕变变形量,实现了岩石内部I型、I–II复合型、I–II–III复合型裂纹力学性状动态演变的有效判识。 关键词:岩石力学;岩石变形;裂纹扩展;裂纹闭合;动态监测;实时全息条纹图 中图分类号:TU 452;TD 313 文献标识码:A 文章编号:1000–6915(2006)03–0467–06 DYNAMIC MONITORING ON DEVELOPING PROCESS OF ROCK CRACKS LIU Dong-mei1,2,CAI Mei-feng1,ZHOU Yu-bin3,CHEN Zhi-yong3 (1.School of Civil and Environment Engineering,University of Science and Technology of Beijing,Beijing100083,China; 2. College of Civil Engineering and Architecture,Zhejiang Sci-Tech University,Hangzhou,Zhejiang310018,China; 3. Jiangxi University of Science and Technology,Ganzhou,Jiangxi341000,China) Abstract:An integrated measuring system of real-time holographic interferometry layout linked charge coupled device(CCD) camera and computer graph process is experimentally used to continuously test and record the dynamic process of cracks growth and closure emerged in the whole stages of rock deformation and fracture on sand and granite specimens under unaxial compression and compressive-shear loading,respectively. The active interference fringe patterns captured from the holograms can reappear the development behaviour of rock cracks. Based on the fringes′ quantitative analysis and its calculation,the initiation and propagation of rock cracks as well as its growth and closure in different loading states are directly shown. And the spreading velocity and reformative quantity of rock cracks resulted from cracks growth or closure are given. In addition,the velocity of cracks creep extension and the quantity of cracks creep deformation are obtained. The movement of active fringes in space and time expounds the distribution of rock deformation field. Consequently,the mechanical types of rock cracks can be distinguished effectively. Mode I crack perhaps keeps unchangeable or progressively transforms into mixed mode I–II or I–II–III crack under the different loading conditions,and crack modes are also varied with the evoluation and interaction of rock cracks,and the local deformation and inhomogeneous distributions of stress field become more intense in turn,which induces cracks growth and closure once again or secondary crack 收稿日期:2004–10–20;修回日期:2005–03–29 基金项目:国家自然科学基金资助项目(50164004) 作者简介:刘冬梅(1964–),女,1985年毕业于淮南矿业学院地质工程专业,现任教授、博士研究生,主要从事岩石力学与工程方面的教学与研究工

裂缝检测报告范本

XXXX空心板外观检测报告

目录 一、项目概况 (1) 二、检测标准 (1) 三、检测方法 (2) 四、检测结果 (2) 4.1 裂缝测试结果 (2) 4.2 保护层厚度测试结果 (7) 4.3 混凝土强度测试结果 (10) 五、主要结论和建议 (10) 5.1 检测结论......................................................... 错误!未定义书签。 5.2 建议............................................................... 错误!未定义书签。附图I 桥梁检测照片.. (12)

XXXX空心板 外观检测报告 一、项目概况 桥中心桩号xxxx,上部结构为4跨16m预应力混凝土空心板桥,下部结构为桩柱式桥墩和桥台,钻孔灌注桩基础。该桥老桥修建于2007年,本次改建工程中在其两侧各增加两块空心板进行加宽,其中老空心板桥设计等级为公路II 级,加宽空心板设计等级为公路I级。 该桥施工完成后发现加宽空心板底板出现裂缝,受委托,我单位对该桥的裂缝情况进行现场检测。 二、检测标准 ●《公路桥梁技术状况评定标准》(JTG/T H21-2011) ●《公路桥梁承载能力检测评定规程》(JTG/T J21-2011) ●《公路桥涵养护规范》(JTG H11-2004) ●《混凝土中钢筋检测技术规程》(JGJ/T 152-2008) ●《建筑结构检测技术标准》(GB/T 50344-2004) ●《建筑结构检测技术标准》(GB/T 50344-2004) ●《混凝土结构工程施工质量验收规》(GB50204-2002) ●《回弹法检测混凝土抗压强度技术规程》(JGJ/T 23-2011)

基于ABAQUS的渐开线齿轮齿根裂纹扩展仿真

基于ABAQUS的渐开线齿轮齿根裂纹扩展仿真

————————————————————————————————作者: ————————————————————————————————日期: ?

基于ABAQUS的渐开线齿轮齿根裂纹扩展仿真 齿轮传动是机械传动中最重要、应用最广泛的一种传动。齿轮传动的主要优点有:传动效率高,工作可靠,寿命长,传动比准确,结构紧凑。齿轮传动的失效一般发生在轮齿上,通常有齿面损伤和齿轮折断两种形式。齿轮折断一般发生在齿根部位,包括疲劳折断和过载折断。 为了提高齿轮的可靠性和使用寿命,有必要对齿轮根部的断裂现象进行研究。本文将从断裂力学角度出发,采用有限元的计算方法,研究齿根的断裂。 1 轮齿断裂分析 应力强度因子是描述裂纹尖端的一个参数,它与载荷大小以及几何有关,共有3种断裂模型(图1),在任何应力下的裂尖应力场为 ?图1 断裂模型 式中:r为距裂尖的距离;θ=arctan(x2/x1);KI为Ⅰ型(张开)裂纹应力强度因子;KⅡ为Ⅱ型(张开)应力强度因子。KⅢ为Ⅲ型(撕开)应力强度因子。 对于二维裂纹,假定KⅡ为0。

裂纹扩展方向根据条件аσθθ/аθ=0或者γγθ=0,得到 为了计算二维情况下的积分,ABAQUS定义了围线围绕着裂尖由单元组成的环形域(图2)。 图2 裂纹尖端环形域 计算J积分时,围线外的节点处值为0,围线内的所有节点(裂纹 扩展方向)的值为l,但外层单元的中间点除外,这些节点根据在单元中的位置被置于0和1之间。 裂纹扩展角度口可以参考裂纹平面计算,当裂纹扩展方向沿着初始裂纹方向时,θ=0;当K1>0时,θ<0;当K1<0时,θ>0。裂纹扩展角度从q到n(图3)。

爆炸的动静作用破岩与动态裂纹扩展机理研究

爆炸的动静作用破岩与动态裂纹扩展机理研究岩石的爆破理论包括两部分:一是爆炸应力波的动态作用,二是爆生气体的准静态作用。目前我们认为岩石的爆炸破岩是两者共同作用的结果,只是在不同的爆破参数和装药条件下两者各自的作用程度不同而已。 因此,在研究岩石爆破破岩机理时必须同时考虑到两者对岩石破碎的不同贡献,提高精细化控制爆破效果,深化爆破理论。基于上述考虑,本文单独分别对爆炸应力波的动作用和爆生气体的准静态作用进行试验研究,同时结合DLSM数值模拟,对动态裂纹的扩展过程进行分析。 课题的研究成果将为定向断裂控制爆破提供理论基础。本文的研究内容主要包括以下几个方面:1.基于NSCB测试方法,利用霍普金森杆试验系统,同时结合高速摄影、DLSM数值分析、SEM电镜扫描、P波波速测量等技术手段,研究了砂岩等几种典型岩石类材料的在常规及特殊状态下的动态断裂韧度,发现:岩石类材料的动态断裂韧度表现出明显的加载率依赖性,随着加载率的增大,岩石的动态断裂韧度呈逐渐增大的趋势。 试验中发现,相同加载率的条件下,花岗岩的断裂韧度最高,煤的断裂韧度最低,砂岩和泥岩较为接近,有机玻璃的断裂韧度低于3种岩石但高于煤。DLSM数值分析也得到与试验类似的结果,但加载面对测试结果有着重要的影响,理想的线性加载并不适用于岩石类材料动态断裂韧度测试研究,自由面加载和5mm面加载时的数值计算结果能够与试验较好的吻合。 同时,底端支座的约束条件也会对测试产生影响。高温处理后砂岩的断裂韧度测试中发现,在同一个热处理温度时,断裂韧度随加载率的变化成线性增加的趋势。

特别的,加载率较低时,各个热处理温度时的断裂韧度值较为接近,但加载率较高时,断裂韧度值则有较大差别,断裂韧度-加载率曲线的斜率随热处理温度的升高而减小。含层理煤的动态断裂韧度测试发现,随着节理倾角的增大,“动态断裂韧度”有减小的趋势,但并不是呈线性递减的关系。 天然的层理结构分布并不均匀,其赋存状态及其矿物构成不一,这些都会对测试结果带来影响。2.利用数字激光动态焦散线试验方法(DLDC),进行了不同装药结构切缝药包爆破试验,揭示切缝药包不耦合装药爆破爆生气体准静态作用机理,同时利用显式动力分析程序LS-DYNA模拟切缝药包爆炸以及初始裂纹形成的早期过程,并对不耦合系数与爆破损伤之间的关系进行了探讨。 不耦合系数对爆生裂纹扩展有显著的影响。不耦合系数α1为1.67时,主裂纹扩展长度和裂纹数目最佳。 爆炸应力波与爆生气体对裂纹的扩展产生了影响。不耦合装药使得应力波的幅值降低,爆生气体的准静态作用加强。 在以橡皮泥为介质的试验中,应力强度因子和速度的变化幅度较小。橡皮泥介质作为炸药爆炸产物与炮孔壁间的缓冲层,使得能量传递增加,应力波的作用时间延长,爆炸的作用范围加大。 次裂纹尖端的动态能量释放率数值整体上小于两条主裂纹。能量沿切缝药包壁的切缝方向优先释放,促使炮孔切缝方向的径向裂纹受到强烈的拉应力而快速扩展,从而抑制非切缝方向裂纹的扩展。 数值模拟的结果表明,空气不耦合装药时,在固体介质中产生的高强压应力超过其抗压强度时,就会在炮孔壁上形成粉碎区,其面积虽小,但耗能很大。为了避免粉碎区的形成,使爆炸产生的能量更多的用于切缝方向裂纹的扩展,从改善

ANSYS LS-DYNA中裂纹模拟的几种办法

Ls-dyna中裂纹模拟的几种办法 1、*CONSTRAINED_TIED_NODES_FAILURE 首先必须把单元间共节点的节点离散,可以采用ls-prepost或femp实现。然后在通过matlab 或者其他语言编写小程序,对位于同一个位置的节点建立节点集,添加*CONSTRAINED_TIED_NODES_FAILURE关键字。采用此方法来实现裂纹模拟的缺点是前处理太麻烦。应用实例可参考白金泽《lsdyna3d基础理论与实例分析》。 2、mat_add_eroson 关于这个关键字本版内有很多讨论,可以搜索一下。需要注意的是,在lsdyna 971R4之前的版本中,这个材料模型所带的失效模式均只适用于单点积分的二维和三维实体单元。但是在R4之后的版本中,这个关键字有了很大的改进: 1、去除了单点积分的限制,同时还支持3维壳单元和厚壳单元中的type1和type2。 2、可以定义初始损伤值,增加了几种损伤模型,具体可以参考lsdyna 971R5版的关键字。 3、带有失效的材料模型 有些材料模型本身就带有失效的,可以定义单元的失效来模拟裂纹的拓展。如*MAT_PLASTIC_KINEMA TIC等。如果某些材料模型不带失效模式,可以采用方法2,或者通过自定义材料本构来实现裂纹的模拟。 4、带有失效模型的接触或者用弹簧单元来模拟裂纹 这个方法个人觉得有些牵强,但是在有些文献中也见过。在定义裂纹前必须已知可能出现裂纹的区域,通过带有失效模式的面对面的绑定接触CONTACT_TIED_SURFACE_TO_SURFACE_FAILURE或者用弹簧单元来模拟裂纹面。" j. y: ~6 S3 S5 z$ E3 U! ] 5、采用特殊的材料模型 某些材料模型如*MAT_120(*MAT_GURSON),*MAT_120_JC(*MAT_GURSON_JC),*MAT_120_RCDC(*MAT_GURSON_RCDC),还有一些damage模型,如*MAT_96(*MAT_BRITTLE_DAMAGE)等,用损伤值来代替裂纹,通过观察损伤云图来判断裂纹的扩展。 6、EFG 和XFEM Cohesive 这两种方法是目前lsdyna重点发展的用来模拟裂纹扩展的方法。其中EFG方法适用于4节点积分的实体单元,XFEM只适用于2维平面应变单元和壳单元。这两种方法具体使用参考LS 971 R4 EFG User’sManual和XFEM User’s Manual。

采用ANSYS仿真模拟软件建立三维混凝土试件实体裂纹扩展的模拟

采用ANSYS仿真模拟软件建立三维混凝土试件实体裂纹扩展的模拟1.进入ANSYS软件,输入命令流 finish /clear,start !(1)工作环境设置 /FILENAME,COLUMN !工作名称 /TITLE,FRACTURE OF COLUMN !图形显示标题 !(2)进入前处理器 /PREP7 !进入前处理器 !(3)定义单元类型 ET,1,SOLID45 !定义三维单元 !(4)定义材料参数 MP,EX,1,1.668E10 !弹性模量 MP,PRXY,1,0.3 !泊松比 !(5)建立剖面几何模型 BLOCK,-0.015,0.015,-0.025,0.025,-0.0005,0.0005, !建立一个长方体WPSTYLE,,,,,,,,1 wpro,,90.000000, !旋转工作平面 CSWPLA,100,1,1,1, !在工作平面位置建立局部坐标100,类型为柱坐标 FLST,3,1,6,ORDE,1 FITEM,3,1 VGEN, ,P51X, , , ,45, , , ,1 !旋转长方体 wpro,,-90.000000, !旋转回原工作平面 CYLIND,0.0015,0,-0.05,0.01,0,360 !建立小圆柱体 VSBA,2,1 VDELE,4,,,1 FLST,2,2,6,ORDE,2 FITEM,2,1 FITEM,2,3 VADD,P51X CYLIND,0.025,0,-0.05,0.05,0,360 !建立大圆柱体 VSBV,1,2 MSHAPE,1,3D MSHKEY,0 !* CM,_Y,VOLU VSEL, , , , 3 CM,_Y1,VOLU CHKMSH,'VOLU' CMSEL,S,_Y !* VMESH,_Y1

安世亚太ANSYS三维表面裂纹形状变化规律研究

1 引言 目前,关于疲劳寿命的估算方法基本上是两种,即基于试验的S-N曲线法和基于疲劳裂 纹扩展的断裂力学方法。多数国家采用S-N曲线法,但挪威船级社等已把断裂力学方法和 S-N曲线法都列入规范作为疲劳寿命估算的分析方法。S-N曲线法具有广泛的可用性,而断裂力学方法是一个更合适的方法。因为断裂力学方法可以比较真实地模拟构件表面裂纹从萌生至扩展失效的全过程,而且所需的投资远比基于大量模型试验的S-N曲线法少,因此, 它已逐渐成为各国疲劳断裂研究的主要发展方向。 为了进一步探明三维表面裂纹在疲劳载荷下的扩展规律,本文对于含半椭圆三维表面裂纹在等幅拉伸载荷作用下的扩展,特别是疲劳裂纹扩展过程中其形状的变化规律进行探讨,与理论公式进行对比分析,获得了一种推导疲劳裂纹扩展过程中裂纹形状的有效方法。 2 三维表面裂纹扩展的理论推导 为了计算出裂纹扩展过程中半椭圆形裂纹的深度和表面半长度之比的变化规律,如 图1所示对裂纹深处A和表面处C分别应用Paris裂纹增长公式,得到: (2.1) (2.2) 式中:分别为裂纹表面C和深处A的应力强度因子幅值。由式(2.1),(2.2)可以得到: (2.3) 通过对式(2.3)的积分就可以得到半椭圆形裂纹的深度和表面半长度之比的变化规律。 三维表面裂纹的应力强度因子K虽有几个可行的表达式,但目前被广泛应用的是 Newman-Raju公式: (2.4) 式中,分别为拉伸、弯曲正应力,H、F是以裂纹相对深度a/t、裂纹形状比a/c 、离心角等为参数的修正系数,为第二类椭圆积分。 Newman和Raju在实验的基础上引入了和之间的关系: (2.5) 再将A、C点的应力强度因子代入式(2.3)中去得到[1]: (2.6.1)

任意三维裂纹扩展分析-0319

任意三维疲劳裂纹扩展分析 1.前言 在工程实际中,真实的结构总是存在众多缺陷或裂纹,对于一个含裂纹或缺陷的构件,多在其服役荷载远低于容许强度的情况下就发生了破坏。实际工程结构在经受长时间多因素综合作用下,产生变形、裂纹等缺陷,从而导致整个结构的失效。结构的失效主要由疲劳引起,其最终失效形式即为断裂,有大约80%以上的工程结构的断裂与疲劳有关,由疲劳引起的巨大经济损失及灾难性的后果不胜枚举。 我们通常不能仅仅因为某个构件出现了裂纹就简单的认为该构件不安全或不可靠,尤其是对于大型设备的重要构件,因为这将使企业耗费高昂的成本。对于出现的裂纹,以往多采用以下几种处理办法:一是对出现裂纹的构件进行更换,这对于含裂纹但仍能工作的构件是一个巨大的浪费。二是强行停止使用进行维修,这样会带来巨大的经济损失;三是冒险继续使用,但这样会带来巨大风险,甚至会造成人员伤亡。所以,人们更想知道,出现的裂纹是否会在既定载荷(包括疲劳载荷在内的任意载荷)下扩展成不安全或失效的临界尺寸,因此,出现了疲劳裂纹扩展分析。疲劳裂纹扩展分析是采用断裂力学的理论和方法对含裂纹等缺陷构件的失效过程进行分析,以评估产品的安全性和可靠性,可以进行损伤容限评估和剩余寿命预测等,已经在化工机械、飞行器、核工业等各个工程领域得到了广泛应用,并得到了世界各国政府及学术机构的重视。 2.疲劳裂纹扩展分析软件 在工程实践中,疲劳裂纹扩展分析已成为评估产品性能、改良产品设计和提高服役寿命的一个重要工具。目前,疲劳裂纹扩展分析主要有解析法和数值法这样两种方法,下面分别介绍这两种方法。 1)解析法 解析法主要依据相应的规范和经验公式,将复杂的三维问题简化为二维问题,并对复杂的裂纹形状和荷载状态进行简化,然后用经验的方法对裂纹安全性进行评估。但对于大量结构复杂的工程实际问题却无能为力,况且其简化后的分析准确度及是否真实逼近服役情况也值得探讨。 目前,工程上有几款基于解析法而开发的裂纹扩展分析软件,它们主要应用于航空标准结构的裂纹扩展分析,包括DARWIN、NASGRO、AFGROW等。这些软件内嵌了航空结构多种形式的标准裂纹库,通过修改相应的模型尺寸、边界条件、载荷、裂纹位置和尺寸等参数即可根据内含的公式或内插表快速得出断裂力学结果,用来计算或查找标准航空结构中给定裂纹尺寸、载荷和形状的应力强度因子,仅能计算裂纹库里已有的裂纹模型的应力强度因子,并且适用于相对简单的几何和载荷,往往忽略真实的条件,如温度、非平面裂纹、复杂形状的裂纹、几何形状复杂的部件、部件之间的接触、残余应力和局部应力集中等。如要获得较为准确的结果,需要利用实验数据或其它方法对计算结果进行修正,但修正系数的取值往往很难确定,要靠经验来判断,并不具备求解复杂结构中三维裂纹扩展的能力。 2)数值法 近年来,随着有限元软件的发展,基于数值法的裂纹扩展分析软件已成功应用于解决工

动态扩展裂纹的若干反平面问题的研究

第26卷第1期2005年3月 力 学 季 刊CHINESE QUART E RLY OF MECHANIC S Vol.26No .1 March 2005 动态扩展裂纹的若干反平面问题的研究 王刚1 ,吕念春2 ,唐立强1 ,程云虹 3 (1.哈尔滨工程大学船舶工程学院,哈尔滨150001;2.哈尔滨工程大学建筑工程学院,哈尔滨150001; 3.东北大学土木工程系,沈阳110006)摘要:采用复变函数论,对反平面条件下的动态裂纹扩展问题进行研究。通过自相似函数的方法可以获得解析解的一般表达式。应用该法可以很容易地将所讨论的问题转化为Riemann )Hilbert 问题,并可以相当简单地得到问题的闭合解。文中分别对裂纹面受均布载荷、坐标原点受集中增加载荷、坐标原点受瞬时冲击载荷以及裂纹面受运动集中载荷Px/t 作用下的动态裂纹扩展问题进行求解,得到了裂纹扩展位移、裂纹尖端的应力和动态应力强度因子的解析解。应用该解并通过叠加原理,就可以求得任意复杂问题的解。 收稿日期:2004-05-09 关键词:复变函数;反平面;裂纹扩展;解析解 中图分类号:O346.1 文献标识码:A 文章编号:0254-0053(2005)01-121-7 Studies on Some An t-i Plane Problems of a Dynamic Propagation Crack WANG Gan g 1 ,L B Nian-chun 2 ,TANG Li-qian g 1 ,CHENG Yu n-hong 3 (1.Shipping Project Institute.Harbin Engineering University,Harbin 150001,China;2.School of Ship ping Engineering,Har bin Engineering University,Harbin 150001,China;3.Dep artment of Civil E ngineering,Northeastern University,Shenyang 110006,China) Abstract:By the application of complex functions theory,the dynamic crack propagation problems under the condition of ant-i plane were investigated.The general representations of analytical solutions were ob -tained by the methods of selfsimilar functions.The problems can be easily transformed into Riemann -Hi-l bert problems and their closed solutions were attained rather simple by this method.The dynamic crack propagation problems for the cracked surfaces subjected to uniform loads,an increasing load concentrated at the origin of the coordinates,an instantaneous impulse load at the origin of the coordinates and the ed -ges of the crack subjected to a moving concentrated load were solved respectively,and the analytical solu -tions on the displacements of crack propagation,stresses of the crack tip and dynamic stress intensity fac -tors could be obtained.Utilizing those solutions and superposition theorem,the solutions of arbitrarily complex problems can be found. Key words:complex functions;ant-i plane;crack propagation;analytical solutions 由复合材料组成的各类结构极易出现微观裂纹,裂纹逐渐扩展并导致结构失稳,丧失结构的承载能力,因此研究裂纹扩展问题具有重要意义。对这类静力问题已有许多人进行了研究,但这一类动力学问题,由于数学上的困难,人们研究的还远远不够深入 [1-3] ,因此有必要对反平面的断裂动力学问题进行了深入研究,利用复变函数论的方法给出解的一般表示。应用该法可以很容易地将所论问题转化为Riemann -Hilbert 问题,而后一问题容易用通常的Muskhelishvili [4-5] 方法求解。

相关文档
最新文档