钢板悬架系统的结构和工作原理(优选.)

钢板悬架系统的结构和工作原理(优选.)
钢板悬架系统的结构和工作原理(优选.)

钢板悬架系统

●悬架系统的结构和工作原理 ·······································································SU-2

1.钢板弹簧悬架系统概述

2.主要部件

3.与悬架相关的车桥定位参数

●前钢板弹簧悬架系统 ················································································SU-3

1.悬架结构和参数

2.悬架维修标准

3.悬架拧紧扭矩

4.悬架的检查和更换

●后钢板弹簧悬架系统 ················································································SU-12

1.悬架结构和参数

2.悬架维修标准

3.悬架拧紧扭矩

4.悬架的检查和更换

●常见故障分析及措施················································································SU-18

●悬架系统的结构和工作原理

1.钢板弹簧悬架系统概述

钢板弹簧是汽车悬架中应用最广泛的一种结构形式。它是有若干片等宽度但不等长的合金弹簧片组合而成的一根近似等强度的弹性梁。板簧除了有常见的等厚多片弹簧之外,还有少片变截面弹簧,以及主片为钢板弹簧、其余为符合材料的板簧。主要特点是结构简单、可靠。但由于板簧刚度不宜设计得很低,加之片间有摩擦阻力,汽车平顺性相对较差。另外,在制动或驱动力矩作用下,容易引起车桥转矩震动。为了减少弹簧片间摩擦,以消除震动噪声,在弹簧片间加入塑料减摩垫片。为了控制车桥的扭转震动,有时把减震器布置在车桥前、后侧,或采用非对称弹簧。

2.主要部件

◆减振器

减振器是产生阻尼的主要元件,其作用是迅速衰减汽车振动,增强

车轮与路面附着性能,减少汽车因惯性力引起的车身倾角变化。减振器

还能够降低车身部分的动载荷。

双筒式减振器在拉伸(或压缩)时,工作缸内油液流经复原阀(或

压缩阀)产生复原阻力(或压缩阻力)。双筒减振器的压缩阻力由于结构

特点,不可能很大。而且,高速运动时阻力不稳定,容易产生液流噪声。

1)减振器的结构

减震器由三筒及四阀组成。

三筒:防尘罩,工作缸,贮液缸;

四阀:进油阀,回油阀,压缩阀,伸张阀;

2)减振器的工作原理

减振器的作用原理是:当车架与车桥作往复相对运动时,减振器中的活塞在缸筒内也作往复运动,减振器壳体内的油液便反复地从一个内腔通过一些窄小的孔隙流入另一内腔。孔壁与油液间的摩擦及液体分子内的摩擦便形成对振动的阻尼力,使车身和车架的振动能量转化为热能,被油液和减振器壳体所吸收,并散到大气中。

3.与悬架相关的车桥定位参数

◆主销后倾角

由于主销内倾角和车轮外倾角均决定于转向桥的结构,只有主销后倾角

与前悬架相关。主销后倾角是指从车辆侧面看,转向主销与铅垂线的倾角,

反映在地面上,就产生主销后倾拖距:在转向轮上,轮胎接地点中心和主销

轴与地面交点之间的距离。

主销后倾角大,后倾拖距就大,就有利于提高转向轮的回正力和直行稳

定性,但转动方向盘时的转向力及保持力会加大。前悬架的安装尺寸和结构

决定了主销后倾角。

◆后桥主减的仰角

为保证传动轴顺利地将发动机的动力平稳地传递到后桥主减,驱动汽车

行驶,后桥主减的输入轴与地面有一个仰角,与发动机布置的对地面倾角相

配合,以减小两万向节之间的夹角。该仰角由后桥与后悬架的连接及后悬架

的安装尺寸和结构相关。

●前钢板弹簧悬架系统

1.悬架结构和参数

◆悬架系统总成

1 前钢板弹簧总成11 上盖板--前悬架16 前吊耳衬套

3 左垫板总成--前悬架12 限位块--前悬架17 前板簧前支座

10 右垫板总成--前悬架13 U 形螺栓--前悬架18 前板簧后支座

◆前减震器和横向稳定杆总成

4 前减震器总成13 前稳定杆总成19 吊杆支架总成

8 夹箍总成14 吊杆总成

前板簧总成型号12R107-2912010

悬架形式非独立悬架

弹簧形式纵置半椭圆多片钢板弹簧

作用长度(mm)1570

宽度(mm)90

片数10

销套外径/内径X长度Ф35/Ф30X87.5

减振器形式Ф89双向液压筒式减振器

前钢板弹簧总成:

2.悬架维修标准

3.悬架拧紧扭矩

4.悬架的检查和更换

拆下前钢板弹簧

1)将车辆的驻车制动控制阀手柄放置在制动位置,对车辆

的悬架系统进行清洗,除去泥沙和油泥。用三角楔木塞

住车辆后轮。

2)使用轮毂套筒扳手拧松轮鼓螺母。

注意:所有车身左侧的的轮鼓螺母是左旋螺纹,所有车

身右侧的轮鼓螺栓是右旋螺纹。

3)用安全支架支起前段车架

4)拆卸轮鼓螺栓和车轮

用千斤顶顶起前桥

注意:安装和拆卸车轮时,注意不要损伤到轮鼓螺栓

的螺纹。

5)拆卸减振器

a)取下减振器下端的开口销,拧松并取下锁紧螺母。

b)从减振器上支架上取下开口销,拧松并取下锁紧螺母。

c)取下减振器。

d)检查稳定杆销和减振器销的磨损和损坏情况。

6)拆卸稳定杆

拆下稳定杆吊架螺母和吊架抱箍,拆下吊架总成。

卸下稳定杆销锁紧螺母,取下稳定杆销,卸下稳定杆总成。

检查吊架抱箍内橡胶衬垫和吊耳支架橡胶垫圈的损坏情况。

7)拆卸U形螺栓

先松开U形螺栓螺母,然后取下U 形螺栓,盖板、缓冲块。

注意:当采用气割枪切割U形螺栓时(由于U形螺栓锈死),不要让火焰朝向钢板弹簧或让火花喷溅到钢板弹簧上。

8)拆卸钢板弹簧

用千斤顶顶起前轴,用安全支架支起车架,放下千斤顶,使弹簧处于自由状态,并保持此状态。

a)拆卸弹簧后端,卸下钢板弹簧后端固定螺栓。

b)拆卸钢板弹簧后销,用紫铜和榔头将钢板销轻轻打出来。前/F

R O N

T

c)拆卸钢板弹簧前销固定螺栓,然后卸下钢板弹簧前销。

d)放下千斤顶,取下前钢板弹簧总成。

e)先拆下吊耳销固定螺栓,然后拆下吊耳销、吊耳。

◆更换钢板销套和吊耳销套

用铜棒将旧销套压出,更换新销套,将新的销套压入。

◆更换簧片

1)拆下卡箍螺栓。

警告

当拆卸或安装钢板弹簧总成时,应小心操作,避免受到伤害。建议使用台虎钳或专用夹具夹紧钢板弹簧再进行分解。

2)用一个C形卡钳可靠地夹住弹簧中部。

3)拆下中心螺栓。

4)慢慢松开C形卡钳,分开弹簧片。

5)从弹簧总成上拆下C形卡钳

6)检查每片弹簧的裂纹和其他损坏情况

7)测量簧片的磨损情况

使用游标卡尺测量簧片的磨损情况,如果磨损量大于标准厚度的15%,请更换簧片。

注意:如果发现其中一片弹簧损坏,建议更换整架钢板弹簧总成。因为如果只更换损坏的簧片,则其他簧片也会很快损坏。

8)清除簧片表面的铁锈,并在各片弹簧表面涂上石墨钙基

润滑脂

10)在拧紧中心螺栓后,在螺栓和螺母的螺纹处进行冲铆,

使其锁止。

11)在卡箍上装上套管和螺栓并将螺母拧紧。

12)在拧紧卡箍螺栓后,在螺栓与螺母旋合的螺纹处进行

冲铆,使其锁止。

检查

1)应使用专门的测量仪器或工具来检查零件。根据指定的维修标准表来判断零件是否可能继续

使用。损坏零件按要求进行修理或更换,如果再配对零件中有一个被磨损,使间隙超过了所

规定的间隙,按有关要求更换此零件以及其配对的零件。

2)有时从预防保养的观点出发,某些仍在修理或磨损极限范围内的零件,在超出极限之前就应

更换。

3)通过肉眼或红色颜料渗透等指定的方法,仔细检查所有零件的外观。如果零件的外表面有以

下异常现象,有关零件应按要求进行修理或更换

4)所有的橡胶件,如O形圈、油封、垫密片等在拆下来之后应抛弃,不应再使用。

1)检查减振器

a)检查减振器、减振器销和橡胶垫圈的损坏情况

b)检查减振器的功能,确认能正常拉伸和压缩,没有

破损和漏油情况。

2)检查U形螺栓和吊耳的磨损和损坏情况。

3)检查橡胶限位块的损坏情况。

4)检查弹簧销和销套之间的间隙

a)使用螺旋测微器测量钢板弹簧销的外径,如果测量

值小于维修标准,更换钢板弹簧销。

b)使用内径百分表,测量钢板弹簧销套的内径,如果

测量值小于维修标准,更换钢板弹簧销套。

5)检查吊耳销和销套之间的间隙

a)使用螺旋测微器测量吊耳销的外径,如果测量值小

于维修标准,更换吊耳销。

b)使用内径百分表,测量吊耳销套的内径,如果测量

值小于维修标准,更换吊耳销套。

◆安装钢板弹簧总成

在安装弹簧销和吊耳销时,在销和销套表面涂抹底盘润滑脂。

1)安装吊耳和吊耳销套。

在吊耳销外表面和销套内表面涂抹少量润滑脂,使滑脂嘴螺纹孔朝向车架外侧,并使销上的横向切口与锁止螺栓的方向保持一致,然后用榔头借助紫铜棒将销慢慢打入,装上锁止螺栓并拧紧。装上滑脂嘴。

严禁直接用榔头砸销轴。

2)将弹簧总成安放在适当的位置上,在钢板销外表面和销套

内表面涂抹少量润滑脂,使滑脂嘴螺纹孔朝向车架外侧,并

使销上的横向切口与锁止螺栓的方向保持一致,然后用榔头

借助紫铜棒将销慢慢打入,装上锁止螺栓并拧紧。装上滑脂

嘴。

3)安装U形螺栓。

将U形螺栓、盖板、橡胶缓冲块、垫板、减振器下支架装到

前轴上,用千斤顶举起前轴。拧紧U 形螺栓螺母。

注意:安装垫板时,厚的一端应朝向车辆后侧。

4)用千斤顶将前轴顶起,然后将支在车架上的支撑架取掉,再

放下千斤顶。

◆安装减振器

将减振器装到稳定杆销上,并按图装配好橡胶垫圈、平垫圈、锁

紧螺母和开口销。

安装减振器销,橡胶垫圈、平垫圈、锁紧螺母和开口销。前/F R O N

T

◆安装稳定杆

◆安装车轮

◆润滑

给钢板弹簧销、吊耳销加注底盘润滑脂。

●后钢板弹簧悬架系统

1.悬架结构和参数

◆悬架系统总成

4 后减震器总成21 限位块总成-后悬架33 减振器上支架

5 后钢板弹簧总成27 U形螺栓--后悬架34 后板簧前支座

18 吊耳带衬套总成28 U形螺栓--后悬架35 后板簧后支座

后板簧总成型号11R107-2913010A

悬架形式非独立悬架

弹簧形式纵置半椭圆钢板弹簧

作用长度(mm)1650

宽度(mm)100

厚度(mm)X片数182(12)

销套外径/内径X长度Ф40/Ф35X97.5

减振器形式Ф89双向液压筒式减振器

2.悬架维修标准

项目名义尺寸

(mm)维修标准

(mm)

修理极限

(mm)

磨损极限

(mm)

备注

弹簧销和吊耳销外径35 - - 29.5 弹簧销和吊耳销衬套内径35 - - 36 弹簧销和衬套间隙- 0.015-0.320 - 1.0 吊耳销与衬套间隙- 0.040-0.155 - 1.0

3.悬架拧紧扭矩

项目拧紧力矩(N·M)

钢板弹簧中心螺栓90~110

U形螺栓350~400

弹簧销及吊耳销锁止螺母55~70

减振器下销固定螺母200~250

减振器上销固定螺母140~170

减振器螺杆锁紧螺母90~120

后簧卡箍螺栓40~45

4.悬架的检查和更换

拆下后钢板弹簧

1)将车辆的驻车制动控制阀手柄放置在制动位置,对车辆

的悬架系统进行清洗,除去泥沙和油泥。用三角楔木塞

住车辆前轮。

2)使用轮毂套筒扳手拧松轮鼓螺母。

注意:所有车身左侧的的轮鼓螺母是左旋螺纹,所有车

身右侧的轮鼓螺栓是右旋螺纹。

3)用安全支架支起后段车架

4)拆卸轮鼓螺栓和车轮

用千斤顶顶起后桥

注意:安装和拆卸车轮时,注意不要损伤到轮鼓螺栓的

螺纹。

5)拆卸减振器。开U型螺栓螺母,然后取下U型螺栓、

盖板、底板。

6)拆卸弹簧的后端

拆卸钢板弹簧的后固定螺栓

拆卸钢板弹簧后销

7)拆下后钢板弹簧前销固定螺栓,然后卸后钢板弹簧前销

8)放下前斤顶,卸下后钢板弹簧,拆卸吊耳销固定螺栓,

然后卸下吊耳销、吊耳。

检查

1)应使用专门的测量仪器或工具来检查零件。根据指定的维修标准表来判断零件是否可能继续使

用。损坏零件按要求进行修理或更换,如果再配对零件中有一个被磨损,使间隙超过了所规定的

间隙,按有关要求更换此零件以及其配对的零件。

2)有时从预防保养的观点出发,某些仍在修理或磨损极限范围内的零件,在超出极限之前就应更换。

3)通过肉眼或红色颜料渗透等指定的方法,仔细检查所有零件的外观。如果零件的外表面有以下异

◆后悬架钢板弹簧

测量钢板弹簧每片的厚度,如果磨损量超过正常厚度的15%,

就应该进行更换。

◆钢板弹簧总成维修与更换

1)拆下卡箍螺栓;

2)用一个C形卡钳可靠地夹住弹簧中部;

警告

当拆卸或安装钢板弹簧总成时,应小心操作,避免受到伤害。建议使用台虎钳或专用夹具夹紧钢板弹簧再进行分解。

3)拆下中心螺栓;

4)慢慢地放松C形卡钳,分开弹簧片;

5)用中心螺栓,按弹簧片的顺序将弹簧片组装起来。

注意:

1)在弹簧片的相对滑动摩擦面上涂上石墨钙基润滑脂;

2)用C形卡钳夹紧弹簧,拧紧弹簧中心螺栓和螺母。

从弹簧总成上拆下C形卡钳

在拧紧中心螺栓后,在螺栓和螺母的螺纹处进行冲铆,使其锁止。

在卡箍上装上套管和螺栓并将螺母拧紧。

在拧紧卡箍螺栓后,在螺栓与螺母旋合的螺纹处进行冲铆,使其锁止。

装配

注意:

1)在装配前将弹簧衬套和吊耳衬套孔内涂一层润滑脂

2)将吊耳装到吊耳指支架上,然后将吊耳销打入,再

装上锁止螺栓。

注意:在打入吊耳销时,吊耳销上的沟槽应与锁止螺栓对准。

将垫板、弹簧总成、盖板、橡胶缓冲块装到前轴上,用千斤顶举起前轴。

将固定端支架孔与弹簧卷耳孔对准,并把弹簧销插入就位。

注意:

应使弹簧销的槽对准锁止。

安装锁止螺栓。

安装弹簧后端,装吊耳孔、弹簧卷耳孔及两边侧垫圈孔对准,并插入弹簧就位。

再装上锁止螺栓。

暂时装上U形螺栓。

用千斤顶将前轴升起,然后在车架上的支撑架取掉,再放下千斤顶,拧紧U形螺栓螺母。

安装减振器。

安装车轮和轮胎,轮胎螺栓。

常见故障分析及措施

最新文件仅供参考已改成word文本。方便更改

最新文件---------------- 仅供参考--------------------已改成-----------word文本--------------------- 方便更改

电磁离合器的工作原理

电磁离合器的工作原理 电磁离合器的特点和工作原理电磁离合器的特点和工作原理关键词:电磁离合器摘要: 一是采用增加电磁离合器摩擦副径向尺寸的单磁路来实现。如SOMET公司的SM92、TM—11E剑杆织机的离合器,就是由SM92中的离合器采用增加径向尺寸满足TM—llE中的离合器扭矩增大需求来实现的。其离合器结构可采用非金属摩擦材料片作为摩擦副,非金属摩擦片与金属摩擦,使用寿命较长。由于离合器的寿命取决于摩擦副的使用寿命,无梭织机的可靠性取决于织机中的基础件寿命,因此采用单磁前言:一是采用增加电磁离合器摩擦副径向尺寸的单磁路来实现。如SOMET公司的SM92、TM—11E剑杆织机的离合器,就是由SM92中的离合器采用增加径向尺寸满足TM—llE中的离合器扭矩增大需求来实现的。其离合器结构可采用非金属摩擦材料片作为摩擦副,非金属摩擦片与金属摩擦,使用寿命较长。由于离合器的寿命取决于摩擦副的使用寿命,无梭织机的可靠性取决于织机中的基础件寿命,因此采用单磁路方式增加离合器摩擦副直径来增大扭矩的措施,其实质是提高了无梭织机使用的可靠性。 二是电磁离合器受无梭织机结构尺寸的限制,在离合器径向尺寸不能增加的情况下,运用多片电磁离合器磁通多次过片理论,采用双磁路离合器结构,其扭矩亦可以大为提高,满足无梭织机扭矩增大的需要。但双磁路中由于磁通两次过片,摩擦副必须选择金属材料,由此造成无梭织机因离合器摩擦副磨损太快,促使双磁路的摩擦副磨损

率极高,而导致无梭织机可靠性下降。如SMIT公司生产的FAST剑杆织机;PICANOL公司生产的GTM—A、GTM—AS剑杆织机;DORNIER公司生产的HTV—1/E、HTV—M/E等,均采用双磁路共衔铁组合离合器。还有PICANOL公司近期生产的新型DELTA喷气织机中的制动器也选用双磁路结构的摩擦副,SMIT公司FAST中的剑杆织机电磁离合器也选用双磁路结构的摩擦副,以适应该类织机在不增加摩擦副径向尺寸下,满足织机增大扭矩的需求。 电磁离合器的工作原理电磁离合器的主动部分和从动部分借接触面间的摩擦作用,或是用液体作为传动介质(液力偶合器),或是用磁力传动(电磁离合器)来传递转矩,使两者之间可以暂时分离,又可逐渐接合,在传动过程中又答应两部分相互转动。振动电机,仓壁振动器-海安县蓝天机电制造有限公司目前在汽车上广泛采用的是用弹簧压紧的摩擦(简称为摩擦离合器)。 发动机发出的转矩,通过飞轮及压盘与从动盘接触面的摩擦作用,传给从动盘。当驾驶员踩下踏板时,通过机件的传递,使膜片弹簧大端带动压盘后移,此时从动部分与主动部分分离。 磁粉离合器摩擦应能满足以下基本要求: (1)保证能传递发动机发出的最大转矩,并且还有一定的传递转矩余力。 (2)能作到分离时,彻底分离,接合时柔和,并具有良好的散热能力。 (3)从动部分的转动惯量尽量小一些。这样,在分离离合器换

汽车悬挂系统结构原理详细图解

汽车悬挂系统结构原理图解 Post by:2010-10-419:48:00 什么是悬挂系统 舒适性是轿车最重要的使用性能之一。舒适性与车身的固有振动特性有关,而车身的固有振动特性又与悬架的特性相关。所以,汽车悬架是保证乘坐舒适性的重要部件。同时,汽车悬架做为车架(或车身)与车轴(或车轮)之间作连接的传力机件,又是保证汽车行驶安全的重要部件。因此,汽车悬架往往列为重要部件编入轿车的技术规格表,作为衡量轿车质量的指标之一。 汽车车架(或车身)若直接安装于车桥(或车轮)上,由于道路不平,由于地面冲击使货物和人会感到十分不舒服,这是因为没有悬架装置的原因。汽车悬架是车架(或车身)与车轴(或车轮)之间的弹性联结装置的统称。它的作用是弹性地连接车桥和车架(或车身),缓和行驶中车辆受到的冲击力。保证货物完好和人员舒适;衰减由于弹性系统引进的振动,使汽车行驶中保持稳定的姿势,改善操纵稳定性;同时悬架系统承担着传递垂直反力,纵向反力(牵引力和制动力)和侧向反力以及这些力所造成的力矩作用到车架(或车身)上,以保证汽车行驶平顺;并且当车轮相对车架跳动时,特别在转向时,车轮运动轨迹要符合一定的要求,因此悬架还起使车轮按一定轨迹相对车身跳动的导向作用。 悬架结构形式和性能参数的选择合理与否,直接对汽车行驶平顺性、操纵稳定性和舒适性有很大的影响。由此可见悬架系统在现代汽车上是重要的总成之一。

一般悬架由弹性元件、导向机构、减振器和横向稳定杆组成。弹性元件用来承受并传递垂直载荷,缓和由于路面不平引起的对车身的冲击。弹性元件种类包括钢板弹簧、螺旋弹簧、扭杆弹簧、油气弹簧、空气弹簧和橡胶弹簧。减振器用来衰减由于弹性系统引起的振动,减振器的类型有筒式减振器,阻力可调式新式减振器,充气式减振器。导向机构用来传递车轮与车身间的力和力矩,同时保持车轮按一定运动轨迹相对车身跳动,通常导向机构由控制摆臂式杆件组成。种类有单杆式或多连杆式的。钢板弹簧作为弹性元件时,可不另设导向机构,它本身兼起导向作用。有些轿车和客车上,为防止车身在转向等情况下发生过大的横向倾斜,在悬架系统中加设横向稳定杆,目的是提高横向刚度,使汽车具有不足转向特性,改善汽车的操纵稳定性和行驶平顺性。 悬挂系统的分类 现代汽车悬架的发展十分快,不断出现,崭新的悬架装置。按控制形式不同分为被动式悬架和主动式悬架。目前多数汽车上都采用被动悬架,如下图所示,也就是汽车姿态(状态)只能被动地取决于路面及行驶状况和汽车的弹性元件,导向机构以及减振器这些机械零件。20世纪80年代以来主动悬架开始在一部分汽车上应用,并且目前还在进一步研究和开发中。主动悬架可以能动地控制垂直振动及其车 身姿态,根据路面和行驶工况自动调整悬架刚度和阻尼。

汽车各系统工作原理

发动机工作原理概述 汽车的引擎是汽车的动力源泉,就像人的心脏一样重要。所以,一部车引擎的特性可以作为决定整部车性能的重要指标。也就是说,如果一部车的引擎非常出色,那么这部车的性能也一定很出色。 汽车的引擎是通过燃油和空气所形成的混合气体燃烧、爆炸来产生动力的。这一切的物理、化学变化都是在燃烧室内进行的。 首先,起动机带动引擎的曲轴运动,而曲轴通过特有的曲柄连杆机构带动气缸内的活塞上下运动。在活塞向下运动时,气缸内产生了真空效应,同时外界的新鲜空气通过空气过滤器被吸入到进气腔,并通过此时开启的进气门而被引入到气缸内。 在空气进入气缸的同时,燃油也通过喷油嘴以绝对雾化状态喷射到气缸的燃烧室内(目前多数喷射引擎都是将燃油喷射到进气门处,然后与空气一起进入到气缸内)并与空气形成混合气体。 在混合气体形成同时,汽缸的燃烧室内火花塞开始打火,形成高达几万伏特的高压电火花,迅速点燃混合气体,混合气体发生爆炸,推动活塞向下运动。这时气缸的排气们开启,将燃烧后的废气引入到排气管内,通过消音器被排放到空气中。在活塞运动到下止点后,一个完整的工作流程结束。由于运动的特性及曲柄连杆机构的特性,活塞会再度向上运动,同时开始第二个工作流程。

通过上图我们不难了解整个运动的过程(由于是剖视图,气缸未标出,活塞位于气缸内,活塞到达运动的上止点时与缸盖之间的空间为燃烧室),正是因为引擎的多个气缸内的活塞有顺序的交替运 汽车总体工作原理概述 可以说,汽车是当代科学与艺术的结晶。从汽车的引擎启动开始就已经发生了涉及到物理、化学、机械等数不清的多种变化,因此,汽车的总体工作是一个非常复杂的过程。由于汽车行业的飞速发展,所以,我们仅对当今非常普遍的采用燃油喷射(EFI)引擎的汽车予以了解。

汽车底盘1 离合器的结构及原理

课时授课计划 授课日期 科目底盘班级 课题:离合器的构造及工作原理 课及程目要的求在1.掌握离合器的作用 2.掌握离合器的结构、工作原理及特点 3.了解离合器的类型及应用 教参具考及书《汽车构造》、《汽车底盘构造与维修》、《汽车新技术》东风EQ1092汽车离合器及拆装所需工具 教重 学点 离合器的作用、结构 教难 学点 离合器的工作原理 教方 学法 理论讲解,书本引导,示范操作,巡回指导 教学过程1、课堂组织: 3 分钟清点到课人数,卫生,作业 2、复习旧课: 4 分钟 提问内容: ①汽车的组成由那几部分? ②底盘的组成? ③传动系的动力传递路线? 3、讲解新课:70 分钟

教学过程一.离合器的作用及位置 离合器安装在发动机与变速器之间,固定在飞轮上,作用主要有三点: 1.保证汽车平稳起步 2.便于变速器平顺换挡 3.防止传东西过载 二.离合器的类型 1.按照工作环境可分为:湿式、干式 2.按照操纵机构的不同分为:机械式、液压式 3.按照从动盘数目分为:单片、双片、多片 汽车上常用的是摩擦式干式离合器,该离合器按照弹簧的不同又可以分为很多种,但是最常用的是周布单片螺旋弹簧离合器(简称螺旋弹簧离合器)和膜片弹簧离合器。 三.离合器的结构及工作原理 结构组成:主动部分、从动部分、压紧装置、操纵机构。主动部分是动力输入部件,主要由飞轮、离合器盖和压盘组成。从动部分是动力输出部件,主要是指从动盘。压紧装置是主、从动部分接触面间贴紧产生摩擦作用的机构,指压紧弹簧,操纵机构则是离合器分离以中断动力的传递机构,包括离合器踏板、分离套筒、分离轴承、分离拨叉等。

教学过程 工作原理:自由状态为接合,踩下踏板为分离状态,松开踏板又成为接合状态。 1.膜片式离合器的工作原理 膜片弹簧采用优质的薄钢板冲压制成,形状为碟形,其上开有若干条径向切槽构成分离杠杆。膜片弹簧两侧用钢丝环为支点支撑,在踩下踏板时产生变形。 2.摩擦片式离合器的工作原理 最常见的有单片和双片两种,螺旋弹簧只能用作压紧装置,所以又单独设立了分离杠杆,使离合器整体结构复杂,轴向尺寸加大。高速时离心力产生的作用力使弹簧产生弯曲变形,导致压紧力下降而使离合器打滑,影响汽车动力性,所以大多轿车和轻型汽车都不再采用螺旋弹簧离合器,只有在少数载重汽车上使用。 特点: 1)膜片式离合器既起压紧弹簧的作用,又起分离杠杆的作用结构简单,质量减轻。 2)膜片弹簧与压盘在整个圆周上接触,使压力分配均匀,摩擦片接触良好,磨损均匀。 3)膜片弹簧具有非线性弹性特性,在摩擦片磨损后仍能可靠的传递发送机的转矩。

汽车刹车制动系统工作原理图解

汽车刹车制动系统工作原理图解 想必不需要多问,大家都知道在行车过程中,汽车制动功能是非常重要的,因为刹车制动直接关系到车主的生命财产安全,如果知道不好,那是极度危险的,学习了解汽车制动工作原理,有利于在今后的开车过程中熟练掌握刹车技能,在日常汽车维护中也能自己修理刹车制动部件。随着酒后代驾、商务代驾、婚庆代驾等代驾行业的兴起,标志着中国交通社会文明程度的不断提升。当然,对代驾司机提出了更多的驾驶技能要求,不仅要会驾驶各种品牌的汽车,更要懂得在紧急情况下如何处理应急问题,因此第一代驾为广大司机整理了全面的汽车刹车制动系统工作原理图解知识。 实际刹车与工作原理图解

●制动系统的组成 作为制动系统,作用当然就是让行驶中的汽车按我们的意愿进行减速甚至停车。工作原理就是将汽车的动能通过摩擦转换成热能。汽车制动系统主要由供能装置、控制装置、

传动装置和制动器等部分组成,常见的制动器主要有鼓式制动器和盘式制动器。 ●鼓式制动器 鼓式制动器主要包括制动轮缸、制动蹄、制动鼓、摩擦片、回位弹簧等部分。主要是通过液压装置是摩擦片与岁车轮转动的制动鼓内侧面发生摩擦,从而起到制动的效果。 在踩下刹车踏板时,推动刹车总泵的活塞运动,进而在油路中产生压力,制动液将压力传递到车轮的制动分泵推动活塞,活塞推动制动蹄向外运动,进而使得摩擦片与刹车鼓发生摩擦,从而产生制动力。 从结构中可以看出,鼓式制动器是工作在一个相对封闭的环境,制动过程中产生的热量不易散出,频繁制动影响制动效果。不过鼓式制动器可提供很高的制动力,广泛应用于重型车上。 ●盘式制动器 盘式制动器也叫碟式制动器,主要由制动盘、制动钳、摩擦片、分泵、油管等部分构成。盘式制动器通过液压系统把压力施加到制动钳上,使制动摩擦片与随车轮转动的制动盘发生摩擦,从而达到制动的目的。 与封闭式的鼓式制动器不同的是,盘式制动器是敞开式的。制动过程中产生的热量可以很快散去,拥有很好的制动效能,现在已广泛应用于轿车上。

制动系统的一般工作原理

制动系统的一般工作原理 制动系统的一般工作原理是,利用与车身(或车架)相连的非旋转元件和与车轮(或传动轴)相连的旋转元件之间的相互摩擦来阻止车轮的转动或转动的趋势。 可用一种简单的液压制动系统示意图来说明制动系统的工作原理。一个以内圆面为工作表面的金属制动 鼓固定在车轮轮毂上,随车轮一同旋转。在固定不动的制动底板上,有两个支承销,支承着两个弧形制动蹄的下端。制动蹄的外圆面上装有摩擦片。制动底板上还装有液压制动轮缸,用油管5与装在车架上的液压制动主缸相连通。主缸中的活塞3可由驾驶员通过制动踏板机构来操纵。 当驾驶员踏下制动踏板,使活塞压缩制动液时,轮缸活塞在液压的作用下将制动蹄片压向制动鼓,使制动鼓减小转动速度,或保持不动。 使机械运转部件停止或减速所必须施加的阻力矩称为制动力矩。制动力矩是设计、选用制动器的依据,其大小由机械的型式和工作要求决定。制动器上所用摩擦材料(制动件)的性能直接影响制动过程,而影响其性能的主要因素为工作温度和温升速度。摩擦材料应具备高而稳定的摩擦系数和良好的耐磨性。摩擦材料分金属和非金属两类。前者常用的有铸铁、钢、青铜和粉末冶金摩擦材料等,后者有皮革、橡胶、木材和石棉等。 在了解某款车型的刹车系统时,您可能经常会听到“前盘后鼓”或“前碟后鼓”这四个字,那么,它到底是什么意思呢?最近就有读者通过电子邮件询问有关汽车制动系统的问题,比如盘式制动器和鼓式制动器的区别,通风盘和实心盘的不同之处等等。 目前车市中很多发动机排量较小的中低档车型,其制动系统大多采用“前盘后鼓式”,即前轮采用盘式制动器,后轮采用鼓式制动器,比如常见的一汽大众捷达、长安铃木奥拓及羚羊、比亚迪福莱尔、东风悦达起亚千里马、上海通用赛欧等等。我们先来简单了解一下后轮经常采用的鼓式制动器。 实际应用差别很明显,盘刹比鼓刹好用。刹车鼓中的石棉材料会致癌。鼓刹与盘刹各有利弊。在刹车效果上,鼓刹与盘刹的相差并不大,因为刹车时,是轮胎和地面的摩擦力让车子逐渐停止下来的。如果车身小巧,车身重量轻,后轮采用鼓刹就足以使轮胎和地面产生足够的摩擦力了。如果后轮使用盘刹,ABS和EBD系统也会自动降低其刹车力度,以保证后轮不会失去抓地力出现打滑、抱死现象。 散热性上,盘刹要比鼓刹散热快,通风盘刹的散热效果更好;在灵敏度上,盘刹会

汽车离合器工作原理图解

汽车离合器工作原理图解 无论对于新手还是老驾驶员,认识下离合器工作原理都有助于理解实际操作中遇到的问题,下面有汽车离合器工作原理图解,将了汽车离合器如何工作的: 离合器位于发动机与变速器之间,是汽车传动系统中直接与发动机相联系的部件,也可以说是发动机与变速器动力传递的“开关”它是一种既能传递动力,又能切断动力的传动机构。离合器的主要作用是保证汽车能平稳起步,变速换挡时减轻变速齿轮的冲击载荷并防止传动系过载。 所谓离合器,顾名思义就是说利用“离”与“合”来传递适量的动力。发动机始终在旋转,而车轮则不会。要使车辆停止而不损坏发动机,车轮需要以某种方式与发动机断开。离合器通过控制发动机和变速器之间的滑程,使我们可以轻松地将旋转着的发动机连接到没有旋转的变速器上。 ●离合器结构 (1)主动部分:飞轮、压盘、离合器盖等; (2)从动部分:从动盘、从动轴(即变速器第一轴);

(3)压紧部分:压紧弹簧; (4)操纵机构:分离杠杆、分离杠杆支承柱、摆动销、分离套筒、分离轴承、离合器踏板等。 ●离合器工作状态 离合器分为三个工作状态,即不踩下离合器的全连动,部分踩下离合器的半连动,以及踩下离合器的不连动。当车辆在正常行驶时,压盘是紧紧挤靠在飞轮的摩擦片上的,此时压盘与摩擦片之间的摩擦力最大,输入轴和输出轴之间保持相对静摩擦,二者转速相同。当车辆起步时,司机踩下离合器,离合器踏板的运动拉动压盘向后靠,也就是压盘与摩擦片分离,此时压盘与飞轮完全不接触,也就不存在相对摩擦。 最后一种,也就是离合器的半连动状态。此时,压盘与摩擦片的摩擦力小于全连动状态。离合器压盘与飞轮上的摩擦片之间是滑动摩擦状态。飞轮的转速大于输出轴的转速,从飞轮传输出来的动力部分传递给变速箱。此时发动机与驱动轮之间相当于一种软连接状态。 ●离合器打滑 离合器盘上的摩擦材料与盘式制动器衬块或鼓式制动器制动蹄上的摩擦材料非常类似,一段时间后就会磨薄。磨薄之后离合器将开始打滑,最终无法将任何动力从发动机传输到车轮。 离合器只在离合器盘和飞轮以不同速度旋转时才会发生磨损。当它们锁定在一起时,摩擦材料会紧紧地顶住飞轮,并且同步旋转。只有在离合器盘逆着飞轮打滑时,才会发生磨损。 了解离合器的构造,合理地使用离合器,能延长离合器的使用寿命,以及其他传动部分的使用寿命。

汽车刹车系统的工作原理简述

汽车刹车系统的工作原理 在汽车的性能测试环节中,加速和是最主要的两个测试项目,平时我们接触到一辆新车,往往问的第一个问题是这辆车有多快而不是这辆车好不好,但问题在于速度慢多数情况下不会有什么太大问题而不好很可能关系到生命安全,所以今天我们就来说说汽车的。 系统的原理是制造出巨大的摩擦力,将车辆的动能转化为热能。众所周知,能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。汽车在加速过程中把化学能转化成热能和动能,时系统又将汽车的动能转化成热能散发到空气中。一辆车从静止加速到时速100公里可能需要10秒钟,但从时速100公里到静止可能只需要XX秒而已,可见系统承受着巨大的负荷。从另一个角度来说,如果你想体验超级跑车的加速快感,用普通家用车也可以,只不过你需要反过来坐着并且是在急中体验到。

目前大部分小型车都采用液压制动,因为液体是不能被压缩的,能够几乎100%的传递动力,基本原理是驾驶员踩下踏板,向总泵中的油施加压力,液体将压力通过管路传递到每个车轮卡钳的上,驱动卡钳夹紧盘从而产生巨大摩擦力令车辆减速。 我们先从总泵说起,这个部件通常位于发动机舱防火墙靠近驾驶员的一侧,有些车的总泵“小得可怜”,甚至让人怀疑它是否能提供足够的力。其实完全不必为此担心,因为系统运用了“帕斯卡定律”。

帕斯卡定律的主要内容是: 根据静压力基本方程(p=p0+ρgh),盛放在密闭容器内的液体,其外加压强p0发生变化时,只要液体仍保持其原来的静止状态不变,液体中任一点的压强均将发生同样大小的变化。(来源:百度百科) 简单来说就是我们踩下制动踏板后施加到总泵液体上的压强等于盘处的液体压强,但因为压强等于单位面积的压力,所以只要增大的面积,施加的压力就会增大。例如下图这个实验,两个圆柱形,左侧直径是2英寸,右侧直径是6英寸,也就是左侧的3倍,那么如果给左侧施加一定量的力,那么右侧将产生一个9倍的力(面积是半径的平方乘以3.14),这也就是现在所有液压机构的理论基础,所以起重机可以通过液压系统举起数十吨的货物。

汽车悬架系统开发布置流程

悬架系统开发流程---布置部分 目标设定BENCHMARK 在此主要是分析竞争车型的底盘布置。底盘布置首先要确定出轮胎、悬架形式、转向系统、发动机、传动轴、油箱、地板、前纵梁结构(满足碰撞)等,因为这些重要的参数,如轮胎型号、悬架尺寸、发动机布置、驱动形式、燃油种类等在开发过程中要尽可能早地确定下来。在此基础上,线束、管路、减振器、发动机悬置等才能继续下去 悬架选择 对各种后悬架结构型式进行优缺点比较,包括对后部轮罩间空间尺寸的分析比较,进行后悬架结构的选择。 常见的后悬架结构型式有:扭转梁式、拖曳臂式、多连杆式。 扭转梁式悬架 优点: 1.与车身连接简单,易于装配。 2.结构简单,部件少,易分装。 3.垂直方向尺寸紧凑。 4.底板平整,有利于油箱和后备胎的布置。 5.汽车侧倾时,除扭转梁外,有的纵臂也会产生扭转变形,起到横向稳定作用, 若还需更大的悬架侧倾角刚度,还可布置横向稳定杆。 6.两侧车轮运转不均衡时外倾具有良好的回复作用。 7.在车身摇摆时具有较好的前束控制能力。 8.车轮运动特性比较好,操纵稳定性很好,尤其是在平整的道路情况下。 9.通过障碍的轴距具有相当好的加大能力,通过性好。 10.如果采用连续焊接的话,强度较好。 缺点: 1.对横向扭转梁和纵向拖臂的连续焊接质量要求较高。 2.不能很好地协调轮迹。 3.整车动态性能对轴荷从空载到满载的变化比较敏感。 4.但这种悬架在侧向力作用时,呈过度转向趋势。另外,扭转梁因强度关系,允 许承受的载荷受到限制。 扭转梁式悬架结构简单、成本低,在一些前置前驱汽车的后悬架上应用较多。 拖曳臂式悬架 优点: 1.Y轴和X轴方向尺寸紧凑,非常有利于后乘舱(尤其是轮罩间宽度尺寸较大) 和下底板备胎及油箱的布置。 2.与车身的连接简单,易于装配。 3.结构简单,零件少且易于分装; 4.由于没有衬套,滞后作用小。 5.可考虑后驱。 缺点: 1.由于沿着控制臂相对车身转轴方向控制臂较大的长宽比,侧向力对前束将产生 不利的影响。 2.车身摇摆(body roll)对外倾产生不利影响;(适当的控制臂转轴有可能改善外

离合器工作原理.

离合器工作原理 如果您驾驶的汽车带有手动变速器,您也许会惊讶地发现汽车上装有多个离合器。其实装有自动变速器的汽车同样装有离合器。事实上,我们在日常生活中接触的许多物品都带有离合器:如很多电池式钻孔机带有离合器,链锯带有离心式离合器,甚至有些溜溜球也带有离合器! 汽车中离合器的位置 本文将介绍使用离合器的原因,使您了解离合器在汽车中的工作原理,并且讨论一下一些可以放置离合器的有趣的甚至可能令人意想不到的位置! 离合器对于带有两个旋转轴的设备很有用。在这些设备中,一个轴通常由电机或皮带轮来驱动,而另一个轴用来驱动其他设备。例如在钻孔机中,一个轴由电机驱动,另一个轴驱动钻夹头。离合器连接了两个轴,这样它们可以锁定在一起,以同样的速度旋转,或者分离,以不同的速度旋转。

您需要在汽车中安装离合器,因为发动机始终在旋转,而车轮则不会。要使车辆停止而不损坏发动机,车轮需要以某种方式与发动机断开。离合器通过控制发动机和变速器之间的滑程,使我们可以轻松地将旋转着的发动机连接到没有旋转的变速器上。要了解离合器的工作原理,知道一点有关摩擦的知识是很有帮助的。 在下图中,您可以看到飞轮是连接在发动机上的,而离合器片是连接在变速器上的。 当脚离开踏板时,弹簧会向离合器盘方向推动压盘,从而挤压飞轮。这样可将发动机锁定到 变速器输入轴上,使它们以相同的速度旋转。

美国卡罗莱纳州野马供图 压盘 离合器作用力的大小取决于离合器片和飞轮之间的摩擦力以及弹簧对压盘的压力的大小。离合器中摩擦力的工作方式与制动器的原理摩擦部分描述的缸体的工作方式一样,只不过它是将弹簧压在离合器片上,而不是依靠重力将物体压向地面。 离合器如何接合和分离

汽车刹车泵工作原理

简述刹车系统工作原理 [汽车之家技术] 在汽车之家的性能测试环节中,加速和刹车是最主要的两个测试项目,平时我们接触到一辆新车,往往问的第一个问题是这辆车有多快而不是这辆车刹车好不好,但问题在于速度慢多数情况下不会有什么太大问题而刹车不好很可能关系到生命安全,所以今天我们就来说说汽车的刹车。 刹车系统的原理是制造出巨大的摩擦力,将车辆的动能转化为热能。众所周知,能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。汽车在加速过程中把化学能转化成热能和动能,刹车时刹车系统又将汽车的动能转化成热能散发到空气中。一辆车从静止加速到时速100公里可能需要10秒钟,但从时速100公里刹车到静止可能只需要XX秒而已,可见刹车系统承受着巨大的负荷。从另一个角度来说,如果你想体验超级跑车的加速快感,用普通家用车也可以,只不过你需要反过来坐着并且是在急刹车中体验到。

目前大部分小型车都采用液压制动,因为液体是不能被压缩的,能够几乎100%的传递动力,基本原理是驾驶员踩下刹车踏板,向刹车总泵中的刹车油施加压力,液体将压力通过管路传递到每个车轮刹车卡钳的活塞上,活塞驱动刹车卡钳夹紧刹车盘从而产生巨大摩擦力令车辆减速。 我们先从刹车总泵说起,这个部件通常位于发动机舱防火墙靠近驾驶员的一侧,有些车的刹车总泵”小得可怜“,甚至让人怀疑它是否能提供足够的刹车力。其实完全不必为此担心,因为刹车系统运用了”帕斯卡定律“。

帕斯卡定律的主要内容是: 根据静压力基本方程(p=p0+ρgh),盛放在密闭容器内的液体,其外加压强p0发生变化时,只要液体仍保持其原来的静止状态不变,液体中任一点的压强均将发生同样大小的变化。(来源:百度百科) 简单来说就是我们踩下制动踏板后施加到刹车总泵液体上的压强等于刹车盘活塞处的液体压强,但因为压强等于单位面积的压力,所以只要增大活塞的面积,施加的压力就会增大。例如下图这个实验,两个圆柱形活塞,左侧活塞直径是2英寸,右侧活塞直径是6英寸,也就是左侧活塞的3倍,那么如果给左侧活塞施加一定量的力,那么右侧活塞将产生一个9倍的力(面积是半径的平方乘以3.14),这也就是现在所有液压机构的理论基础,所以起重机可以通过液压系统举起数十吨的货物。

悬架系统设计步骤(DOC)

悬架系统设计步骤 在此主要是分析竞争车型的底盘布置。底盘布置首先要确定出轮胎、悬架形式、转向系统、发动机、传动轴、油箱、地板、前纵梁结构(满足碰撞)等,因为这些重要的参数,如轮胎型号、悬架尺寸、发动机布置、驱动形式、燃油种类等在开发过程中要尽可能早地确定下来。在此基础上,线束、管路、减振器、发动机悬置等才能继续下去 悬架选择 对各种后悬架结构型式进行优缺点比较,包括对后部轮罩间空间尺寸的分析比较,进行后悬架结构的选择。 常见的后悬架结构型式有:扭转梁式、拖曳臂式、多连杆式。 扭转梁式悬架 优点: 1.与车身连接简单,易于装配。 2.结构简单,部件少,易分装。 3.垂直方向尺寸紧凑。 4.底板平整,有利于油箱和后备胎的布置。 5.汽车侧倾时,除扭转梁外,有的纵臂也会产生扭转变形,起到横向稳定作用, 若还需更大的悬架侧倾角刚度,还可布置横向稳定杆。 6.两侧车轮运转不均衡时外倾具有良好的回复作用。 7.在车身摇摆时具有较好的前束控制能力。 8.车轮运动特性比较好,操纵稳定性很好,尤其是在平整的道路情况下。 9.通过障碍的轴距具有相当好的加大能力,通过性好。 10.如果采用连续焊接的话,强度较好。 缺点: 1.对横向扭转梁和纵向拖臂的连续焊接质量要求较高。 2.不能很好地协调轮迹。 3.整车动态性能对轴荷从空载到满载的变化比较敏感。 4.但这种悬架在侧向力作用时,呈过度转向趋势。另外,扭转梁因强度关系,允 许承受的载荷受到限制。 扭转梁式悬架结构简单、成本低,在一些前置前驱汽车的后悬架上应用较多。 拖曳臂式悬架 优点: 1.Y轴和X轴方向尺寸紧凑,非常有利于后乘舱(尤其是轮罩间宽度尺寸较大) 和下底板备胎及油箱的布置。 2.与车身的连接简单,易于装配。 3.结构简单,零件少且易于分装; 4.由于没有衬套,滞后作用小。 5.可考虑后驱。 缺点: 1.由于沿着控制臂相对车身转轴方向控制臂较大的长宽比,侧向力对前束将产生 不利的影响。 2.车身摇摆(body roll)对外倾产生不利影响;(适当的控制臂转轴有可能改善外 倾的回复能力,但这导致轮罩间宽度尺寸的减小。)

汽车制动系统工作原理详解

汽车制动系统工作原理详解 众所周知,当我们踩下制动踏板时,汽车会减速直到停车。但这个工作是怎么样完成的?你腿部的力量是怎么样传递到车轮的?这个力量是怎么样被扩大以至能让一台笨重的汽车停下来? 首先我们把制动系统分成6部分,从踏板到车轮依次解释每部分的工作原理,在了解汽车制动原理之前我们先了解一些基本理论,附加部分包括制动系统的基本操作方式。 基本的制动原理 当你踩下制动踏板时,机构会通过液压把你脚上的力量传递给车轮。但实际上要想让车停下来必须要一个很大的力量,这要比人腿的力量大很多。所以制动系统必须能够放大腿部的力量,要做到这一点有两个办法: 1、杠杆作用 2、利用帕斯卡定律,用液力放大 制动系统把力量传递给车轮,给车轮一个摩擦力,然后车轮也相应的给地面一个摩擦力。在我们讨论制动系统构成原理之前,让我们了解三个原理: 杠杆作用、液压作用、摩擦力作用 杠杆作用

制动踏板能够利用杠杆作用放大人腿部的力量,然后把这个力量传递给液压系统。 如上图,在杠杆的左边施加一个力F,杠杆左边的长度(2X)是右边(X)的两倍。因此在杠杆右端可以得到左端两倍的力2F,但是它的行程Y只有左端行程2Y的一半。 液压系统 其实任何液压系统背后的基本原理都很简单:作用在一点的力被不能压缩的液体传递到另一点,这种液体通常是油。绝大多数制动系统也在此中放大制动力量。下图是最简单的液压系统: 如图:两个活塞(红色)装在充满油(蓝色)的玻璃圆桶中,之间由一个充满油的导管连接,如果你施一个向下的力给其中一个活塞(图中左边的活塞)那么这个力可以通过管道内的液压油传送到第二个活塞。由于油不能被压缩,所以这种方式传递力矩的效率非常高,几乎100%的力传递给了第二个活塞。液压传力系统最大的好处就是可以以任何长度,或者曲折成

双离合器变速箱工作原理详解word精品文档29页

双离合器变速箱工作原理详解 2010年10月11日17:13腾讯汽车我要评论(1) 字号:T|T 离合器位于发动机与变速器之间,是发动机与变速器动力传递的“开关”,它是一种既能传递动力,又能切断动力的传动机构。它的作用主要是保证汽车能平稳起步,变速换挡时减轻变速齿轮的冲击载荷并防止传动系过载。在一般汽车上,汽车换档时通过离合器分离与接合实现,在分离与接合之间就有动力传递暂时中断的现象。这在普通汽车上没有什么影响,但在争分夺秒的赛车上,如果离合器掌握不好动力跟不上,车速就会变慢,影响成绩。 为了解决这个问题,早在上世纪80年代,汽车工程界就弄出了一个双离合系统变速器,简称DSG(英文全称:Direct Shift Gearbox),装配在赛车上,能消除换档离合时的动力传递停滞现象。例如布加迪EBl6.4 Veyron的新型7速变速器是装置了双离合器,从一个档位换到另一个档位,时间不会超过0.2秒。现在,这种双离合器已经从赛车应用到一般跑车上。奥迪汽车公司的新型奥迪TT跑车和新奥迪A3都已经装置了这种DSG。这些汽车装配DSG的目的是可以比自动变速器更加平顺地换档,不会有迟滞现象。 奥迪这种双离合系统变速器是一个整体,有6个档位,离合器与变速器装配在同一机构内,两个离合器互相配合工作。这好比喻一辆车有两套

离合器,正司机控制一套,副司机控制另一套。正司机挂上1档松开离合踏板起步时,这时副司机也预先挂上2档但踩住离合踏板;当车速上来准备换档,正司机踩住离合踏板的同时副司机即松开离合踏板,2档开始工作。这样就省略了档位空置的一刹那,动力传递连续,有点象接力赛。双离合系统两套离合器传动系统,通过电脑控制协调工作。 当汽车正常行驶的时候,一个离合器与变速器中某一档位相连,将发动机动力传递到驱动轮;电脑根据汽车速度和转速对驾驶者的换档意图做出判断,预见性地控制另一个离合器与另一个档位的齿轮组相连,但仅处于准备状态,尚未与发动机动力相连。换档时第1个离合器断开,同时第2个离合器将所相连的齿轮组与发动机接合。除了空档之外,一个离合器处于关闭状态,另一个离合器则处于打开状态。 两根传动轴分别由第一、第二离合器控制与发动机动力的连接与断开,分别负责1、3、5档和2、4、6档的档位变换。考虑到零件使用寿命,设计人员选择了油槽膜片式离合器,离合器动作由液压系统来控制。 自动双离合器变速箱的换档控制方法 一种用于对一个自动化的双离合器变速箱进行换档控制的方法,该双离合器变速箱包含一个第一分变速装置,其配有一个第一变速箱输入轴、一个第一发动机离合器和一个第一档组;该变速箱还包含一个第二分变速装置,其配有一个第二变速箱输入轴、一个第二发动机离合器和一个第二档组,利用此方法,在一个负载档和一个分配给同一分变速装置的目标档

汽车悬架系统工作原理

汽车悬架系统工作原理 作者:William Harris (本文为博闻网所有, 未经许可禁止以任何形式或使用。违者必究。) 推荐到: 本文包括: 1 1. 引言 2 2. 减振器 3 3. 专用悬架 4 4. 了解更多信息 5 5. 阅读所有引擎盖下类文章 人们在考虑汽车的性能时,通常会关注马力、扭矩和“0到60”加速时间等参数。但是如果驾驶员无法操控汽车,那么活塞发动机产生的所有动力都将毫无用处。有鉴于此,汽车工程师在掌握了四冲程燃发动机后,立即就把注意力转向了悬架系统。 本田发动机供图 本田雅阁2005 Coupe双A形控制臂式悬架 汽车悬架的工作是最大限度地增加轮胎与路面之间的摩擦力,提供能够良好操纵的转向稳定性,以及确保乘客的舒适度。在本文中,我们将探究汽车悬架的工作方式、发展演变过程以及未来设计的发展方向。 如果路面非常平坦,没有坑坑洼洼,就不需要悬架。但道路往往并不平坦。即使是新铺的高速公路,其路面也会有些微凹凸不平而对汽车车轮造成影响。就是这样的路面将力作用在车轮上。根据牛顿运动定律,力都具有大小和方向。路上的颠簸会使车轮垂直于路面上下运动。当然,力的大小取决于车轮颠簸的程度,但无论如何,在通过不平路面时车轮都会产生一个垂直加速度。

如果没有一个居间结构,所有车轮的垂直能量将直接传递给在相同方向上运动的车架。在这种情况下,车轮会完全丧失与路面的接触,然后在向下的重力作用下再次撞回路面。因此,您需要的是这样一个系统:它能够吸收垂直加速车轮的能量,使车轮顺着路面上下颠簸的同时车架和车身不受干扰。 对行驶中汽车的力的研究称为车辆动力学。您需要了解下面一些概念,以便理解为何必须将悬架置于首要地位。大多数汽车工程师从两个方面来考虑行驶中汽车的动力特征:?行驶性能——汽车平稳驶过崎岖不平的路面的性能 ?操纵性能——汽车安全地加速、制动和转弯的性能 这两个特征可通过三个重要原理进一步加以描述:路面隔离性能、抓地性能和转弯性能。下表描述了这些原理以及工程师们如何尝试解决它们各自的问题。 原 理 定义目标解决方案 路 面 隔离性能车辆吸收路面振动或将其与乘客 席隔离的性能。 使车身在驶过不平路面时不受干 扰。 吸收并消化路面颠簸 产生的能量,从而使 车辆不至于产生过度 的震动。 抓地性能在各种类型的方向变化以及直线 行驶过程中汽车保持与路面接触 的程度。例如,制动时汽车的重 量将从后轮移至前轮。因为车头 扎向路面,所以这种运动类型称 为“俯冲”。相反,加速时汽车 的重量会从前轮移至后轮,称为 “蹲伏”。 保持轮胎与地面接触,因为轮胎 与路面之间的摩擦力会影响车辆 转向、制动和加速性能。 尽量减少车身重量的 左右和前后转移,因 为这会降低轮胎的抓 地性能。 转 弯性能车辆沿弯路行驶的性能。 尽量减少车身的翻滚趋势。当汽 车转弯时,离心力会作用于汽车 的重心并将其向外推,从而抬高 车辆的一侧而降低另一侧,造成 翻滚趋势。 转弯时将汽车的重量 从较高的一侧转移到 较低一侧。

汽车各类悬架系统图解说明

汽车各类悬架系统图解说明 独立悬架与非独立悬架示意图13-4所示 独立悬架如图4-57(a)所示,其两侧车轮安装于断开式车桥上,两侧车轮分别独立地与车架(或车身)弹性地连接,当一侧车轮受冲击,其运动不直接影响到另一侧车轮。非独立悬架如图4-57(b)所示。其两侧车轮安装于一整体式车桥上,当一侧车轮受冲击力时会直接影响到另一侧车轮上。 钢板弹簧13-5

钢板弹簧可分为对称式钢板弹簧和非对称式钢板弹簧,对称式钢板弹簧其中心螺栓到两端卷耳中心的距离相等如图(a),不等的则为非对称式钢板弹簧如图(b)。钢板弹簧在载荷作用下变形,各片之间因相对滑动而产生摩擦,可促使车架的振动衰减,起到减振器的作用 扭杆弹簧 扭杆弹簧一般用铬钒合金弹簧钢制成。一端固定在车架上,另一端上的摆臂2与车轮相连。当车轮跳动时,摆臂绕扭杆轴线摆动,使扭杆产生扭转弹性变形,从而使车轮与车架的联接成为弹性联接。 扭杆的断面形式 断面常为圆形,少数是矩形或管形 空气弹簧 空气弹簧主要用橡胶件作为密闭容器,它分为囊式和膜式两种(如图4-61所示),工作气压为0.5~1Mpa。这种弹簧随着载荷的增加,容器内压缩空气压力升高,使其弹簧刚度也随之增加,载荷减少,弹簧刚度也随空气压力减少而下降,具有有理想的变刚度弹性特性。 油气弹簧简图

油气弹簧以气体(化学性质不太活泼的气体-氮)作为弹性介质,用油液作为传力介质。简单的油气弹簧(如图4-62(a)所示)不带油气隔膜。目前,这种弹簧多用于重型汽车,在部分轿车上也有采用的 1-活塞杆2-工作缸筒3-活塞4-伸张阀5-储油缸筒6-压缩阀7-补偿阀8-流通阀9-导向座-10-防尘罩11-油封 双向作用筒式减振器示意图p314 -4-51 横向稳定器的安装13-7copy.gif

离合器原理总泵分泵原理讲解

离合器原理总泵分泵原理讲解 为了减轻驾驶员的劳动强度,确保行车安全,目前,在汽车上尤其是在重型汽车上已经普遍使用了离合器助力器。在东风汽车公司生产的东风EQ 1141G及东风EQ 2100E6D等型汽车的离合器操纵系统中使用了一种新型的气压助力器(图 1)。由于有些用户对该助力器缺乏必要的了解,不能很好地理解、掌握其正确的使用方法和日常维护要领,致使气压助力器机件常出现故障,不能很好地发挥其实际效能。为确保该汽车离合器助力器的正常工作及安全行车,下面对其结构原理与维护作一简单介绍。 1 结构特点与工作原理 1.1结构特点 该汽车离合器的气 压助力器设在液压操纵 机构中,与气压制动系及 其他气动设备共用一套 压缩空气源。其主要由气 压控制阀、液压缸、动力 活塞、壳体等四大部分组 成。 为了使驾驶员能够 随时感知并控制离合器 分离或接合的程度,气压 助力器的输出力与离合

器踏板行程成一定的递增函数关系。此外,当气压助力系统失效时,也能保证借助人力操纵离合器。 1.2工作原理 该助力器 的工作原理, 如图 2所示。 踩下离合器踏 板时,从离合 器主缸压出的 液压油通过油 管进入助力器 内腔,随着踏 板行程的增 加,进入助力 器的油量增 多,并使油压 增高,这时液 压油推动活塞 6和芯杆膜片 总成右移,芯 杆8端部的排气孔被提升阀11堵住,并打开提升阀门,这样来自储气筒的压缩空气通过芯杆膜片总成的右腔进入动力活塞5的左腔,随着提升阀开启行程增大,压缩空气推动动力活塞5、推杆3、液压活塞2、推杆1右移并推动离合器分离叉旋转,使离合器分离轴承向前推动杠杆垫环,从而使离合器分离。当松开离合器踏板时,油压下降,在压盘弹簧的作用下,反推推杆1、液压活塞2、推杆3和动力活塞5,压缩空气使芯杆膜片10总成向左移动,提升阀在回位弹簧12的作用下关闭,膜片右腔和动力活塞左腔的压缩空气通过芯杆中的排气孔流入膜片左腔,经通气塞9排入大气。在推杆1的作用下,液压活塞回位,液压油反流入离合器主缸。

图解离合器的工作原理

简单介绍离合器的工作原理 来源:汽车点评网作者:佚名2010-12-29 16:39:43 离合器是汽车传动系统中直接与发动机相联系的部件,它负责着动力和传动系统的切断和结合作用,所以能够保证汽车起步时平稳起步,也能保证换挡时的平顺,也防止了传动系统的过载。而今天我们就来简单的认识一下离合器的工作原理,以及常见的几种离合器。 离合器工作原理介绍 离合器是一个传动机构,它有主动部分和从动部分,两部分可以暂时分离也可以慢慢结合,并且在传动过程中还有可能产生相对转动,所以,离合器的主动件和从动件之间会依靠接触摩擦来传递扭矩,或者是利用摩擦所需要的压紧力,或是利用液体作为传动的介质,或是利用磁力传动等方式来传递扭矩。

离合器工作原理介绍 目前在汽车上广泛使用的就是靠弹簧压紧的摩擦离合器。汽车在行驶的过程中需要经常保持动力的传递,而中断动力只是暂时的需要,故在形式过程中主动和从动部分长期处于结合状态,当驾驶员踩下离合器踏板时,通过机件的传递,让从动部分与主动部分分离。 离合器工作原理介绍 摩擦离合器,随着所用摩擦面的数目,压紧弹簧的形式以及安装位置,以及操纵机构行驶的不同,也有很多的不同。按从动盘的数目分为单盘离合器和双盘离合器。其中单盘离合器主要用在轿车和轻型货车上,而双盘离合器传递的扭矩较大,因此主要用于中、重型车。按照压紧弹簧的结构形式又分为螺旋弹簧离合器和膜片弹簧离合器。

每一个离合器都是由以下的部分组成的: (1)主动部分:飞轮、压盘、离合器盖等; (2)从动部分:从动盘、从动轴(即变速器第一轴); (3)压紧部分:压紧弹簧; (4)操纵机构:分离杠杆、分离杠杆支承柱、摆动销、分离套筒、分离轴承、离合器踏板等。 离合器工作原理介绍

汽车制动真空助力器工作原理

汽车知识——真空助力器工作原理汽车知识——真空助力器工作原理 制动助力器,它是一个黑色圆罐,位于驾驶员侧发动机舱后部,固定在车身上,借推杆与制动踏板连接。加力气室由前后壳体组成,其间夹装有膜片和座,它的前腔经单向阀通进气管或真空筒;后腔膜片座毂筒中装有控制阀,其中装有与推杆固接的空气阀和限位板、真空阀和推杆等零件。膜片座前端滑装有推杆,其间有传递脚感的橡胶反作用盘,橡胶反作用盘是两面受力;右面的中心部分要受推杆及空气阀的推力,盘边环部分还要承受膜片座的推力;左面要承受推杆传来的主缸液压反作用力。实际上它是一个膜片,利用它的弹性变形来完成渐进随动,同时使脚无悬空感。单向阀有两个功能:一是保证发动机熄火后有一次有效地助力制动;二是发动机偶尔回火时,保护真空助力室的膜片免于损坏。 一般和刹车总泵一体,助力器成圆筒形状,当中有个皮碗把助力器分成两个腔,当中和前面各有一个单向阀,平时这两个腔全是真空的,当踏下刹车踏板时,前面的单向阀打开,前腔开始进气,但后面的腔还是真空的,当中的单向阀关闭,因为前腔和后腔产生负压,所以皮碗带动顶杆一起推动刹车总泵工作;当收回刹车踏板时当中的单向阀打开,前面的单向阀关闭,前腔的空气流入后腔,两个腔没有负压,顶杆随着踏板回位弹簧一起回到原来的位置,同时当中的单向阀也关闭。 制动助力器利用发动机真空来增大脚施加给主缸的力,真空助力器是一个含有智能阀和膜片的金属罐。一根杆穿过罐的中央,两头分别连接主缸活塞和踏板连杆。 动力制动系统的另一个关键零件是单向阀。 单向阀只允许将空气吸出真空助力器。如果关闭发动机,或者真空管发生泄漏,则单向阀将确保空气不进入真空助力器。这点很重要,因为在发动机停止运转时,真空助力器必须得提供足够的推进力来让驾驶员再刹几次车。在公路上驾车行驶时,如果汽油耗尽,您当然不希望在此时失去制动功能。 真空助力器的设计非常简单、精致。该装置需要真空源才能运行。汽油动力车的发动机可以提供适用于助力器的真空。在装有真空助力器的汽车上,制动踏板推动一个连杆,该连杆穿过助力器进入主缸,驱动主缸活塞。发动机在真空助力器内的膜片两侧形成部分真空。踩下制动踏板时,连杆打开一个气门,使空气进入助力器中膜片的一侧,同时密封另一侧真空。这就增大了膜片一侧的压力,从而有助于推动连杆,继而推动主缸中的活塞。 释放制动踏板时,阀将隔绝外部空气,同时重新打开真空阀。这将恢复膜片两侧的真空,从而使一切复位

相关文档
最新文档