铸造型砂可使用时间及抗拉强度影响因素研究_崔刚

铸造型砂可使用时间及抗拉强度影响因素研究_崔刚
铸造型砂可使用时间及抗拉强度影响因素研究_崔刚

铸造型砂性能测试方法

紧实率 粘土砂的紧实率是指湿态的型砂混合料在一定紧实力的作用下其体积变化的百分率,用试样紧实前后高度变化的百分数来表示。 (1)主要仪器:SAC型锤击式制样机、SBT型投砂器等。 (2)试验步骤:试验时,将试样通过投砂器,落入有效高度为120mm圆柱形试样筒中,刮去试样筒上部多余砂子,再将它放在锤击式制样机上捶打3次,试样体积被压缩的程度作为其紧实率,其数值可直接从制样机上读出或用式计算:JS=(h0-h1)/h0*100% 式中JS——紧实率(%); h0——试样紧实前的高度(mm) h1——试样紧实后的高度(mm) 湿压强度 英文:wet-compressive strength 释文:湿压强度是表示物体在饱水状态下,抵抗外部压力能力的物理量,以试样受力作用时的应力值(1.05帕)表示之。是评价膨润土矿产质量的重要指标。测定方法是①标准型砂2000克,膨润土100克,蒸馏水80毫升放入轮辗式混合机中混合成试料,将试料盛于带盖容器内或塑料袋内,放置时间不少于10分钟,但不得超过1小时。②称取155~160克混合料,放入特制的圆形试样筒内,制成三个标准试样块。③将试样块放人手摇压力机中进行抗压试验。增加负荷的速度为每分钟1.96 X 10^5帕,加压至样块破坏,记录观察值。湿压强度值应为三个试样的平均值。[1] 湿压强度的测定方法: 1制样 测定湿压强度用的圆柱形标准试样是在锤击式制样机上冲击三次而制成。 2测定方法 测定湿压强度时,将制备好的湿压试样,置于预先装置在强度试验机上的抗压夹具上。然后转动手轮,逐渐加载于试样上,直至试样破裂,其强度值可直接从压力表中读出。

金属材料屈服强度的影响因素

材料屈服强度及其影响因素 1. 屈服标准 工程上常用的屈服标准有三种: (1)比例极限应力-应变曲线上符合线性关系的最高应力,国际上常采用σp表示,超过σp时即认为材料开始屈服。 (2)弹性极限试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。国际上通常以σel表示。应力超过σel时即认为材料开始屈服。 (3)屈服强度以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为σ0.2或σys。 2. 影响屈服强度的因素 影响屈服强度的内在因素有: 结合键、组织、结构、原子本性。如将金属的屈服强度与陶瓷、高分子材料比较可看出结合键的影响是根本性的。从组织结构的影响来看,可以有四种强化机制影响金属材料的屈服强度,这就是:(1)固溶强化; (2)形变强化; (3)沉淀强化和弥散强化; (4)晶界和亚晶强化。 沉淀强化和细晶强化是工业合金中提高材料屈服强度的最常用的手段。在这几种强化机制中,前三种机制在提高材料强度的同时,也降低了塑性,只有细化晶粒和亚晶,既能提高强度又能增加塑性。 影响屈服强度的外在因素有: 温度、应变速率、应力状态。随着温度的降低与应变速率的增高,材料的屈服强度升高,尤其是体心立方金属对温度和应变速率特别敏感,这导致了钢的低温脆化。应力状态的影响也很重要。虽然屈服强度是反映材料的内在性能的一个本质指标,但应力状态不同,屈服强度值也不同。我们通常所说的材料的屈服强度一般是指在单向拉伸时的屈服强度。 3.屈服强度的工程意义 传统的强度设计方法,对塑性材料,以屈服强度为标准,规定许用应力[σ]=σys/n,安全系数n一般取2或更大,对脆性材料,以抗拉强度为标准,规定许用应力[σ]=σb/n,安全系数n一般取6。 需要注意的是,按照传统的强度设计方法,必然会导致片面追求材料的高屈服强度,但是随着材料屈服强度的提高,材料的抗脆断强度在降低,材料的脆断危险性增加了。 屈服强度不仅有直接的使用意义,在工程上也是材料的某些力学行为和工艺性能的大致度量。例如材料屈服强度增高,对应力腐蚀和氢脆就敏感;材料屈服强度低,冷加工成型性能和焊接性能就好等等。因此,屈服强度是材料性能中不可缺少的重要指标。 材料开始屈服以后,继续变形将产生加工硬化。 4.加工硬化指数n的实际意义 加工硬化指数n反应了材料开始屈服以后,继续变形时材料的应变硬化情况,它决定了材料开始发生颈缩时的最大应力。n还决定了材料能够产生的最大均匀应变量,这一数值在冷加工成型工艺中是很重要的。 对于工作中的零件,也要求材料有一定的加工硬化能力,否则,在偶然过载的情况下,会产生过量的塑性变形,甚至有局部的不均匀变形或断裂,因此材料的加工硬化能力是零件安全使用的可靠保证。 形变硬化是提高材料强度的重要手段。不锈钢有很大的加工硬化指数n=0.5,因而也有很高的均匀变形量。不锈钢的屈服强度不高,但如用冷变形可以成倍地提高。高碳钢丝经过

垂直分型射压造型线型砂高质量控制及生产应用

垂直分型射压造型线型砂质量控制及生产应用 在粘土砂铸造生产过程中,型砂是关键,其性能控制得好与坏,质量稳定与否,将对铸件质量产生巨大的影响。我公司的造型线为ZZ416垂直分型射压造型线,铁液采用中频电炉熔炼,铸件以薄壁铸铁(灰铸铁和球墨铸铁)件为主,产品包括汽车零配件、管道件、阀门件等。我公司经过多年生产实践,在型砂质量控制方面做了大量工作,并取得了良好效果。 1原材料质量要求 1.1 原砂 选用河北围场擦洗砂,含泥量<1.0%,SiO2>85%原砂粒度70/140 目。由于垂直分型射压造型属高密度造型,为减少砂型受热膨胀,避免因砂粒受挤压从砂型表面脱落而引起铸造缺陷,粒度要求不宜过于集中,原砂最好采用4筛集中率85%以上,主峰筛(100目)量控制在40%以内。新砂补加量在5%以下。 1.2 煤粉 煤粉灰份应<10%,煤粉含灰量过高,使得型砂含泥量增加,影响型砂使用性能。含硫量W 1.5%;煤粉粒度》95%以上的颗粒通过140 目筛,并且煤粉不允许有大颗粒存在,因其在浇注过程中遇金属液燃烧时间长,阻止铁液靠近型壁,待铁液凝固后,便会造成铸件表面凹坑,影响铸件表面粗糙度。挥发分的高低是衡量煤粉质量好坏的主要指标之一,好的煤粉挥发分含量较高,浇注时,型腔内易形成还原性

气体,析出大量的光亮碳,提高铸件的外观质量。但挥发分超过40%,型砂发气量增大,铸件易产生气孔、浇不足等缺陷。因此,挥发分一般在30%-38%。 1.3 膨润土 选用钠基膨润土。湿压强度》120kPa,吸蓝量(g/100g )>38, 粒度过200目》90% 2型砂性能质量控制 2.1湿压强度 如果型砂湿态强度不足,在起模、搬运砂型、下芯、合型等过程中,砂型有可能破损和塌落;浇注时砂型承受不住金属液的冲刷和冲击造成砂孔缺陷, 甚至铁液泄漏。一般用湿压强度来表示型砂湿态强度,一般控制在150-200kPa。 2.2透气性 型砂的透气率不可太低以免浇注过程中发生呛火和铸件产生气孔缺陷,但绝不能理解为型砂透气率越高越好。因为透气率过高表明沙粒间孔隙较大, 金属液易于渗透而造成表面粗糙, 还可能产生机械粘砂。湿粘砂的透气率根据浇注金属的种类和温度、铸件的大小和壁厚、造型方法、型砂的发气量大小等决定,一般控制在90-160 。2.3 紧实率和含水量 紧实率和含水量是衡量型砂综合性能的重要参数。湿型砂水分一定要适中, 否则膨润土未被充分润湿影响混砂, 进而导致造型起模困难且砂型发脆易碎、表面耐磨强度低,铸件易产生砂眼和冲蚀缺陷。实用文案

预应力钢绞线参数及计算公式汇总

预应力钢绞线参数及计算公式汇总 参数:钢绞线抗拉强度标准值fpk=1860Mpa,弹性模量:Ep=1.95*105Mpa,松弛率为2.5%,公称直径¢s=15.2mm,钢绞线面积A=140mm2,管道采用预埋金属波纹管成孔且壁厚不小于0.3mm。预应力筋平均张拉力按下式计算: p p=(p(1-e-(kx+μ?)))/kx+μ? 式中:p p---预应力筋平均张力(N)。 p-----预应力筋张拉端的张拉力(N)。 X-----从张拉端至计算截面的孔道长度(m)。 ?-----从张拉端至计算截面曲线孔道部分切线的夹角之和(rad)。 K-----孔道每米局部偏差对摩擦的影响系数,参见附表G-8。 μ-----预应力筋与孔道比壁的摩擦系数,参见附表G-8。 注:e=2.71828,当预应力筋为直线时p p= p。 预应力筋的理论伸长值△L(mm)可按下式计算; △L =(p p *L)/A p*Ep 式中:p p-----预应力筋的平均张拉力(N),直线筋取张拉端的拉力,两端张拉的曲线筋,计算方法见上式。 L-------预应力筋的长度(mm)。

A p-----预应力筋的截面面积(mm2)。 Ep------预应力筋的弹性模量(N/ mm2)。 附表G-8 系数K及μ值表 注意事项: 预应力筋张拉时,应先调整到初应力σ0该初应力宜为张拉控制应力σcom的10%~15%。伸长值应从初应力时开始量测。力筋的实际伸长值除量测的伸长值外,必须加上初应力以下的推算伸长值。对后张法构件,在张拉过程中产生的弹性压缩值一般可省略。 预应力张拉实际伸长值△L(mm)=△L1+△L2 式中:△L1-从预应力至最大张拉应力间的实测伸长值(mm)△L2-初应力以下的推算伸长值(MM),可采用相邻级的伸长值。

实验室质量管理

一、科室必须成立质量控制小组并设质量监督员一人,质量监督员必须做好有关质量管理日常工作记录,科主任全面负责质量控制管理工作。 二、质量控制小组由科主任、质量监督员、质量管理员组成,监督实验室整个质量管理体系的有效进行。 三、由科主任或质量监督员组织质控小组每月召开一次“质量控制监督会”,并作好记录。 四、质量监督员负责执行检验过程的各项指标的质量控制程序和对本科室室内质量控制、室间质量评价进行分析和处理。 五、各专业实验室质量管理员负责本室室内质控是否按照实验室内部质量控制程序文件和作业指导书有关要求进行工作。 六、室内质量控制:对检验科开展的检验项目检验程序进行质量控制,以保证检验结果的准确性。 (一)技术负责人负责批准室内质控规则和检验过程的质量控制程序; (二)各组组长负责制定本组室内质控规则和检验过程的质量控制程序; (三)检测人员负责执行检验过程的质量控制程序和对本岗位室内质控进行分析和处理; (四)质量监督员监督本组内是否按照程序文件和作业指导书有关要求进行。 (五)检验人员严格按照有关规定对样本进行验收和不合格样本处理;样本接收人员收到样本后,要及时分发样本至相应专业组,相应专业组及时对样本进行处理,并采取合适的方式进行保存;检测人员对所有的样本进行规范化的编号,防止检测过程中或检测后出现错号;在血液样本分离过程中要正确选择离心速度和时间,尽可能避免样本溶血。样本采集后要在规定的时间内完成检测。 (六)对所用检测方法、校准品、试剂、质控品及仪器等进行选择和评价。 (七)检验人员的资格和经历必须能够满足相应岗位的要求。

(八)检测人员根据检验项目及对质控的要求,选用合适的质控物,与常规样本在相同条件下进行测定,分析质控结果。若失控,则不能发出该分析批次的病人结果。纠正失控状态,重新分析当批次的病人样本。 (九)室内质控结果失控后由具体操作人员分析原因,总结经验,编写室内质控小结、质控报告,以及制定不合格项目处理措施一并交技术负责人签字确认后交文档管理员存档,并在《归档记录控制清单》上记录。 九、室间质量评价:参加省级检验中心组织的临床检验室间质量评价,按照常规临床检验方法与临床样本同时进行。对检验科参加室间质量的全过程,包括室间质评计划的制定、质评项目的确定;质控样本的接收、分发、检测、结果报送、结果回报后质评结果的分析以及不合格项的处理等进行控制,以保证检验结果的可比性和准确性。 (一)检验科主任批准质评计划和质评项目。 (二)技术负责人负责质评计划的制定和质评项目的确定。 (三)各专业组组长负责组织本专业组质评样本的接收、分发、检测、结果报送和质评报告总结。 (四)质量监督员监督本专业组质评过程。 (五)各专业组组长根据本组工作情况,选择参加室间质评的项目;技术负责人根据各组计划,确定本科参加质评的项目,制定质评计划,并报检验科主任批准。 (六)各专业组组长协助检测人员按常规样本完成室间质评项目的检测,填写报告并签名。然后,交技术负责人审核,经科主任签字后送报结果。原始结果由各专业组负责保存。 (七)室间质评结果回报后由组长分析原因,总结经验,编写室间质评小结、质控报告,以及制定不合格项目处理措施一并交技术负责人签字确认后交文档管理员存档,并在《归档记录控制清单》上记录。 (八)质量监督员监督本专业组质评样本的接收、分发、检测、结果报送、质评报告总结、整改等过程。 十、实验室间及实验室内部比对评价:对省级临床检验中心未组织室间质评的项目,应该积极开展实验室室间的比对。建立和实施实验室间及实验室内部比对计划和程序,以确保实验室间及实验室内部应用不同的程序或设备,或在不同地点,或以上各项均不相同时同一项目的检验结果具有可比性。

抗拉强度与伸长率测试方法与设备介绍

抗拉强度与伸长率测试方法与设备介绍 抗拉强度与伸长率测试方法与设备介绍 抗拉强度与伸长率,是指材料在拉断前承受的最大应力值与断裂时的伸长率。通过检 测能够有效解决材料抗拉强度不足等问题。Labthink 兰光研发生产的智能电子拉力试验 机系列产品,可专业适用于塑料薄膜、复合材料、软质包装材料、塑料软管、医用敷料、 保护膜、金属箔片、隔膜、背板材料、无纺布、橡胶、纸张等产品的抗拉强度与伸长率指 标测试。 抗拉强度与伸长率方法: 试样制备:宽度15mm ,取样长度不小于 150mm ,确保标距100mm ;对材料变形率较大试样,标距不得少于50mm 。 试验速度:500±30mm/min 试样夹持:试样置于试验机两夹具中,使试样纵轴与上下夹具中心连线重合,夹具松 紧适宜。 抗拉强度(单位面积上的力)计算公式: 拉伸强度计算公式σ=F/(b×d) σ:抗拉强度(MPa ) F :力值(N ) Labthink 兰光|包装检测仪器优秀供应商山东省济南市无影山路144号 b :宽度(mm ) d :厚度(mm ) 抗拉强度检测用设备——XLW(EC)智能电子拉力试验机: Labthink 兰光XLW(EC)智能电子拉力试验机专业适用于塑料薄膜、复合材料、软质包装材料、塑料软管、胶粘剂、胶粘带、不干胶、医用贴剂、保护膜、组合盖、金属箔、 隔膜、背板材料、无纺布、橡胶、纸张等产品的拉伸、剥离、变形、撕裂、热封、粘合、 穿刺力、开启力、低速解卷力、拨开力等性能测试。 XLW(EC) 是一款专业用于测试各种软包装材料拉伸性能等力学特性的电子拉力试验机;优于0.5级测试精度有效地保证了试验结果的准确性;系统支持拉压双向试验模式,试验 速度可自由设定;一台试验机集成拉伸、剥离、撕裂、热封等八种独立的测试程序,为用 户提供了多种试验项目选择;气动夹持试样,防止试样滑动,保证测试数据的准确性。 测试原理:

实验室内部质量控制的技术方法指南

实验室内部质量控制的技术方法指南实验室内部质量控制的技术方法包括采用标准物质监控、人员比对、方法比对、仪器设备比对、留样复测,空白测试、重复测试、回收率试验、校准曲线的核查以及使用质量控制图等。 1标准物质监控 1.1、质控过程 通常的做法是实验室直接用合适的有证标准物质或内部标准样品作为监控样品,定期或不定期将监控样品以比对样或密码样的形式,与样品检测以相同的流程和方法同时进行,检测室完成后上报检测结果给相关质量控制人员,也可由检测人员自行安排在样品检测时同时插人标准物质,验证检测结果的准确性。 1.2、适用范围 一般可用于:仪器状态的控制、样品检测过程的控制、实验室内部的仪器比对、人员比对、方法比对以及实验室间比对等。这种方法的特点是可靠性高,但成本高。 2人员比对 2.1、质控过程 由实验室内部的检测人员在合理的时间段内,对同一样品,使用同一方法,在相同的检测仪器上完成检测任务,比较检测结果的符合程度,判定检测人员操作能力的可比性和稳定性。实验室进行人员比对,比对项目尽可能检测环节复杂一些,尤其是手动操作步骤多一些。检测人员之间的操作要相互独立,避免相互之间存在干扰。通常情况下,实验室在监督频次上对新上岗人员的监督高于正常在岗人员,且在组织人员比对时最好始终以本实验室经验丰富和能力稳定的检测人员所报结果为参考值。

2.2、适用范围 实验室内部组织的人员比对,主要目的是评价检测人员是否具备上岗或换岗的能力和资格,因此,主要用于考核新进人员、新培训人员的检测技术能力和监督在岗人员的检测技术能力两个方面。 3方法比对 3.1质控过程 方法比对是不同分析方法之间的比对试验,指同一检测人员对同一样品采用不同的检测方法,检测同一项目,比较测定结果的符合程度,判定其可比性,以验证方法的可靠性。 方法比对的考核对象为检测方法,主要目的是评价不同检测方法的检测结果是否存在显著性差异。比对时,通常以标准方法所得检测结果作为参考值,用其他检测方法的检测结果与之进行对比,方法之间的检测结果差异应该符合评价要求,否则,即证明非标方法是不适用的,或者需要进一步修改、优化。 3.2、适用范围 方法比对主要用于考察不同的检测方法之间存在的系统误差,监控检测结果的有效性,其次也用于对实验室涉及的非标方法的确认。 整体的检测方法一般包括样品前处理方法和仪器方法,只要前处理方法不同,不管仪器方法是否相同,都归类为方法比对。但是,如果不同的检测方法中样品的前处理方法相同,仅是检测仪器设备不同,一般将其归类为仪器比对。 4仪器比对 4.1、质控过程

304不锈钢抗拉强度试验影响因素分析

龙源期刊网 https://www.360docs.net/doc/5c8094107.html, 304不锈钢抗拉强度试验影响因素分析 作者:林剑峰 来源:《科学与财富》2016年第25期 摘要:文章通过试验,对比分析了不同试验速率与温度对奥氏体304不锈钢拉伸性能测试结果的影响规律,总体上的试验结果表明,试验速率对测定结果的影响较小,环境的温度变化才是测定结果波动的主要影响因素,以期本试验研究分析可指导生产检测与产品验收。 关键词:奥氏体304不锈钢;拉伸试验;马氏体;环境温度;试验速率 拉伸试验是力学性能试验中最基础、最常用的试验,拉伸试验中给出的性能指标也是在工业上应用最广泛的材料性能指标。304不锈钢是一种通用型奥氏体不锈钢,它的金属制品耐高温,韧性高,加工性能好,广泛使用于工业和家具装饰行业和食品医疗行业。拉伸性能是其力学性能测试中最基本、最通用的检验指标,也是304不锈钢产品的最基本交货依据。由于304不锈钢属于非稳态奥氏体不锈钢,在拉伸试验变形过程中会发生应变诱发相变产生马氏体,但金属材料本身材质的不均匀性以及在应变强化过程中温度、速率、应变量等均可影响应变诱发马氏体的转变量、转变速率等方面的情况,使得抗拉强度测定结果存在差异,不利于测试的进行。因此,有必要对拉伸试验检测结果波动的影响因素进行分析,掌握不同测试条件下拉伸性能测试结果的变化规律,从而对所检验的材料做出科学的评价。 1试验材料与试验方法 1.1试验材料 试验材料选用厚度为20mm、共3个炉号的热轧固溶态304不锈钢板,不同炉号钢板的化学成分略有不同。 1.2 试验方法 采用不同试验温度(在GB/T228.1-2010规定的温度范围内10~35℃)和不同拉伸试验速率(上、下限分别略大于和略小于GB/T228.1-2010规定的拉伸速率范围0.005~0.008s-1)对 上述304不锈钢板进行拉伸试验。拉伸试验用试样为螺纹头棒状试样,试样形状及尺寸如图1所示。拉伸试验前后分别测试试样均匀变形段的马氏体含量。拉伸试验采用德国产Z300高低温电子拉伸试验机完成,马氏体含量测定用瑞士产FeritscopeFMP30铁素体含量测定仪完成。 2 试验结果与讨论 2.1 304不锈钢加工硬化分析

铸造用的硅砂及质量控制

铸造用的硅砂及进厂质量控制 林州市合鑫铸业公司李海军 铸造用的硅砂作为造型的主要原材料,其质量的好坏对型砂性能的影响很大。特别是原 砂含泥量过高,使型砂和旧砂中的含泥量增高,导致型砂透气性下降,含水量上升,铸件气 孔缺陷增多。除了强烈影响透气性低和含水量高以外,还会引起型砂韧性变差,造型时起模 困难,砂型棱角易碎,吊砂易断,铸件砂眼废品率增高。对于树脂砂造型或制芯,原砂含泥 量过高还会造成树脂加入量增大,芯子发气量增高等问题。故一般工厂均对型砂和旧砂的含 泥量有明确规定,并至少每周要检测一次。单一砂机器造型铸铁用型砂含泥量一般为 10%-13%,旧砂含泥量为8%-11%。对于粘土型砂用硅砂的含泥量最好<0.8%,树脂等有机粘结剂砂芯用硅砂含泥量最好<0.3%,而且越低越好。所以有效的控制采购原砂的含泥量对提 高铸件的质量很有必要。 对于中部地区,为了就地取才,降低生产成本,一般采购黄河水洗烘干砂做为造型用的 原砂。值得一提的是,黄河砂与河北的承德砂、内蒙的大林砂相比,虽然价格比较便宜,但 含泥量一般均偏高。表1为我厂对进厂的黄河水洗烘干砂的化验数据。 表1 试样号含水量(%)含泥量(%) 粒度(70/140,三筛≥75%) 平均细度1# 0.05 1.12 81.12 76 2# 0.05 0.98 82.86 78 3# 0.05 1.0 79.04 73 4# 0.10 0.98 82.24 76 5# 0.15 1.16 73.78 66 6# 0.10 1.28 73.4 66 7# 0.05 1.30 74.82 71 通过上表可以看出,经过烘干的砂,含水量一般都能满足标准≤0.3%的要求,但含泥量均偏高,70/140目的粒度波动也较大。我们厂曾较长时间的用过河北的承德砂,其含泥量均低于0.6%,而且质量较稳定。 对于手工造型和一般机器造型的工厂来说,为了有效的降低生产成本,可以使用黄河砂 做为造型用的原砂,但要尽量控制其含泥量不要超过1%,否则对型砂性能影响较大。对于树脂砂造型、制芯或生产覆膜砂用的原砂,其含泥量最好低于0.6%或更低。

铸造工艺性之粘土型砂的性能

铸造工艺性之粘土型砂的性能 工艺性能:与各铸造工序的操作相关的砂型性能。影响:生产率、劳动强度、同时影响铸件质量、流动性、可塑性、粘膜型、保存性、吸湿性、溃散性、复用性。 工作性能;直接影响铸件质量的型砂性能成为工作性能。如湿强度、干强度、高温强度、热湿拉强度、透气性、发气性、耐火度、退让性、导热性等。 粘土砂的性能,主要取决于粘土和原砂的材料的性质及砂、土、水的配合比例在很大程度还受混制工艺、紧实度、温度等影响。 1.湿强度 在外力作用下,型砂达到破坏时,单位面积上所承受的力称为强度。型砂在湿态势的强度为湿强度。影响:起模、翻转、合型、搬运过程中造成塌箱。而在浇注时,则可能承受不住金属液的冲刷,冲坏铸型表面,使铸件产生砂眼,甚至炮火。 湿强度包括湿压、湿拉、湿剪强度。 湿强度主要取决于粘土的质量和加入量,含水量、原砂的颗粒组成、混砂质量、紧实程度。 (1)原砂在粘土加入量足够的情况下,砂粒越细、越不均匀,则型

砂质点间的接触面积越大,湿强度越高。 (2)粘土和水分水分适当时,随着粘土量的增加,型砂的湿强度增高。湿强度最大值在水/水+粘土=20%z左右时出现。(3)混砂时间为了保证粘土砂获得一定的强度,混砂时间要充分,钠基膨润土由于吸水时间长,因此比钙基膨润土和普通粘土混砂时间长。 (4)紧实度随着紧实度的提高砂型质点紧密排列,相互接触面积增大,粘土的粘结性能更好的发挥,提高湿强度。 湿强度度对惰性粉末非常敏感,惰性粉末增加,湿强度增加,但是湿拉强度和湿剪强度会降低,砂型发脆,起模时容易损坏型腔。 2.干强度 干强度对于干型、表面干型和干芯在运输、合型及浇注初期有着实际意义通常测定抗弯、抗压、抗拉和抗剪等干强度。砂型烘干后,自由水和吸附水逸失,质点相互靠近,质点间附着力增加,砂型湿强度比干强度有显著增加。 砂粒大小对型砂干强度影响不显著。影响干强度主要是粘土和水分。 在相同的粘土加入量的情况下,一般膨润土砂的干强度高于普通

影响金属材料疲劳强度的八大因素

影响金属材料疲劳强度的八大因素 Via 常州精密钢管博客 影响金属材料疲劳强度的八大因素 材料的疲劳强度对各种外在因素和内在因素都极为敏感。外在因素包括零件的形状和尺寸、表面光洁度及使用条件等,内在因素包括材料本身的成分,组织状态、纯净度和残余应力等。这些因素的细微变化,均会造成材料疲劳性能的波动甚至大幅度变化。 各种因素对疲劳强度的影响是疲劳研究的重要方面,这种研究将为零件合理的结构设计、以及正确选择材料和合理制订各种冷热加工工艺提供依据,以保证零件具有高的疲劳性能。 应力集中的影响 常规所讲的疲劳强度,都是用精心加工的光滑试样测得的,然而,实际机械零件都不可避免地存在着不同形式的缺口,如台阶、键槽、螺纹和油孔等。这些缺口的存在造成应力集中,使缺口根部的最大实际应力远大于零件所承受的名义应力,零件的疲劳破坏往往从这里开始。 理论应力集中系数Kt :在理想的弹性条件下,由弹性理论求得的,缺口根部的最大实际应力与名义应力的比值。 有效应力集中系数(或疲劳应力集中系数)Kf:光滑试样的疲劳极限σ-1与缺口试样疲劳极限σ-1n的比值。 有效应力集中系数不仅受构件尺寸和形状的影响,而且受材料的物理性质、加工、热处理等多种因素的影响。 有效应力集中系数随着缺口尖锐程度的增加而增加,但通常小于理论应力集中系数。 疲劳缺口敏感度系数q:疲劳缺口敏感度系数表示材料对疲劳缺口的敏感程度,由下式计算。 q的数据范围是0-1,q值越小,表征材料对缺口越不敏感。试验表明,q并非纯粹是材料常数,它仍然和缺口尺寸有关,只有当缺口半径大于一定值后,q值才基本与缺口无关,而且对于不同材料或处理状态,此半径值也不同。 尺寸因素的影响

型砂分析及控制

砂系统管理的建议 一、砂系统设备的管理 1、混砂机称量系统定期检查,确保进入混砂机的原辅料 (旧砂、新砂、膨润土、煤粉和回用粉尘等)有准确的计量控制。新砂加入装置应计算流量比例;旧砂称量要控制好稳定性。 2、混砂机的保养非常重要,保养的好坏直接影响混制的 型砂质量。可能的话应做到每班都应进行班后清理工作。 3、进行沸腾冷却床的调试工作,使之达到对旧砂保湿、 降温效果。并应根据不同的季节设定不同的参数,以满足旧砂的工艺要求。 4、进行所有除尘吸风口的调整,并在每个风口的调节阀 门作好刻度标记,以便进一步的调整。除尘量的大小将影响到型砂质量、生产成本和工作环境。通过定期清理除尘管道、布袋等保养工作,来确保除尘器的有效工作。 所有设备的清理和保养应建立书面记录,以便更好的服务于生产。自动化生产对设备的有效工作能力要求很高。

二、型砂的管理 1、原材料的管理 自动造型线对型砂原材料的要求较高。原材料的选择好坏,直接影响到型砂的质量,进而影响铸件的质量。故此,选择优秀供应商就显得非常重要,所谓优秀供应商应包含如下能力:稳定的提供合格产品的能力、完善的售后服务能力。 同时,应建立原材料进厂的检验制度。 2、型砂工艺的建立 要达到利用自动造型线高效、稳定地生产合格铸件的目的,就必须根据造型机的性能、铸件的特点等来建立满足生产要求的型砂工艺参数。 ●型砂工艺参数的建立,依靠型砂实验来实施和验证,这 就需要有相应的实验设备。实验系统的建立是必不可少 的(实验项目见附表)。 ●满足型砂工艺的最基本的要求就是砂系统设备的有效管 理、合格原材料的使用。 3、重要工艺参数的控制 ●紧实率:在型砂成分一定的前提下,紧实率的大小就

简述哪些因素对钢材性能有影响

三、简答题 1.简述哪些因素对钢材性能有影响? 化学成分;冶金缺陷;钢材硬化;温度影响;应力集中;反复荷载作用。2.钢结构用钢材机械性能指标有哪几些?承重结构的钢材至少应保证哪几项指标满足要求? 钢材机械性能指标有:抗拉强度、伸长率、屈服点、冷弯性能、冲击韧性; 承重结构的钢材应保证下列三项指标合格:抗拉强度、伸长率、屈服点。3.钢材两种破坏现象和后果是什么? 钢材有脆性破坏和塑性破坏。塑性破坏前,结构有明显的变形,并有较长的变形持续时间,可便于发现和补救。钢材的脆性破坏,由于变形小并突然破坏,危险性大。 4.选择钢材屈服强度作为静力强度规范值以及将钢材看作是理想弹性一塑性材料的依据是什么? 选择屈服强度f y 作为钢材静力强度的规范值的依据是:①他是钢材弹性及塑性工作的分界点,且钢材屈服后,塑性变开很大(2%~3%),极易为人们察觉,可以及时处理,避免突然破坏;②从屈服开始到断裂,塑性工作区域很大,比弹性工作区域约大200倍,是钢材极大的后备强度,且抗拉强度和屈服强度的比例又较 大(Q235的f u /f y ≈1.6~1.9),这二点一起赋予构件以f y 作为强度极限的可靠安 全储备。 将钢材看作是理想弹性—塑性材料的依据是:①对于没有缺陷和残余应力影响的 试件,比较极限和屈服强度是比较接近(f p =(0.7~0.8)f y ),又因为钢材开始屈服 时应变小(ε y ≈0.15%)因此近似地认为在屈服点以前钢材为完全弹性的,即将屈服点以前的б-ε图简化为一条斜线;②因为钢材流幅相当长(即ε从0.15%到2%~3%),而强化阶段的强度在计算中又不用,从而将屈服点后的б-ε图简化为一条水平线。 5.什么叫做冲击韧性?什么情况下需要保证该项指标? 韧性是钢材抵抗冲击荷载的能力,它用材料在断裂时所吸收的总能量(包括弹性和非弹性能)来度量,韧性是钢材强度和塑性的综合指标。在寒冷地区建造的结构不但要求钢材具有常温(℃ 20)冲击韧性指标,还要求具有负温(℃ 0、℃ 20 -或℃ 40 -)冲击韧性指标。

检测实验室质量控制结果评价方法

检测实验室质量控制结果评价方法 【摘要】本文主要讨论检测实验室对检测结果的检查方法及质量控制结果的评价方法。 【关键词】质量控制;结果评价;F检验;t检验 检测实验室的“产品”是检测结果,确保检测结果的公正、准确、可靠是检测实验室的最终质量目标,也是通过国家实验室认可、体系、计量认证评审的必要条件。检测结果的质量控制是对检测过程进行监控,以消除误差、防止变化、维持标准化作业的一个管理过程;ISO/IEC17025—2005《检测和校准实验室能力通用要求》中规定,实验室应有质量控制程序以监督检测的有效性。为控制实验室检测结果的准确性,实验室必须进行检测结果的质量控制。本文作者一直从事实验室检测及质量控制方面的工作,当得到一系列的检测结果,结果是否有效可靠的?使用这些方法进行质量控制以及方法确认时,得到的结果怎么评价?评价方法有哪些?本文将重点探讨这方面的内容。 1 在重复性条件下测量结果的检查方法 1.1 两个初始测试结果 1.1.2 测试费用高的情形 1.2 两个以上初始测试结果 当初始结果数大于2的情形,在重复性条件下n>2时,确定最终测量结果的方法与n=2的方法类似,在这里就不做详细讨论。 2 在再现性条件下所得结果可接受的检查方法 再现性条件是测量方法、测量设备、操作者以及环境设施等因素中有一项或几项不同的测量条件。 2.1 两个实验室测量结果一致性统计检验 2.1.1 每个实验室取得一个测量结果的检验 当两个实验室各取一个测量结果,用再现性限R检验两个结果之差的绝对值。如果差的绝对值不大于R,两个结果即为一致,取其平均值作为最终测量结果;如果两个结果之差的绝对值大于R,必须查明原因是否由于测量方法的精密度低和试样的差异所致。 2.1.2 每个实验室取得一个以上测量结果的检验

影响材料性能的因素

1.0影响材料性能的因素 2.01.1碳当量对材料性能的影响字串9 决定灰铸铁性能的主要因素为石墨形态和金属基体的性能。当碳当量()较高时,石墨的数量增加,在孕育条件不好或有微量有害元素时,石墨形状恶化。这样的石墨使金属基体能够承受负荷的有效面积减少,而且在承受负荷时产生应力集中现象,使金属基体的强度不能正常发挥,从而降低铸铁的强度。在材料中珠光体具有好的强度、硬度,而铁素体则质底较软而且强度较低。当随着 C、Si的量提高,会使珠光体量减少,铁素体量增加。因此,碳当量的提高将在石墨形状和基体组织两方面影响铸铁铸件的抗拉强度和铸件实体的硬度。在熔炼过程控制中,碳当量的控制是解决材料性能的一个很重要的因素。 1.2合金元素对材料性能的影响 在灰铸铁中的合金元素主要是指Mn、Cr、Cu、Sn、Mo等促进珠光体生成元素,这些元素含量会直接影响珠光体的含量,同时由于合金元素的加入,在一定程度上细化了石墨,使基体中铁素体的量减少甚至消失,珠光体则在一定的程度上得到细化,而且其中的铁素体由于有一定量的合金元素而得到固溶强化,使铸铁总有较高的强度性能。在熔炼过程控制中,对合金的控制同样是重要的手段。 1.3炉料配比对材料的影响字串4 过去我们一直坚持只要化学成分符合规范要求就应该能够获得符合标准机械性能材料的观点,而实际上这种观点所看到的只是常规化学成分,而忽略了一些合金元素和有害元素在其中所起的作用。如生铁是Ti的主要来源,因此生铁使用量的多少会直接影响材料中Ti的含量,对材料机械性能产生很大的影响。同样废钢是许多合金元素的来源,因此废钢用量对铸铁的机械性能的影响是非常直接的。在电炉投入使用的初期,我们一直沿用了冲天炉的炉料配比(生铁:25~35%,废钢:30~35%)结果材料的机械性能(抗拉强度)很低,当我们意识到废钢的使用量会对铸铁的性能有影响时及时调整了废钢的用量之后,问题很快得到了解决,因此废钢在熔化控制过程中是一项非常重要的控制

螺栓抗拉承载力计算

螺栓抗拉承载力计算 首先,纠正一下,楼主的问题应当是:螺栓抗拉承载力计算。 简单说,强度是单位面积的承载力,是一个指标。 公式: 承载力=强度x 面积; 螺栓有螺纹,M24螺栓横截面面积不是24直径的圆面积,而是353平方毫米,称之为有效面积. 普通螺栓C级(4.6和4.8级)抗拉强度是170N/平方毫米。 那么承载力就是:170x353=60010N. 换算一下,1吨相当于1000KG,相当于10000N,那么M24螺栓也就是可以承受约6吨的拉力。 螺栓有效面积可以从五金手册或钢结构手册查,强度指标可以从相关钢结构手册或规范查。当然这些也可以从网上查. 焊缝的抗拉强度计算公式比较简单 许用应力乘焊接接头系数在乘焊缝面积除以总面积,这就是平均焊接抗拉强度 抗拉强度与伸长率计算 公称直径为$7.0mm,其最大拉伸力为22。4KN,其断后标距为76.10mm,计算它的抗拉强度与身长率~!] 抗拉强度=拉力值/实际横截面面积 伸长率=(断后标距-标距)/标距*100% 抗拉强度Rm=22.4/(3.14*3.5*3.5)*10000=713.38MPa,修约后=715MPa 延伸A=(76.1-70)/70=8.71% ,修约后=8.5% 修约规则<0.25 约为0 ≥0.75约为1 ≥0.25且小于0.75约为0.5 请问抗拉强度和屈服强度有什么区别? 抗拉强度: 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值(b点对应值)称为强度极限或抗拉强度

实验室内部质量控制方法分析

实验室内部质量控制方法分析 评审资料 (1)能力附表; (2)标准汇总(所有参数中包含的参数全覆盖); (3)标准查新; (4)原始记录模版的编制及清单汇总; (5)练兵报告(每个参数的练兵至少5 次); (6)新项目开发表; (7)方法验证(所有扩项参数全覆盖); (8)实验室之间比对及分析表(每月至少2次,并且全员覆盖); (9)内部的比对及分析表(每月至少2次,并且全员覆盖); (10)内部的质量监督记录(每月至少2次,并且全员覆盖); (11)培训记录(所有扩项参数全覆盖); (12)仪器的检定证书及检定确认表(包括玻璃仪器的自校记录); (13)仪器的期间核查记录; (14)仪器的作业指导书; (15)仪器的检测台账; (16)样品的检测记录(每周一次); (17)标准物质的期间核查记录; (18)试剂标准品的采购验收记录; (19)留样登记记录; (20)留样处理记录; (21)温室度的登记记录; (22)溶液配制记录等。 内部控制 实验室内部的质量控制主要是用于评价实验室检测质量的精密度,同时反映了实验室分析质量的稳定性。实验室内部的质量控制的方法主要有:人员比对、方法比对、仪器比对、留样再测、有证标准物质检测、加标回收等。

实验室内部质量控制的特点:(1)比较方便简单灵活。实验室内部质量控制都是有实验室内部自行组织实施的,组织者和实施者均为实验室内部的人员。可以根据实验室的实际工作情况进行调整,是比较灵活自由的;如果实验室数据出现异常时,就可以进行人员比对或方法比对及仪器比对等方式自行排查。(2)多样性。在日常试验中影响数据准确性的因素是很多的。可以通过人、机、料、法、环等方面针对不用的因素进行原因分析。 人员比对 是指不同检验员对同一样品,使用同一方法,同一仪器,比较测定结果的符合性,来评价检验人员的操作水平。人员比对的考核对象是试验员,主要目的是评价不同试验员的检测差异、理解差异及操作差异和存在的问题。实验室应根据情况需要定期的开展人员比对试验,通常人员比对主要用于以下目的是对新进人员、新培训人员的检测能力及在岗人员的检测能力监督。实验室内部的质量控制是确保检测质量的稳定有效,因此应对所有在岗的人员的技术能力的稳定性进行定期的监督考核。 方法比对 是同一人用不同方法对同一试验进行检测,验证检测结果的可靠性。方法比对的验证对象是检测方法,主要是为了评价不同方法之间是否存在差异性。实验室应该定期对我们实验室能力认可的检测方法进行验证比对,这样可以避免检验方法中存在的系统误差,可以监控检测结果的有效性及符合性。 仪器比对 是同一人对同一样品的同一个检测项目使用同一检测方法用不同的仪器进行检测,验证结果的精密度及可靠性,同时也验证了仪器的可比性。仪器比对的验证对象是检测设备,主要是为了评价不用的检测设备性能是否存在差异性(如:仪器的自动化、智能化、灵敏度、精密度、准确度、抗干扰能力等),检测结果的符合性及其他性能的可比性。实验室应定期开展仪器比对试验,通常仪器比对试验主要两种情况。一种是实验室新增仪器或仪器经过维修,另一种更是检测设备经过检定校准后时,实验室要在使用之前要进行仪器比对,来验证仪器的测试性能是否满足检测方法需求,以原来的检测结果进行比较分析,务必要确保仪器的稳定性,这样才能保证我们的检测结果。目前根据仪器分析技术的不断发展和广泛应用,实验室的检测设备不断在的更新换代,不但种类繁多,规格型号也繁多。一般情况下,从仪器比对定义来看,只要能检测同一检测项目的仪器均可以进行仪器比对,但是比对

影响材料力学性能测试的因素

影响材料力学性能测试的因素 1 拉伸实验强度和延性丈量的准确度和偏向取决于能否严厉恪守指定实验办法并受设备和材料要素、试样制备和实验、丈量误差的影响。 2 关于相同材料的复验协商分歧取决于材料的平均性、试样制备的反复性、实验条件和拉伸实验参数的测定。 3 可影响实验结果的设备要素包括:拉伸实验机的刚性、减震才能、固有的频率和运动部件重量;力的指针准确度和实验机不同范围内力的运用;恰当的加力速度、用适宜的力使试样对中、夹具的平行度、夹持力、控制力的大小、引伸计的适用性和标定、热的消散(经过夹具、引伸计或辅助安装)等等。 4 能影响实验结果的材料要素包括:实验材料的代表性和平均性、试样型式、试样制备(外表光亮度,尺寸准确度,标距端部过渡圆弧,标距内锥度,弯曲试样,螺纹质量等等)。 a、有些材料对试样外表光亮度十分敏感(见注8) 必需研磨至理想光亮度,或者抛光至得到正确结果。 b、关于铸造的、轧制的、锻造的或其他非加工外表状态的试样,实验结果可能受外表特性影响(见注14)。 c、取自部件或构件隶属部位的试样,像外延局部或冒口,或者独立消费的铸件(例如, 脊形试块)可能产生不具部件或构件代表性的实验结果。 d、试样尺寸可能影响实验结果。关于圆柱形的或矩形的试样,改动试样尺寸普通对屈从强度和抗拉强度影响很小,但假如呈现改动,则可影响上屈从强度、伸长率和断面收缩率。用下式比拟不同试样测定的伸长率值: L0/(A0)1 / 2 ( 1) 其中: L0 = 试样的原始标距 A0 = 试样的原始横截面积 1 具有较小的L0/(A0)1 / 2 比值的试样普通会得出较大的伸长率和断面收缩率,例如矩形拉伸试样的宽度或厚度增加后,状况即如此。 2 坚持L0/(A0)1 / 2r比值固定最小值,但影响不大。由于增加图8比例试样的尺寸可发现伸长率和面积收缩有所增加或减少,这取决于材料和实验条件。 e、标距内有一个允许的1 %的锥度可招致伸长率值降低。1 %的锥度会使伸长率降低15 % 。

实验室内部质量控制的技术方法指南

实验室内部质量控制的技术方法指南 实验室内部质量控制的技术方法包括采用标准物质监控、人员比对、方法比对、仪器设备比对、留样复测,空白测试、重复测试、回收率试验、校准曲线的核查以及使用质量控制图等。 1 标准物质监控 1.1质控过程 通常的做法是实验室直接用合适的有证标准物质或内部标准样品作为监控样品,定期或不定期将监控样品以比对样或密码样的形式,与样品检测以相同的流程和方法同时进行,检测室完成后上报检测结果给相关质量控制人员,也可由检测人员自行安排在样品检测时同时插人标准物质,验证检测结果的准确性。 1.2适用范围 一般可用于:仪器状态的控制、样品检测过程的控制、实验室内部的仪器比对、人员比对、方法比对以及实验室间比对等。这种方法的特点是可靠性高,但成本高。 2人员比对 2.1质控过程 由实验室内部的检测人员在合理的时间段内,对同一样品,使用同一方法,在相同的检测仪器上完成检测任务,比较检测结果的符合程度,判定检测人员操作能力的可比性和稳定性。实验室进行人员比对,比对项目尽可能检测环节复杂一些,尤其是手动操作步骤多一些。检测人员之间的操作要相互独立,避免相互之间存在干扰。通常情况下,实验室在监督频次上对新上岗人员的监督高于正常在岗人员,且在组织人员比对时最好始终以本实验室经验丰富和能力稳定的检测人员所报结果为参考值。 2.2适用范围 实验室内部组织的人员比对,主要目的是评价检测人员是否具备上岗或换岗的能力和资格,因此,主要用于考核新进人员、新培训人员的检测技术能力和监督在岗人员的检测技术能力两个方面。 3方法比对 3.1质控过程 方法比对是不同分析方法之间的比对试验,指同一检测人员对同一样品采用不同的检测方法,检测同一项目,比较测定结果的符合程度,判定其可比性,以验证方法的可靠性。方法比对的考核对象为检测方法,主要目的是评价不同检测方法的检测结果是否存在显著性差异。比对时,通常以标准方法所得检测结果作为参考值,用其他检测方法的检测结果与之进行对比,方法之间的检测结果差异应该符合评价要求,否则,即证明非标方法是不适用的,或者需要进一步修改、优化。 3.2适用范围 方法比对主要用于考察不同的检测方法之间存在的系统误差,监控检测结果的有效性,其次也用于对实验室涉及的非标方法的确认。

影响钢材力学性能的因素2.

2.3影响钢材力学性能的因素 影响钢材力学性能的因素有: 化学成分冶金和轧制过程时效冷作硬化温度 应力集中和残余应力复杂应力状态 1.化学成分 钢的基本元素为铁(Fe),普通碳素钢中占99%,此外还有碳(C)、硅(Si)、锰(Mn)等杂质元素,及硫(S)、磷(P)、氧(O)、氮(N)等有害元素,这些总含量约1%,但对钢材力学性能却有很大影响。 碳:除铁以外最主要的元素。碳含量增加,使钢材强度提高,塑性、韧性,特别是低温冲击韧性下降,同时耐腐蚀性、疲劳强度和冷弯性能也显著下降,恶化钢材可焊性,增加低温脆断的危险性。一般建筑用钢要求含碳量在0.22%以下,焊接结构中应限制在 0.20%以下。 硅:作为脱氧剂加入普通碳素钢。适量硅可提高钢材的强度,而对塑性、冲击韧性、冷弯性能及可焊性无显著的不良影响。一般镇静钢的含硅量为0.10%~0.30%,含量过高(达1%),会降低钢材塑性、冲击韧性、抗锈性和可焊性。 锰:是一种弱脱氧剂。适量的锰可有效提高钢材强度,消除硫、氧对钢材的热脆影响,改善钢材热加工性能,并改善钢材的冷脆倾向,同时不显著降低钢材的塑性、冲击韧性。 普通碳素钢中锰的含量约为0.3%~0.8%。含量过高(达1.0%~1.5%以上)使钢材变脆变硬,并降低钢材的抗锈性和可焊性。 硫:有害元素。引起钢材热脆,降低钢材的塑性、冲击韧性、疲劳强度和抗锈性等。一般建筑用钢含硫量要求不超过0.055%,在焊接结构中应不超过0.050%。 磷:有害元素。虽可提高强度、抗锈性,但严重降低塑性、冲击韧性、冷弯性能和可焊性,

尤其低温时发生冷脆,含量需严格控制,一般不超过0.050%,焊接结构中不超过 0.045%。 氧:有害元素。引起热脆。一般要求含量小于0.05%。 氮:能使钢材强化,但显著降低钢材塑性、韧性、可焊性和冷弯性能,增加时效倾向和冷脆性。一般要求含量小于0.008%。 为改善钢材力学性能,可适量增加锰、硅含量,还可掺入一定数量的铬、镍、铜、钒、钛、铌等合金元素,炼成合金钢。钢结构常用合金钢中合金元素含量较少,称为普通低合金钢。 2.冶金轧制过程 ?按炉种分: 结构用钢我国主要有三种冶炼方法:碱性平炉炼钢法、顶吹氧气转炉炼钢法、碱性侧吹转炉炼钢法。 平炉钢和顶吹转炉钢的力学性能指标较接近,而碱性侧吹转炉钢的冲击韧性、可焊性、时效性、冷脆性、抗锈性能等都较差,故这种炼钢法已逐步淘汰。 ?按脱氧程度分: 沸腾钢、镇静钢和半镇静钢。 沸腾钢脱氧程度低,氧、氮和一氧化碳气体从钢液中逸出,形成钢液的沸腾。沸腾钢的时效、韧性、可焊性较差,容易发生时效和变脆,但产量较高、成本较低;半镇静钢脱氧程度较高些,上述性能都略好;而镇静钢的脱氧程度最高,性能最好,但产量较低,成本较高。 3.其他因素 时效

相关文档
最新文档