探索勾股数

探索勾股数
探索勾股数

探索勾股数

发表时间:2012-05-03T10:39:15.457Z 来源:《中小学教育》2012年5月总第99期供稿作者:董常宝[导读] 我们可以将类似的内容作为学生的课题性学习,开阔学生的思路,达到帮助教学的目的。

董常宝河北省邯郸市第十一中学056002 摘要:如果三角形的三边长a、b、c满足a2+b2=c2,并且a、b、c都是正整数,那么a、b、c称为勾股数。如果a、b、c 三者互质(它们的最大公因数是1),它们就称为素勾股数。勾股数中含有许多规律,我们对其进行了探索。关键词:勾股数素勾股数奇数偶数质数如果三角形的三边长a、b、c满足a2+b2=c2,并且a、b、c都是正整数,那么a、b、c称为勾股数。如果正整数a、b、 c是勾股数,那么易证它们的正整数倍数也是勾股数:∵a2+b2=c2,∴(na)2 +(nb)2 =n2a2+n2b2=n2(a2+b2)= n2c2=(nc)2,即正整数na、nb、nc也是勾股数。如果a,b, c三者互质(它们的最大公因数是1),它们就称为素勾股数。

其实这是生活在2500年前的古希腊数学家、哲学家毕达哥拉斯在摆放小石子时发现的:当小石子的数目是l、3、6、10等数时,小石子都能摆成正三角形,他把这些数叫做三角形数;当小石子的数目是l、4、9、16等数时,小石子都能摆成正方形,他把这些数叫做正方形数……如图,在一些正方形数里(0当作石子),左上角第一个框内的数是正方形n2,;第二框内的正方形数是(n+1)2。

显然,(n+1)2-n2=2n+1。若2n+1是完全平方数,可设2n+1=w2,而它又是奇数,所以w必是奇数。再设w=2p+1,则: 2n+1=(2p+1)2=4p2+4p+1,则n=2p2+2p=2p(p+1), (n+1)2=[2p(p+1)+1]2,n2=[2p(p+1)]2。

所以[2p(p+1)+1]2-[2p(p+1)]2=(2p+1)2,这组勾股数也叫毕达哥拉斯数。

几百年后,希腊数学家丢番图(Diophontus,约250)发现了2mn、m2-n2、m2+n2这组勾股数,他在《算术》一书中论述了求解x2+y2=z2的一般解的问题。

若令n=1,m=2q(q为正整数);则第二组数可转化为“2×2q,(2q)2-12,(2q)2+12”,化简得到:4q,4q2-1,4q2+1所以当n=1,m为偶数时,第三组数是第一组数的特例。

这组数常用数据可以用下表表示:

显然,最短边为偶数时,勾股数有此规律,而且这些勾股数都是素勾股数。

所以不小于3的自然数为勾股,必存在一组勾股数。素勾股数(不是所有的素勾股数)很多都可用上述列式找出,这亦可推论到,数学上存在无穷多的素勾股数。有些勾股数组可以有同一个最小的勾股数。第一个例子是20,它在以下两组勾股数之中出现了:20、21、29与20、99、101。

在这里,我们发现了一些事实或规律:

1.勾股数不可能是三个奇数,因为两个奇数的平方和不可能是第三个奇数的完全平方。比如(2m+1)2+(2n+1)2=4m2+4n2+4m+4n+2是偶数,所以直角三角形较短两边(边为整数)一定是一奇一偶。

2.最短边为奇数2p+1时,最短边的平方等于另外两条边的和。

设最短边为2p+1,则(2p+1)2=4p2+4p+1=2p(p+1)+[2p(p+1)+1];

即a2=b+c(a

3.勾股数a、b、c,若a为质数,则2(a+b+1)与2c-1均为完全平方数。理由:勾股数a为质数,a必为奇数,可令a=2p+1,则b=2p2+2p,c=2p2+2p+1;

∴2(a+b+1)=2(2p+1+2p2+2p+1)=4(p+1)2; 2c-1=2(2p2+2p+1)-1=4p2+4p+1=(2p+1)2。

4.注意第一组数“2mn,m2-n2,m2+n2”中若m和n互质,而且m和n至少有一个是偶数,计算出来的a、b、c就是素勾股数(若m和n都是奇数,a、b、c就会全是偶数,不符合互质)。

勾股数的规律

精选范本 所谓勾股数,就是当组成一个直角三角形的三边长都 为正整数时,我们就称这一组数为勾股数 那么,组成一组勾股数的三个正整数之间, 是否具有一定的规律 可寻呢?下面我们一起来观察几组勾股数: 规律一:在勾股数(3, 4, 5)、( 5,12,13)、( 7, 24, 25)( 9, 40,41)中,我们发现 由(3, 4, 5)有: 3 2=9=4+5 由(5, 12, 13)有: 5 =25=12+13 由(7, 24, 25)有: 7 =49=24+25 由(9, 40, 41)有: 92=81=40+41. 即在一组勾股数中,当最小边为奇数时,它的平方刚好 等于 另外两个连续的正整数之和。 因此,我们把它推广到一般,从而 可得出以下公式: 2 2 2 2 ???(2n+1) =4n+4n+仁(2n +2n ) + (2n+2n+1) 2 2 2 2 2 ???(2n+1) + (2n+2n ) = (2n+2n+1) (n 为正整数) 勾股数公式一:(2n+1, 2n 2+2n , 2n 2+2n+1)(n 为正整数) 等于两个连续整数之和的二倍,推广到一般,从而可得出另一公式: 2 2 2 2 ???(2n ) =4n =2[ (n-1 ) + (n+1)] ???(2n ) + (n-1 ) = (n +1) (n 》2 且 n 为正整数) 勾股数公式二:(2n , n 2-1 , n 2+1)( n 》2且n 为正整 数) 禾U 用以上两个公式,我们可以快速写出各组勾股数。 规律二:在勾股数(6, 8, 26)中,我们发现 由(6, 8, 10)有: 由(8, 15, 17)有: 由(10, 24, 26)有: 即在 一组勾股数中, 10)、( 8, 15, 17)、( 10, 24, 2 6 =36=2X( 8+10) 82=64=2X( 15+17) 2 10 =100=2X( 24+26) 当最小边为偶数时,它的平方刚好

苏科版八年级上册数学 3.4数学活动 探寻勾股数 教案

教学内容探寻“勾股数” 教学目标知识与能力1.理解勾股数定义,了解其中规律,会判断和构造勾股数 过程与方法2.经历探索分析的过程,从特殊到一般发现部分勾股数的内在规律情感与态度3.感受数学规律的内在奥秘,激发探索数学的兴趣 教学重点勾股数的特征 教学难点利用勾股数特征构造勾股数 教具学具多媒体课件白板 教学过程教师活动学生活动设计意图 一、数学史,引入新课一、勾股定理史 中国古代 勾股定理在初中课本中就学习过,其内容如下:“在 直角三角形中,斜边(弦)的平方等于两直角边(短者叫 勾,长者叫股)平方的和.” 约在公元前100年成书的我国现存最古的一 部数学典籍《周髀算经》中记载,在公元前1100 多年我国数学家商高与周公谈话中就明确提出了 “勾广三,股修四,弦隅五”,且在同一书中记载 的荣方与陈子的问答中,更谈到由勾股求弦的一般 方法是“勾股各自乘,并而开方除之”,可见已给 出了普遍的勾股定理.正因为商高首先提出了勾股 定理,不少人把该定理称之为商高定理. 国外 在商高定理的研究方面作出贡献的除中国古代数学家 外,还有许多别的国家和民族的数学家,特别是古希腊、 埃及、印度的数学家.公元前六世纪,古希腊数学家毕达 哥拉斯(公元前582年——前497年)是西方第一个证明 勾股定理的人,国外常称其为毕达哥拉斯定理。 阅读PPT,感 受勾股定理。 生活中蕴藏 着很多有趣 的知识,从中 外数学史引 入,鼓励学生 善于观察,激 发探索学习 的乐趣。 二、数学活动探索 1.活动引入 满足关系的3个正整数, 问题: 1.勾股数有多少? 2.请尽可能多地写出来。 3.勾股数有规律吗? 齐答勾股数概 念 学生随机作 答,并展出, 问题3进行探 索。 回顾勾股数 概念 三个问题,逐 层递进,引出 本节课的研 究内容勾股 数特征。

1.1探索勾股定理

探索勾股定理(一) 一、活动探究 观察下面两幅图: (1)填表: (2)你是怎样得到正方形C 的面积的?与同伴交流. (3)如果直角三角形的两直角边为a 、b ,斜边为c ,用直角三角形的边长来表示上图中正方形的面积 (4)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?分别以3厘米、4厘米为直角边作出一个直角三角形呢? 用符号表示为: 变形公式:(1)___________________________ ( 2 ) 二、勾股定理的简单应用 1、 如图所示,一棵大树在一次强烈台风中于离地面10m 处折断倒下,

树顶落在离树根24m 处. 大树在折断之前高多少? 2、求下列图形中未知正方形的面积或未知边的长度 3、直角三角形两边长为3和4,求第三边长的平方 4、小明妈妈买了一部29英寸(74厘米)的电视机. 小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗? 想一想:观察下图,探究图中三角形的三边长是否满足222c b a =+ 基础训练: 1.为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刚搬来一架高为2.5米的木梯,准备把拉花挂到2.4米的墙上,则梯脚与墙角的距离应为 米. 2.如图,小张为测量校园内池塘A ,B 两点的距离,他在池塘边选定一点 C ,使∠ABC =90°,并测得AC 长26m ,BC 长24m ,则A ,B 两点间的距离 为 m . ?225 100x 17a b c a b c C B

勾股定理知识点总结

第十七章勾股定理知识点总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在ABC ?中,90 ∠=?,则c, C b,a=) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c; (2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形 (若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2

区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法. 5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解. 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A

勾股定理全章知识点归纳总结

全国中考信息资源门户网站 https://www.360docs.net/doc/5d10597548.html, 勾股定理全章知识点归纳总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在A B C ?中,90C ∠=? ,则22 c a b = +, 2 2 b c a = -,22 a c b = -) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a 、b 、c ,则有关系a 2+b 2=c 2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意: (1)首先确定最大边,不妨设最长边长为:c ; (2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形 (若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2

全国中考信息资源门户网站 https://www.360docs.net/doc/5d10597548.html, 3:勾股定理与勾股定理逆定理的区别与联系 区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法. 5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解. 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ? +=正方形正方形ABCD ,22 14()2 ab b a c ? +-=,化简可证. c b a H G F E D C B A

勾股数规律的探究

勾股数的规律 能够组成一个直角三角形的三边长的正整数,叫做勾股数。如“勾三股四弦为五”(3,4,5)再如常见的(6,8,10)(5,12,13)、(7,24,25),熟记一些勾股数利于我们更快、更准的解决于直角三角形有关的实际问题。下面就勾股数的三个正整数之间的规律进行探究: 规律一:在勾股数(3,4,5)、(5,12,13)、(7,24,25)(9,40,41)中,我们发现 由(3,4,5)有: 32=9=4+5 由(5,12,13)有: 52=25=12+13 由(7,24,25)有: 72=49=24+25 由(9,40,41)有: 92=81=40+41. 即在一组勾股数中,当最小边为奇数时,它的平方刚好等于另外两个连续的正整数之和。 其论证如下:数a为大于1的正数,则2a+1为奇数数,则有 ∵(2a+1)2=4a2+4a+1=(2a2+2a)+(2a2+2a+1) ∴(2a +1)2+(2a 2+2a)2=(2a2+2a+1)2 因此,我们把它推广到一般,从而可得出勾股数公式一: (2a+1,2a2+2a,2a2+2a+1)(a为正整数) 或整理为:对于一个大于1的整奇数m,构成的勾股数为(m,,)

规律二:在勾股数(6,8,10)、(8,15,17)、(10,24,26)中,我们发现 由(6,8,10)有: 62=36=2×(8+10) 由(8,15,17)有: 82=64=2×(15+17) 由(10,24,26)有: 102=100=2×(24+26) 即在一组勾股数中,当最小边为偶数时,它的平方刚好等于两个连续且相差为2的整数之和的二倍。 其论证如下:数a为大于1的正数,则2a为偶数,则有 ∵(2a)2=4a2=2[(a2-1)+(a2+1)] ∴(2a)2+(a2-1)2=(a2+1)2(a≥2且a为正整数) 因此,我们把它推广到一般,从而可得出勾股数公式二: (2a,a2-1,a2+1)(a≥2且a为正整数) 或整理为:对于一个大于1的整偶数m,构成的勾股数为 (m,,)

八年级下册勾股定理知识点归纳

八年级下册勾股定理知识点和典型例习题 一、基础知识点: 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形通过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD , ,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形 的面积与小正方形面积的和为221 422 S ab c ab c =?+=+ 大正方形面积为 2 22() 2S a b a a b b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠ =?,则c =,b ,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实 际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;否则,就不是直角三角形。 ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25,8,15,17等 ③用含字母的代数式表示n 组勾股数: c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

专题1.2 勾股定理章末重难点题型(举一反三)(人教版)(解析版)

专题1.2 勾股定理章末重难点题型 【人教版】 【考点1 利用勾股定理求面积】 【方法点拨】解决此类问题要善于将面积中的平方式子与勾股定理中的平方式子建立联系. 【例1】(2019春?鄂城区期中)在Rt AED ?中,90E ∠=?,3AE =,4ED =,以AD 为边在AED ?的外侧作正方形ABCD ,则正方形ABCD 的面积是( ) A .5 B .25 C .7 D .10 【分析】根据勾股定理得到225AD AE DE =+=,根据正方形的面积公式即可得到结论. 【答案】解:Q 在Rt AED ?中,90E ∠=?,3AE =,4ED =, 225AD AE DE ∴+=, Q 四边形ABCD 是正方形, ∴正方形ABCD 的面积22525AD ===, 故选:B .

【点睛】本题考查了勾股定理,正方形的面积的计算,熟练掌握勾股定理是解题的关键. 【变式1-1】(2019春?宾阳县期中)如图,图中所有的三角形都是直角三角形,四边形都是正方形,其中最大正方形E 的边长为10,则四个正方形A ,B ,C ,D 的面积之和为( ) A .24 B .56 C .121 D .100 【分析】根据正方形的性质和勾股定理的几何意义解答即可. 【答案】解:根据勾股定理的几何意义,可知: E F G S S S =+ A B C D S S S S =+++ 100=; 即四个正方形A ,B ,C ,D 的面积之和为100; 故选:D . 【点睛】本题考查了正方形的性质、勾股定理的几何意义,关键是掌握两直角边的平方和等于斜边的平方. 【变式1-2】(2019春?武昌区校级期中)如图,Rt ABC ?中,90ACB ∠=?,以AC 、BC 为直径作半圆1S 和2S ,且122S S π+=,则AB 的长为( )

探索勾股定理1

课题:§1、1、3探索勾股定理导学稿 主备:审核: 审批:班级:使用人: 【学习目标】 1、使学生通过对“青朱出入图”的探究,通过操作活动感受勾股定理的“无字证明”。 2、理解并掌握勾股定理,用它解决一些简单的问题。 【学习重点】 动手拼摆“五巧板”进一步验证勾股定理。 【学前准备】 1、按照课本13页的“做一做”,用较硬的纸制作两幅“五巧板”。(要求:尽可能做大一些) 2、什么是勾股定理? 【自学探究】 1、能否将两个大小相等的正方形拼成一个较大的正方形?若能,大小正方形的边长之比是多少? 2、通过看课本和查资料了解“青朱出入图”。 预习后你还有什么问题?最想和大家讨论交流的问题是什么? 【合作交流】 1、“青朱出入图”

2、做一做:(要求:实际动手拼摆后,课后将其粘到导学稿上) (1)取两幅五巧板,将其中的一幅拼成一个以c为边长的正方形;将另一副拼成两个边长分别为a、b的正方形。 (2)你能拼出“青朱出入图”吗?当然可能有部分是重复的了。 (3)利用五巧板,你还能通过怎样的拼图验证勾股定理?与同伴交流。

3、课本14页的“议一议” 问题: 如果一个三角形不是直角三角形,那么它的三边a、b、c满足a2+b2=c2吗? 【随堂练习】 课本15页的问题解决第1题(要求抄题画图) 【小结】 通过这节课的学习,你有什么收获?还有什么问题? 【今日作业】 1、一个直角三角形的斜边为20cm,且两直角边的长度比为3:4,求两直角边的长。 【巩固与拓展】 1、课本15页的问题解决第2题(要求:实际动手操作) 2、课本16页的联系拓广3

3、从网上收集有关勾股定理的资料,撰写小论文,与同伴交流。 家校联系:(家长反馈意见或签名)

探究勾股数

探究勾股数两例 满足a 2+b 2=c 2的三个正整数,称为勾股数.对于给定的三个正整数,若能验证其中最大数的平方等于其他两数的平方和,这组数就一定是勾股数,否则不是.可以验证若a 、b 、c 是一组勾股数,则ka 、kb 、kc (k 为正整数)也是勾股数. 以下几个都可构成勾股数: 1.设n 为正整数,且n >1,a =2n ,b =n 2-1,c =n 2+1; 2.设n 为正整数,a =2n +1,b =2n 2+2n ,c =2n 2+2n +1; 3.设m 、n 为正整数,且m >n ,则a =m 2-n 2,b =2mn ,c =m 2+n 2; 例1 据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连结得一个直角三角形,如果勾是三,股是四,那么弦就等于五.后人概括为:“勾三、股四、弦五”. (1)观察:3、4、5;5、12、13;7、24、25;…发现这些勾股数的“勾”都是奇数,且从3起就没有间断过,计算 21(9-1),21(9+1)与21(25-1),2 1 (25+1),并根据你发现的规律,分别写出能(用勾)表示7、24、25的股和弦的算式; (2)根据(1)的规律,用n (n 为奇数且n ≥3)的代数式来表示所有这些勾股数的勾、股、弦.猜想它们之间的两种相等关系,并对其中一种猜想加以说明; (3)继续观察4、3、5;6、8、10;8、15、17;….可以发现各组的第一个数都是偶数,且从4起也没有间断过,运用类似上述探索的方法,直接用m (m 为偶数且m >4)的代数式来表示它们的股和弦. 分析:本题是一个勾股数的探索问题,考查观察、分析、类比、猜想和论证等能力.第(2)、(3)两小题都具有开放性,能较好地考查大家的创新意识和能力. 解:(1)因为 21(9-1)=21(32-1)=4, 21(9+1)=21(32+1)=5,21(25-1)=2 1 (52-1)=12, 21(25+1)=2 1 (52+1)=13, 对于3、4、5和5、12、13两组勾股数来说,可以表示为: 股= 21(勾2-1),弦=2 1 (勾2+1). 所以7、24、25的股24的算式为21(49-1)=21 (72-1), 7、24、25的弦25的算式为21(49+1)=2 1 (72+1);

勾股定理知识点的总结及练习

第 课时 第十八章 勾股定理 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2 =c 2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在ABC ?中,90C ∠=? ,则 c ,b ,a =) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两 边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += c b a H G F E D C B A a b c c b a E D C B A c b a H G F E D C B A b a c b a c c a b c a b

方法三:1()()2S a b a b =+?+梯形,211 2S 222ADE ABE S S ab c ??=+=?+梯形, 化简得证 3:勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数) 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 二、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米 解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,.已知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC 2+92=152,所以AC 2=144,所以AC=12. C B D A

探索勾股数的规律

勾股数的规律 初中数学讲到直角三角形就离不开它的三边关系的一个重要定理:勾股定理。如果直角三角形的三边a 、b 、c (a ﹤b ﹤c ),由勾股定理可知:2 22a b c +=,其中a 为勾,b 为股,c 为弦。 一、当勾为奇数时,探求勾股数的规律 1、 列表,观察表中每组勾股数 2、归纳规律:(1)每组中a 都是奇数; (2)2 a b c =+,212a b -=;(3)c = b+1,21 2 a c +=. 由此可得第n 组当a=2n+1时 2221(21)1 2222a n b n n -+-===+, 2221(21)122122 a n c n n +++===++ 于是有第n 组勾股数为2n+1、2n 2+2n 、2n 2+2n+1(n 为正整数)。 3、证明:∵2 2222(21)(22)a b n n n +=+++ 4232441844n n n n n =+++++ 4232441844n n n n n =+++++ 22(221)n n =++ ∴2 22a b c += ∴2n+1、222n n +、2221n n ++(n 为正整数)是一 组勾股数。 4、此种形式勾股数的另一种规律表现形式: (1)列表观察 (2)归纳规律:略。当n 为正整数时,勾股数为: 22(1)a n n =+- 2(1)b n n =+ 22(1)c n n =++ 化简后即为:a 、b 、c 分别为2n+1、2 22n n +、2221n n ++。 (3)证明过程:同前面的证明。 二、当勾为偶数是,探求勾股数的规律 1、列表观察表中每组勾股数 2、 归纳规律: (1)、每组中a (勾)是偶数(第一组较特殊:勾比股大); (2)、22 14 ,22 a a b c b -=+=? (3)、2c b =+24 2 a +=

勾股数填空选择及详解中考题

一、填空题(共20小题) 1、附加题:观察以下几组勾股数,并寻找规律: ①3,4,5; ②5,12,13; ③7,24,25; ④9,40,41;… 请你写出有以上规律的第⑤组勾股数:_________ . 2、观察下列一组数: 列举:3、4、5,猜想:32=4+5; 列举:5、12、13,猜想:52=12+13; 列举:7、24、25,猜想:72=24+25; … 列举:13、b、c,猜想:132=b+c; 请你分析上述数据的规律,结合相关知识求得b= _________ ,c= _________ . 3、满足a2+b2=c2的三个正整数,称为_________ . 4、观察下列一类勾股数:3,4,5;5,12,13;7,24,25;…请你根据规律写出第4组勾股数为_________ . 5、观察右面几组勾股数,①3,4,5;②5,12,13;③7,24,25;④9,40,41;并寻找规律,请你写出有以上规律的第⑤组勾股数:_________ ,第n组勾股数是_________ . 6、能够成为直角三角形三条边长的三个正整数,称为勾股数,试写出两种勾股数_________ ,_________ . 7、在数3,5,12,13四个数中,构成勾股数的三个数是_________ . 8、将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我 们把3,4,5这样的勾股数称为基本勾股数,请你也写出三组基本勾股数_________ ,_________ ,_________ . 9、有一组勾股数,最大的一个是37,最小的一个是12,则另一个是_________ . 10、观察下列各式:32+42=52;82+62=102;152+82=172;242+102=262;…;你有没有发现其中的规律?请用你 发现的规律写出接下来的式子:_________ . 11、一个直角三角形的三边长是不大于10的偶数,则它的周长为_________ . 12、观察下面几组勾股数,并寻找规律: 市菁优网络科技

勾股数的探索

勾股数的探索 活动准备:计算器1只、火柴盒1只 活动内容:能够构成直角三角形三条边的边长的3个正整数,称为勾股数,我国古老的数学和天文著作《周髀算经》中,记载的“勾三股四弦五”中的(3,4,5)就是一组最简单的勾股数,显然,这组数的整数倍,如(6,8,10)(9,12,15),(12,16,20)等都是勾股数 当然,勾股数远远不止这些,如(5,12,13)、(8,15,17)等也都是勾股数。 怎样探索勾股数呢?即怎样的一组正整数(a,b,c)才能满足关系式a2+b2=c2? 活动1: 设(a,b,c)为一组勾股数 1.填表: 表1 表2 2.在表1中,a为奇数,正整数b和c之间的数量关系是 c=b+1 ,b、c与a2之间的关系式是 根据以上规律,当a=13时,b=84,c=85 一般地,当a为奇数时,用a分别表示b、c,则b= , c= . 3.表2中,a为大于4的偶数,正整数b、c之间的数量关系是 c =b+2 ,b、c与a2之间的数量关系是a2+b2=c2 根据以上规律,当a=14时,b=48,c=50 一般地,当a为大于4的偶数时,用a分别表示b、c,则b=____________,c=_____________ 4.正整数9、12、15是一组勾股数吗?这组数据满足上述规律吗?这说明了什么问题? 活动2;计算与验证 a=m2-n2 1.已知数据b=2mn ① c=m2+n2 其中m>n,,m、n为正整数.a、b、c为勾股数吗?为什么? 如果a、b、c是一组勾股数,写出你的证明;如果不是勾股数,请说明理由

2.公元前580年~公元前500年。古希腊人毕达哥拉斯给出勾股数的计算公式: 你能证明吗? a=2n+1 b=2n2+2n (n为正整数)② c=2n2+2n+1 3.公元前427年~公元前347年.古希腊哲学家柏拉图又给出了勾股数计算公式: a=n2-1 b=2n (n>1的正整数) ③ c= n2+1 请你给出证明 利用以上3个勾股数的计算公式,我们可以求出无数组勾股数.但这里需要强调的是,用它们求出的勾股数不是所有的勾股数.如公式①不能求出勾股数(9,12,15),公式②不能求出勾股数(8,15,17),公式③不能求出(5,12,13). 活动创新活动3:联想与拓展. 1.如图1,已知四边形ABCD是长方形,AC为对角线,则有AB2+BC2=AC2,即AB、BC、AC满足勾股定理. D A 1 图1 图2 如图2,ABCD-A1B1C1D1是长方体.图1中的线段AB、BC、AC分别对应图2中的面ABB1A1、面BCC1B1、面ACC1A1.若长方体的面ABB1A1、面BCC1B1、面ACC1A1的面积分别用γ β α、 、表示,则是否有2 2 2γ β α= +仍然成立?请说明理由. 2.如图3,已知四边形ABCD为长方形,直线l分别截AB、CB于点E、F,则有BE2+BF2=EF2. D A 1 图3 图4 如图4, ABCD-A1B1C1D1为长方体,一个平面分别截长方体的棱AB、BC、BB1于点M、

1.1探索勾股定理(1)

八年级数学 探索勾股定理(1) 〖温故知新〗 1、指出右图直角三角形各部分的名称,并用符号表示这个直角三角形。 2、边长是a 的正方形的面积是 , 〖学习目标〗 1、用数格子的办法体验勾股定理的探索过程。 2、理解勾股定理,会初步运用勾股定理进行简单的计算和实际运用。 一、自学指导 } 1、观察课本第2页图1— 2、图1—3,直角三角形三边的平方分别是多少,完成下表(时间3分钟)与同伴交流(时间3分钟)。 A 的面积 B 的面积 C 的面积 可能的关系 … : } : 总结: 勾股定理: _______三角形____________的_________等于__________。 如果用a ,b 和c 分别表示直角三角形的两直角边和斜边,那么关系可表示为: 。 ~ 符号语言: 二、自学检测 A 1、已知在Rt △ABC 中,∠C=90°若a=3 b=4,则c=________。, B2、求下图中字母所代表正方形的面积和对应三角形的边长 | b a c C A B b a c C A B A B 125 169 100 、

7cm D A C B 7cm D A C B — 反思总结: 勾股定理的作用_________________________________________ 三、新知运用 如图,从电线杆离地面8m处向地面拉一条钢索,如果这条钢索在地面的固定点距离电线杆底部6m,那么需要多长的钢索 · 巩固练习: A1、如图,求等腰三角形ABC的边AB上的高。 ! 变式训练:B2、三角形ADC的面积是多少你能求出AC边上的高吗 } 反思总结: 1、运用勾股定理解决实际问题的格式: 四、中考链接 1、如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,A、 B、C、D表示对应正方形的面积,A=9,B=16,C=36,D=64,则E=______;F=-________;G=________。 . 2、如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7 cm,则正方形A,B,C,D的面 积的和是cm2. 【 反思总结:

勾股定理知识归纳总结附解析

一、选择题 1.如图,在RtΔABC 中,∠ACB =90°,AC =9,BC =12,AD 是∠BAC 的平分线,若点P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是( ) A . 245 B . 365 C .12 D .15 2.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面1.5米,则小巷的宽度为( ) A .0.8米 B .2米 C .2.2米 D .2.7米 3.如图,已知45∠=MON ,点A B 、在边ON 上,3OA =,点C 是边OM 上一个动点,若ABC ?周长的最小值是6,则AB 的长是( ) A . 1 2 B . 34 C . 56 D .1 4.如图,小红想用一条彩带缠绕易拉罐,正好从A 点绕到正上方B 点共四圈,已知易拉罐底面周长是12 cm ,高是20 cm ,那么所需彩带最短的是( )

A .13 cm B .4cm C .4cm D .52 cm 5.在平面直角坐标系内的机器人接受指令“[α,A]”(α≥0,0°<A <180°)后的行动结果为:在原地顺时针旋转A 后,再向正前方沿直线行走α.若机器人的位置在原点,正前方为y 轴的负半轴,则它完成一次指令[4,30°]后位置的坐标为( ) A .(-2,23) B .(-2,-23) C .(-2,-2) D .(-2,2) 6.已知x ,y 为正数,且2 2 4(3)0x y -+-=,如果以x ,y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( ) A .5 B .25 C .7 D .15 7.如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC+PQ 的最小值是( ) A . 245 B .5 C .6 D .8 8.如图,正方体的棱长为4cm ,A 是正方体的一个顶点,B 是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A 爬到点B 的最短路径是( ) A .9 B .10 C .326+ D .12 9.如图,点A 和点B 在数轴上对应的数分别是4和2,分别以点A 和点B 为圆心,线段 AB 的长度为半径画弧,在数轴的上方交于点C .再以原点O 为圆心,OC 为半径画弧,与数轴的正半轴交于点M ,则点M 对应的数为( )

1.1探索勾股定理第一课时教案

1.1.1探索勾股定理 一、教学目标叙写 1.学生通过预习教材1页,完成“引入”经历探索勾股定理. 2.学生通过合作探究“做一做”,验证猜想勾股定理,从而得出结论,进一步发展空间观念和推理能力. 3.学生通过交流知识点、易错点和思想方法,培养学生归纳能力和有条理的表达能力.4.学生通过完成“五、当堂评价”,运用勾股定理进行简单的推理和计算. 二、教学重难点 1.重点:勾股定理及其应用. 2.难点:勾股定理的探索过程. 三、教学过程 (一)、情景引入Array 1.02年世界数学家大会在我国北京召开,投影显示本届世界数学家大会 的会标:标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾 股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定 理.(板书课题) 2. 俄罗斯的伟大作家托尔斯泰在作品《一个人需要很多的土地吗?》中写出 一个故事: 有一个叫巴河姆的人到草原上去购买土地。卖地的人提出了一个非常奇怪的地价:“每天1000卢布。”意思是:谁出1000卢布,那么他从日出到日落走过的路所围成的土地都归他;不过,如果日落之前买地的人回不到原来的出发点,那么他就一点土地也得不到。 巴河姆觉得条件对自己有利,于是付了1000卢布。第二天太阳刚刚从地平线升起,就连忙在草原上大步走去。他走了足足10俄了里才左拐弯,接着又走了许久,才再向左拐弯, 这样又走了2俄里,这时他发现天色已经不早,而自己离出发点还足足有17俄里,于是只 得改变方向,拼命朝出发点跑去,总算在日落之前赶回了出发点。可是,他还未站稳,两脚 一软,就倒地口吐鲜血而死。 你能算出巴河姆这一天共走了多少路?走过的路所围成的土地面积有多大吗? (二)、自主探究 探究一:在纸上画若干个直角三角形,分别测量它们的三条边,看看三条边之间的平方具有什么关系?与同伴进行交流。 探究二: (1)如图1-2:等腰直角三角形三边的平方分别是多少?它们满足上面所猜想的数量关系吗? 你是如何计算的,与同伴进行交流。 (2)对于图1-3中的直角三角形,是否还满足这样的关系?你又是如何计算的?

勾股数的规律总结

勾股数的规律总结 我们知道,像15,8,17这样,能够成为直角三角形三条边长的三个正整数,称为勾股数.勾股数有什么规律吗?下面就让我们分类探究一下. 一、最短边的长度为奇数 观察下表中的勾股数: 根据上面的表格,我们可以发现以上勾股数(,,无公约数)具备一定的特征,很显然,当21a n =+(n ≥1)时,()21b n n =+,()211c n n =++.同时我们容易验证: () ()()22 2 2121211n n n n n +++=++????????, 即当最短边的长度为奇数时,勾股数有此规律. 二、最短边的长度为偶数 最短边的长度为偶数时,没有公约数的勾股数又有什么规律呢? 首先,最短边为偶数时,其他两边不可能再是偶数,否则就有了公约数2,所以另外两个勾股数必为奇数,而且这两个奇数的平方差是8的倍数(八年级上册曾学过).这是因为两个奇数可以表示为21m +和21n +,这里的m 、n 都是正整数,不妨设m n >,则 ()() ()22 222121441441m n m m n n +-+=++-++ ( )()22 44m n m n =-+- ()()41m n m n =-++. 因为m 、n 都为正整数,而任意两个正整数的和与差具有同奇同偶性,所以m n -与 1m n ++这两个数中,有且只有一个偶数,所以()()41m n m n -++必定能被8整除.这说 明,一组无公约数的勾股数中,如果最小的数为偶数,则它的平方必为8的倍数,而另外两数必为奇数. 由此表格中的数据可以得出,该表格中的无公约数的勾股数具备这样的特征:当(n ≥1)时,2161b n =-,2 161c n =+,同时我们容易验证:

勾股定理知识点总结归纳

精心整理 第18章勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么222 a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ① ② 定理 常见方法如下: 方法一:4 EFGH S S S ? += 正方形正方形ABCD ,1 4( 2 ab b ?+- 方法二: 四个直角三角形的面积与小正方形面积的和为S= 大正方形面积为22 () S a b a =+=+ 所以222 a b c += 方法三:1()() 2 S a b a b =+?+ 梯形 ,2 2 22 ab c ?+,化简得 证 3. 它只适用于直角三角形,对于锐角三角 因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4. ① 在ABC ?中,90 C ∠=?,则c,b=,a= ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5、利用勾股定理作长为的线段 作长为、、的线段。 思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为和1的直角三角形斜边长就是,类似地可作。 b a

作法:如图所示 (1)作直角边为1(单位长)的等腰直角△ACB ,使AB 为斜边; (2)以AB 为一条直角边,作另一直角边为1的直角。斜边为 ; (3)顺次这样做下去,最后做到直角三角形 ,这样斜边 、 、 、 的长度就是 、 、 、 。 举一反三【变式】在数轴上表示的点。 解析:可以把 看作是直角三角形的斜边, 为了有利于画图让其他两边的长为整数, 而10又是9和1 作法:如图所示在数轴上找到A 点,使OA=3,作以O 为圆心做弧,弧与数轴的交点B 即为 。 注:逆命题与勾股定理逆定理 可以判断真假的陈述句叫做命题, 写出下列原命题的逆命题并判断是否正确 1.原命题:猫有四只脚. 23(正确) 4(正确) 思路点拨:解析:1. 2. 3.?(正确) 4.(正确) 总结升华: 6.74页 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意: (1)首先确定最大边,不妨设最长边长为:c ; (2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形 (若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2

相关文档
最新文档