三极管单稳态多谐振荡器电路

三极管单稳态多谐振荡器电路
三极管单稳态多谐振荡器电路

三极管单稳态多谐振荡器电路

单稳态多谐震荡器为一计时电路,由二个三极管组合而成,当无任何触发信号输入时,电路将保持一个三极管永远ON,另一个永远OFF之稳定状态。若有触发信号输入,则原来ON的将变成OFF,OFF变成ON,经过一段时间(T=0.7RC),会恢复刚刚的稳态,直到下一个触发信号。

图2 正脉冲触发单稳态电路

(1)如图2所示,Q2由RB2供给偏压形成饱和,VCE2=0.2V,迫使Q1 OFF;同时CB经VCC-RC1-CB-Q2 BE极充电至VCC,此为稳定状态.

(2)当有正脉冲加至Q1 BE极,使Q1由OFF变成ON,如图3,CB经Q1C-E放电,CB的反向偏压将使Q2 OFF,当CB放完电(T =0.7RB1CB)后,Q2重新获得偏压由OFF ON,Q1也由ON OFF回到稳压状态,其波形如图所示.

图3 CB放电路径

多谐振荡器电路

EL

GND

C2

C1 开始

(设:RB1=RB2=RB,C1=C2=C)双稳态多谐振荡器

无稳态多谐振荡器电路

555无稳态多谐振荡器电路

图1无稳态电路

无单稳态多谐振荡器电路如图1所示,当加上电源后,电容器C1经外接电阻Ra与Rb由Vcc 充电,电容器C1两端电压一直上升到2/3Vcc(第六脚之临界电压),于是触发NE555的第三脚的输出为低态。此外,放电电晶体被驱动而导通,使得第七脚的输出将电容C1经电阻Rb放电,电容器的电压就开始下降,直到它降到触发位准1/3Vcc,正反器再次被触发,使第三脚输出回到高态,且放电晶体管截流,于是电容器C1再次经由电阻Ra及Rb充电,重复这些动作就会产生振荡。

充电路径:由Vcc出发,经由Ra及Rb至电容器C1。

放电路径:由电容器C1出发,经由Rb至NE555之第七脚。

周期T=[0.7(Ra+Rb)*C1]+[0.7*Rb*C1]

三极管无稳态多谐振荡器电路

此电路之输出并不会固定在某一稳定状态,其输出会在两个稳态(饱和或截止)之间交替变换,因此输出波形似近一方波。

如图2即为无稳态多谐震荡器电路,图中两个三极管Q1、Q2在“Q1饱和/Q2截止”和“Q1截止/Q2饱和”,二种状态周期性的互换,其工作原理如下:

图3 当VCC通电瞬间

图4 C2放电,C1充电回路

(1)如图3当V CC接上瞬间,Q1、Q2分别由RB1、R B2获得正向偏压,同时C1、C2亦分别经R C1、R C2充电。

(2)由于Q1、Q2的特性无法百分之百相同,假设某一三极管Q1之电流增益比另一个三极管Q2高,则Q1会比Q2先进入饱和(ON)状态,而当Q1饱和时,C2由Q1 CE极经VCC、RB2放电,在Q2 BE极形成一逆向偏压,促使Q2截止。同时C1经Rc2及Q1的BE极于短时间内完成充电至VCC,如图4所示。

图5 C1放电,C2充电回路

(3) Q1 ON、Q2 OFF的情形并不是固定的,当C2放电完后(T2=0.7 R B2 C2秒),C2由VCC经RB2、Q1C-E 极反向充电,当充到0.7V时,此时Q2获得偏压而进入饱和(ON),C1由Q2 CE极,Vcc、RB1放电,同样地,造成Q1 BE极逆偏压。 Q1截止(OFF),C2经RC1及Q2B-E极于短时间充至VCC,如图5所示。

(4)同理,C1放完电后(T=0.7 R B2 C1秒),Q1经R B1获得偏压而导通,Q2 OFF

如此反覆循环下去。如图所示波形。

周期T=T1+T2=0.7R B1 C1+0.7 R B2 C2

若R B1= R B2=R B C2=C1=C

则T=1.4R B C f=

如果将RC1、RC2换成两个发光二极管,发光二极管一亮一暗,不断交替。也就是说,两个三极管中,一个饱和,另一个截止,而且不断交换。这种电路没有一个稳定的状态,叫做无稳态电路,无稳态电路的用途也很广,如汽车的转弯灯等。

多谐振荡器双闪灯电路设计与制作

多谐振荡器双闪灯电路设计与制作 南昌理工学院张呈张海峰 我们主张,电子初学者要采用万能板焊接电子制作作品,因为这种电子制作方法,不仅能培养电子爱好者的焊接技术,还能提高他们识别电路图和分析原理图的能力,为日后维修、设计电子产品打下坚实的基础。 上一篇文章《电路模型设计与制作》我们重点介绍了电路模型的概念以及电流、电压、电阻、发光二极管、轻触开关等基本知识,并完成了电路模型的设计与制作,通过成功调试与测试产品参数,进一步掌握了电子基础知识。 本文将通过设计与制作多谐振荡器双闪灯,掌握识别与检测电阻、电容、二极管、三极管。掌握识别简单的电路原理图,能够将原理图上的符号与实际元件一一对应,能准确判断上述元件的属性、极性。

一、多谐振荡器双闪灯电路功能介绍 图1 多谐振荡器双闪灯成品图

多谐振荡器双闪灯电路,来源于汽车的双闪灯电路,是经典的互推互挽电路,通电后LED1和LED2交替闪烁,也就是两个发光二极管轮流导通。 完成本作品的目的是为了掌握识别与检测电阻、电容、二极管、三极管。掌握识别简单的电路原理图,能够将原理图上的符号与实际元件一一对应,能准确判断上述元件的属性、极性。。 该电路是一个典型的自激多谐振荡电路,电路设计简单、易懂、趣味性强、理论知识丰富,特别适合初学者制作。 二、原理图 图2 多谐振荡器双闪灯原理图 三、工作原理 本电路由电阻、电容、发光二极管、三极管构成典型的自激多谐振荡电路。在上篇文章中介绍了电阻、和发光二极管,本文只介绍电容和三极管。 1、电容器的识别

电容器,简称电容,用字母C表示,国际单位是法拉,简称法,用F表示,在实际应用中,电容器的电容量往往比1法拉小得多,常用较小的单位,如微法(μF)、皮法(pF)等,它们的关系是: 1法拉(F)=1000000微法(μF),1微法(μF)=1000000皮法(pF)。 本的套件中使用了2个10μF的电解电容,引脚长的为正,短的为负;旁边有一条白色的为负,另一引脚为正。电容上标有耐压值上25V,容量是10μF。 2、三极管的识别 三极管,全称应为半导体三极管,也称双极型晶体管,晶体三极管,是一种电流控制电流的半导体器件。其作用是把微弱信号放大成幅值较大的电信号, 也用作无触点开关,俗称开关管。套件中使用的是NPN型的三极管9013,当把有字的面向自己,引脚朝下,总左往右排列是发射极E,基极B,集电极C。如图3所示。 图3 三极管的引脚图 晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。这是三极管最基本的和最重要的特性。我们将ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。 晶体三极管的三种工作状态: (1)截止状态 当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。

多谐振荡器电路无稳态

无稳态多谐振荡器电路 无稳态多谐振荡器电路 555无稳态多谐振荡器电路 图1无稳态电路 无单稳态多谐振荡器电路如图1所示,当加上电源后,电容器C1经外接电阻Ra与Rb由Vcc充电,电容器C1两端电压一直上升到2/3Vcc(第六脚之临界电压),于是触发NE555的第三脚的输出为低态。此外,放电电晶体被驱动而导通,使得第七脚的输出将电容C1经电阻Rb放电,电容器的电压就开始下降,直到它降到触发位准1/3Vcc,正反器再次被触发,使第三脚输出回到高态,且放电晶体管截流,于是电容器C1再次经由电阻Ra及Rb充电,重复这些动作就会产生振荡。 充电路径:由Vcc出发,经由Ra及Rb至电容器C1。 放电路径:由电容器C1出发,经由Rb至NE555之第七脚。 周期T=[0.7(Ra+Rb)*C1]+[0.7*Rb*C1] 三极管无稳态多谐振荡器电路 此电路之输出并不会固定在某一稳定状态,其输出会在两个稳态(饱和或截止)之间交替变换,因此输出波形似近一方波。 如图2即为无稳态多谐震荡器电路,图中两个三极管Q1、Q2在“Q1饱和/Q2截止”和“Q1截止/Q2饱和”,二种状态周期性的互换,其工作原理如下:

图3 当VCC通电瞬间 图4 C2放电,C1充电回路 (1)如图3当V CC接上瞬间,Q1、Q2分别由RB1、R B2获得正向偏压,同时C1、C2亦分别经R C1、R C2充电。 (2)由于Q1、Q2的特性无法百分之百相同,假设某一三极管Q1之电流增益比另一个三极管Q2高,则Q1会比Q2先进入饱和(ON)状态,而当Q1饱和时,C2由Q1 CE极经VCC、RB2放电,在Q2 BE极形成一逆向偏压,促使Q2截止。同时C1经Rc2及Q1的BE 极于短时间内完成充电至VCC,如图4所示。

双三极管多谐振荡器电路工作原理

双三极管多谐振荡器电路工作原理 双三极管多谐振荡器 电路工作原理 多谐振荡器电路是一种矩形波产生电路.这种电路不需要外加触发信号,便能连续地, 周期性地自行产生矩形脉冲.该脉冲是由基波和多次谐波构成,因此称为多谐振 荡器电路. 电路结构 1.路图 2.把双稳态触发器电路的两支电阻耦合支路改为电容耦合支路.那么电路就没有稳 定状态,而成为无稳电路 3.开机:由于电路参数的微小差异,和正反馈使一支管子饱和另一支截止.出现一个暂 稳态.设Q1饱和,Q2截止. 工作原理 正反馈: Q1饱和瞬间,VC1由+VCC 突变到接近于零,迫使Q2的基极电位VB2瞬间下 降到接近 —VCC,于是Q2可靠截止. 注:为什么Q2的基极产生负压,因为Q1导通使Q1 集电极的电压瞬间接近于零,电容C1的

正极也接近于零,由于电容两边电压不能突变使得电容的负端为—VCC。 2.第一个暂稳态: C1放电: C2充电: 3.翻转:当VB2随着C1放电而升高到+0.5V时,Q2开始导通,通过正反馈使Q1截止,Q2饱和. 正反馈: 4.第二个暂稳态: C2放电: C1充电: 5.不断循环往复,便形成了自激振荡 6.振荡周期: T=T1+T2=0.7(R2*C1+R1*C2)=1.4R2*C 7.振荡频率: F=1/T=0.7/R2*C 8..波形的改善: 可以同单稳态电路,采用校正二极管电路 下面我们来做一个实验:如图 振荡周期: T=1.4R2*C=1.4*10000Ω*0.00001F=0.14s=140ms 此图利用Multisim仿真软件去求出时间与实际的偏差 数据测量图:此图测量了Q2的基极和集电极极,集电极的波形相当于图的矩形波,基极波形相当于图的锯齿波。

多谐振荡器双闪灯电路设计与制作

多谐振荡器双闪灯电路设计与制作 一、电路设计功能介绍 这是电子技术入门者要做的第一个电子产品,做这个产品的主要目的是为了学会识别与检测电阻、电容、二极管、三极管。学会识别简单的电路原理图,能够将原理图上的符号与实际元件一一对应,能准确判断上述元件的属性、极性。 分立元件双闪灯电路,来源于汽车的双闪灯电路,是经典的互推互挽电路,通电后LED1和LED2交替闪烁也就是两个发光二极管轮流导通。 二、多谐振荡器双闪灯电路原理图

三、多谐振荡器双闪灯电路工作原理 该电路是一个典型的自激多谐振荡电路,套件电路简单、易懂、趣味性强、理论学习知识丰富,特别适合初学者制作。 工作原理:当接通电源后,两只三极管就要争先导通,但由于元器件的差异性,只有某一只管子最先导通。然后电路中两只三极管便轮流导通和截止,两只发光二极管就不停地循环发光。改变阻值或电容的容量可以改LED闪烁的速度。 电路通电时,假设V1优先导通,则C1通过R1开始充电,由于充电时电容相当于短路,所以V2基极近似接地,故V2截止。此时LED1点亮,LED2熄灭。当C1充电毕,V2基极为高点平,故导通,LED被点亮,同时C1上电荷被泄放,V1截止,LED1熄灭。C2通过R2充电,充电毕V1又导通,电路如此循环,两个LED交替闪烁。四、多谐振荡器双闪灯电路元件清单及实物图

双闪灯元件清单实物图 五、调试技巧及成品图 双闪灯电路安装成功后,接上5V直流电压,或者用三节5号电池供电。如下图所示:

正常情况下,可以观察到二只LED发光二极管轮流闪烁,如果没有出现我们需要的功能,应该从以下几个方面调试、检修。 1、检测焊接线路是否正常连通,可用万用表检测每条线路是否导通。因为初次焊接的时候,经常出现虚焊、假焊、漏焊等焊接故障。 2、检测每个元件是否安装正确,特别是发光二极管的正负极性是否正确。 3、用万用表测试电源电压是否正常。 4、发光二极管的限流电阻是否用错,初学者容易把220欧姆的电阻与100K欧的电阻搞混了。 5、测试下电容C1、C2的正极的电压是否改变,如果没有改变要检测三极管是否焊接正确。 经过上面几个步骤的检测,相信一定能排除故障,实现我们需要的目的。 主要焊接毛病有: 1、堆积 2、虚焊 3、尖角

多谐振荡器介绍

多谐振荡器: 摘要:分析了各种多谐振荡器的电路结构及工作原理,并利用Multisiml0.0对部分电路进行了仿真,重点介绍了单稳型多谐振荡器,讨论集成单稳态触发器74121定时元件RC对暂稳态的影响以及单稳型多谐振荡器的应用。Multisim软件是一种形象化的虚拟仪器电路仿真软件,它能比较快速地模拟、分析、验证所设计电路的性能,在课堂教学中引入EDA技术,使传统教学环节与先进的仿真技术相结合,实现授课的生动性和灵活性,增强学生对基本概念的理解,激发学生的学习兴趣,培养并有效提高学生综合分析、应用及创新能力。 关键字:Multisiml0.O;多谐振荡器;555定时器;施密特触发器;环形振荡器 O 引言 在数字系统电路中经常用到多谐振荡器。多谐振荡器是一种自激振荡器,在接通电源以后,不需要外加触发信号便能自行产生一定频率和一定宽度的矩形波,这一输出波形用于电路中的时钟信号源。由于矩形波中含有丰富的高次谐波分量,所以习惯上又将矩形波振荡器称为多谐振荡器。按照电路的工作原理,多谐振荡器大致分为无稳态多谐振荡器和单稳态多谐振荡器。 1 无稳态多谐振荡器 1.1 采用TTL门电路构成的对称式无稳态多谐振荡器 对称式多谐振荡器的典型电路如图1所示,它是由两个反相器Gl、G2经耦合电容C1、C2连接起来的正反馈振荡电路。电路中G1和G2采用SN74LS04N反相器,RFl=RF2=RF,C1=C2=C,振荡周期T≈1.3RFC,输出波形的占空比约为50%。RF1、RF2的阻值对于LSTTL为470 Ω~3.9kΩ,对于标准TTL为0.5~1.9kΩ之间。 1.2 采用CMOS门电路构成的非对称式无稳态多谐振荡器 如果把对称式多谐振荡器电路进一步简化,去掉C1和R2,在反馈环路中保留电容C2,电路仍然没有稳定状态,只能在两个暂稳态之问往复振荡,电路如图2所示。

多谐振荡器

第八章 脉冲波形的产生与整形 在数字电路或系统中,常常需要各种脉冲波形,例如时钟脉冲、控制过程的定时信号等。这些脉冲波形的获取,通常采用两种方法:一种是利用脉冲信号产生器直接产生;另一种则是通过对已有信号进行变换,使之满足系统的要求。 本章以中规模集成电路555定时器为典型电路,主要讨论555定时器构成的施密特触发器、单稳态触发器、多谐振荡器以及555定时器的典型应用。 8.1 集成555定时器 555定时器是一种多用途的单片中规模集成电路。该电路使用灵活、方便,只需外接少量的阻容元件就可以构成单稳、多谐和施密特触发器。因而在波形的产生与变换、测量与控制、家用电器和电子玩具等许多领域中都得到了广泛的应用。 目前生产的定时器有双极型和CMOS 两种类型,其型号分别有NE555(或5G555)和C7555等多种。通常,双极型产品型号最后的三位数码都是555,CMOS 产品型号的最后四位数码都是7555,它们的结构、工作原理以及外部引脚排列基本相同。 一般双极型定时器具有较大的驱动能力,而CMOS 定时电路具有低功耗、输入阻抗高等优点。555定时器工作的电源电压很宽,并可承受较大的负载电流。双极型定时器电源电压范围为5~16V ,最大负载电流可达200mA ;CMOS 定时器电源电压变化范围为3~18V ,最大负载电流在4mA 以下。 一. 555定时器的电路结构与工作原理 1.555定时器内部结构: (1)由三个阻值为5k Ω的电阻组成的分压器; (2)两个电压比较器C 1和C 2: v +>v -,v o =1; v +<v -,v o =0。 (3)基本RS 触发器; (4)放电三极管T 及缓冲器G 。 2.工作原理。 当5脚悬空时,比较器C 1和C 2的比较电压分别为cc V 32和cc V 3 1 。 (1)当v I1>cc V 32,v I2>cc V 31 时,比较器 C 1输出低电平,C 2输出高电平,基本RS 触发 器被置0,放电三极管T 导通,输出端v O 为低电平。 (2)当v I1cc V 31 时,比较器 C 1输出高电平,C 2也输出高电平,即基本RS 触发器R =1,S =1,触发器状态不变,电路亦保持原状态不变。

LSTTL 型双单稳多谐振荡器

特点: 逻辑图 (1/2) 功能表 说明: 该电路是直接耦合触发的单稳多谐振荡器,可用三种方法来控制输出脉冲的宽度。基本脉冲宽度可通过选择适当的外部电阻和电容值来控制。该电路一旦被触发,基本脉冲宽度可以通过可重触发的低电平有效(A 输入端)或高电平有效(B 输入端)的输入而得到扩展,也可采用提前清除来缩小脉冲宽度。LS123提供了足够的斯密特滞后电压可确保以慢至0.1mV/ns 的跃变速率从B 输入端无颤动地进行触发。 在使用中,外部计时电容可以接到C ext 和R ext /C ext (正向)端之间。为了改善脉冲宽度的准确性和重复性,可在R ext /C ext 端和Vcc 端之间接一外部电阻。要获得可变脉冲宽度,可在R ext /C ext 端和Vcc 端之间接一外部电容。 ·可由逻辑门有效高电平或有效低 电平输入直接耦合触发; ·很宽的输出脉冲可重触发,直 至100%的占空比; ·无条件清除可中止输出脉冲; · 可补偿电流电压和温度的变化。 典型参数: 输出脉冲宽度=45ns ~∞ Pd=60mW 外引线排列图 注) Rext/Cext :外接电阻/电容端 Cext :外接电容端 L H H=高电平 L=低电平 ×=不定 ↓=从高电平转换到低电平 ↑=从低电平转换到高电平 =高电平脉冲 =低电平脉冲

推荐工作条件 74Ⅱ 54 参数值 参数值 符号 参数名称 最小 典型最大最小典型 最大 单位 Vcc 电源电压 4.75 5 5.25 4.5 5 5.5 V V IH 输入高电平电压 2.0 2.0 V V IL 输入低电平电压 0.8 0.7 V I OH 输出高电平电流 -400 -400 μA I OL 输出低电平电流 8 4 mA t W 脉冲宽度 40 40 ns R 外 外接计时电阻(R ext ) 5 260 5 180 K Ω C 外 外接电容(C ext ) 不限制 不限制 C W R 外/C 外终端的接线电容 50 50 pF T A 工作环境温度 -40 85 -55 125 ℃ 电 性 能:(除特别说明外,均为全温度范围) 74Ⅱ 54 参数值 参数值 符号 参数名称 测试条件 最小典型最大最小典型 最大 单位V IK 输入钳位电压 Vcc =最小 I I =-18mA -1.5 -1.5 V V OH 输出高电平电压 Vcc=最小 V IL =最大 V IH =2V I OH =最大 2.7 2.5 3.4 V V OL 输出低电平电压 Vcc=最小 V IL =最大 V IH =2V I OL =最大 0.5 0.25 0.4 V I I 输入电流 (最大输入电压时) Vcc=最大 V I =7V 0.1 0.1 mA I IH 输入高电平电流 Vcc=最大 V I =2.7V 20 20 μA I IL 输入低电平电流 Vcc=最大 V I =0.4V -0.4 -0.4 mA I OS 输出短路电流 Vcc=最大 V O =0V -20 -100-20 -100 mA I CC 电源电流 Vcc =最大 20 12 20 mA 注:所有典型值均在Vcc=5.0V , T A =25℃下测量得出。 交流(开关)参数:Vcc=5.0V , T A =25℃

无稳态电路详细讲解

无稳态电路详细讲解 在讲无稳态电路之前,读者朋友要明确几个电子元件的特性: 电阻:1、限流、分压。2、在RC串联电路中改变阻值就能改变时间常数。 本无稳态电路中用到的电阻有限流、分压和与电容构成充放电电路两个作用。 电容:1、电容两极的电压不能突变(这个要好好理解一下,不是不变,)。2、RC构成的充(放)电电路,电容两端的电压会随时间增加而上升(下降)(变化的速度与RC串联电路的电阻电容值都有关)。 三极管:对于NPN型三极管,当三极管的be极的电压高于某一数值(一般为0.7V) 时,三极管就会导通,这时ce间貌似有一个开关闭合,使电流从c极流入从e 极流出。 Q NPN 下面是一个典型的无稳态电路: 无稳态振荡器(astable multivibrator)亦称自激多谐振荡器。电路中,施加电源VCC后,晶体管Q1和Q2在电容的作用下,反复导通、截至,产生持续震荡。震荡周期T[s]为:T=0.69(R3C2+R2C1)。 工作原理:当给电路加上电压VCC的瞬间,B1、B2点在电阻的上拉作用下都有一个高电位,而这个高电位都能使两个三极管满足导通的条件,但是由于各个元件的参数不可能完全一样,所以一定有一个三极管先导通,这里假设Q1先导通,然后再分析Q1导通的瞬间、C1点由原来的高电位被拉低(几乎与E1点电位相同),再根据电容两端的电压不能够

突变,这时B1点的电位也由原来的高电位被拉低,B1点又是三极管Q2的基极,Q2的基极电位由原来的高电位也变成低电位,这时是Q2的be间电压降低(几乎为零),所以这时三极管Q2被迫截止(不导通)。再此之后D1就会发光,同时电容C1两端电压虽不会突变,但是不是不变,在这段时间内会通过电阻R2给C1充电,充电过程中C1的一端B1电位就会逐渐升高,会有一个时刻B1的电位高到能使Q2导通,(这个时间实际上就是周期T=0.69(R3C2+R2C1)的一半)。这时点C2的电位由原来的高电位被拉低(几乎与E2点电位相同),同理根据电容两端电压不能突变,这时B2点的电位也由原来的高电位被拉低,B2点又是三极管Q1的基极,Q1的基极电位由原来的高电位也变成低电位,这时是Q1的be间电压降低(几乎为零),所以这时三极管Q1被迫截止(不导通)。再此之后D1就会发光。 再循环下去,Q1导通、Q2截止................这里不再复述。这样就会出现两个LED交替闪烁的现象。 如果先假设刚通电时,Q2先导通,方法类似,读者可以自己分析。图中的R1和R4是LED的限流电阻,可以根据所选的LED灵活选取。 以上可以简单的总结一句话:Q1导通时能够使Q2被迫截止;Q2导通时也能使Q1被迫截止。 按照上面电路参数设计的电路,闪烁周期计算如下: T=0.69*(47000*0.00001+47000*0.00001)=0.65S 拓展:以上电路的电阻电容参数都是完全对称的,如果要获得两个LED点亮时间不一样的现象,只需改变相应的电阻电容参数,使两边的R*C的值不相等就行了。

多谐振荡器的研究与仿真

多谐振荡器的研究与仿真 时间:2009-05-05 13:33:30 来源:电子技术作者:何香玲青岛理工大学 O 引言 在数字系统电路中经常用到多谐振荡器。多谐振荡器是一种自激振荡器,在接通电源以后,不需要外加触发信号便能自行产生一定频率和一定宽度的矩形波,这一输出波形用于电路中的时钟信号源。由于矩形波中含有丰富的高次谐波分量,所以习惯上又将矩形波振荡器称为多谐振荡器。按照电路的工作原理,多谐振荡器大致分为无稳态多谐振荡器和单稳态多谐振荡器。 1 无稳态多谐振荡器 1.1 采用TTL门电路构成的对称式无稳态多谐振荡器 对称式多谐振荡器的典型电路如图1所示,它是由两个反相器Gl、G2经耦合电容C1、C2连接起来的正反馈振荡电路。电路中G1和G2采用SN74LS04N反相器,RFl=RF2=RF, C1=C2=C,振荡周期T≈1.3RFC,输出波形的占空比约为50%。RF1、RF2的阻值对于LSTTL 为470 Ω~3.9kΩ,对于标准TTL为0.5~1.9kΩ之间。 1.2 采用CMOS门电路构成的非对称式无稳态多谐振荡器 如果把对称式多谐振荡器电路进一步简化,去掉C1和R2,在反馈环路中保留电容C2,

电路仍然没有稳定状态,只能在两个暂稳态之问往复振荡,电路如图2所示。 假定G2输出为1,电容C充电,在充电开始VI1也为1。因此,该电压经Rp力口到G1输入端,Gl输出为O,电路稳定工作,C继续充电。充电电流随着充电时间延长而减小,RF 两端电压下降,若降到Gl的阈值电压以下,则G1输出变为1,G2输出变为0,C反向充电。随着充电的进行,VI1达到Gl的阈值电压时,G1输出变为0,G2的输出变为1,该动作重复进行而产生振荡。电容C的充放电时间分别为T1=RfC1h3,T2=RfC1n3,振荡周期T=T1+T2=2RFC1h3≈2.2 RFC,输出波形的占空比为50%。 在电路的G1输入端串接的保护电阻RP是为了减少电容C充放电过程中CMOS门电路输入保护电路承受较大的电流冲击,且Rp>>RF。 1.3 门电路无稳态环形振荡器 利用门电路地传输延迟时间将奇数个反相器首尾相接可构成一个基本环形振荡器,电路的振荡周期为T=2ntpd,n为串联反相器的个数。作为数字系统的时钟信号源,由CMOS 反相器构成的环形振荡器具有结构简单、集成度高、功耗低的优点,因此得到了广泛地应用。随着CMOS集成电路工艺技术的发展,当前,其振荡频率已达到数+GHz。但是,这种利用反相器的延时特性构成的环形振荡器,只能产生高频信号。为了构成低频和超低频环形振荡器,一种解决方法是在此电路的基础上附加RC延迟环节,组成带有RC延迟电路的环形振荡器,电路如图3(a)所示。另一种解决方法是根据单稳态触发器的延时作用,运用环形振荡

三极管无稳态多谐振荡器电路

课题一、三极管无稳态多谐振荡器电路 一、设计课题 《三极管无稳态多谐振荡器电路》 二、设计要求 1、不上电,灯不亮。 2、上电后,两颜色灯亮交替闪亮(一直亮)。 3、设计时请注意提高抗干扰性,以免误动作。亮灯时间可通过RC调节。 4、为了方便检查,用黄色LED和红色LED代替电灯 三、原理分析 三极管无稳态多谐振荡器电路工作原理如下: 此电路之输出并不会固定在某一稳定状态,其输出会在两个稳态(饱和或截止)之间交替变换,因此输出波形似近一方波。 如图2即为无稳态多谐震荡器电路,图中两个三极管Q1、Q2在“Q1饱和/Q2截止”和“Q1截止/Q2饱和”,二种状态周期性的互换,其工作原理如下:

图3 当VCC通电瞬间 图4 C2放电,C1充电回路 (1)如图3当VCC接上瞬间,Q1、Q2分别由RB1、RB2获得正向偏压,同时C1、C2亦分别经RC1、RC2充电。 (2)由于Q1、Q2的特性无法百分之百相同,假设某一三极管Q1之电流增益比另一个三极管Q2高,则Q1会比Q2先进入饱和(ON)状态,而当Q1饱和时,C2由Q1 CE极经VCC、RB2放电,在Q2 BE极形成一逆向偏压,促使Q2截止。同时C1经Rc2及Q1的BE极于短时间内完成充电至VCC,如图4所示。 图5 C1放电,C2充电回路 (3) Q1 ON、Q2 OFF的情形并不侍定的,当C2放电完后(T2=0.7 RB2 C2秒),C2由VCC经RB2、Q1C-E极反向充电,当充到0.7V时,此时Q2获得偏压而进入饱和(ON),C1由Q2 CE 极,Vcc、RB1放电,同样地,造成Q1 BE极逆偏压。Q1截止(OFF),C2经RC1及Q2B-E 极于短时间充至VCC,如图5所示。

三极管无稳态多谐振荡器电路_

三极管无稳态多谐振荡器电路 此电路之输出并不会固定在某一稳定状态,其输出会在两个稳态(饱和或截止)之间交替变换,因此输出波形似近一方波。 如图2即为无稳态多谐震荡器电路,图中两个三极管Q1、Q2在“Q1饱和/Q2截止”和“Q1截止/Q2饱和”,二种状态周期性的互换,其工作原理如下: 图2 (1)如图3当VCC接上瞬间,Q1、Q2分别由RB1、RB2获得正向偏压,同时C1、C2亦分 别经RC1、RC2充电。 图3 当VCC通电瞬间

(2)由于Q1、Q2的特性无法百分之百相同,假设某一三极管Q1之电流增益比另一个三极 管Q2高,则Q1会比Q2先进入饱和(ON)状态,而当Q1饱和时,C2由Q1 CE极经VCC、RB2放电,在Q2 BE极形成一逆向偏压,促使Q2截止Q1导通,由于c、e极之间此时是通的,所以c极处电位接近于负极(我们的图中是接地,就是接近于0V),由于电容C2的耦合作用,Q2基极电压接近于负极→不会产生基极电流,即Ib=0A→则Q1 e、c 之间断开(开关作用)同时C1经Rc2及Q1的BE极于短时间内完成充电至VCC,如图4所示。 图4 C2放电,C1充电回路 (3)Q1 ON、Q2 OFF的情形并不是稳定的,当C2放电完后(T2=0.7 RB2 C。C2由VCC经 RB2、Q1C-E极反向充电,当充到0.7V时,此时Q2获得偏压而进入饱和(ON),C1由Q2 CE极,Vcc、RB1放电,同样地,造成Q1 BE极逆偏压。Q1截止(OFF),C2经RC1及Q2B-E极于短时间充至 图5 C1放电,C2充电回路

(4)同理,C1放完电后(T=0.7 RB2 C1秒),Q1经RB1获得偏压而导通,Q2 OFF 如此反覆循环下去。如图6所示波形。 周期 T=T1+T2=0.7 RB1 C1+0.7 RB2 C2 若 RB1= RB2=RB 、 C2=C1=C 则 T=1.4RBC f= 图6 如果将RC1、RC2换成两个发光二极管,发光二极管一亮一暗,不断交替。也就是说,两个三极管中,一个饱和,另一个截止,而且不断交换。这种电路没有一个稳定的状态,叫做无稳态电路,无稳态电路的用途也很广,如汽车的转弯灯等。

多谐振荡器设计报告

多谐振荡器设计报告 一、实验要求 产生矩形波的频率可以通过电压控制,实现压控振荡。并且在电压调整的过程中波形不会出现振荡、过冲、毛刺等不稳定现象,能够稳定地产生方波。设计报告中应该包括电路截图、仿真截图、仿真分析等实验数据。 二、多谐振荡器相关简介 随着电子产业的发展以及要求,各种稳定的波形产生器成为不可缺少的一部分,而方波是其中比较有代表性的一个波形。方波在各个行业及日常生活中得到了广泛的应用,如电路中的定时器、分频器、脉冲信号发生器等都需要方波产生电路。而多谐振荡器则是一种在接通电源后,就能产生一定频率和一定幅值矩形波的自激振荡器,常作为脉冲信号源。由于多谐振荡器在工作过程中没有稳定状态,故又称为无稳态电路。尽管多谐振荡器有多种电路形式,但它们都具有以下结构特点:电路由开关器件和反馈延时环节组成。开关器件可以是逻辑门、电压比较器、定时器等,其作用是产生脉冲信号的高、低电平。反馈延时环节一般为RC电路,RC电路将输出电压延时后,恰当地反馈到开关器件输入端,以改变其输出状态。 三、实验方案确定 本次实验是通过施密特触发器与晶体管来构成多谐振荡器电路的开关器件,RC电路来构成反馈延时环节,再加入电压控制部分实现振荡频率的控制。

四、实验内容 1、施密特触发器的制作 a、原理图简要分析。电路主要部分为Q2管与Q3管两个导向器相连,再在输入与输出两个端口加上Q1管与Q4管构成的射极跟随器进行隔离,从而得到更好的频率特性,使输出的波形不会出现毛刺、过冲、振荡等不稳定现象,并且在压控电路中不会对其它部分有较大影响。其电路图如下: b、施密特电路调试。为了使电路能够很好地工作,分析原理图可知,电路的上下门限电压由电阻RC1、RC2、RE决定,而射极跟随器的射极电阻RE1与RE2主要影响电路的输入与输出阻抗,同时对电路的频率特性也有一定的影响。因此,在电路仿真调试的过程可以有目的性的进行元器件参数设置。电路调试的截图如下:

实验五(单稳态触发器和多谐振荡器)

年级_______班级_____学号________________姓名________________成绩_______ 实验五单稳态触发器和多谐振荡器 一、实验目的 1.研究555单稳态触发器的功能。 2.研究由555构成的多谐振荡器的功能。 二、实验器材 5V直流电源 1个 逻辑开关 1个 逻辑探头 1个 555定时器 1个 信号发生器 l台 双踪示波器 l台 电容器 1üF、100üF、0.02üF 各1个 0.01üF 2个 电阻 200kΩ、100KΩ、72kΩ、 48kΩ、10 KΩ、5 KΩ、1 KΩ各1个 三、实验准备 单稳态触发器具有三个特点:第一,有一个稳态和一个暂稳态;第二,在外来触发脉冲的作用下,能够从稳态翻转为暂稳态:第三,暂稳态维持一段时间以后将自动返回稳态而暂稳态的维持时间与触发脉冲无关,仅决定于电路本身的参数。 图5-1 555单稳态触发器 图5-1电路可用来验证555单稳态触发器的逻辑功能。图中TRI为下沿触发脉冲输入端,由时钟脉冲逻辑开关CLOCK提供下沿触发脉冲。逻辑探头Output可显示单稳电路的输出状态,稳态时Out=0,暂稳态时Out=1。暂稳态的维持时间t w由RC电路的时间常数来决定,其计算公式为

t w≈1.1RC 图5-2 555单稳电路的时间波形 图5-2为测试555单稳态触发器时间波形的电路。信号发生器将一系列短周期方波脉冲加到单稳电路的下沿触发输入端TRI,示波器将显示触发输入端TRI和输出端Out 的波形。 图5-3是一个用555定时器连成的多谐振荡器电路。电路的振荡频率用输出矩形波的占空比由外接元件R A、R B和C1决定。C2为控制输入端CON的旁路电容,对振荡频率没有什么影响,在有些情况下可以去掉。振荡频率f由输出脉冲的周期求出,即 占空比q为用百分数表示的多谐振荡器输出高电平的时间t2与周期T之比,即 对于图5-3所示的多谐振荡电路,在一周内输出低电平的时间t1、输出高电平的时间t2、振荡周期T、振荡频率吸占空比q的近似值可由下列公式求出

三极管无稳态多谐振荡器电路_

变换,因此输出波形似近一方波。 如图2即为无稳态多谐震荡器电路,图中两个三极管Q1、Q2在“Q1饱和/Q2截止”和“Q1截止/Q2饱和”,二种状态周期性的互换,其工作原理如下: 图2 (1)如图3当VCC接上瞬间,Q1、Q2分别由RB1、RB2获得正向偏压,同时C1、C2亦分 别经RC1、RC2充电。 图3 当VCC通电瞬间

(2)由于Q1、Q2的特性无法百分之百相同,假设某一三极管Q1之电流增益比另一个三极 管Q2高,则Q1会比Q2先进入饱和(ON)状态,而当Q1饱和时,C2由Q1 CE极经VCC、RB2放电,在Q2 BE极形成一逆向偏压,促使Q2截止【电子部人:来答疑咯!Q1导通,由于c、e极之间此时是通的,所以c极处电位接近于负极(我们的图中是接地,就是接近于0V),由于电容C2的耦合作用,Q2基极电压接近于负极→不会产生基极电流,即Ib=0A→则Q1 e、c之间断开(开关作用)】同时C1经Rc2及Q1的BE极于短时间内完成充电至VCC,如图4所示。 图4 C2放电,C1充电回路 (3)Q1 ON、Q2 OFF的情形并不是稳定的,当C2放电完后(T2=0.7 RB2 C2秒【电子部人: 各位还记得高中学的电容放电时间公式吧!t=0.7RC】),C2由VCC经RB2、Q1C-E极反向充电,当充到0.7V时,此时Q2获得偏压而进入饱和(ON),C1由Q2 CE极,Vcc、RB1放电,同样地,造成Q1 BE极逆偏压。Q1截止(OFF),C2经RC1及Q2B-E极于短时间充至 图5 C1放电,C2充电回路

(4)同理,C1放完电后(T=0.7 RB2 C1秒),Q1经RB1获得偏压而导通,Q2 OFF 如此反覆循环下去。如图6所示波形。 周期 T=T1+T2=0.7 RB1 C1+0.7 RB2 C2 若 RB1= RB2=RB 、 C2=C1=C 则 T=1.4RBC f= 图6 如果将RC1、RC2换成两个发光二极管,发光二极管一亮一暗,不断交替。也就是说,两个三极管中,一个饱和,另一个截止,而且不断交换。这种电路没有一个稳定的状态,叫做无稳态电路,无稳态电路的用途也很广,如汽车的转弯灯等。 【本资料由电子部人整理制作,原文来自: https://www.360docs.net/doc/5d11415362.html, 原文网址https://www.360docs.net/doc/5d11415362.html,/sch/signal/0082128.html 】

高频电路课程设计 三极管多谐震荡器

华中师范大学武汉传媒学院 传媒技术学院 课程设计 题目三极管多谐振荡器 班级电信B1101 姓名 学号

三极管多谐震荡器 一、设计要求 多谐振荡电路是模拟电子技术中比较重要的部分之一,但这部分电路分析相对来说比较复杂,我们做这个最基础的分立元件无稳态多谢振荡电路就是为了锻炼一下,并和各位电子爱好者相互交流学习。 二、设计方案 三级多谐振荡器是一种简单的振荡电路。它不需要外加激励信号就便能连续地、周期性地自行产生矩形脉冲.该脉冲是由基波和多次谐波构成,因此称为多谐振荡器电路。多谐振荡器可以由三极管构成,也可以用555 或者通用门电路等来构成。用两只三极管组成的多谐振荡器,通常叫做三极管无稳态多谐振荡器。在本例中我们将用两只三极管制作一个多谐振荡器,并用它驱动两只不同颜色的发光二极管。在制作完成时,我们能看到两只发光二极管交替点亮,并且我们可以通过调整电路的参数来调整发光管点亮的时间。 三、硬件框图 四、电路原理图及分析 当电源一接通,两只双极管就要先导通,但由于元件有差异,只有某一只管子最先导通。假如VT1最先导通,那么VT1集电极电压下降,VD1被点亮,电容C1的左端接近零电压,由于电容器两段的电压不能突变,所以VT2基极也被拉到近似零电压,使VT2截止,VD2不亮。随着电源通过电阻R1对C1的充电,使三极管VT2基极电压逐渐升高,当超过0.6伏时,VT2由截止状态变为导通状态,集电极电压下降,当超过0.6伏时,VT2由截止状态变为导通状态,集电极电压下降,VD2被点亮。与此同时三极管VT2集电极电压的下降通过电容器C2的作用使三极管VT1的基极电压也下跳,VT1由导通变为截止,VD1熄灭。如此循环,电路中两只三极管便轮流导通和截止,两只发光二极管就不停地循环发光。改变电容的容量可以改发光管循环的速度。

多谐振荡器实训报告

科学技术学院 SCIENCE & TECHNOLOGY COLLEGE OF NANCHANG UNIVERSITY 《工程训练》报告 REPORT ON ENGINEERING TRAINING 题目多谐振荡器的实训 学科部、系: 专业班级: 学号: 学生姓名: 指导教师: 起讫日期:

摘要 本次多谐振荡器工程训练包含两个内容,分别是设计并制作双三极管型多谐振荡器和555多谐振荡器,首先运用理论分析法,将电路所要执行的功能,通过理论分析和计算构建电路模型,然后运用实验检验法,将构建好的模型进行电路组装焊接,再检测所做电路功能是否与先前理论设计的相符。本人在经过上述一系列步骤和不断的改进后,最终得出与理论相同的结果,即在三极管型多谐振荡电路中,测试的两个发光二极管交替发光,在三五多谐振荡器中测试的蜂鸣器间断发声。由上述结果可得出相应的结论,即双三极管型多谐振荡器和三五多谐振荡器都可以连续的产生矩形波,矩形波的宽度受相应的电阻和电容控制。 关键词:双三极管多谐振荡器555时基多谐振荡器原理分析制作

目录 摘要............................................................................................. I 1实训目的和要求. (1) 1.1实训目的 (2) 1.2实训要求 (2) 2双三极管多谐振荡器 (2) 2.1 双三极管多谐振荡器工作原理 (2) 2.2 双三极管多谐振荡器器件选择 (3) 2.3 双三极管PCB制作 (3) 3 555时基多谐振荡器 (4) 3.1 555多谐振荡器的工作原理 (4) 3.2 555多谐振荡器的器件选择 (5) 4.3 555多谐振荡器的PCB制作 (6) 4 性能的测试,分析和总结 (6) 4.1双三极管多谐振荡器性能的测试和分析 (6) 4.2 555多谐振荡器的性能测试和分析 (6) 4.3 多谐振荡器实训总结 (6) 5多谐振荡器制作后的心得体会 (7) 参考文献 (7) 附表 (8)

三极管振荡器

三级管多谐振荡器的制作 无稳态多谐振荡器是一种简单的振荡电路。它不需要外加激励信号就便能连续地、周期性地自行产生矩形脉冲.该脉冲是由基波和多次谐波构成,因此称为多谐振荡器电路。多谐振荡器可以由三极管构成,也可以用555或者通用门电路等来构成。用两只三极管组成的多谐振荡器,通常叫做三极管无稳态多谐振荡器。 在本例中我们将用两只三极管制作一个多谐振荡器,并用它驱动两只不同颜色的发光二极管。在制作完成时,我们能看到两只发光二极管交替点亮,并且我们可以通过调整电路的参数来调整发光管点亮的时间。 三极管多谐振荡器的电路原理图: 此主题相关图片如下: 下面我们将简要分析该电路的工作原理: 上图所示为结型晶体管自激或称无稳态多谐振荡器电路。它基本上是由两级RC藕合放大器组成,其中每一级的输出藕合到另一级的输入。各级交替地导通和截止,每次只有一级是导通的。 从电路结构上看,自微多谐振荡器与两级Rc正弦振荡器是相似的,但实际上却不同。正弦振荡器不会进入截止状态.而多谐振荡器却会进入截止状态。这是借助于Rc耦合网络较长的时间常数来控制的。尽管在时间上是交替的,可是这两级产生的都是矩形波输出。所以多谐振荡器的输出可取自任何一级。 电路上电时,Vcc加到电路,由于两只三极管都是正向偏置的故他们处于导通状态,此外,还为藕合电容器Cl和C2充电到近于Vcc电压。充电的路径是由接地点经过晶体管基极,又通过电容器而至Vcc电源。还有些充电电流是经过R1和R2的,从而导致正电压加在基极上,使晶体管导电量更大,因而使两级的集电极电压下降。 两只晶体管不会是完全相同的,因此,即使两级用的是相同型号的晶体管和用相同的元件值,

双三极管多谐振荡器原理

三极管变色闪光灯电路图与多谐振荡器原理 在多谐振荡器两只三极管得集电极分别接上发光管,发光管就能够依多谐振荡器得周期进行交替闪烁,此电路用途广泛,可用与家居装饰 等! 电路工作原理 本电路采用高增益pnp型锗管vt3, vt4组成多谐振荡器,有两级反相器首尾连接,级间利用电容c3, c4耦合,其工作周期为1s! 元件选择与调试 三极管应选择集电极电流大于50ma得 9012或9015,发光管应选择高亮度得管子! 若想改变闪烁得速度,可以调整c3, c4得容量,也可以用微调代替r3, r4,条好后换上相应数值得电阻即可! 无稳态多谐振荡器是一种简单的振荡电路。它不需要外加激励信号就便能连续地、周期性地自行产生矩形脉冲.该脉冲是由基波和多次谐波构成,因此称为多谐振荡器电路。多谐振荡器可以由三极管构成,也可以用555或者通用门电路等来构成。用两只三极管组成的多谐振荡器,通常叫做三极管无稳态多谐振荡器。 在本例中我们将用两只三极管制作一个多谐振荡器,并用它驱动两只不同颜色的发光二极管。在制作完成时,我们能看到两只发光二极管交替点亮,并且我们可以通过调整电路的参数来调整发光管点亮的时间。

三极管多谐振荡器的电路原理图: 下面我们将简要分析该电路的工作原理: 上图所示为结型晶体管自激或称无稳态多谐振荡器电路。它基本上是由两级RC 藕合放大器组成,其中每一级的输出藕合到另一级的输入。各级交替地导通和截止,每次只有一级是导通的。 从电路结构上看,自微多谐振荡器与两级Rc正弦振荡器是相似的,但实际上却不同。正弦振荡器不会进入截止状态.而多谐振荡器却会进入截止状态。这是借助于Rc耦合网络较长的时间常数来控制的。尽管在时间上是交替的,可是这两级产生的都是矩形波输出。所以多谐振荡器的输出可取自任何一级。 电路上电时,Vcc加到电路,由于两只三极管都是正向偏置的故他们处于导通状态,此外,还为藕合电容器Cl和C2充电到近于Vcc电压。充电的路径是由接地点经过晶体管基极,又通过电容器而至Vcc电源。还有些充电电流是经过R1和R2的,从而导致正电压加在基极上,使晶体管导电量更大,因而使两级的集电极电压下降。 两只晶体管不会是完全相同的,因此,即使两级用的是相同型号的晶体管和用相同的元件值,一个晶体管也会比另一个起始导电量稍微大些。 假定Ql的导电量稍大些,由于Ql的电流大,它的集电集电压下降就要比Q2的快些。结果,被通过电阻器R2放电的电容器C2藕台到Q2基极的电压就要比由C1和Rl藕合到Ql基极的电压负值更大些。这就使得Q2的导电量减少,而它的

常见的多谐振荡器电路_三郎

电子报/2010年/4月/4日/第010版 电子职校 常见的多谐振荡器电路 江苏三郎 多谐振荡器不需要外加触发脉冲,只要加入直流工作电源,就能自动振荡而产生矩形脉冲,其脉冲含有丰富的谐波成分,这种波形电路俗称多谐振荡器,由于没有稳定的状态,又称无稳态多谐振荡器。多谐振荡器在数字电路中常作为脉冲信号源,电路类型多种多样,本文介绍常见的多谐振荡器电路。 一、数字(CMOS)集成电路 1.TC4069六反相器振荡器用TC4069和石英晶体制作的多谐振荡器电路见图1所示。石英晶体最大的特点是当信号频率等于晶体谐振频率时,等效值最小,信号容易通过,在电路中形成正反馈,因而电路振荡频率决定晶体频率,与电路中其他元件无关。只要更换不同的晶体,就可以得到不同的振荡频率。 2.采用相同的TC4069振荡器 R1、R2、C组成的多谐振荡器见图2。电路中由于C的充、放电作用,使两个暂稳态中交替转换,输出矩形脉冲,其工作电压可选取3V~18V。改变R2、C 的大小,可改变振荡频率。R1是补偿电阻,可改变电源电压波形而产生振荡频率不稳。 3.CD40106六施密特触发器用CD40106B、R、D、C组成的多谐振荡器见图3。利用D1、D2两只二极管的单向导通特性,分别形成充、放电回路,使输出矩形脉冲电路中的高、低电平持续时间不同,占空比得到调节。改变R1、R2的阻值和C的容量,可使振荡频率发生变化。施密特触发器输出端所接的反相器起到整形、隔离作用。 https://www.360docs.net/doc/5d11415362.html,4060 14位二进制串行计数器/分频器/振荡器用CC4060、R1、R2和C组成的多谐振荡器见图4。CC4060内部分为两部分:(1)是14级计数器/分频器,其分频系数为24~216,即为16~16384;(2)用外接电阻、电容构成多谐振荡器,产生较高的频率信号,经其内部分频后,从输出端Q4~Q14输出4~14次二分频后较低的、准确的频率信号。 二、LM324四运算放大器振荡器 用1/4的LM324等组成的多谐振荡器电路见图5。该运放工作在电压比较器状态。正反馈网络中的R2、R4对输出电压UO分压后,作为同相输入端③脚的基准电压V+,反相输入端②脚V-取自R3、C组成的积分电路C两端。V-与V+进行比较,而决定输出电压UO电平的高低。由于C不断在正、反两个方向充电和放电,使V-的电压不断大于V+和小于V+,输出电压UO也随之在低、高电平之间翻转,就会得到一定周期和频率的方波信号。该振荡器最大特点:温漂小,频率稳定性高。其振荡频率与R3、C的阻、容值有直接关系,与所用的运算放大器特性无关。 三、NE555时基集成电路振荡器 采用NE555时基集成块及外接阻、容元件组成的多谐振荡器电路见图6。此电路主要是C1充电来维持第一个暂稳态,其持续时间为输出正脉冲宽度TWH,依C1的放电维持第二个暂稳态,其持续时间为输出负脉冲宽度TWL。电路起振后C1两端电压总是在1/3~2/3V+之间变化。电路中的D1、D2是将C1电容的充放电回路隔离。通过改变R2的阻值,可使TWH及TWL得到改变,占空比得到调节。 四、分立元件振荡器 相同型号三极管由C、R组成的多谐振荡器电路见图7。两个三极管之间采用阻容耦合,V1的集电极经C1连接V2的基极输入端,V2的集电极经C2连接V1的基极输入端,构成了闭合环路。两晶体管交替的饱和导通、截止,工作于开关状态,使两管的集电极周期性在高电平和低电

相关文档
最新文档