中考数学第一轮整式课时训练含答案

中考数学第一轮整式课时训练含答案中考数学第一轮整式课时训练含答案

课时训练(三) 整式(限时:40分钟)

|考场过关|1.[·荆州] 下列代数式中,整式为( )A.x+1 B. C. D.2.[·陕西] 下列计算正确的是( )A.a2·a2=2a4 B.(-a2)3=-a6C.3a2-6a2=3a2 D.(a-2)2=a2-43.[·河北] 将

9.52变形正确的是( )A.9.52=92+0.52

B.9.52=(10+0.5)(10-0.5)

C.9.52=102-2×10×0.5+0.52

D.9.52=92+9×0.5+0.524.[·重庆A卷] 按如图K3-1所示的运算程序,能使输出的结果为12的是( )

图K3-1A.x=3,y=3B.x=-4,y=-2[C.x=2,y=4D.x=4,y=25.若(x+2)(x-1)=x2+mx+n,则m+n= ( )A.1 B.-2 C.-1 D.26.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a元后,再打7折,现售价为b元,则原售价为( )[A.a+b元B.a+b元C.b+a元D.b+a元7.若x2+4x-4=0,则3(x-2)2-6(x+1)(x-1)的值为( )A.-6 B.6 C.18 D.308.[·张家界] 观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,则2+22+23+24+25+…+2的末位数字是( )A.8 B.6 C.4 D.09.[·成都] 已知x+y=0.2,x+3y=1,则代数式x2+4xy+4y2的值为 .10.已知:10m=6,10n=2,则10m-n 的值为.11.已知m+n=mn,则(m-1)(n-1)= .12.[·成都] 已知 a 0,S1=,S2=-S1-1,S3=,S4=-S3-1,S5=,…(即当n为大于1的奇数时,Sn=;当n为大于1的偶数时,Sn=-Sn-1-1),按此规律,S= .(用含a的代数式表示)13.化简:2(a+1)2+(a+1)(1-2a).

14.先化简,再求值:(x-2)(x+2)+x2(x-1),其中x=-1.|能力提升|15.[·酒泉] 已知a,b,c 是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为( )A.2a+2b-2c B.2a+2b C.2c D.016.[·日照] 定义一种对正整数n的“F”运算:①当n是奇数时,F(n)=3n+1;②当n 为偶数时,F(n)=(其中k是使F(n)为奇数的正整数),两种运算交替重复进行.例如,取n=24,则:

图K3-2若n=13,则第次“F”运算的结果是( )A.1 B.4 C. D.417.[·南通] 已知x=m时,多项式x2+2x+n2的值为-1,则x=-m时,该多项式的值为.18.[·娄底] 设a1,a2,a3……是一列正整数,其中a1表示第一个数,a2表示第二个数,依此类推,an表示第n个数(n是正整数).已知a1=1,4an=(an+1-1)2-(an-1)2,则a= .19.如图K3-3,多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形,它的面积S可用公式S=a+b-1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克定理”.在一张共有200个格点的方格纸上,画有一个格点多边形,它的面积S=40.(1)这个格点多边形边界上的格点数b= (用含a的代数式表示);(2)设该格点多边形外的格点数为c,则c-a= .

图K3-3|思维拓展|20.[·河北] 用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形.要将它按如图K3-4的方式向外等距扩1(单位:cm),得到新的正方形,则这根铁丝需增加( )

图K3-4A.4 cm B.8 cm C.(a+4)cm D.(a+8)cm21.将7张如图K3-5①所示的长为a,宽为b(a b)的小长方形纸片按图②的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积之差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a∶b= .

参考答案1.A 2.B 3.C 4.C5.C 6.A 7.B8.B [解析] 由题意可知,末位数字每4个算式是一个周期,末位数字分别为2,4,8,6.∵=504……2∴2的末位数字与22的末位数字相同,为4.∵2+4+8+6=20,末位数是0,∴21+22+23+24+25+…+2的末位数字是2+4=6.

故答案为 6.9.0.36 [解析] ∵x+y=0.2①,x+3y=1②,①+②得:2x+4y=1.2,∴x+2y=0.6,∴x2+4xy+4y2=(x+2y)2=0.36.10.3 11.112.- [解析] ∵S1=,∴S2=-S1-1=--1=-,∴S3==-,∴S4=-S3-1=-1=-,∴S5==-1-a,∴S6=-S5-1=a,∴S7===S1,故此规律为6个一循环,∵÷6=336余2,∴S=-.13.解:原式=2(a2+2a+1)+(-2a2-a+1)=3a+3.14.解:原式=x2-4+x3-x2=-4+x3.当x=-1时,原式=-4+(-1)3=-4-1=-5.15.D [解析] 根据三角形三边满足的条件:两边和大于第三边,两边的差小于第三边,即可确定a+b-c 0,c-a-b 0,所以|a+b-c|-|c-a-b|=a+b-c+c-a-b=0,故选D.16.A [解析] 根据题意,得第一次:当n=13时,F①=3×13+1=40,第二次:当n=40时,F②==5,第三次:当n=5时,F①=3×5+1=16,第四次:当n=16时,F②==1,第五次:当n=1时,F①=3×1+1=4,第六次:当n=4时,F②==1,…从第四次开始,每2次运算为一个循环,因为(-3)÷2=1007……1,所以第次“F”运算的结果是1.故选A.17.3 [解析] 当x=m时,m2+2m+n2=-1,则(m+1)2+n2=0,∴m+1=0,n=0.∴m=-1,n=0.∴x=-m 时,x2+2x+n2=3.18.4035 [解析] 由4an=(an+1-1)2-(an-1)2,得到(an+1-1)2=(an+1)2,因为an为正整数,所以an+1-1=an+1,即an+1=an+2,所以a=a+2=a+2×2=…=a1+×2=4035,故答案为4035.19.(1)82-2a (2)118 [解析] (1)∵S=a+b-1,且S=40,∴a+b-1=40,整理得b=82-2a.(2)∵a是多边形内的格点数,b是多边形边界上的格点数,总格点数为200,∴边界上的格点数与多边形内的格点数的和为b+a=82-2a+a=82-a,∴多边形外的格点数c=200-(b+a)=200-(82-a)=118+a,∴c-a=118+a-a=118.20.B [解析] 由题意可知,正方形的边长增加了2 cm,则周长应该增加8 cm.故选B.21.3∶1 [解析] 显然AB=CD=a+3b,设AD=BC=x,则两阴影部分的面积之差为3b(x-a)-a(x-4b)=(3b-a)x+ab,当a=3b时,S=ab为定值.

中考数学专题复习训练 综合题型(无答案)

数学综合题 一、考点分析 从近几年的中考来看,综合问题往往涉及的知识几乎涵盖了初中阶段所有内容,综合不同领域的知识,有时还涉及不同学科。这类问题有代数综合题、几何综合题、代数几何综合题。题目从过去的论证转向发现,猜想和探索。综合问题是中考重点考查内容。主要是综合考查学生分析问题、解决问题的能力。这类问题考查方式灵活、内容丰富、手段多样,解决此类问题往往要用到较多的数学知识、数学思想、数学方法,要准确理解题意,综合应用题目中涉及的相关知识,应用恰当的数学方法。通过猜测、合理综合,实现问题的解决。 二、题型 类型一 代数综合题 已知关于x 的方程--++=22x (2k 3)x k 10有两个不相等的实数根1x 、2x . (1)求k 的取值范围; (2)试说明1x <0,2x <0; (3)若抛物线y=--++=22x (2k 3)x k 10与x 轴交于A 、B 两点,点,A 、点B 到原点的距离分别为OA 、OB ,且OA+OB=2OA ·?OB-3,求k 的值。 【解析】根据题意可知, (1)由题意可知:△=[-(2k-3)]2-4(k 2+1)>0, 即-12k+5>0 ∴k <512 (2)∵ <>+=-??=?12212x x 2k 3x 0 x k 0 ∴ x 1<0,x 2<0。 (3)依题意,不妨设A (x 1,0),B (x 2,0). ∴ OA+OB=|x 1|+|x 2|=-(x 1+x 2)=-(2k-3), OA?OB=|-x 1||x 2 |=x 1x 2=k 2+1, ∵ OA+OB=2OA?OB -3, ∴ -(2k-3)=2(k 2+1)-3, 解得k 1=1,k 2=-2. ∵ k <512 ∴ k=-2. 类型二 几何综合题 如图,PQ 为圆O 的直径,点B 在线段PQ 的延长线上,OQ=QB=1,动点A 在圆O 的上半圆运动(含P 、Q 两点),以线段AB 为边向上作等边三角形ABC . (1)当线段AB 所在的直线与圆O 相切时,求△ABC 的面积(图1); (2)设∠AOB=α,当线段AB 、与圆O 只有一个公共点(即A 点)时,求α的范围(图2,直接写出答案);

2017中考数学计算题专项训练

2014年中考数学计算题专项训练 一、集训一(代数计算) 1. 计算: (1)30 82 145+-Sin (2) (3)2×(-5)+23-3÷1 2 (4)22+(-1)4+(5-2)0-|-3|; (6)?+-+-30sin 2)2(20 (8)()()0 2 2161-+-- (9)( 3 )0 - ( 12 )-2 + tan45° (10)()()0332011422 ---+÷- 2.计算:345tan 3231211 0-?-??? ? ??+??? ??-- 3.计算:( ) () () ??-+-+-+ ?? ? ??-30tan 3312120122010311001 2 4.计算:()( ) 11 2230sin 4260cos 18-+ ?-÷?--- 5.计算:12010 0(60)(1) |2(301) cos tan -÷-+-

二、集训二(分式化简) 注意:此类要求的题目,如果没有化简,直接代入求值一分不得! 考点:①分式的加减乘除运算 ②因式分解 ③二次根式的简单计算 1. . 2。 2 1 422 ---x x x 3.(a+b )2 +b (a ﹣b ). 4. 11()a a a a --÷ 5.2 11 1x x x -??+÷ ??? 6、化简求值 (1)????1+ 1 x -2÷ x 2 -2x +1 x 2-4,其中x =-5. (2)(a ﹣1+)÷(a 2 +1),其中a= ﹣1. (3)2121(1)1a a a a ++-?+,其中a (4))2 5 2(423--+÷--a a a a , 1-=a (5))1 2(1a a a a a --÷-,并任选一个你喜欢的数a 代入求值.

中考数学专题复习基础训练及答案

基础知识反馈卡·1.1 时间:15分钟 满分:50分 一、选择题(每小题4分,共24分) 1.-4的倒数是( ) A .4 B .-4 C.14 D .-1 4 2.下面四个数中,负数是( ) A .-5 B .0 C .0.23 D .6 3.计算-(-5)的结果是( ) A .5 B .-5 C.15 D .-1 5 4.数轴上的点A 到原点的距离是3,则点A 表示的数为( ) A .3或-3 B .3 C .-3 D .6或-6 5.据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为( ) A .4.6×108 B .46×108 C .4.6×109 D .0.46×1010 6.如果规定收入为正,支出为负.收入500元记作500元,那么支出237元应记作( ) A .-500元 B .-237元 C .237元 D .500元 二、填空题(每小题4分,共12分) 7.计算(-3)2=________. 8.1 3 -=______;-14的相反数是______. 9.实数a ,b 在数轴上对应点的位置如图J1-1-1,则a ______b (填“<”、“>”或“=”). 图J1-1-1 答题卡 题号 1 2 3 4 5 6 答案 7.__________ 9.__________ 三、解答题(共14分) 10.计算:︱-2︱+(2+1)0--113?? ???.

时间:15分钟满分:50分 一、选择题(每小题4分,共12分) 1.化简5(2x-3)+4(3-2x)结果为() A.2x-3 B.2x+9 C.8x-3 D.18x-3 2.衬衫每件的标价为150元,如果每件以8折(即按标价的80%)出售,那么这种衬衫每件的实际售价应为() A.30元B.60元C.120元D.150元 3.下列运算不正确的是() A.-(a-b)=-a+b B.a2·a3=a6 C.a2-2ab+b2=(a-b)2D.3a-2a=a 二、填空题(每小题4分,共24分) 4.当a=2时,代数式3a-1的值是________. 5.“a的5倍与3的和”用代数式表示是____________. 6.当x=1时,代数式x+2的值是__________. 7.某班共有x个学生,其中女生人数占45%,用代数式表示该班的男生人数是________.8.图J1-2-1是一个简单的运算程序,若输入x的值为-2,则输出的数值为 ____________. 输入x―→x2―→+2―→输出 图J1-2-1 9.搭建如图J1-2-2(1)的单顶帐篷需要17根钢管,这样的帐篷按图J1-2-2(2)、(3)的方式串起来搭建,则串7顶这样的帐篷需要________根钢管. 图J1-2-2 答题卡 题号12 3 答案 4.____________ 7.____________8.____________9.____________ 三、解答题(共14分) 10.先化简下面代数式,再求值: (x+2)(x-2)+x(3-x),其中x=2+1.

2016年中考数学压轴题精选及详解

2020年中考数学压轴题精选解析 中考压轴题分类专题三——抛物线中的等腰三角形 基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或 抛物线的对称轴上),若ABP ?为等腰三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为底时(即PA PB =):点P 在AB 的垂直平分线上。 利用中点公式求出AB 的中点M ; 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出AB 的垂直平分线的斜率k ; 利用中点M 与斜率k 求出AB 的垂直平分线的解析式; 将AB 的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 (2)AB 为腰时,分两类讨论: ①以A ∠为顶角时(即AP AB =):点P 在以A 为圆心以AB 为半径的圆上。 ②以B ∠为顶角时(即BP BA =):点P 在以B 为圆心以 AB 为半径的圆上。 利用圆的一般方程列出A e (或B e )的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 中考压轴题分类专题四——抛物线中的直角三角形 基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或 抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M e 的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出PA (或PB )的斜率 k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()2 21221y y x x PQ -+-= 。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-= 22,得到方程☆:()()22 2 R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。 三、 中点公式: 四、 已知两点()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??? ??++22 2121y y ,x x 。 五、 任意两点的斜率公式: 已知两点()()2211y ,x Q ,y ,x P ,则直线PQ 的斜率: 2 12 1x x y y k PQ --= 。 中考压轴题分类专题五——抛物线中的四边形 基本题型:一、已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上, 或抛物线的对称轴上),若四边形ABPQ 为平行四边形,求点P 坐标。 分两大类进行讨论: (1)AB 为边时 (2)AB 为对角线时 二、已知AB ,抛物线()02 ≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对 称轴上),若四边形ABPQ 为距形,求点P 坐标。 在四边形ABPQ 为平行四边形的基础上,运用以下两种方法进行讨论: (1)邻边互相垂直 (2)对角线相等 三、已知AB ,抛物线()02 ≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对 称轴上),若四边形ABPQ 为菱形,求点P 坐标。 在四边形ABPQ 为平行四边形的基础上,运用以下两种方法进行讨论: (1)邻边相等 (2)对角线互相垂直

中考数学选择题专项训练

x y O 图3 中考定时专项训练 选择填空篇01 时间:15分钟 分数:42分 一、选择题(本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3 (1)-等于( ) A .-1 B .1 C .-3 D .3 2.在实数范围内,x 有意义,则x 的取值范围是( ) A .x ≥0 B .x ≤0 C .x >0 D .x <0 3.如图1,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对角线AC 等于( ) A .20 B .15 C .10 D .5 4.下列运算中,准确的是( ) A .34=-m m B .()m n m n --=+ C .236m m =() D .m m m =÷225.如图2,四个边长为1的小正方形拼成一个大正方形,A 、 B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点, 且位于右上方的小正方形内,则∠APB 等于( ) A .30° B .45° C .60° D .90° 6.反比例函数1 y x =(x >0)的图象如图3所示,随着x 值的 增大,y 值( ) A .增大 B .减小 C .不变 D .先减小后增大 7.下列事件中,属于不可能事件的是( ) A .某个数的绝对值小于0 B .某个数的相反数等于它本身 C .某两个数的和小于0 D .某两个负数的积大于0 8.图4是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线, ∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点C 上升的高度h 是( ) A .833 m B .4 m C .3m D .8 m 9.某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数2 120 y x =(x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( ) A .40 m/s B .20 m/s C .10 m/s D .5 m/s 10.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方 体,得到一个如图5所示的零件,则这个零件的表面积是( ) A .20 B .22 C .24 D .26 B A C D 图1 P O B A 图2 图5 A B C D 150° 图4 h

中考数学旋转综合练习题含答案解析

一、旋转真题与模拟题分类汇编(难题易错题) 1.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°. (1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF; (2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2; (3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系. 【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2. 【解析】 试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知 △AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出 CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出 EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2; (3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到 △ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF. 试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG, ∴AF=AG,∠FAG=90°, ∵∠EAF=45°, ∴∠GAE=45°, 在△AGE与△AFE中, , ∴△AGE≌△AFE(SAS); (2)设正方形ABCD的边长为a. 将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.

(完整版)初中数学中考大题专项训练(直接打印版)

2018年初中数学中考大题 一.解答题(共25小题) 1.目前,崇明县正在积极创建全国县级文明城市,交通部门一再提醒司机:为了安全,请勿超速,并在进一步完善各类监测系统,如图,在陈海公路某直线路段MN内限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由. (参考数据:,) 2.2014年3月,某海域发生航班失联事件,我海事救援部门用高频海洋探测仪进行海上搜救,分别在A、B两个探测点探测到C处是信号发射点,已知A、B两点相距400m,探测线与海平面的夹角分别是30°和60°,若CD的长是点C到海平面的最短距离.(1)问BD与AB有什么数量关系,试说明理由; (2)求信号发射点的深度.(结果精确到1m,参考数据:≈1.414,≈1.732)

3.如图,某生在旗杆EF与实验楼CD之间的A处,测得∠EAF=60°,然后向左移动12米到B处,测得∠EBF=30°,∠CBD=45°,sin∠CAD=. (1)求旗杆EF的高; (2)求旗杆EF与实验楼CD之间的水平距离DF的长. 4.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求: (1)坡顶A到地面PQ的距离; (2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

中考数学压轴题解题方法大全及技巧

专业资料整理分享 中考数学压轴题解题技巧 湖北竹溪城关中学明道银 解中考数学压轴题秘诀(一) 数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是

列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。 1、以坐标系为桥梁,运用数形结合思想:

中考数学套卷综合训练(三)(含答案)

学生做题前请先回答以下问题 问题1:选择题答题标准动作分别是: ①_________________; 涂卡时,便于快速准确找到答案,同时避免看到具体的选项又回去审题做题,在犹豫中浪费时间 ②_________________; 帮助梳理思路,同时方便检查 ③_________________; 复杂几何图形题,思考过程有可能不是最终的结果,错了可以修改 ④_________________; 主要针对多个命题或选项进行判断的问题,往往根据命题或选项的正误打“√”或“×”(均在序号或选项右上角),最后看题目让选“正确”还是“错误”,再根据要求选答案 ⑤__________________________________. 问题2:中考数学填空题答题标准动作有: ①______________________________________.帮助梳理思路,同时方便检查. ②______________________________________.专注做题、统一誊写. ③抄写到答题卡时,答案_________书写.留有修改余地. ④抄写到答题卡时,__________________________.如果觉得答案有问题,可以换一种思路和方法来验证.修改时,直接将错误答案整体划掉,重新写上完整的正确答案即可. 问题3:选择填空解题策略中常用的两种方法分别是__________,______________. 问题4:测量类应用题在书写时一般分为哪三部分? 中考数学套卷综合训练(三) 一、单选题(共19道,每道3分) 1.下列实数中,属于无理数的是( ) A.3.14 B. C. D. 答案:C 解题思路:

中考数学专题训练z

1.如图,在Rt△ABC中,∠ACB = 90°,点D、点E、点F分别是AC,AB,BC边的中点,连接DE、EF,得到四边形EDCF,它的面积记作S;点D1、点E1、点F1分别是EF,EB,FB边的中点,连接D1E1、E1F1,得到四 边形E1D1F F 1,它的面积记作S 1,照此规律作下去,则Sn = . 2.如图,在斜边长为1的等腰直角三角形OAB中,作内接正方形A1B1C1D1;在等腰直角三角形OA1B1中,作内接正方形A2B2C2D2;在等腰直角三角形OA2B2中,作内接正方形A3B3C3D3;……;依次作下去,则第n个正方形A n B n C n D n 的边长是( )(A)(B)(C)(D) 3.如图,在直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点 (n,0)……直线l n⊥x轴于点(n,0).函数y=x的图象与直线l1,l2,l3,……l n 分别交于点B1,B2,B3,……B n。如果△OA1B1的面积记为S1,四边形A1A2B2B1的 面积记作S2,四边形A2A3B3B2的面积记作S3,……四边形A n-1A n B n B n-1的面积记作 S n,那么S2011=_______________________。 5.如图,点A1、A2、A3、…在平面直角坐标系x轴上,点B1、B2、 B3、…在直线y= 3 3 x+1上,△OA1B1、△A1B2A2、△A2B3A3…均 为等边三角形,则A2014的横坐标 . 1 3 1 - n n 3 1 1 3 1 + n2 3 1 + n 1 x y O 1 3 4 5 2 2 3 5 4 y=x A2 A3 B3 B2 B1 S1 S2 S3 A1 y=2x (第3题) 1/ 2

2020中考数学压轴题100题精选(附答案解析)

2020中考数学压轴题100题精选 (附答案解析) 【001 】如图,已知抛物线2(1)y a x =-+(a ≠0)经过点 (2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结 BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.

【002】如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A 出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B 时停止运动,点P也随之停止.设点P、Q运动的时间是t 秒(t>0). (1)当t = 2时,AP = ,点Q到AC的距离是; (2)在点P从C向A运动的过程中,求△APQ的面积S 与 t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C 成 为直角梯形?若能,求t (4)当DE经过点C 时,请直接 图16 【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式;

2020中考数学专题训练试题(含答案)

精选范文、公文、论文、和其他应用文档,如果您需要使用本文档,请点击下载,另外祝您生活愉快,工作顺利,万事如意! 马上就要中考了,祝大家中考都考上一个理想的高中!欢迎同学们下载,希望能帮助到你们!

2020中考数学专题训练试题(含答案) 目录 实数专题训练 (5) 实数专题训练答案 (9) 代数式、整式及因式分解专题训练 (11) 代数式、整式及因式分解专题训练答案 (15) 分式和二次根式专题训练 (16)

分式和二次根式专题训练答案 (21) 一次方程及方程组专题训练 (22) 一次方程及方程组专题训练答案 (27) 一元二次方程及分式方程专题训练 (28) 一元二次方程及分式方程专题训练答案 (33) 一元一次不等式及不等式组专题训练 (34) 一元一次不等式及不等式组专题训练答案 (38) 一次函数及反比例函数专题训练 (39) 一次函数及反比例函数专题训练答案 (45) 二次函数及其应用专题训练 (46) 二次函数及其应用专题训练答案 (53) 立体图形的认识及角、相交线与平行线专题训练 (55) 立体图形的认识及角、相交线与平行线专题训练答案 (62) 三角形专题训练 (64) 三角形专题训练答案 (71) 多边形及四边形专题训练 (72) 多边形及四边形专题训练答案 (78) 圆及尺规作图专题训练 (79)

圆及尺规作图专题训练答案 (85) 轴对称专题训练 (87) 轴对称专题训练答案 (94) 平移与旋转专题训练 (95) 平移与旋转专题训练答案 (104) 相似图形专题训练 (106) 相似图形专题训练答案 (113) 图形与坐标专题训练 (114) 图形与坐标专题训练答案 (123) 图形与证明专题训练 (125) 图形与证明专题训练答案 (131) 概率专题训练 (132) 概率专题训练答案 (140) 统计专题训练 (141) 统计专题训练答案 (148)

中考数学专题训练函数综合题人教版

中考数学专题训练(函数综合) 1.如图,一次函数b kx y +=与反比例函数 x y 4 = 的图像交于A 、B 两点,其中点A 的横坐标为1, 又一次函数b kx y +=的图像与x 轴交于点()0,3-C . (1)求一次函数的解析式; (2)求点B 的坐标. 2.已知一次函数y=(1-2x )m+x+3图像不经过第四象限,且函数值y 随自变量x 的减小而减小。 (1)求m 的取值范围; (2)又如果该一次函数的图像与坐标轴围成的三角形面积是 ,求这个一次函数的解析式。 3. 如图,在平面直角坐标系中,点O 为原点,已知点A 的坐标为(2,2), 点B 、C 在x 轴上,BC =8,AB=AC ,直线AC 与y 轴相交于点D . (1)求点C 、D 的坐标; (2)求图象经过B 、D 、A 三点的二次函数解析式及它的顶点坐标. 4.如图四,已知二次函数 2 23y ax ax =-+的图像与x 轴交于点A 与y 轴交于点C ,其顶点为D ,直线DC 的函数关系式为y kx b =+ 又tan 1OBC ∠=. (1)求二次函数的解析式和直线DC 的函数关系式; (2)求ABC △的面积. ( 图四)

5.已知在直角坐标系中,点A 的坐标是(-3,1),将线段OA 绕着点O 顺时针旋转90° 得到OB . (1)求点B 的坐标; (2)求过A 、B 、O 三点的抛物线的解析式; (3)设点B 关于抛物线的对称轴λ的对称点为C ,求△ABC 的面积。 6.如图,双曲线x y 5 = 在第一象限的一支上有一点C (1,5),过点C 的直线)0(>+-=k b kx y 与x 轴交于点A (a ,0)、与y 轴交于点B . (1)求点A 的横坐标a 与k 之间的函数关系式; (2)当该直线与双曲线在第一象限的另一交点D 的横坐标是9时,求△COD 的面积. 7.在直角坐标系中,把点A (-1,a )(a 为常数)向右平移4个单位得到点A ',经过点A 、A '的抛物线2y ax bx c =++与y 轴的交点的纵坐标为2. (1)求这条抛物线的解析式; (2)设该抛物线的顶点为点P ,点B 为)1m ,(,且3

中考数学应用题专题训练.doc

中考数学应用题专题训练

中考数学应用题专题训练 类型一:二元一次方程组 方程应用题的解题步骤可用六个字概括,即审(审题),设(设未知数),列(列方 程),解(解方程),检(检验),答。 1.;以“开放崛起,绿色发展”为主题的第七届“中博会”已于2012年5月20日在湖南长沙圆满落幕,作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省内境外投资合作项目多51个. (1)求湖南省签订的境外、省外境内的投资合作项目分别有多少个? (2)若境外、省内境外投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,求在这次“中博会”中,东道湖南省共引进资金多少亿元?

2、小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤. 妈妈:“今天买这两样菜共花了45元,上月买同重量的这两种菜只要36元”; 爸爸:“报纸上说了萝卜的单价上涨了50%,排骨的单价上涨了20%”; 小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?” 请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).

3、用一根绳子环绕一个圆柱形油桶,若环绕油桶3周,则绳子还多4尺;若环绕油桶4周,则绳子又少了3尺。这根绳子有多长?环绕油桶一周需要多少尺?

4、儿童节期间,文具商店搞促销活动,同时购买一个书包和一个文具盒可以打8折优惠,能比标价省13.2元.已知书包标价比文具盒标价3倍少6元,那么书包和文具盒的标价各是多少元?

类型二:一元二次方程 1、某玩具店购进一种儿童玩具,计划每个售价36元,能盈利80%.在销售中出现了滞销,于是先后两次降价,售价降为25元. (1)求这种玩具的进价;(2)求平均每次降价的百分率.(精确到0.1%)

数学中考数学压轴题(讲义及答案)附解析

一、中考数学压轴题 1.如图,在长方形ABCD 中,AB =4cm ,BE =5cm ,点E 是AD 边上的一点,AE 、DE 分别长acm .bcm ,满足(a -3)2+|2a +b -9|=0.动点P 从B 点出发,以2cm/s 的速度沿B→C→D 运动,最终到达点D ,设运动时间为t s . (1)a =______cm ,b =______cm ; (2)t 为何值时,EP 把四边形BCDE 的周长平分? (3)另有一点Q 从点E 出发,按照E→D→C 的路径运动,且速度为1cm/s ,若P 、Q 两点同时出发,当其中一点到达终点时,另一点随之停止运动.求t 为何值时,△BPQ 的面积等于6cm 2. 2.在平面直角坐标系中,抛物线2 4y mx mx n =-+(m >0)与x 轴交于A ,B 两点,点B 在点A 的右侧,顶点为C ,抛物线与y 轴交于点D ,直线CA 交y 轴于E ,且 :3:4??=ABC BCE S S . (1)求点A ,点B 的坐标; (2)将△BCO 绕点C 逆时针旋转一定角度后,点B 与点A 重合,点O 恰好落在y 轴上, ①求直线CE 的解析式; ②求抛物线的解析式. 3.如图1,抛物线2 (0)y ax bx c a =++≠的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0). (1)求抛物线的解析式; (2)如图2,点E 是BD 上方抛物线上的一点,连接AE 交DB 于点F ,若AF=2EF ,求出点E 的坐标. (3)如图3,点M 的坐标为( 3 2 ,0),点P 是对称轴左侧抛物线上的一点,连接MP ,将MP 沿MD 折叠,若点P 恰好落在抛物线的对称轴CE 上,请求出点P 的横坐标.

中考数学计算题训练

中考数学计算题专项训练 一、训练一(代数计算) 1. 计算: (1)30821 45+-Sin (2) (3)2×(-5)+23-3÷12 (4)22+(-1)4+(5-2)0-|-3|; (6)?+-+-30sin 2)2(20 (8)()()0 22161-+-- 2.计算:345tan 32312110-?-??? ? ??+??? ??-- 3.计算:()() ()??-+-+-+??? ??-30tan 331212012201031100102 4.计算:() ()0 112230sin 4260cos 18-+?-÷?--- 5.计算:120100(60)(1)|28|(301)21 cos tan -÷-+--?-- 二、训练二(分式化简) 注意:此类要求的题目,如果没有化简,直接代入求值一分不得! 考点:①分式的加减乘除运算 ②因式分解 ③二次根式的简单计算 1. . 2。 2 1422---x x x 3.(a+b )2 +b (a ﹣b ). 4. 11()a a a a --÷ 5.2111x x x -??+÷ ??? 6、化简求值 (1)????1+ 1 x -2÷ x 2 -2x +1 x 2-4,其中x =-5. (2)2121(1)1a a a a ++-?+,其中a 2-1. (3) )2 52(423--+÷--a a a a , 1-=a (4))12(1a a a a a --÷-,并任选一个你喜欢的数a 代入求值.

(5)22121111x x x x x -??+÷ ?+--??然后选取一个使原式有意义的x 的值代入求值 7、先化简:再求值:????1-1a -1÷a 2-4a +4a 2-a ,其中a =2+ 2 . 8、先化简,再求值:a -1a +2·a 2+2a a 2-2a +1÷1a 2-1 ,其中a 为整数且-3<a <2. 9、先化简,再求值:222211y xy x x y x y x ++÷??? ? ??++-,其中1=x ,2-=y . 10、先化简,再求值: 222112( )2442x x x x x x -÷--+-,其中2x =(tan45°-cos30°) 三、训练三(求解方程) 1. 解方程x 2﹣4x+1=0. 2。解分式方程 2322-=+x x 3解方程:3x = 2x -1 . 4.解方程:x 2+4x -2=0 5。解方程:x x -1 - 31- x = 2. 四、训练四(解不等式) 1.解不等式组,并写出不等式组的整数解. 2.解不等式组?????<+>+.22 1,12x x 3. 解不等式组? ????x +23 <1,2(1-x )≤5,并把解集在数轴上表示出来。 4. 解不等式组31311212 3x x x x +<-??++?+??≤,并写出整数解. 五、训练五(综合演练) 1、(1)计算: |2-|o 2o 12sin30(3)(tan 45)-+--+; (2)先化简,再求值: 6)6()3)(3(2+---+a a a a ,其中12-=a . 2、解方程: 0322=--x x 3、解不等式组1(4)223(1) 5. x x x ?+?,

中考数学综合练习题

42.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连结AF,BE相交于点P (1)若AE=CF, ①求证:AF=BE,并求∠APB的度数; ②若AE=2,试求AP?AF的值; (2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径的长. 43.合作学习 如图,矩形ABOD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函数 的图象分别相交于点E,F,且DE=2,过点E作EH⊥x轴于点H,过点F作FG⊥EH 于点G。回答下列问题: ①该反比例函数的解析式是什么? ②当四边形AEGF为正方形时,点F的坐标是多少? (1)阅读合作学习内容,请解答其中的问题; (2)小亮进一步研究四边形AEGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?” 针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由. 44.九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘 制成如下统计图. 根据统计图,解答下列问题: (1)第三次成绩的优秀率是多少?并将条形统计图补充完整;

(2)已求得甲组成绩优秀人数的平均数,方差,请通过计算说明,哪一组成绩优秀的人数较稳定? 45.一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人? (2)若用餐的人数有90人,则这样的餐桌需要多少张? 46.在棋盘中建立如图所示的直角坐标系,三颗棋子A,O,B的位置如图,它们的坐标分别是(-1,1),(0,0)和(1,0). (1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴; (2)在其它格点位置添加一颗棋子P,使A,O,B,P成为一个轴对称图形,请直接写出棋子P的位置的坐标(写出2个即可). 47.如图,在平面直角坐标系中,A是抛物线上的一个动点,且点A在第一象限内.AE⊥轴于点E,点B坐标为(0,2),直线AB交轴于点C,点D与点C关于轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为,△BED的面积为 .

中考数学专题练习--应用题

A M 45 ° 30 ° B 北 第4题 中考应用题附参考答案 1.(2010年广西桂林适应训练)某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元. (1)求该同学看中的随身听和书包单价各是多少元? (2)某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),该同学只带了400元钱,他能否在这两家超市都可以买下看中的这两样商品?若两家都可以选择,在哪一家购买更省钱? 2.(2010年黑龙江一模)某车间要生产220件产品,做完100件后改进了操作方法,每天多加工10件,最后总共用4天完成了任务.求改进操作方法后,每天生产多少件产品? 设改进操作方法后每天生产x 件产品,则改进前每天生产(10)x -件产品. 3.(2010广东省中考拟)A,B 两地相距18km ,甲工程队要在A ,B 两地间铺设一条输送天然气管道,乙工程队要在A ,B 两地间铺设一条输油管道,已知甲工程队每周比乙工程队少铺设1km ,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙工程队每周各铺设多少管道? 4.(2010年广东省中考拟)如图,是一个实际问题抽象的几何模型,已知A 、B 之间的距离为300m ,求点M 到直线AB 的距离(精确到整数).并能设计一种测量方案? (参考数据:7.13≈,4.12≈)

5.(2010年湖南模拟)某花木园,计划在园中栽96棵桂花树,开工后每天比原计划多栽2棵,?结果提前4天完成任务,问原计划每天栽多少棵桂花树. 6.(2010年厦门湖里模拟)某果品基地用汽车装运A、B、C三种不同品牌的水果到外地销售, 按规定每辆汽车只能装同种水果,且必须装满,其中A、B、C三种水果的重量及利润按下表提供信息: 水果品牌 A B C 每辆汽车载重量(吨)2.2 2.1 2 每吨水果可获利润(百元) 6 8 5 (1)若用7辆汽车装运A、C两种水果共15吨到甲地销售,如何安排汽车装运A、C两种水果? (2)计划用20辆汽车装运A、B、C三种不同水果共42吨到乙地销售(每种水果不少于2车),请你设计一种装运方案,可使果品基地获得最大利润,并求出最大利润. 7.(2010年杭州月考)某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表: A型利润B型利润 甲店200 170 乙店160 150 (1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围; (2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来; (3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型 ,型产产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A B 品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?

中考数学二轮复习中考数学压轴题知识点及练习题附解析(1)

一、中考数学压轴题 1.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF = 1 3 ,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由. 2.如图,已知抛物线y =2ax bx c ++与x 轴交于A 3,0-(),B 33,0()两点,与y 轴交于点C 0,3(). (1)求抛物线的解析式及顶点M 坐标; (2)在抛物线的对称轴上找到点P ,使得PAC 的周长最小,并求出点P 的坐标; (3)在(2)的条件下,若点D 是线段OC 上的一个动点(不与点O 、C 重合).过点 D 作D E //PC 交x 轴于点E .设CD 的长为m ,问当m 取何值时, PDE ABMC 1 S S 9 =四边形. 3.如图1,在平面直角坐标系中,抛物线239 334 y x x = --x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点 C . (1)过点C 的直线5 334 y x = -x 轴于点H ,若点P 是第四象限内抛物线上的一个动

点,且在对称轴的右侧,过点P 作//PQ y 轴交直线CH 于点Q ,作//PN x 轴交对称轴于点N ,以PQ PN 、为邻边作矩形PQMN ,当矩形PQMN 的周长最大时,在y 轴上有一动点K ,x 轴上有一动点T ,一动点G 从线段CP 的中点R 出发以每秒1个单位的速度沿R K T →→的路径运动到点T ,再沿线段TB 以每秒2个单位的速度运动到B 点处停止运动,求动点G 运动时间的最小值: (2)如图2, 将ABC ?绕点B 顺时针旋转至A BC ''?的位置, 点A C 、的对应点分别为A C ''、,且点C '恰好落在抛物线的对称轴上,连接AC '.点E 是y 轴上的一个动点,连 接AE C E '、, 将AC E ?'沿直线C E '翻折为A C E ?'', 是否存在点E , 使得BAA ?'为等腰三角形?若存在,请求出点E 的坐标;若不存在,请说明理由. 4.如图1,正方形CEFG 绕正方形ABCD 的顶点C 旋转,连接AF ,点M 是AF 中点. (1)当点G 在BC 上时,如图2,连接BM 、MG ,求证:BM =MG ; (2)在旋转过程中,当点B 、G 、F 三点在同一直线上,若AB =5,CE =3,则MF = ; (3)在旋转过程中,当点G 在对角线AC 上时,连接DG 、MG ,请你画出图形,探究DG 、MG 的数量关系,并说明理由. 5.“阅读素养的培养是构建核心素养的重要基础,重庆十一中学校以‘大阅读’特色课程实施为突破口,着力提升学生的核心素养.”全校师生积极响应和配合,开展各种活动丰富其课余生活.在数学兴趣小组中,同学们从书上认识了很多有趣的数.其中有一个“和平数”引起了同学们的兴趣.描述如下:一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”. 例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”. (1)直接写出:最小的“和平数”是________,最大的“和平数”是__________; (2)求同时满足下列条件的所有“和平数”:

相关文档
最新文档