大蒜播种机蒜瓣自动定向控制装置的试验研究

智能装盘播种机精密播种监测系统的设计

图1 智能装盘播种机的结构 Fig.1Structure of intelligent plate planter 1.漂盘护栏 2.压辊 3.下料斗 4.点种斗 5.淋水斗 6.覆料斗 7.后加长架 8.电机链条护罩 9.控制面板10.电控盒11.保险座%12.装基电机13. 前加长架 DOI:中国农机化学报 Journal of Chinese Agricultural Mechanization 第35卷第6期2014年11月Vol .35No .6Nov.2014 智能装盘播种机精密播种监测系统的设计* 吉武俊,陈海燕 摘要:国内现行的烟草播种机多采用纯机械推板式播种器,其播种量无法控制,且漏种量高,控制性能差难以满足播种的要求。YZPB ― 200B 型智能装盘播种机采用步进电机驱动排种器,播种过程中采用霍尔转速传感器采集苗盘传送速度信号,并由单片机对采集数据进行分析和计算,动态调节步进电机转速,使排种器转速与苗盘传送速度保持一定的关系,从而达到自动控制排种器的目的;此外安装了监控系统对播种机的播种质量进行实时监控,提高了播种的质量。关键词:播种器;单片机;传感器;播种精度中图分类号:S223.2 文献标识码:A 文章编号:2095-5553(2014)06-0017-04 吉武俊,陈海燕.智能装盘播种机精密播种监测系统的设计[J].中国农机化学报,2014,35(6):17~20 Ji Wujun,Chen Haiyan.Design of the monitoring system for precision seeding in tobacco intelligent plate planter [J].Journal of Chinese Agricul -tural Mechanization,2014,35(6):17~20 (河南省职业技术学院,郑州市,450046) 收稿日期:2013年9月16日修回日期:2013年10月29日 *基金项目:河南省烟草公司科技公关项目(200831) 第一作者:吉武俊,男,1979年生,河北张家口人,硕士,讲师;研究方向为汽车应用技术教育。E-mail:mazhai920@https://www.360docs.net/doc/5d16529228.html, 0引言 播种器是播种机的核心部件,对播种质量起 决定性作用。目前我国烟草装盘播种多数地区仍采用手工或半机械化作业。传统播种机的播种器是依靠地轮驱动,当地轮阻力大时容易打滑,要想让播种器和地轮的前行速度保持一定的关系,达到精准播种,对其机械部分的设计要求很高,如果出现皮带松动等原因时,漏播率非常高。同时播种机工作时具有全封闭的特点,当播种机发生故障时由于没有及时发现,会造成断行性漏播,导致农业减产。YZPB ―200B 型智能装盘播种机将播种过程用三种传感器进行测点,单片机综合控制,让排种器转速与播种机作业速度一致,大大提高了播种 精度;为了防止断行性漏播,安装了监控系统对播种质量进行实时监控,提高了播种质量。 1智能装盘播种机的结构 烟草精量装盘播种机由机架、装基装置、压穴装 置、播种装置、淋水装置、覆基装置构成,如图1所示。其中机架是本产品的基础,主要完成传递动力及输送育苗盘的任务;装基装置主要作用是能够容纳一定的基质量,并向育苗盘的种穴内填充基质;压穴装置利用传动 V 带的摩擦力,使育苗盘在运行的状态下推动压穴装置, 使压穴装置被动上下运动,实现同步给育苗盘压窝;播种装置包括种子箱、排种器驱动步进电机、精量排种器,它的主要作用是通过两组传感器检测,给控制系统提供信号,单片机进行数字化控制,实现精确播种。 10.13733/j.jcam.issn.2095-5553.2014.06.005

自动控制原理实验报告 线性系统串联校正

武汉工程大学实验报告 专业自动化班号 组别指导教师陈艳菲姓名同组者

三、实验结果分析 1.开环传递函数为) 1(4 )(+= s s s G 的系统的分析及其串联超前校正: (1)取K=20,绘制原系统的Bode 图: 源程序代码及Bode 图: num0=20; den0=[1,1,0]; w=0.1:1000; [gm1,pm1,wcg1,wcp1]=margin(num0,den0); [mag1,phase1]=bode(num0,den0,w); [gm1,pm1,wcg1,wcp1] margin(num0,den0) grid; 运行结果: ans = Inf 12.7580 Inf 4.4165 分析: 由结果可知,原系统相角裕度r=12.75800,c ω=4.4165rad/s ,不满足指标要求, 系统的Bode 图如上图所示。考虑采用串联超前校正装置,以增加系统的相角裕度。 确定串联装置所需要增加的超前相位角及求得的校正装置参数。 ),5,,45(0000c m c Φ=Φ=+-=Φ令取为原系统的相角裕度εγγεγγ m m ??αsin 1sin 1-+= 将校正装置的最大超前角处的频率 作为校正后系统的剪切频率 。则有: α ωωω1)(0)()(lg 2000=?=c c c c j G j G j G 即原系统幅频特性幅值等于 时的频率,选为c ω。 根据m ω=c ω ,求出校正装置的参数T 。即α ωc T 1 = 。 (2)系统的串联超前校正:

源程序代码及Bode图: num0=20; den0=[1,1,0]; w=0.1:1000; [gm1,pm1,wcg1,wcp1]=margin(num0,den0); [mag1,phase1]=bode(num0,den0,w); [gm1,pm1,wcg1,wcp1] margin(num0,den0) grid; e=5; r=50; r0=pm1; phic=(r-r0+e)*pi/180; alpha=(1+sin(phic))/(1-sin(phic)); [il,ii]=min(abs(mag1-1/sqrt(alpha))); wc=w( ii); T=1/(wc*sqrt(alpha)); numc=[alpha*T,1]; denc=[T,1]; [num,den]=series(num0,den0,numc,denc); [gm,pm,wcg,wcp]=margin(num,den); printsys(numc,denc) disp('校正之后的系统开环传递函数为:'); printsys(num,den) [mag2,phase2]=bode(numc,denc,w); [mag,phase]=bode(num,den,w); subplot(2,1,1);semilogx(w,20*log10(mag),w,20*log10(mag1),'--',w,20*log10(mag2),'-.'); grid; ylabel('幅值(db)'); title('--Go,-Gc,GoGc'); title(['校正前:幅值裕量=',num2str(20*log10(gm1)),'db','相位裕量=',num2str(pm1),'0']); subplot(2,1,2); semilogx(w,phase,w,phase1,'--',w,phase2,'-',w,(w-180-w),':'); grid; ylabel('相位(0)'); xlabel('频率(rad/sec)'); title(['校正后:幅值裕量=',num2str(20*log10(gm)),'db','相位裕量=',num2str(pm),'0']); 运行结果: ans = Inf 12.7580 Inf 4.4165 num/den = 0.31815 s + 1

我国大蒜生产机械化现状及前景分析

我国大蒜生产机械化现状及前景分析 作者:苏张磊程海洲杨灿 来源:《河南农业·综合版》 2013年第6期 河南农业职业学院苏张磊程海洲杨灿 摘要:分析了我国大蒜机械化种植及机械化收获的现状,指出了目前我国在大蒜机械化 生产过程中存在的主要问题及大蒜机械化生产的优点,探讨了适合我们国家的大蒜机械化生产 机具,对我国大蒜机械化生产的发展前景进行了分析,提出了一些发展建议。 关键词:大蒜;机械化生产;发展前景 大蒜富含多种营养元素,风味也比较独特,加工产品种类繁多,可作调味品、食品添加剂、饲料添加剂及美容化妆品的原料,对高血脂、高胆固醇、糖尿病、心脏病及胃、肠、肝、肺、 乳腺等癌症都有减轻症状及明显的治疗作用。世界大蒜栽培总面积约80万hm2,总产量762万t,有些地方大蒜的最高单产达到40.6 t/hm2(2 704 kg/667m2)。我国大蒜的种植面积约为 3.33×104 hm2,占世界总种植面积的1/3左右,产量约为1.6×1010 kg,占全球的75%左右。但是我国大蒜的生产却主要依靠人工来完成,生产效率较低、劳动强度较大,与农业的现代化 及发展新型农业都很不匹配。所以研制开发出适应我国大蒜生产要求的机具,并进行产业化生产,满足广大蒜农要求,提高大蒜机械化生产的水平,形成我国大蒜种植、地膜覆盖、收获等 关键技术的产业链,进一步促进农民增收,是十分紧迫的任务。本文主要通过分析国内外大蒜 生产的机械化现状,探讨适合我国的大蒜机械化生产机具,为我国大蒜机械化生产提供一些参考。 一、国内外大蒜生产机械化发展现状 (一)我国大蒜生产机械化现状分析 目前,在国内推广应用的大蒜种植机几乎没有,大蒜种植仍然用人工插播来完成,蒜农需 要一瓣一瓣地把蒜种插播到土壤中,劳动强度极大,工作效率极低。以播种蒜瓣为例,每个成 年劳动力每天仅能播种200 m2左右,操作速度较快的劳动力两人一天也只能插播667 m2。这样,在大蒜的种植过程中,就增加了蒜农的劳动成本。实现大蒜种植的机械化成为发展大蒜产 业必须解决的问题之一。 目前,在国内已经研制出的大蒜种植机械中,按种植技术归纳起来一共有三种。第一种为 大蒜点播技术。先用压穴锥压穴,然后用机械送种到种穴,大蒜瓣在送种过程中鳞芽朝向处于 自由状态,蒜瓣投送到种穴内时,鳞芽方向完全由落种瞬间朝向及落种位置随机确定。这种机 型不能满足大蒜瓣尖朝上的农艺要求,这对大蒜后期生长是不利的。第二种为人工辅助播种技术。由蒜瓣分配机构、播穴管、接种杆等组成。该技术基本上满足大蒜栽植鳞芽向上的种植要求,但前提是必须事先将蒜瓣按芽上根下的方式逐瓣用人工装入蒜种盒,这种方法的工作效率 与人工栽植效率差不多,并不能有效地减少劳动强度。第三种为全自动大蒜种植技术。该技术 采用特定机构扶正蒜瓣,振动抖槽定向器来解决蒜瓣在输送过程中的定向问题,基本上解决了 鳞芽朝向问题,但蒜瓣直立度要求没有保证,而且为了保证蒜瓣的投穴准确率,机构复杂庞大。根据有关专利文献及发明文献,中国目前已有十种左右的大蒜播种机械,但在设计上和后期使 用上都存在一些问题,影响大蒜的播种质量,都没有获得较好的推广。 与大蒜种植机械很相似,目前,我国大蒜的收割、切茎工作,主要还靠人力,劳动强度大。近些年来,在山东也出现了一些形式的大蒜收获机械,相对大蒜种植机械来说,大蒜收获机各 机型也都能完成收获作业,只不过是完成作业的效果和机具适应性能存在一定的问题。综合来

大蒜播种机

1 大蒜播种过程特点及机械化播种迫切性1.1 播种过程特点 1.1.1农艺影响 大蒜鳞牙朝向,脊背朝向是大蒜播种时的两项重要农艺要求。这两项农艺条件对大蒜生产的产量,质量和收益产生比较大影响。甚至影响到种植是否成立的程度,如果大蒜播种时,鳞牙朝下比例比较大的话,这季大蒜种植基本上亏损。 大蒜播种时的其他农艺要求,如行距,株距,播种深度,播种时间等条件虽然对大蒜的产出效益影响也比较大,但这些条件很方便采用机械化方式去实现和控制。因而在机械化大蒜播种中,这不是主要影响因素。 鳞牙的朝向对大蒜的影响,主要是对蒜头重量和横径产生影响。依据普遍农户大蒜生产得到的经验及南京农业机械化研究所的研究表明(参考文章:金诚谦等大蒜播种时鳞芽朝向对大蒜生长发育影响的试验研究,农业工程学报,2008-04):播种时鳞芽朝下时,收获蒜头重量轻,横径小。单体与鳞牙朝上比,重量只到60%,横径只到80%(横径与大蒜价格关系是非线性关系,基本上倒立栽培产出蒜果均处于严重低价区域),倒立播种在相同条件下的产出价值仅为朝上播种产出价值的49%(相关分析见附录)。 大蒜种植时脊背朝向主要影响大蒜生长时的叶片朝向,进而影响叶片光合作用和产量。其影响的显著度不及鳞径朝向的影响,目前有这方面研究、试验及论文,但暂时没有找到。 1.1.2 劳动强度大 为保证大蒜播种时的鳞牙朝上和行株距的一致性,国内主要采用人工播种。播种时为保证鳞牙朝上,播种人员一般从蹲到跪,或者半蹲半跪的方式播种,其劳动强度可想而言。即使和其他人工作业的农作物播种比起来,其劳动强度也基本上是最大的。 1.1.3 用工集中 依据联合国统计,世界大蒜播种面积在1000万亩左右,其中中国是大蒜的主要产地,播种面积为600万亩左右。中国主要产区在山东金乡为中心,500公里范围内;大蒜播种时间主要集中在9月下旬到10月上旬;播种时由于劳动强度比较大,播种效率比较低,熟练大蒜播种人员一天仅能完成0.02hm2(0.3亩)的播种面积,一个大蒜播种季度需要几千万人天的工时。由于播种地域,时间,效率的限制,大蒜播种用工非常集中,大蒜主产区要获得播种劳力困难。

播种机播种质量检测预警系统

播种机播种质量检测预警系统 O 引言 随着农业机械化作业水平的提高,精播机在农业生产中得到了越来越广泛的应用。精量播种具有节约良种、减少拔苗对留苗的伤害;且省去了间、定苗等工序等优点。但是,现有的精量播种机在播种作业过程往往会出现重播、漏播现象以及粒距均匀性较差等问题,直接影响作物的产量。因此,有必要设计一种播种质量监控系统,以确保作业质量符合农艺技术要求。 目前,精播机的检测系统主要有光电型、电容型和基于机器视觉型3种,并以光电型应用居多。现有的检测系统虽做到了重播、漏播报警,但对播种均匀性研究较少,功能也相对单一。为此,以89C52单片机为核心、以光电传感器和霍尔开关传感器构成一个小型微机系统,当精播机出现排种器卡种、开沟器堵塞或者种子箱内无种时,显示故障位置并启动声光报警通知驾驶员;正常工作时,当某一行连续出现不合格粒距时,显示不合格的行数并声光报警;并可提供播种面积统计和应收费用服务信息。 1 设计思路 根据国标GB6973- 86《单粒(精密播种机试验方法)》的规定。按照不同作物的农艺要求,对行距进行设定。开始工作时,利用光电传感器检测下种时间间隔£i,速度传感器获取播种机工作速度,根据设定的行距值及速度传感器检测工作速度值,计算得到种子平均落粒时间间隔£。当£i在IO.75t-1.25tI区间内,为合格粒距所对应的时间,当fi在IO-O.75tl和I1.25£一∞]区间内,为不均匀播种所对应的时间。 2 系统的总体结构 本系统总体结构如图1所示,主要由主机、数据采集装置、显示和报警装置、键盘电路和传输电缆等组成。主机主要承担数据的采集、处理以及发出控制命令信号,当

自动控制原理实验报告

《自动控制原理》 实验报告 姓名: 学号: 专业: 班级: 时段: 成绩: 工学院自动化系

实验一 典型环节的MATLAB 仿真 一、实验目的 1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、实验原理 1.比例环节的传递函数为 K R K R R R Z Z s G 200,1002)(211 212==-=-=- = 其对应的模拟电路及SIMULINK 图形如图1-3所示。 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节1)(1=s G 和2)(1=s G ; ② 惯性环节11)(1+= s s G 和1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节s s G =)(1 ⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G ⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+= 四、实验结果及分析 图1-3 比例环节的模拟电路及SIMULINK 图形

① 仿真模型及波形图1)(1=s G 和2)(1=s G ② 仿真模型及波形图11)(1+= s s G 和1 5.01)(2+=s s G 11)(1+= s s G 1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节

排肥器试验台智能控制系统研究与研发设计

随着精细农业的发展,精量施肥作为精细农业的重要组成部分,其对施肥装置性能的要求也越来越高。排肥器性能试验是农机测试的重要组成部分,也是研制和开发新型精量排肥器不可缺少的重要环节。但是,排肥器大多是做为播种机的一部分来进行研究,没有专门用来检测排肥器性能的试验台。为此,本论文拟开发一种操作简单、性能可靠、运行速度快的排肥器试验台智能控制系统。 农业是人类赖以生存的基础产业。加快农业技术进步、提高农业产品产量和质量是各个国家努力的方向。施肥对于粮食增产、农业增收以及保持土壤肥力等方面起到了积极作用,人们已经认识到保持土壤肥力对作物产量的重要性。但是,大量化学肥料以各种形式投入到土壤中,也造成了环境压力。施用化肥,尤其是精量深施化肥,则是提高单产、节约用肥的关键措施之一。国外对此己有较多的研究,如美国玉米种植带的统计。目前,中国已经成为世界上最大的化肥生产国。近30年来,中国化肥消费总量和单位面积用量都已经达到世界前列。中国小麦、玉米和水稻施肥量与其他国家相比还是比较高,但产量相对较低。化肥的施用自然应使其能有效地被农作物吸收,否则不仅会造成不可低估的直接损失和间接失,而且达不到预期的增产效果。施肥机械性能也关系到配方施肥技术进一步发展,恰当的施肥机械可让配方施肥技术发挥出更加有效的作用。在我国,化肥施用以粮食作物为主,在50%左右。与推荐施肥量相比,部分作物氮肥、磷肥施用过量,但钾肥用量仍需增加。因此,应把发展节能增效的施肥机械作为农业机械化发展的重要课题。化肥深施的意义有四:第一,化肥深施会减少化肥分子挥发。如铵态氮肥、尿素等化肥较浅地施入土壤后,铵态氮在土壤表层中,易被硝化细菌转化成硝态氮,土壤胶体不能吸。铵态氮肥深施后,由于土壤下层硝化细菌极少,不易被硝化细菌转化为易流失挥发的硝态氮而存在土壤之中来被作物所吸收。第二,可以减少肥分子的流失。比如,硝态氮化肥施入土壤较浅,其中硝酸根离子不能被土壤胶体所吸附,分散在土壤颗粒之间。有些土壤本身对化肥的吸附、保蓄能力本身就很差,要是遇暴雨或灌溉,化肥的有效分子便会随水或随土壤表层泥一起流失,会使化肥效果明显降低,从而作物的的产量就要下降。而化肥深施后,由于土壤下层水移缓慢,随水流失就会大大减少,这样才能有效地被作物所吸收。第三,深施化肥可减轻作物后期早衰。例如晚茬水稻和低肥田所种作物,其生育后期常因养料缺乏而早衰。化肥深施后,有利于供应作物生育中、后期的养料,延长作物功能叶片的生命活力和叶绿素含量,增强光合作用能力,有利于夺取高产。第四,化肥的深施能增强作物抗逆性。作物根系都有趋肥性,要是化肥的浅施,会使作物根系大多集中在土壤表层,要是有大风暴雨,则有可能作物要倒伏。并且也不具有抗旱的作用。化肥的深施后,能够吸引作物根向土壤下层深扎,从而大大增强作物抗倒伏、抗旱能力。化肥深施,是提高肥料利用率的重要措施,并且是我国节本增效的重点工程之一。但是深施化肥要借助性能优良的施肥机械才能得以实现,而施肥机械又是我国农业机械发展中的一个薄弱环节。根据多年的实践证明:机械深施碳酸氢铵、尿素、氮的利用率比人工表面撒施分别由27%和37%提高到58%和50%,深施比表施其利用率相对提高11.5%和35%。。然而,由于目前我国施肥机械技术的不成熟,造成化肥施用上的极大浪费。据有关资料介绍:目前我国氮肥当季利用率仅为30%-35%,磷肥利用率仅为15%-20%,钾肥利用率也不超过65%。化肥流失加剧了湖泊和海洋等水体的富营养化,造成地下水和蔬菜中硝态氮含量超标,影响土壤自净能力。农业面临污染对人类健康的影响不容忽视,据调查,累积于饮用水源特别是井水中的化肥氮磷和农药对至少13个省份、数以百万计居民的健康构成威胁。因此,研制性能良好、适用性强的施肥机械是我国农机工作者当务之急应解决的问题之一。农业机械作为现代农业生产重要的组成部分,其产品质量的优劣直接影响农业机械的作业效率,关系到农业增产和农民增收,也关系到农机使用者的健康和安全。排肥器作为施肥机械的主要部件,其性能指标是否达到标准直接影响着施肥机械产品改进、完善和性能质量的提高,施肥机械制造企业科学、合理的技术创新和经营决策,广大农民用户的生产投入是否有针对性,施肥

自动控制实验报告1

东南大学自动控制实验室 实验报告 课程名称:自动控制原理 实验名称:闭环电压控制系统研究 院(系):仪器科学与工程专业:测控技术与仪器姓名:学号: 实验室:常州楼五楼实验组别:/ 同组人员:实验时间:2018/10/17 评定成绩:审阅教师: 实验三闭环电压控制系统研究

一、实验目的: (1)通过实例展示,认识自动控制系统的组成、功能。 (2)会正确实现闭环负反馈。 (3)通过开、闭环实验数据说明闭环控制效果。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表达、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。所以,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就可以“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式可以做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。 (2)自动控制的根本是闭环,尽管有的系统不能直接感受到它的闭环形式,如步进电机控制,专家系统等,从大局看,还是闭环。闭环控制可以带来想象不到的好处,本实验就是用开环和闭环在负载扰动下的实验数据,说明闭环控制效果。自动控制系统性能的优劣,其原因之一就是取决调节器的结构和算法的设计(本课程主要用串联调节、状态反馈),本实验为了简洁,采用单闭环、比例调节器K。通过实验证明:不同的K,对系性能产生不同的影响,以说明正确设计调节器算法的重要性。 (3)为了使实验有代表性,本实验采用三阶(高阶)系统。这样,当调节器K值过大时,控制系统会产生典型的现象——振荡。本实验也可以认为是一个真实的电压控制系统。 三、实验设备: THBDC-1实验平台 四、实验线路图: 五、实验步骤:

工业自动化仪表及控制装置设备的分类标准及基础知识

工业自动化仪表及控制装置设备的分类标准及基础知识! 随着生产规模的不断扩大和生产技术的发展,对生产过程自动化水平提出了越来越高的要求。因此,工业仪表也经历了一个从无到有、由简单到复杂,由单一功能向多功能的发展过程。从最初的只能在现场测量并显示温度(如玻璃温度计)、压力(如U形管压力计)、流量(如玻璃转子流量计)、液位(如玻璃管液位计)的就地检测仪表和只能进行简单控制的就地调节器,逐步向远传集中显示、远程控制的方向发展。除检测各种参数的检测元件和检测仪表愈加齐全外,过程控制仪表的发展更是日新月异,经历了由气动单元组合仪表、电动单元组合仪表、电子式综合控制装置到工业计算机控制系统的飞跃。 工业自动化仪表品种繁多,从信息的获得、传递、反映和处理的过程把工业自动化仪表分为五大类;(1)检测仪表;(2)显示仪表;(3)控制仪表;(4)执行器;(5)集中监测与控制装置。检测仪表生产过程中,介质在设备、管道不同部位的温度、压力、流量、物位以及其他物理量瞬息万变,始终处于变化之中。检测仪表就是用以检测上述物理量在每个瞬间的量值。按照所测量工艺参数的不同,检测仪表可分为如下几种:1.温度仪表:常用的温度测量仪表有玻璃温度计、双金属温度计、压力式(温包)温度计、

温度开关、热电偶、热电阻,还有辐射高温计及光学高温计、光电比色高温计等辐射式温度计。 2.压力仪表:压力测量仪表用于检测压力、真空和压差。根据其工作原理可分为:弹性式压力计(按其弹性元件又分为弹簧管压力计、膜片压力计、膜盒压力计、压力开关等);传感式压力计(如电阻式、电容式、电感式、霍尔式 压力计等);液柱式压力计(如U形管、直管、倾斜管压力计);还有精度较高通常用于校验标准压力表的活塞式压力计。 3.流量仪表:流量测量仪表品种繁多,目前应用最为 广泛的是由节流装置和与其配套的差压流量变送器。常用的节流装置有孔板、喷嘴和文丘里管。其他常用的流量仪表还有水表、转子流量计、椭圆齿轮流量计、靶式流量计、电磁流量计、旋涡流量计、阿钮巴流量计、质量流量计等。 4.物位仪表:物位仪表主要测量塔器和槽、罐类容器 内某种介质的液位或两种不同比重液体的界面及固体物料 的料位。液位计中最为常见的是玻璃管液位计、玻璃板液位计,其他还有差压式液位计和浮力式液位计(如浮球液位计、液位开关、浮筒液位计、浮标液位计、钢带液位计、储罐液位称重仪等)。用于固体物料料位检测的有电阻式料位计、 电容式料位计、物位开关、重锤探测物位计、音叉料位计、超声波物位计、放射性料位计等。 5.成分分析仪表:成分分析仪表用于检定工艺介质的

自动控制系统实验报告

自动控制系统实验报告 学号: 班级: 姓名: 老师:

一.运动控制系统实验 实验一.硬件电路的熟悉和控制原理复习巩固 实验目的:综合了解运动控制实验仪器机械结构、各部分硬件电路以及控制原理,复习巩固以前课堂知识,为下阶段实习打好基础。 实验内容:了解运动控制实验仪的几个基本电路: 单片机控制电路(键盘显示电路最小应用系统、步进电机控制电路、光槽位置检测电路) ISA运动接口卡原理(搞清楚译码电路原理和ISA总线原理) 步进电机驱动检测电路原理(高低压恒流斩波驱动电路原理、光槽位置检测电路)两轴运动十字工作台结构 步进电机驱动技术(掌握步进电机三相六拍、三相三拍驱动方法。) 微机接口技术、单片机原理及接口技术,数控轮廓插补原理,计算机高级语言硬件编程等知识。 实验结果: 步进电机驱动技术: 控制信号接口: (1)PUL:单脉冲控制方式时为脉冲控制信号,每当脉冲由低变高是电机走一步;双 脉冲控制方式时为正转脉冲信号。 (2)DIR:单脉冲控制方式时为方向控制信号,用于改变电机转向;双脉冲控制方式 时为反转脉冲信号。

(3)OPTO :为PUL 、DIR 、ENA 的共阳极端口。 (4)ENA :使能/禁止信号,高电平使能,低电平时驱动器不能工作,电机处于自由状 态。 电流设定: (1)工作电流设定: (2)静止电流设定: 静态电流可用SW4 拨码开关设定,off 表示静态电流设为动态电流的一半,on 表示静态电流与动态电流相同。一般用途中应将SW4 设成off ,使得电机和驱动器的发热减少,可靠性提高。脉冲串停止后约0.4 秒左右电流自动减至一半左右(实际值的60%),发热量理论上减至36%。 (3)细分设定: (4)步进电机的转速与脉冲频率的关系 电机转速v = 脉冲频率P * 电机固有步进角e / (360 * 细分数m) 逐点比较法的直线插补和圆弧插补: 一.直线插补原理: 如图所示的平面斜线AB ,以斜线起点A 的坐标为x0,y0,斜线AB 的终点坐标为(xe ,ye),则此直线方程为: 00 00Y Ye X Xe Y Y X X --= -- 取判别函数F =(Y —Y0)(Xe —Xo)—(X-X0)(Ye —Y0)

精密播种机控制系统及监控系统的研究现状综述

精密播种机控制系统及监控系统的研究现状综述学院工程学院学号 2009209002 姓名冯曦雨 文献查询方法: 1.网络数据库 (1)中国优秀硕士学位论文全文数据库 分别以精密播种机、穴盘播种机、精密播种机控制系统、播种机控制系统、穴盘播种机控制系统、精密播种机监控系统为检索词。时间选择2000-2010年,匹配选择为精确检索主题的结果:分别为38、1、0、1、0和0条 检索题名的结果:分别为8、0、0、1、0和0条 检索关键词结果:分别为21、1、0、0、0和0条 (2)中国知识资源总库 该数据库包括中国期刊全文数据库、中国期刊全文数据库、中国博士学位论文全文数据库、中国优秀硕士学位论文全文数据库等重要数据库。选择学校图书馆的镜像入口进入。 分别以精密播种机、穴盘播种机、精密播种机控制系统、播种机控制系统、穴盘播种机控制系统、精密播种机监控系统为检索词。时间选择1979-2010年,匹配选择为精确检索主题的结果:分别为752、11、3、7、0和6条 检索题名的结果:分别为281、5、3、5、0和6条 检索关键词结果:为676、9、0、0、0和1条 (3)英文数据库查询Engineering Village 检索词:precision seeder control system、precision seeder monitoring control 检索全部结果:50和8条 检索主题、题名、摘要:20和4条 在应用网络数据库搜索时,对于一些相近的词还可以用更高级的搜索功能进行更加全面的搜索。 2.图书期刊阅览 在图书馆期刊库查看《农业工程学报》、《农业机械学报》、《农业机械》、《农机化研究》、《Biosystems Engineering》、《Transaction of ASABE》、《AMA》等期刊,了解目前农业机械化工程的最新进展和精密播种机控制系统的相关知识。

大蒜播种机排种器及开沟器设计与控制(摘选)

万方数据

万方数据

万方数据

大蒜播种机排种器及开沟器设计与控制(摘选) 作者:JirapornBenjaphragairat, HaiSakurai, NobutakaIto 作者单位:JirapornBenjaphragairat(泰国曼谷市先皇技术大学工程学院农业工程系,泰国曼谷10520), HaiSakurai(不丹皇家政府农业部农业机械中心(AMC)), NobutakaIto(日本国立三重大学生物资源学院国 际学生中心,日本) 刊名: 农业工程 英文刊名:AGRICULTURAL ENGINEERING 年,卷(期):2011,01(2) 本文读者也读过(10条) 1.荐世春.刘云东大蒜播种机蒜瓣自动定向控制装置的试验研究[期刊论文]-农业装备与车辆工程2009(10) 2.郭英芳.卢博友基于SUSAN算法的大蒜瓣尖识别的研究[期刊论文]-杨凌职业技术学院学报2011,10(3) 3.潘雷.邓世建.刘荣华基于模式识别的大蒜瓣尖识别研究[期刊论文]-农机化研究2010,32(5) 4.高迟.薛少平.李绅淑.阎勤劳.Gao Chi.Xue Saoping.Li Shenshu.Yan Qinlao大蒜鳞芽方向识别的实验研究[期刊论文]-农机化研究2010,32(10) 5.王方艳.Wang Fangyan大蒜播种机主要部件的设计及分析[期刊论文]-农机化研究2010,32(8) 6.谢洪昌.王德明.高立辉我国大蒜机械化生产现状及发展建议[期刊论文]-现代化农业2012(1) 7.海力力.沙比提.刘占京2DBQ-2型便携式人工大蒜播种器[期刊论文]-新疆农机化2004(1) 8.杨清明.李娟玲.何瑞银.YANG Qing-ming.LI Juan-ling.HE Rui-yin基于图像处理的大蒜蒜瓣朝向识别[期刊论文]-浙江农业学报2010,22(1) 9.金诚谦.袁文胜.吴崇友.张敏.Jin Chengqian.Yuan Wensheng.Wu Chongyou.Zhang Min大蒜播种时鳞芽朝向对大蒜生长发育影响的试验研究[期刊论文]-农业工程学报2008,24(4) 10.李红.邓世建.王文捷大蒜自动播种系统的设计分析[期刊论文]-福建电脑2007(5) 本文链接:https://www.360docs.net/doc/5d16529228.html,/Periodical_nygch201102028.aspx

2014年工业自动控制系统装置制造业简析

2014年工业自动控制系统装置制造业简析 一、行业监管体制、主要法律法规及政策 (2) 1、行业主管部门及监管体制 (2) 2、主要法律法规及产业政策 (2) 二、行业概况 (3) 三、上下游产业链结构 (4) 四、行业竞争格局 (5) 五、影响行业发展的因素 (6) 1、有利因素 (6) (1)国家产业政策支持 (6) (2)通用机械行业的巨大需求 (7) 2、不利因素 (8) (1)行业标准欠缺、多为非标准化产品影响产业发展 (8) (2)通用机械行业转型升级的挑战 (8) 六、市场需求及变动趋势 (8) 1、市场需求情况 (8) (1)各行业技术改造带来的需求 (9) (2)国家政策及技术进步支持带来的需求 (9) (3)供需不对称带来的需求 (9) (4)传统产业的竞争带来的新需求比如汽车行业的带动 (10) 2、行业市场容量及其变动情况 (10) 七、行业风险 (12) 1、宏观经济风险 (12) 2、下游行业需求变化风险 (12)

一、行业监管体制、主要法律法规及政策 1、行业主管部门及监管体制 专用设备制造业的监管单位是工信部及其下属分支机构,该部门侧重于行业宏观管理,目前该行业尚未设立行业协会。公司产品不涉及须取得主管政府部门专门许可的项目。 2、主要法律法规及产业政策 (1)产业结构调整指导目录(2011年本)(2013年修正) 鼓励类:“十四、机械”之“4、数字化、智能化、网络化工业自动检测仪表与传感器,原位在线成份分析仪器,具有无线通信功能的低功耗智能传感器,电磁兼容检测设备,智能电网用智能电表(具有发送和接收信号、自诊断、数据处理功能),光纤传感器” (2)《“十二五”国家战略性新兴产业发展规划》之“三、重点发展方向和主要任务”之“(四)高端装备制造产业”:“5.智能制造装备产业。重点发展具有感知、决策、执行等功能的智能专用装备,突破新型传感器与智能仪器仪表、自动控制系统、工业机器人等感知、控制装置及其伺服、执行、传动零部件等核心关键技术,提高成套系统集成能力,推进制造、使用过程的自动化、智能化和绿色化,支撑先进制造、国防、交通、能源、农业、环保与资源综合利用等国民经济重点领域发展和升级。” (3)《高端装备制造业“十二五”发展规划》之“四、重大工程与

播种机监控装置-机电一体化课程设计

目录 一、绪论 ....................................................... - 1 - 1.1研究目的和意义.......................................... - 1 - 1.2研究开发内容............................................ - 1 - 二、监控装置总体方案的确定 ..................................... - 2 - 2.1、播种机的性能要求及指标 ................................ - 2 - 2.1.1、播种机的性能要求 ................................ - 2 - 2.1.2、播种机的性能指标: .............................. - 3 - 2.2、精密播种机排种性能参数的监控 .......................... - 3 - 2.2.1、监控内容 ........................................ - 3 - 2.2.1.1、漏播监视 ...................................... - 3 - 2.2.1.2、重播监视 ...................................... - 4 - 2.2.2、监控方法 ........................................ - 4 - 2.3、精密播种机监控系统总体方案的确定 ...................... - 4 - 2.3.1、系统硬件结构 .................................... - 4 - 2.3.2、系统软件结构 .................................... - 5 - 三、监控系统硬件的设计 ......................................... - 5 - 3.1、传感器测试电路的设计 .................................. - 5 - 3.1.1、传感器的选择 .................................... - 5 - 3.1.2、发光二极管的选择 ................................ - 6 - 3.1.3、受光器件的选择 .................................. - 7 - 3.1.4、光电传感器电路设计 .............................. - 7 - 3.1.5、排种监测传感器的安装 ............................ - 8 - 3.2、整形放大电路的设计 .................................... - 8 - 3.3、声光报警电路的设计 .................................... - 9 - 3.3.1、声音报警电路的设计 .............................. - 9 -

工业自动化控制技术简析

工业自动化控制技术简析 1,前言 工业电气自动化这个专业从50年代开始在我国出现并发展。虽然国家对该专业做了几次大规模的调整,但由于其专业面宽,适用性广,一直到现在仍然焕发着勃勃生机。工业自动化控制主要利用电子电气、机械、软件组合实现。主要是指使用计算机技术,微电子技术,电气手段,使工厂的生产和制造过程更加自动化、效率化、精确化,并具有可控性及可视性。 2.工业电气自动化的发展现状 2.1lE C61 13l标准使得编程接口标准化。目前,世界上有200多家PLC厂商,近400种PL C产品,不同产品的编程语言和表达方式各不相同,IEC*****使得各控制系统厂商的产品的编程接口标准化。*****l同时定义了它们的语法和语义。这就意味着不会有其他的非标准的方言。 2.2Windows正成为事实上的工控标准平台微软的技术如Windows NT、WindOWSCE和IntemetExplore已经正在成为工业控制的标准平台、语言和规范。PC和网络技术已经在商业和企业管理中得到普及。在工业自动化领域,基于PC的人机界面已经成为主流,基于PC的控制系统以其灵活性和易于集成的特点正在被更多的用户所采纳。 3、工业自动化控制系统的特点 用电设备分别安装在各配电室和电动机控制中心,所要执行的信息处理任务庞大,而维修工作也相对复杂。它与热工系统相比,电气设备操作的频率低,一些系统设备在维持正常运行时,可以经过好几个月甚至更长的时间再操作一次;电气设备所需要的保护装置要求高,动作速度快,一个保护动作通常要在40ms以内完成。电气设备的构造机构本身具有联锁逻辑较简单、操作机构复杂的特点,而控制方式

排种器试验台的结构改进

排种器试验台的结构改进

机械电气工程学院本科毕业设计(论文)题目:排种器试验台的结构改进设计 院(系): 专业: 学号: 姓名: 指导教师: 完成日期:

摘要 精密播种机性能试验是农机测试的重要组成部分,也是研制和开发新型精密播种机不可缺少的重要环节。虽然田间试验可以客观、准确地反映机具的性能,但由于受地点、季节、设备等因素的影响,试验周期长,费用高。因此,播种机尤其是以排种器作为主要工作部件的试验通常是在实验室内进行,以加快试验进程,提高试验的方便性、可靠性和可重复性。对排种器试验台进行优化,是为了使排种器在实验室内能够更好地模仿在田间试验和作业的各种情况,以便将其调试到最适宜的工作状态,提高生产效率。 排种器是播种机的核心部件,排种器的排种性能好坏直接影响播种机的工作性能。排种器实验台是对排种器性能测试的主要手段,测试过程可以不受田间各种条件的限制,人为地创造各种工况,达到实际工作中的田间仿真,并且对排种器的性能及各主要参数进行深入广泛地试验研究,并提供可靠的设计依据。 关键词:精量播种排种器试验模拟

Abstract Precision seeding agricultural performance test is an important part of the test as well as research and development of new precision seeder indispensable essential.Although the field experiment can be objectively and accurately reflect the performance of machinery,but because of the location,season,equipment and other factors,long test cycle,the high cost.Therefore,the planter in particular as the main working parts of the metering device in the laboratory test is usually carried out in order to expedite the trial process,to improve the convenience of test,reliability and repeatability.Metering device to improve the test-bed is to enable the metering device in the laboratory to better mimic in the field testing and operation of the various situations in order to debug the most appropriate working conditions and boost production efficiency. Planter metering device is the core component,metering device performance of the seed planter a direct impact on performance. Test metering device metering device is the main means of performance tests,the testing process can not field a variety of conditions,artificially creating a variety of working conditions on the performance of seed-metering device and the main parameters in-depth and extensive pilot study and provide a reliable basis for the design. Keywords:Precision seeding Seed-metering Test Simulation

相关文档
最新文档