基于数据融合的卡尔曼滤波研究

基于数据融合的卡尔曼滤波研究
基于数据融合的卡尔曼滤波研究

卡尔曼滤波计算举例

卡尔曼滤波计算举例 ?计算举例 ?卡尔曼滤波器特性

假设有一个标量系统,信号与观测模型为 [1][][]x k ax k n k +=+[][][] z k x k w k =+其中a 为常数,n [k ]和w [k ]是不相关的零均值白噪声,方差分别为和。 系统的起始变量x [0]为随机变量,其均值为零,方差为。2n σ2 σ[0]x P (1)求估计x [k ]的卡尔曼滤波算法;(2)当时的卡尔曼滤波增益和滤波误差方差。 22 0.9,1,10,[0]10 n x a P =σ=σ==1. 计算举例

根据卡尔曼算法,预测方程为: ??[/1][1/1]x k k ax k k -=--预测误差方差为: 2 2 [/1][1/1]x x n P k k a P k k -=--+σ 卡尔曼增益为: () 1 22 22 22 [][/1][/1][1/1][1/1]x x x n x n K k P k k P k k a P k k a P k k -=--+σ --+σ=--+σ+σ ???[/][/1][]([][/1])??[1/1][]([][1/1])?(1[])[1/1][][]x k k x k k K k z k x k k ax k k K k z k ax k k a K k x k k K k z k =-+--=--+---=---+滤波方程:

()() 2 2222222 222 22 [/](1[])[/1] [1/1]1[1/1][1/1][1/1][1/1]x x x n x n x n x n x n P k k K k P k k a P k k a P k k a P k k a P k k a P k k =--??--+σ=---+σ ?--+σ+σ??σ--+σ = --+σ+σ 滤波误差方差 起始:?[0/0]0x =[0/0][0] x x P P =

几种非线性滤波算法的研究-内附程序

2017 年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:雷达系统导论 学生所在(系):电子与信息工程学院 学生所在学科:电子与同学工程 学生姓名: 学号: 学生类别: 考核结果阅卷人 第 1 页(共页)

几种非线性滤波算法的介绍与性能分析 作者姓名:学号: 专业院系:电信学院电子工程系 电子邮件: 摘要—非线性滤波算法在雷达目标跟踪中有着重要的应用,对雷达的跟踪性能有着至关重要的影响。好的滤波算法有利于目标航迹的建立及保持,能够得到较精确的目标位置,为发现目标后的后续工作提供可靠的数据依据。本文重点介绍了雷达数据处理中的几种非线性滤波算法:扩展卡尔曼滤波(EKF)、不敏卡尔曼滤波(UKF)、粒子滤波(PF),并且给出了一个利用这三种算法进行数据处理的一个实例,通过这个实例对比分析了这三种算法的性能以及优劣。 关键字—非线性滤波算法;扩展卡尔曼滤波;不敏卡尔曼滤波;粒子滤波; I.概述(一级表题格式) 在雷达对目标进行跟踪前要先对目标进行检测。对于满足检测条件的目标就需要进行跟踪,在跟踪的过程中可以利用新获得的数据完成对目标的进一步检测比如去除虚假目标等,同时利用跟踪获得数据可以进一步完成对目标动态特性的检测和识别。因此对目标进行准确的跟踪是雷达性能的一个重要指标。在检测到满足条件的目标后,根据目标运动状态建立目标运动模型,然后对目标跟踪算法进行设计,这是雷达目标跟踪中的核心部分。 目前主要的跟踪算法包括线性自回归滤波,两点外推滤波、维纳滤波、- αβ滤波、加权最小二乘滤波、维纳滤波和卡尔曼滤波[1]。对于线性系统而言最优滤波的方法就是卡尔曼滤波,卡尔曼滤波是线性高斯模型下的最优状态估计算法。但是实际问题中目标的运动模型往往不是线性的,因此卡尔曼滤波具有很大的局限性。目前主要用的非线性滤波算法可以分为高斯滤波和粒子滤波[2]。不敏卡尔曼滤波和扩展卡尔曼滤波就是高斯滤波中的典型代表,也是应用相对较为广泛的。粒子滤波的应用范围比高斯滤波的适用范围要广,对于系统状态非线性,观测模型非高斯等问题都有很好的适用性。本文具体分析阐述了扩展卡尔曼滤波算法,不敏卡尔曼滤波算法,粒子滤波算法,并且通过一个实例利用仿真的方法分析了这三种算法在滤波性能上的优劣,最后对这三种算法做了一定的总结。 我本科毕业设计题目为《基于历史数据的路径生成算法研究》,由于我是跨专业保研到电信学院,该课题所研究内容不属于雷达系统研究范围,是一种城市路网最快路径生成算法。 II.几种非线性滤波算法 A.扩展卡尔曼滤波 扩展卡尔曼滤波是将非线性系统转换为近似的线性系统的一种方法,其核心思想是围绕滤波值将非线性函数展开成泰勒级数并略去二阶及以上的项,得到一个近似的线性化模型,然后应用卡尔曼滤波完成状态估计。 扩展卡尔曼滤波状态空间模型: k k k w x f+ = + ) ( x 1 状态方程 k k k v x h+ =) ( z观测方程 其中(.) f和(.) h为非线性函数 在扩展卡尔曼滤波中,状态的预测以及观测值的预测由非线性函数计算得出,线性卡尔曼滤波中的状态转移矩阵A阵和观测矩阵H阵由f和h函数的雅克比矩阵代替。 对 (.) f和(.) h Taylor展开,只保留一次项有: ) ? ( ) ?( ) ( k k k k k x x A x f x f- + ≈ ) ? ( ) ?( ) ( k k k k k x x H x h x h- + ≈ 其中: k k x x k k dx df A ?= =为f对 1- k x求导的雅克比矩阵 k k x x k k dx dh H ?= =为h对 1- k x求导的雅克比矩阵 ) ?( ? 1-k k x f x=,于是可以得出: k k k k k k k w x A x f x A x+ - + ≈ + ) ? ) ?( ( 1 k k k k k k k v x H x h x H z+ - + ≈ + ) ? ) ?( ( 1 通过以上变换,将非线性问题线性化。接下来EKF 滤波过程同线性卡尔曼滤波相同,公式如下: )) | (?( ) |1 ( X?k k X f k k= + ) ( ) ( ) | ( ) ( ) |1 (P k Q k k k P k k k+ Φ' Φ = + )1 ( )1 ( ) |1 ( )1 ( )1 (S+ + + ' + + = +k R k H k k P k H k )1 ( )1 ( ) |1 ( )1 ( K1+ + ' + = +-k S k H k k P k

卡尔曼滤波算法与matlab实现

一个应用实例详解卡尔曼滤波及其算法实现 标签:算法filtermatlabalgorithm优化工作 2012-05-14 10:48 75511人阅读评论(25) 收藏举报分类: 数据结构及其算法(4) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。 我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。 好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。 假如我们要估算k时刻的是实际温度值。首先你要根据k-1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。 由于我们用于估算k时刻的实际温度有两个温度值,分别是23 度和25度。究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的covariance(协方差)来判断。因为Kg^2=5^2/(5^2+4^2),所以Kg=0.78,我们可以估算出k时刻的实际温度值是:23+0.78*(25-23)=24.56度。 可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。 现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56 度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。这里的5就是上面的k时刻你预测的那个23度

基于贝叶斯推理的数据融合

基于贝叶斯推理的数据融合 1 贝叶斯推理的基本原理 (1) 2 数据融合中的贝叶斯推理 (2) 3 贝叶斯推理方法的优缺点 (3) 1 贝叶斯推理的基本原理 贝叶斯推理是英国学者Thomas Bayes 于1763年提出的,两个世纪以来,它越发展现出广阔的应用前景。贝叶斯推理的基本原理是随着测量的到来,将给定假设的先验密度更新为后验密度。贝叶斯推理与经典推理的不同之处,除对似然函数进行变换外,还可以用于多假设情况。 贝叶斯推理的基本原理是:给定一个前面的似然估计后,若又增加一个证据(测量),则可以对前面的(关于目标属性的)似然估计加以更新。也就是说,随着测量值的到来,可以将给定假设的先验密度更新为后验密度。贝叶斯推理的另一个特点是它适合于多假设情况。 假设12,,...,n A A A 表示n 个互不相容的穷举假设(即存在具有属性i 的一个目标)为一个事件(或事实,观测等),贝叶斯公式的形式为: 1()() ()()()i i i n j j j P B A P A P A B P B A P A ==∑ (1) 且 ()1n i i P A =∑ 11()()(,)()n n i i i i i P B A P A P B A P B ====∑∑ ()i P A 表示事件12,,...,n A A A 出现的可能性大小,为假设1A 为真的先验概率,这是实验前就已知道的事实。()i P A B 为给定证据B (目标i 存在)条件下,假设1A 为真的后布密度。

2 数据融合中的贝叶斯推理 贝叶斯推理方法可以对多传感器测量数据进行融合,以计算出给定假设为真的后验概率。设有n 个传感器,它们可能是不同类的,他们共同对一个目标进行探测。再设目标有m 个属性需要进行识别,即有m 个假设或命题1,2,...,i A m =。贝叶斯融合算法在实现上分多级进行。在传感器一级,将测量数据依其获取的信息特征与要识别的目标属性联系进行分类,最终给出关于目标属性的一个说明12,,...,n B B B ,它依赖于测量数据和传感器分类法。第二步是计算每个传感器的说明(证据)在各假设为真条件下的似然函数。第三步是依据贝叶斯公司计算多测量证据下各个假设为真的后验概率。最后一步是判定逻辑,以产生属性判定结论,过程如图1所示 传感器1传感器2传感器n P(B1/Aj ) P(B2/Aj)P(Bn/Aj ) 组合贝叶斯公式贝叶斯统计接侧判断逻辑极大后验给定门限的 极大后验等 B1B2B3融合结果 图1 基于贝叶斯推理的数据融合 在第三步中,计算目标身份的融合概率应分两步。首先,计算出假设i A 条件下,n 个证据联合似然函数,当各传感器独立探测时,12,,...,n B B B 相互独立,该联合似然函数为 1212(,,...,)()()...()n j j j n j P B B B A P B A P B A P B A = (2) 然后,应用Bayes 公式得到n 个证据条件下,假设的后验概率k A 121212(,,...,)() (,,...,)(,,...,)n j j j n n P B B B A P A P A B B B P B B B = (3) 第四步一般是采用极大后验判定逻辑,直接选取或判定门限选取具有最大后验联合概率的目

卡尔曼滤波简介及其算法实现代码

卡尔曼滤波简介及其算法实现代码 卡尔曼滤波算法实现代码(C,C++分别实现) 卡尔曼滤波器简介 近来发现有些问题很多人都很感兴趣。所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。 因为这里不能写复杂的数学公式,所以也只能形象的描述。希望如果哪位是这方面的专家,欢迎讨论更正。 卡尔曼滤波器– Kalman Filter 1.什么是卡尔曼滤波器 (What is the Kalman Filter?) 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载: https://www.360docs.net/doc/5d18188167.html,/~welch/media/pdf/Kalman1960.pdf。 简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 (Introduction to the Kalman Filter) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就

联合卡尔曼滤波器在数据融合中的应用_胡宏灿

文章编号:1008-8652(2005)01-001-004 联合卡尔曼滤波器在数据融合中的应用 胡宏灿1,2 郭 立1 朱俊株1 (1.中国科学技术大学 合肥 230026; 2.海军大连舰艇学院 大连 116018) 【摘要】 介绍多传感器数据融合中联合卡尔曼滤波器的设计步骤,并将此方法用于舰船组合导航系统,计算机仿真和理论分析表明,该滤波器可以做到全局最优,其结构遵循信息分配原则,提高了系统的数值稳定性和容错性,减小了数据传输的工作量与计算量,便于计算机实现,能够满足组合导航系统需要。 关键词:组合导航系统;数据融合;联合卡尔曼滤波 中图分类号:T P391.7 文献标识码:A The Application of Federal Kalman Filter in Data Fusion System Hu Ho ng can1,2 Guo Li1 Zhu Junzhu1 (1.University of Science and T echnology of China H ef ei230026; 2.Dalian N av al Vessels A cademy Dalian116018) Abstract:A new design o f Kalman filter based on data fusion is presented in the paper.Fistly,the fr ame Kalman filter is intr oduced.T hen,the algo rithm is given.T he simulatio n results show that the metho d is useful in integr ated navigation sy stem because it can impr ove accur acy and r eliability,and it has hig h fault-tolerant ability. Keywords:integ rated nav igatio n sy stem;data fusio n;feder al Kalman filter 1 引言 数据融合技术是近年来新兴的一门实践性较强的技术,它是对系统多个传感器的数据进行处理的过程。众所周知,由于任何传感器都有自身的不足之处,所以单一传感器具有误报风险大,可靠性和容错能力低等缺点。为了对测量环境或对象的特征有个全面、正确的认识,克服单一传感器的上述缺点,多传感器数据融合技术应运而生。简单的说,多传感器融合技术就是融合多个传感器的信息,以产生比单个传感器更可靠、更准确的信息。常用方法有贝叶斯估计法和DS证据理论法及经典推算法等,神经网络、小波分析等智能方法近年来也是研究数据融合的重要方法和手段。卡尔曼滤波器自上世纪六十年代被提出以后,作为一种新型的滤波手段在控制、跟踪、测量领域得到广泛应用。由于卡尔曼滤波器对数据的估计是无偏最优估计,滤波器结构简单等特点,使得卡尔曼滤波器在多传感器数据融合中应用极为广泛。过去使用的集中式卡尔曼滤波器要集中处理所有传感器的数据,计算量大,实时性差,并且不具备容错性。本文基于Car lson提出的联合卡尔曼滤波算法,介绍了利用信息分配原则实现多传感器信息最优融合的滤波器的设计,不仅使系统具备了一定的容错能力,实时性也有较大幅度的提高。最后给出了联合卡尔曼滤波器在舰船组合导航中的应用实例。 2 联合卡尔曼滤波器的设计步骤 联合卡尔曼滤波器的设计主要围绕两个方面,第一是对数据进行分散处理,第二是分散处理过的数据X收稿日期:2004-11-26

数据融合方法优缺点

数据融合方法 随着交通运行状态评价研究的不断发展,对数据的准确性和广泛覆盖性提出了更高的要求,在此基础上,不同的数据融合模型被引进应用于交通领域中来计算不同检测设备检测到的数据。现阶段,比较常用的数据融合方法主要有:表决法、模糊衰退、贝叶斯汇集技术、BP神经网络、卡尔曼滤波法、D.S理论等方法。 1现有方法应用范围 结合数据融合层次的划分,对数据融合方法在智能交通领域的应用作以下归纳总结: 表数据融合层次及对应的方法 2各种融合方法的优缺点 主要指各种融合方法的理论、应用原理等的不同,呈现出不同的特性。从理论成熟度、运算量、通用性和应用难度四个方面进行优缺点的比较分析,具体内容如下: (1)理论成熟度方面:卡尔曼滤波、贝叶斯方法、神经网络和模糊逻辑的理论已经基本趋于成熟;D—S证据推理在合成规则的合理性方

面还存有异议;表决法的理论还处于逐步完善阶段。 (2)运算量方面:运算量较大的有贝叶斯方法、D.S证据推理和神经网络,其中贝叶斯方法会因保证系统的相关性和一致性,在系统增加或删除一个规则时,需要重新计算所有概率,运算量大;D.S证据推理的运算量呈指数增长,神经网络的运算量随着输入维数和隐层神经元个数的增加而增长;运算量适中的有卡尔曼滤波、模糊逻辑和表决法。 (3)通用性方面:在这六种方法中,通用性较差的是表决法,因为表决法为了迁就原来产生的框架,会割舍具体领域的知识,造成其通用性较差;其他五种方法的通用性相对较强。 (4)应用难度方面:应用难度较高的有神经网络、模糊逻辑和表决法,因为它们均是模拟人的思维过程,需要较强的理论基础;D.S证据推理的应用难度适中,因其合成规则的难易而定:卡尔曼滤波和贝叶斯方法应用难度较低。 3 适用的交通管理事件 之前数据融合技术在交通领域中的应用多是在例如车辆定位、交通事件识别、交通事件预测等交通事件中,但是几乎没有数据融合技术在交通运行状态评价的应用研究,而本文将数据融合技术应用在交通运行状态评价中,为了寻找到最适用于交通运行状态评价的数据融合技术方法,有必要将之前适用于其它交通管理事件的数据融合技术进行评价比较。 表2 各种融合方法适用的交通管理事件的比较

卡尔曼滤波数据融合算法

/********************************************************* // 卡尔曼滤波 //********************************************************* //在程序中利用Angle+=(Gyro - Q_bias) * dt计算出陀螺仪积分出的角度,其中Q_bias是陀螺仪偏差。 //此时利用陀螺仪积分求出的Angle相当于系统的估计值,得到系统的观测方程;而加速度计检测的角度Accel相当于系统中的测量值,得到系统状态方程。 //程序中Q_angle和Q_gyro分别表示系统对加速度计及陀螺仪的信任度。根据Pdot = A*P + P*A' + Q_angle计算出先验估计协方差的微分,用于将当前估计值进行线性化处理。其中A 为雅克比矩阵。 //随后计算系统预测角度的协方差矩阵P。计算估计值Accel与预测值Angle间的误差Angle_err。 //计算卡尔曼增益K_0,K_1,K_0用于最优估计值,K_1用于计算最优估计值的偏差并更新协方差矩阵P。 //通过卡尔曼增益计算出最优估计值Angle及预测值偏差Q_bias,此时得到最优角度值Angle 及角度值。 //Kalman滤波,20MHz的处理时间约0.77ms; void Kalman_Filter(float Accel,float Gyro) { Angle+=(Gyro - Q_bias) * dt; //先验估计 Pdot[0]=Q_angle - PP[0][1] - PP[1][0]; // Pk-先验估计误差协方差的微分 Pdot[1]=- PP[1][1]; Pdot[2]=- PP[1][1]; Pdot[3]=Q_gyro; PP[0][0] += Pdot[0] * dt; // Pk-先验估计误差协方差微分的积分 PP[0][1] += Pdot[1] * dt; // =先验估计误差协方差 PP[1][0] += Pdot[2] * dt; PP[1][1] += Pdot[3] * dt; Angle_err = Accel - Angle; //zk-先验估计 PCt_0 = C_0 * PP[0][0]; PCt_1 = C_0 * PP[1][0]; E = R_angle + C_0 * PCt_0; K_0 = PCt_0 / E;

时间序列分析方法Kalman滤波

第十三章 卡尔曼滤波 在本章中,我们介绍一种被称为卡尔曼滤波的十分有用的工具。卡尔曼滤波的基本思想是将动态系统表示成为一种称为状态空间表示的特殊情形。卡尔曼滤波是对系统线性投影进行序列更新的算法。除了一般的优点以外,这种算法对计算确切的有限样本预测、计算Gauss ARMA 模型的确切似然函数、估计具有时变参数的自回归模型等,都提供了重要方法。 §13.1 动态系统的状态空间表示 我们已经介绍过一些随机过程的动态表示方法,下面我们在以前的假设基础上,继续分析动态系统的表示方法。 13.1.1 继续使用的假设 假设t y 表示时刻t 观测到的n 维随机向量,一类非常丰富的描述t y 动态性的模型可以利用一些可能无法观测的被称为状态向量(state vector)的r 维向量t ξ表示,因此表示t y 动态性的状态空间表示(state-space representation)由下列方程系统给出: 11+++=t t t v ξF ξ 状态方程(state model) (13.1) t t t w ξH x A y t +'+'= 量测方程(observation model) (13.2) 这里F ,A '和H '分别是阶数为r r ?,k n ?和r n ?的参数矩阵,t x 是1?k 的外生或者前定变量。方程(13.1)被称为状态方程(state model),方程(13.2)被称为量测方程(observation model),1?r 维向量t v 和1?n 维向量t w 都是向量白噪声,满足: ???≠=='τ ττ t t E t ,,)(0Q v v (13.3) ? ??≠=='τττt t E t ,,)(0R w w (13.4) 这里Q 和R 是r r ?和n n ?阶矩阵。假设扰动项t v 和t w 对于所有阶滞后都是不相关的,即对所有t 和τ,有: 0w v =')(τ t E (13.5) t x 是外生或者前定变量的假定意味着,在除了包含在121,,,y y y Λ--t t 内的信息以外,t x 没有为s t +ξ和s t +w (Λ,2,1,0=s )提供任何新的信息。例如,t x 可以包括t y 的滞后值,也可以包括与τξ和τw (任意τ)不相关的变量。 方程系统中方程(13.1)至方程(13.5)可以表示有限观测值的序列 },,,{21T y y y Λ,这时需要状态向量初始值1ξ。假设1ξ与t v 和t w 的任何实现都不

卡尔曼滤波算法总结

Kalman_Filter(float Gyro,float Accel) { Angle+=(Gyro - Q_bias) * dt; Pdot[0]=Q_angle - PP[0][1] - PP[1][0]; Pdot[1]= - PP[1][1]; Pdot[2]= - PP[1][1]; Pdot[3]=Q_gyro; PP[0][0] += Pdot[0] * dt; PP[0][1] += Pdot[1] * dt; PP[1][0] += Pdot[2] * dt; PP[1][1] += Pdot[3] * dt; Angle_err = Accel - Angle; PCt_0 = C_0 * PP[0][0]; PCt_1 = C_0 * PP[1][0]; E = R_angle + C_0 * PCt_0; K_0 = PCt_0 / E; K_1 = PCt_1 / E; t_0 = PCt_0; t_1 = C_0 * PP[0][1]; PP[0][0] -= K_0 * t_0; PP[0][1] -= K_0 * t_1; PP[1][0] -= K_1 * t_0; PP[1][1] -= K_1 * t_1; Angle += K_0 * Angle_err; Q_bias += K_1 * Angle_err; Gyro_x = Gyro - Q_bias; } 首先是卡尔曼滤波的5个方程: -=--+(1)先验估计 X k k AX k k Bu k (|1)(1|1)() -=--+(2)协方差矩阵的预测(|1)(1|1)' P k k AP k k A Q

多传感器数据融合算法.

一、背景介绍: 多传感器数据融合是一种信号处理、辨识方法,可以与神经网络、小波变换、kalman 滤波技术结合进一步得到研究需要的更纯净的有用信号。 多传感器数据融合涉及到多方面的理论和技术,如信号处理、估计理论、不确定性理论、最优化理论、模式识别、神经网络和人工智能等。多传感器数据融合比较确切的定义可概括为:充分利用不同时间与空间的多传感器数据资源,采用计算机技术对按时间序列获得的多传感器观测数据,在一定准则下进行分析、综合、支配和使用,获得对被测对象的一致性解释与描述,进而实现相应的决策和估计,使系统获得比它的各组成部分更充分的信息。 多传感器信息融合技术通过对多个传感器获得的信息进行协调、组合、互补来克服单个传感器的不确定和局限性,并提高系统的有效性能,进而得出比单一传感器测量值更为精确的结果。数据融合就是将来自多个传感器或多源的信息在一定准则下加以自动分析、综合以完成所需的决策和估计任务而进行的信息处理过程。当系统中单个传感器不能提供足够的准确度和可靠性时就采用多传感器数据融合。数据融合技术扩展了时空覆盖范围,改善了系统的可靠性,对目标或事件的确认增加了可信度,减少了信息的模糊性,这是任何单个传感器做不到的。 实践证明:与单传感器系统相比,运用多传感器数据融合技术在解决探测、跟踪和目标识别等问题方面,能够增强系统生存能力,提高整个系统的可靠性和鲁棒性,增强数据的可信度,并提高精度,扩展整个系统的时间、空间覆盖率,增加系统的实时性和信息利用率等。信号级融合方法最简单、最直观方法是加权平均法,该方法将一组传感器提供的冗余信息进行加权平均,结果作为融合值,该方法是一种直接对数据源进行操作的方法。卡尔曼滤波主要用于融合低层次实时动态多传感器冗余数据。该方法用测量模型的统计特性递推,决定统计意义下的最优融合和数据估计。 多传感器数据融合虽然未形成完整的理论体系和有效的融合算法,但在不少应用领域根据各自的具体应用背景,已经提出了许多成熟并且有效的融合方法。多传感器数据融合的常用方法基本上可概括为随机和人工智能两大类,随机类方法有加权平均法、卡尔曼滤波法、多贝叶斯估计法、产生式规则等;而人工智能类则有模糊逻辑理论、神经网络、粗集理论、专家系统等。可以预见,神经网络和人工智能等新概念、新技术在多传感器数据融合中将起到越来越重要的作用。 数据融合存在的问题 (1)尚未建立统一的融合理论和有效广义融合模型及算法; (2)对数据融合的具体方法的研究尚处于初步阶段; (3)还没有很好解决融合系统中的容错性或鲁棒性问题; (4)关联的二义性是数据融合中的主要障碍; (5)数据融合系统的设计还存在许多实际问题。 二、算法介绍: 2.1多传感器数据自适应加权融合估计算法: 设有n 个传感器对某一对象进行测量,如图1 所示,对于不同的传感器都有各自不同的加权因子,我们的思想是在总均方误差最小这一最优条件下,根据各个传感器所得到的测量值以自适应的方式寻找各个传感器所对应的最优加权因子,使融合后的X值达到最优。

多传感器融合中的卡尔曼滤波应用

多传感器融合中的卡尔曼滤波探讨 1 引言 目前靠单一的信息源很难保证获取环境信息的快速性和准确性的要求,会给系统对周围环境的理解及系统的决策带来影响,另外,单一传感器获得的仅仅是环境特征的局部、片面的信息,它的信息量是十分有限的。而且每个传感器采集到的信息还受到自身品质、性能噪声的影响,采集到的信息往往是不完整的,带有较大的不确定性,偶尔甚至是错误的。而且在传统方式中,各传感器采集的信息单独、孤立的进行加工处理,不仅会导致处理工作量增加,而且割断了各传感器信息的联系丢失了信息的有机组合蕴涵的信息特征,也造成信息资 源的浪费[3-7]。在运动控制系统中,传统上就往往将速度传感器测量到的速度和加速度计测量到的加速度进行单独处理,没有将两者的信息进行数据融合。由物理定律可知,加速度与速度成导数关系,所以两者的数据是存在内在联系的,完全可以根据信息融合理论对两者数据进行综合处理,从而得到更加准确的结果。卡尔曼滤波器是常用的一种数据融合技术,它利用迭代递推计算的方式,对存贮空间要求很小,适合于存贮空间和计算速度受限的场合 [1,2]。本文分析了数度传感器和加速度计各自的优缺点,给出了一种应用卡尔曼滤波器原理对两者进行数据融合的方法。 2 传感器简介 2.1 光电编码器 光电编码器通常用于角度、位移、或转速测量,通过对光脉冲的个数进行计数再经过计算而得到测量值。假设在周长为L 的圆盘上有M 个过光孔,离散系统中,在周期时间T 内对脉冲进行计数值为N ,则第k 次测量的线速度v 可表达为 MT k Le k v MT k Le MT k LN k e k N MT L k v )()()()())()(()(+=+=+=∧ (2-1) e 是随机误差,为光脉冲取整后的剩余值,取值范围为(-1, 1),可看作均匀分布。∧v 为实际的观测值,与真值v 之间相差MT Le 。可见,在固定长度的L 上,加大M 或T 的值,都可以减小误差。但是加大M 需要付出昂贵的成本,使传感器价格大幅提高,如光栅式光电传感器;而加大T 又会降低系统的动态响应性能,所以在实际应用中,这两者均难如愿。 在需要同时测量加速度的场合,理论上可以由对速度求差分方程得出,即 2 2))1(()(())1()(()1()()(MT k e k Le MT k N k N L T k v k v k a --+--=--= (2-2) 容易看出,相对误差显著提高,数据几乎不可用,所以需要专门的加速度计对加速度进行测量。 2.2 加速度计 加速度计用于测量物体的线性加速度,根据不同的测量原理,有很多种类,本文中使用的MMA7260是一款低成本、低功耗、小体积、功能完善的单芯片加速度计,主要用于运动检测、惯性导航、震动检测、交通安全等。MMA7260响应快、带宽可调整、可响应高频率输入,但是其测量数据噪声与带宽的平方根成正比,会随着带宽增加而增加。 5.1350)(?=BW g rms Noise μ (2-3) 式中BW 为传感器带宽(HZ)。因此在设计时,首先要确定被测加速度的频率范围,然后再

多智能体系统中一致性卡尔曼滤波的研究进展.

第 46卷第 2期 2011年 4月 西南交通大学学报 J OURNAL OF SOUTHW EST JI A OTONG UN I VERSI T Y V o. l 46 N o . 2 A pr . 2011收稿日期 :2010 02 01 作者简介 :马磊 (1972-, 男 , 教授 , 博士 , 研究方向是网络化控制和多机器人系统 , E m ai:l m ale@i s w jt u . edu. cn , l . 文章编号 :0258 2724(2011 02 0287 07 DO I :10. 3969/.j i ssn . 0258 2724. 2011. 02. 019 多智能体系统中一致性卡尔曼滤波的研究进展 马磊 1 , 史习智 2 (1. 西南交通大学电气工程学院 , 四川成都 610031; 2. 上海交通大学机械系统与振动国家重点实验室 , 上海 200240 摘要 :从多智能体系统中一致性问题的基本概念、算法收敛性和性能分析出发 , 总结了基于一致性方法的分布式卡尔曼滤波的研究进展 . 从基于局部通讯的滤波器构造方法、信息加权和滤波器参数优化等方面对研究现状进行了评述 . 最后 , 讨论了信息损失、量化一致性和随机异步算法等前沿问题 , 以期促进相关研究 . 关键词 :一致性 ; 多智能体系统 ; 图拉普拉斯算子 ; 信息融合 ; 分布式卡尔曼滤波中图分类号 :TP242 文献标志码 :A

R ecent Developm ent on Consensus Based Kalman Fi ltering in M ulti agent System s MA Lei 1 , S H I X izhi 2 (1. Schoo l o f E lectr i ca lEng i neeri ng , Southwest Jiao tong U nivers it y , Chengdu 610031, Ch i na ; 2. Sta te K ey L aboratory o fM echanical Syste m s and V ibra tion , Shangha i Ji ao t ong U n i v ers it y , Shangha i 200240, Ch i na Abst ract :Recent deve l o pm ent of the distributed K al m an filtering usi n g the consensus m ethod w as addressed . The concep, t conver gence and perfor m ance ana l y sis of consensus prob le m s i n m ulti agent syste m s w ere i n tr oduced , and severa l aspects o f t h e consensus based K al m an filtering were discussed in deta ils , i n c l u d i n g filter constructi o n based on loca l co mmunicati o n , i n for m ation w eighti n g and para m eter opti m ization . F i n ally , so m e fronti e rs o f the research on the consensus m ethod , such as i n f o r m ation loss , quantized consensus and stochastic asynchronous a l g orithm s , w ere briefly d iscussed to pro m ote the related research . K ey w ords :consensus ; mu lti agent syste m; graph Laplacian; i n for m ation f u si o n ; distri b uted K al m an filtering

几种卡尔曼滤波算法理论

自适应卡尔曼滤波 卡尔曼滤波发散的原因 如果卡尔曼滤波是稳定的,随着滤波的推进,卡尔曼滤波估计的精度应该越来越高,滤波误差方差阵也应趋于稳定值或有界值。但在实际应用中,随着量测值数目的增加,由于估计误差的均值和估计误差协方差可能越来越大,使滤波逐渐失去准确估计的作用,这种现象称为卡尔曼滤波发散。 引起滤波器发散的主要原因有两点: (1)描述系统动力学特性的数学模型和噪声估计模型不准确,不能直接真实地反映物理过程,使得模型与获得的量测值不匹配而导致滤波发散。这种由于模型建立过于粗糙或失真所引起的发散称为滤波发散。 (2)由于卡尔曼滤波是递推过程,随着滤波步数的增加,舍入误差将逐渐积累。如果计算机字长不够长,这种积累误差很有可能使估计误差方差阵失去非负定性甚至失去对称性,使滤波增益矩阵逐渐失去合适的加权作用而导致发散。这种由于计算舍入误差所引起的发散称为计算发散。 针对上述卡尔曼滤波发散的原因,目前已经出现了几种有效抑制滤波发散的方法,常用的有衰减记忆滤波、限定记忆滤波、扩充状态滤波、有限下界滤波、平方根滤波、和自适应滤波等。这些方法本质上都是以牺牲滤波器的最优性为代价来抑制滤波发散,也就是说,多数都是次优滤波方法。 自适应滤波 在很多实际系统中,系统过程噪声方差矩阵Q和量测误差方差阵R事先是不知道的,有时甚至连状态转移矩阵 或量测矩阵H也不能确切建立。如果所建立的模型与实际模型不符可能回引起滤波发散。自适应滤波就是这样一种具有抑制滤波发散作用的滤波方法。在滤波过程中,自适应滤波一方面利用量测值修正预测值,同时也对未知的或不确切的系统模型参数和噪声统计参数进行估计修正。自适应滤波的方法很多,包括贝叶斯法、极大似然法、相关法与协方差匹配法,其中最基本也是最重要的是相关法,而相关法可分为输出相关法和新息相关法。 在这里只讨论系统模型参数已知,而噪声统计参数Q和R未知情况下的自适应滤波。由于Q和R等参数最终是通过增益矩阵K影响滤波值的,因此进行自适应滤波时,也可以不去估计Q和R等参数而直接根据量测数据调整K就可以了。

时间序列分析方法之卡尔曼滤波

第十三章 卡尔曼滤波 在本章中,我们介绍一种被称为卡尔曼滤波的十分有用的工具。卡尔曼滤波的基本思想是将动态系统表示成为一种称为状态空间表示的特殊情形。卡尔曼滤波是对系统线性投影进行序列更新的算法。除了一般的优点以外,这种算法对计算确切的有限样本预测、计算Gauss ARMA 模型的确切似然函数、估计具有时变参数的自回归模型等,都提供了重要方法。 §13.1 动态系统的状态空间表示 我们已经介绍过一些随机过程的动态表示方法,下面我们在以前的假设基础上,继续分析动态系统的表示方法。 13.1.1 继续使用的假设 假设表示时刻观测到的n 维随机向量,一类非常丰富的描述动态性的模型可以利用一些可能无法观测的被称为状态向量(state vector)的r 维向量表示,因此表示动态性的状态空间表示(state-space representation)由下列方程系统给出: 状态方程(state model) (13.1) 量测方程(observation model) (13.2) 这里,和分别是阶数为,和的参数矩阵,是的外生或者前定变量。方程(13.1)被称为状态方程(state model),方程(13.2)被称为量测方程(observation model),维向量和维向量都是向量白噪声,满足: (13.3) (13.4) 这里和是和阶矩阵。假设扰动项和对于所有阶滞后都是不相关的,即对所有和,有: (13.5) t x 是外生或者前定变量的假定意味着,在除了包含在121,,,y y y t t 内的信息以外,t x 没有为s t ξ和s t w ( ,2,1,0 s )提供任何新的信息。例如,t x 可以包括t y 的滞后值,也可以包括与 ξ和 w (任意 )不相关的变量。 方程系统中方程(13.1)至方程(13.5)可以表示有限观测值的序列},,,{21T y y y ,这时需要状态向量初始值1ξ。假设1ξ与t v 和t w 的任何实现都不相关:

数据融合各种算法整理汇总

数据融合各种算法及数学知识汇总 粗糙集理论 理论简介 面对日益增长的数据库,人们将如何从这些浩瀚的数据中找出有用的知识? 我们如何将所学到的知识去粗取精?什么是对事物的粗线条描述什么是细线条描述? 粗糙集合论回答了上面的这些问题。要想了解粗糙集合论的思想,我们先要了解一下什么叫做知识?假设有8个积木构成了一个集合A,我们记: A={x1,x2,x3,x4,x5,x6,x7,x8},每个积木块都有颜色属性,按照颜色的不同,我们能够把这堆积木分成R1={红,黄,蓝}三个大类,那么所有红颜色的积木构成集合X1={x1,x2,x6},黄颜色的积木构成集合X2={x3,x4},蓝颜色的积木是:X3={x5,x7,x8}。按照颜色这个属性我们就把积木集合A进行了一个划分(所谓A的划分就是指对于A中的任意一个元素必然属于且仅属于一个分类),那么我们就说颜色属性就是一种知识。在这个例子中我们不难看到,一种对集合A的划分就对应着关于A中元素的一个知识,假如还有其他的属性,比如还有形状R2={三角,方块,圆形},大小R3={大,中,小},这样加上R1属性对A构成的划分分别为: A/R1={X1,X2,X3}={{x1,x2,x6},{x3,x4},{x5,x7,x8}} (颜色分类) A/R2={Y1,Y2,Y3}={{x1,x2},{x5,x8},{x3,x4,x6,x7}} (形状分类) A/R3={Z1,Z2,Z3}={{x1,x2,x5},{x6,x8},{x3,x4,x7}} (大小分类) 上面这些所有的分类合在一起就形成了一个基本的知识库。那么这个基本知识库能表示什么概念呢?除了红的{x1,x2,x6}、大的{x1,x2,x5}、三角形的{x1,x2}这样的概念以外还可以表达例如大的且是三角形的 {x1,x2,x5}∩{x1,x2}={x1,x2},大三角{x1,x2,x5}∩{x1,x2}={x1,x2},蓝色的小的圆形({x5,x7,x8}∩{x3,x4,x7}∩{x3,x4,x6,x7}={x7},蓝色的或者中的积木{x5,x7,x8}∪{x6,x8}={x5,x6,x7,x8}。而类似这样的概念可以通过求交运算得到,比如X1与Y1的交就表示红色的三角。所有的这些能够用交、并表示的概念以及加上上面的三个基本知识(A/R1,A/R2.A/R3)一起就构成了一个知识系统记为R=R1∩R2∩R3,它所决定的所有知识是 A/R={{x1,x2},{x3,x4},{x5},{x6},{x7},{x8}}以及A/R中集合的并。 下面考虑近似这个概念。假设给定了一个A上的子集合X={x2,x5,x7},那么用我们的知识库中的知识应该怎样描述它呢?红色的三角?****的大圆? 都不是,无论是单属性知识还是由几个知识进行交、并运算合成的知识,都不能得到这个新的集合X,于是我们只好用我们已有的知识去近似它。也就是在所有的现有知识里面找出跟他最像的两个一个作为下近似,一个作为上近似。于是我们选择了“蓝色的大方块或者蓝色的小圆形”这个概念: {x5,x7}作为X的下近似。选择“三角形或者蓝色的”{x1,x2,x5,x7,x8}作为它的上近似,值得注意的是,下近似集是在那些所有的包含于X的知识库

相关文档
最新文档