光学薄膜技术及其应用

光学薄膜技术及其应用
光学薄膜技术及其应用

光学薄膜技术及其应用

张三1409074201

摘要:介绍了传统光学薄膜的原理,根据薄膜干涉的基本原理及其特点,介绍了光学薄膜的性能、制备技术,研究了光学薄膜在的应用和今后的发展趋势。

关键词:光学薄膜、薄膜干涉、应用、薄膜制备

引言:

光学薄膜是指在光学玻璃、光学塑料、光纤、晶体等各种材料的表面上镀制一层或多层薄膜,基于薄膜内光的干涉效应来改变透射光或反射光的强度、偏振状态和相位变化的光学元件,是现代光学仪器和光学器件的重要组成部分。

光学薄膜技术的发展对促进和推动科学技术现代化和仪器微型化起着十分重要的作用,光学薄膜在各个新兴科学技术中都得到了广泛的应用。

本文在简单叙述薄膜干涉的一些相关原理的基础上,介绍了光学薄膜常见的几种制备方法,研究了光学薄膜技术的相关应用,并且展望了光学薄膜研究的广阔前景。

正文:

1.光学薄膜的原理

光学薄膜的直接理论基础是薄膜光学, 它是建立在光的干涉效应基础上的、论述光在分层介质中传播行为。一列光波照射到透明薄膜上,从膜的前、后表面或上、下表面分别反射出两列光波,这两列相干光波相遇后叠加产生干涉。该理论可以比较准确地描述光在数十微米层、纳米层甚至原子层厚的薄膜中的传播行为,由此设计出不同波长、不同性能、适应不同要求的光学薄膜元件。

2.光学薄膜的性质及功能

光学薄膜最基本的功能是反射、减反射和光谱调控。依靠反射功能, 它可以把光束按不同的要求折转到空间各个方位;依靠减反射功能,它可以将光束在元件表面或界面的损耗减少到极致, 完美地实现现代光学仪器和光学系统的设计功能;依靠它的光谱调控功能, 实现光学系统中的色度变换, 获得五彩缤纷的颜色世界。

不仅如此, 光学薄膜又是光学系统中的偏振调控、相位调控以及光电、光热和光声等功能调控元件, 光学薄膜的这些功能, 在激光技术、光电子技术、光通信技术、光显示技术和光存储技术等现代光学技术中得到充分的应用, 促进了相关技术和学科的发展。

3.传统光学薄膜和新型光学薄膜

3.1传统光学薄膜

传统的光学薄膜是以光的干涉为基础。光波是一种电磁波,根据其波长的不同可分成红外线、可见光和紫外线等,当光波投射到物体上时,有一部分在它表面上被反射,其余部分经折射进入到该物体中,其中有一部分被吸收变为热能,剩的部分透射。不同的物质对光有不同的反射、吸收、透射性能,光学薄膜就是利用材料对光的这种性能,并根据实际需要制造的。

传统光学薄膜就是利用材料的这种特性,对光线产生特异性行为。传统光学薄膜有反射膜、增透膜、滤光膜、纳米光学薄膜、偏振膜、分光膜、和位相膜等。

3.2新型光学薄膜

现代科学技术特别是激光技术和信息光学的发展,光学薄膜不仅用于纯光学器件,在光电器件、光通信器件上也得到广泛的应用。近代信息光学、光电子技术及光子技术的发展,对光学薄膜产品的长寿命、高可靠性及高强度的要求越来越高,从而发展了一系列新型光学薄膜及其制备技术,并为解决光学薄膜产业化面临的问题提供了全面的解决方案,包括高强度激光器、金刚石及类金刚石膜、软X射线多层膜、太阳能选择性吸收膜和光通信用光学膜等。

4.光学薄膜制备技术

光学薄膜的制备技术是把薄膜材料按照一定的技术途经和特定的要求沉积为薄膜。

在光学薄膜发展的历程中,各种先进的薄膜制备技术不断应用到光学薄膜制备的技术中。这些技术不仅大大拓宽了光学薄膜可以利用的材料范围,而且极大地改进了光学薄膜的性能和功能,进而给光学薄膜提供了更为宽广深远的发展空间。下面介绍几种常见的光学薄膜制备方法

4.1物理气相学沉积

物理气相沉积是光学薄膜制备的主流技术,物理气相沉积法,简单地说是在真空环境中加热薄膜材料使其成为蒸汽,蒸汽再凝结到温度相对低的基片上形成薄膜。膜层厚度可以精确控制,膜层强度好。PVD 制备光学薄膜这一技术目前已被广泛采用,从而使各种光学薄膜在各个领域得到广泛应用。在PVD方法中,根据膜料汽化方式的不同,又分为热蒸发、溅射、离子镀及离子辅助镀技术。其中,光学薄膜主要采用热蒸发及离子辅助镀技术。

4.2化学气相沉积

化学气相沉积一般需要较高的沉积温度,而且在薄膜制备前需要特定的先驱反应物,通过原子、分子间化学反应的途径来生成固态薄膜的技术,CVD 技术制备薄膜的沉积速率一般较高。但在薄膜制备过程中也会产生可燃、有毒等一些副产物。

4.3化学液相沉积

化学液相沉积工艺简单,制造成本低,但膜层厚度不能精确控制,膜层强度差,较难获得多层膜,还造成废水、废气污染的问题。

4.4反应离子镀膜法

这种技术是利用热阴极弧源诱发膜料离子放电在镀膜室内形成等离子体,蒸发膜料离子部分被电离,在处于悬浮电位的工件架形成电场作用抵达基片,这样具有一定动能的离子态的膜料粒子与反应气体结合后淀积成膜,该膜层与玻璃基片附着牢固,薄膜的硬度与耐摩擦性能显著提高,因此受到了光学薄膜领域科学工作者的重视。但此项技术设备成本较高,对提高抗激光损伤能力的潜力有待进一步研究。

5. 光学薄膜的应用

5.1应用于光学仪器

5.1.1

在镜片表面镀上1/4波长的薄膜后,就可以提高这种波长光线的透光率,比较常见的蓝膜,就是一种最简单的增透膜。由于它是针对人眼敏感的黄绿光(λ=550nm)设计的λ/4光学厚膜,对于离550nm 波长稍远的光波,此膜所产生的反射率增大,因此我们看到这种膜为蓝色(λ=400nm)。

5.1.2

好的镜子会在所有的镜片表面镀膜,更好一些的镜子会在部分镜片表面镀多层膜,最好的镜子会在所有的镜片表面都镀上多层膜,这样可以提升整个可见光波段的透光率。

5.1.3

显微镜是用来观察极细微物质的光学系统,除了要对极其细微的物质充分照亮外,它的成像光学系统也必须尽可能地提高光通量,以减少光能反射损失。由于显微镜的光学系统较为复杂,光学表面多达20个左右,如不采取增透措施,其光通量可能降到30%,同时较强的反射光还会使杂散光增加,从而影响像的衬度、损害像的质量,所以它的镜片表面镀多层起增透作用的膜是必要的。

5.1.4

摄像机的镜头是让可见光范围内全部光谱最大限度透过,即透过的光波波带要尽量的宽,从而获得真实的反映自然界色彩的效果,因此光学薄膜采用了三层膜系结构。

5.1.5

如果眼镜镜片表面没有镀膜,那么当光线通过镜片的前后表面时,不但会产生折射,还会产生反射。这种在镜片前表面产生的反射光,会使观察者看戴镜者眼睛时,看到的是镜片表面的一片白光或者是观察者的像。拍照时,这种反光还会严重影响戴镜者的美观。再者,由于屈光镜片的前后表面的曲率不同,并且存在一定量的反射光,它们之间会产生内反射光,内反射光会在远点球面附近产生

虚像,也就是在视网膜的像点附近产生虚像点即“鬼影”,同时也会有眩光产生,这些虚像点会影响视物的清晰度和舒适性。所以高折射率的镜片如果没有增透膜,反射光会对戴镜者带来的不适感比较强烈。增透膜就利用了这个原理,在镜片的表面镀上增透膜,使得膜层前后表面产生的反射光相消干涉,达到增透的效果。

5.2应用于照明设备

白炽灯、卤素灯、低压钠灯等照明光源上,既可提高能量利用率,又能改变光源光谱的能量分布,满足特定照明的需求。红外高反射薄膜中用途较广的是金属-介质复合膜和全介质多层干涉膜。

目前用于高温照明光源的薄膜大多选用全介质膜系结构。多层全介质干涉膜系、镀制在卤素灯的真空玻璃灯管外壁,具有很好的热稳定性和化学稳定性,还有良好的机械特性。

5.3应用于光纤通信

光纤系统也像电子线路系统一样,需要许多无源器件来实现光纤光路的连接,分路,合路,交换,隔离以及控制或改变光信号的传播特性。光学薄膜在其中一些仪器中起着十分重要的作用。

5.4航空航天上的应用

5.4.1

在科学卫星表面上镀铝和氧化硅膜,卫星的温度可控制在10 ~40 ℃范围。空间飞行器的主要能源是硅太阳能电池,通常在太阳能电池的熔石英盖片上淀积热性能控制滤光片。该滤光片只允许透过可转变成电能的太阳可见光和近红外区的辐射,反射有害的红外区热量

5.4.2

在航空航天等军用领域中,存在强光和电磁干扰等环境影响因素,为了使显示器能够在这种恶劣环境下稳定可靠工作,需要对显示器进行减反射电磁屏蔽加固。对氧化铟锡电磁屏蔽层与减反膜系进行综合设计。

5.4.3

航天服是航天员出仓从事空间活动必备的个人防护救生装备,它由服装、头盔、手套和航天靴等组成, 头盔的面窗应有良好的光学性能和广阔的视野, 以便航天员进行观察。头盔表面镀制了用于增透和光谱选择的光学薄膜。

总结

20 世纪90 年代科学家曾经预言, 21 世纪是光子世纪。光学薄膜是传输光子并实现其各种功能的重要载体和部件。传统光学薄膜已经广泛的存在于人们的日常生活中,它因其优良的性质,给人们的生活带来了便利。新型光学薄膜已经受到人们的广泛重视,对其研究和开发也层出不穷,在各个方面都将有广阔的发展前景,人们在期待光学、光电子学及光子学得到突破性发展的同时, 必然会看到光学薄膜进一步的繁荣和发展。

参考文献:

【1】光学薄膜及其进展范正修(中国科学院上海光学精密机械研究所中国科学院强激光材料重点实验室, 上海201800)

【2】尤大伟.制备光学薄膜的离子源技术概述[ J] .真空科学与技术学报, 2009 , 29(1):107-113

【3】空间光学薄膜技术王多书*熊玉卿陈焘王济洲董茂进李晨张玲(表面工程技术重点实验室兰州空间技术物理研究所兰州730000)

【4】光学薄膜界面粗糙度互相关特性与光散射潘永强 1 , 2 吴振森2 杭凌侠 1 (1 西安工业大学光电工程学院, 陕西西安710032;2 西安电子科技大学理学院, 陕西西安710071)

【5】丁相午.常用光学薄膜的应用分析[J].机械管理开发,2007,(6):63~65

【6】光学薄膜及其应用方面的研究*董小燕龚斌李雅丽(1)(南通大学理学院,江苏南通226007)

【7】新型光学薄膜研究及发展现状[J]王学华,薛亦渝,赵利,等..武汉理工大学学报,2002,24(2):20-23.

【8】光学薄膜及其发展现状李金丽刘全校*许文才(北京印刷学院印刷包装材料与技术重点实验室,北京102600)

【9】光学薄膜的研究新进展及应用沈远香,黄晓霞,王永惠( 中国兵器工业第五九研究所,重庆400039)

【10】国外光学薄膜的应用和真空镀膜工艺宋继鑫( 兵器工业总公司 2 10 所北京1 0 0 0 5 1 )

光学薄膜技术

光学薄膜概论 光学薄膜 光学薄膜泛指在光学器件或光电子元器件表面用物理化学等方法沉积的、利用光的干涉现象以改变其光学特性来产生增透、反射、分光、分色、带通或截止等光学现象的各类膜系。它可分为增透膜、高反膜、滤光膜、分光膜、偏振与消偏振膜等。光学薄膜的应用始于20世纪30年代。现代,光学薄膜已广泛用于光学和光电子技术领域,制造各种光学仪器。 光学薄膜的特点是:表面光滑,膜层之间的界面呈几何分割;膜层的折射率在界面上可以发生跃变,但在膜层内是连续的;可以是透明介质,也可以是吸收介质;可以是法向均匀的,也可以是法向不均匀的。 光学薄膜的基本原理: 1.利用光线的干涉效应,当光线入射於不同折射系数物质所镀成的薄膜,产生某种特殊光学特性。 分类:光学薄膜就其所镀材料之不同,大体可分为金属膜和非金属膜。 a.金属膜:主要是作为反射镜和半反射镜用。在各种平面或曲面反射镜,或各式稜镜等,都可依所需镀上Al、Ag、Au、Cu等各种不同的材料。不同的材料在光谱上有不同的特性。AI的反射率在紫外光、可见光、近红外光有良好的反射率,是镀反射镜最常使用的材料之一。Ag膜在可见光和近红外光部份的反射率比AI膜更高,但因其易氧化而失去光泽,只能短暂的维持高反射率,所以只能用在内层反射用,或另加保护膜。 b.非金属膜:用途非常广泛,例如抗反射镜片.单一波长滤光片、长或短波长通过滤光片、热光镜、冷光镜、各种雷射镜片等,都是利用多种不同的非金属材料,蒸镀在研磨好之镜杯上,层数由单层到数十、百层不等,视需要的不同,而有不同的设计和方法。目前这些薄膜中被应用得最广泛,最商业化,也是一般人接触到最多的,就是抗反射膜。例如眼镜、照相机镜头、显微镜等等都是在镜片上镀抗反射膜。因为若是不加以抗反射无法得到清晰明亮的影像了,因此如何增加其透射光线就是一个非常重要的课题。 2.利用光波干涉原理,在镜片的表面镀上一层薄膜,厚度为1/4 波长的光学厚度,使光线不再只被玻璃—空气界面反射,而是空气—薄膜、薄膜—玻璃二个界面反射,因此产生干涉现象,可使反射光减少。若镀二层的抗反射膜,使反射率更低,但是镀一层或二层都有缺点:低反射率的波带不移宽,不能在可见光范围都达到低反射率。1961年Cox、Hass和 Thelen 三位首先发表以1/4一1/2一1/4波长光学厚度作三层抗反射膜可以得到宽波带低反射率的抗反射膜。多层抗反射膜除了宽波带的,也可做到窄波带的。也就是针对其一波长如氨氟雷射632.8nm波长,要求极高的透射,可使63Z.8nm这一波长透射率高达99.8%以上,用之於雷射仪器。但若需要对某一波长的光线有看极高的反射率需要用高低不同折射系数的材料反覆蒸镀数十层才可达到此效果。 光学薄膜的制造方式:热电阻式、电子枪式和溅射方式。最普通的方式为热电阻式,是将蒸镀材料在真空蒸镀机内置於电阻丝或片上,在高真空的情况下,加热使材料成为蒸气,直接镀於镜片上。由於有许多高熔点的材料,不易使用此种方式使之熔化、蒸镀。而以电子枪改进此缺点,其方法是以高压电子束直接打击材料,由於能量集中可以蒸镀高熔点的材料。另一方式为溅射方式,是以高压使惰性气体离子化,打击材料使之直接溅射至镜片,以此方式

光学薄膜技术第三章--薄膜制造技术

第三章薄膜制造技术 光学薄膜可以采用物理汽相沉积(PVD)和化学液相沉积(CLD)两种工艺来获得。CLD工艺简单,制造成本低,但膜层厚度不能精确控制,膜层强度差,较难获得多层膜,废水废气对环境造成污染,已很少使用。 PVD需要使用真空镀膜机,制造成本高,但膜层厚度能够精确控制,膜层强度好,目前已广泛使用。 PVD分为热蒸发、溅射、离子镀、及离子辅助镀等。 制作薄膜所必需的有关真空设备的基础知识 用物理方法制作薄膜,概括起来就是给制作薄膜的物质加上热能或动量,使它分解为原子、分子或少数几 个原子、分子的集合体(从广义来说,就是使其蒸发),并使它们在其他位置重新结合或凝聚。 在这个过程中,如果大气与蒸发中的物质同时存在,那就会产生如下一些问题: ①蒸发物质的直线前进受妨碍而形成雾状微粒,难以制得均匀平整的薄膜; ②空气分子进入薄膜而形成杂质; ③空气中的活性分子与薄膜形成化合物; ④蒸发用的加热器及蒸发物质等与空气分子发生反应形成 化合物,从而不能进行正常的蒸发等等。 因此,必须把空气分子从制作薄膜的设备中排除出去,这个 过程称为抽气。空气压力低于一个大气压的状态称为真空, 而把产生真空的装置叫做真空泵,抽成真空的容器叫做真空 室,把包括真空泵和真空室在内的设备叫做真空设备。制作 薄膜最重要的装备是真空设备. 真空设备大致可分为两类:高真空设备和超高真空设备。二 者真空度不同,这两种真空设备的抽气系统基本上是相同 的,但所用的真空泵和真空阀不同,而且用于真空室和抽气 系统的材料也不同,下图是典型的高真空设备的原理图,制 作薄膜所用的高真空设备大多都属于这一类。 下图是超高真空设备的原理图,在原理上,它与高真空设备 没有什么不同,但是,为了稍稍改善抽气时空气的流动性, 超高真空设备不太使用管子,多数将超高真空用的真空泵直 接与真空室连接,一般还要装上辅助真空泵(如钛吸气泵) 来辅助超高真空泵。 3.1 高真空镀膜机 1.真空系统 现代的光学薄膜制备都是在真空下获得的。普通所说的 真空镀膜,基本都是在高真空中进行的。 先进行(1)然后进行(2)。因为所有的(超)高真空泵只有在真空室的压力降低到一定程度时才能进行工作, 而且在高真空泵(如油扩散泵)中,要把空气之类的分子排出,就必须使排气口的气体压力降低到一定程 度。 小型镀膜机的真空系统 低真空机械泵+高真空油扩散泵+低温冷阱

光学薄膜技术第二章课件

典型膜系介绍 根据其作用可以将光学薄膜的类型简单的分为: 1、减反射膜或者叫增透膜 2、分束膜 3、反射膜 4、滤光片 5、其他特殊应用的薄膜 一. 减反射膜(增透膜) 在众多的光学系统中,一个相当重要的组成部分是镜片上能降低反射的镀膜。在很多应用领域中,增透膜是不可缺少的,否则,无法达到应用的要求。 就拿一个由18块透镜组成的35mm 的自动变焦的照相机来说,假定每个玻璃和空气的界面有4%的反射,没有增透的镜头光透过率为23%,镀有一层膜(剩余的反射为%)的镜头光透过率为%,镀多层膜(剩余的反射为%)的为%。 大功率激光系统要求某些元件有极低的表面反射,以避免敏感元件受到不需要的反射光的破坏。此外,宽带增透膜可以提高象质量、色平衡和作用距离,而使系统的全部性能增强。 当光线从折射率为n0的介质射入折射率为n1的另一介质时,在两介质的分界面上就会产生光的反射, 如果介质没有吸收,分界面是一光学表面,光线又是垂直入射,则反射率R 为: 例,折射率为的冕牌玻璃,每个表面的反射约为%,折射率较高的火石玻璃表面的反射更为显著。 这种表面反射造成了两个严重的后果: ①光能量损失,使像的亮度降低; ②表面反射光经过多次反射或漫射,有一部分成为杂散光,最后也达到像平面,使像的衬度降低,分辨率下降,从而影响光学系统的成像质量。 减反射膜,又称增透膜,它的主要功能是减少或消除透镜、棱镜、平面镜等光学表面的反射光,从而增加这些元件的透光量,减少或消除系统的杂散光。 最简单的增透膜是单层膜,它是镀在光学零件光学表面上的一层折射率较低 的介于空气折射率和光学元件折射率之间的薄膜。以使某些颜色的单色光在表面 R T n n n n R -=???? ??+-=12 1010透射率

光学薄膜现代分析测试方法

一、金相实验室 ? Leica DM/RM 光学显微镜 主要特性:用于金相显微分析,可直观检测金属材料的微观组织,如原材料缺陷、偏析、初生碳化物、脱碳层、氮化层及焊接、冷加工、铸造、锻造、热处理等等不同状态下的组织组成,从而判断材质优劣。须进行样品制备工作,最大放大倍数约1400倍。 ? Leica 体视显微镜 主要特性:1、用于观察材料的表面低倍形貌,初步判断材质缺陷; 2、观察断口的宏观断裂形貌,初步判断裂纹起源。 ?热振光模拟显微镜 ?图象分析仪 ?莱卡DM/RM 显微镜附 CCD数码照相装置 二、电子显微镜实验室 ?扫描电子显微镜(附电子探针) (JEOL JSM5200,JOEL JSM820,JEOL JSM6335) 主要特性: 1、用于断裂分析、断口的高倍显微形貌分析,如解理断裂、疲劳断裂(疲劳辉纹)、晶间断裂(氢脆、应力腐蚀、蠕变、高温回火脆性、起源于晶界的脆性物、析出物等)、侵蚀形貌、侵蚀产物分析及焊缝分析。 2、附带能谱,用于微区成分分析及较小样品的成分分析、晶体学分析,测量点阵参数/合金相、夹杂物分析、浓度梯度测定等。 3、用于金属、半导体、电子陶瓷、电容器的失效分析及材质检验、放大倍率:10X—300,000X;样品尺寸:0.1mm—10cm;分辩率:1—50nm。 ?透射电子显微镜(菲利蒲 CM-20,CM-200) 主要特性: 1、需进行试样制备为金属薄膜,试样厚度须<200nm。用于薄膜表面科学分析,带能谱,可进行化学成分分析。 2、有三种衍射花样:斑点花样、菊池线花样、会聚束花样。斑点花样用于确定第二相、孪晶、有序化、调幅结构、取向关系、成象衍射条件。菊池线花样用于衬度分析、结构分析、相变分析以及晶体精确取向、布拉格位移矢量、电子波长测定。会聚束花样用于测定晶体试样厚度、强度分布、取向、点群、空间群及晶体缺陷。 三、X射线衍射实验室 ? XRD-Siemens500—X射线衍射仪 主要特性: 1、专用于测定粉末样品的晶体结构(如密排六方,体心立方,面心立方等),晶型,点阵类型,晶面指数,衍射角,布拉格位移矢量,已及用于各组成相的含量及类型的测定。测试时间约需1小时。 2、可升温(加热)使用。 ? XRD-Philips X’Pert MRD—X射线衍射仪 主要特性: 1、分辨率衍射仪,主要用于材料科学的研究工作,如半导体材料等,其重现性精度达万分之一度。 2、具备物相分析(定性、定量、物相晶粒度测定;点阵参数测定),残余应力及织构的测定;薄膜物相鉴定、薄膜厚度、粗糙度测定;非平整样品物相分析、小角度散射分析等功能。 3、用于快速定性定量测定各类材料(包括金属、陶瓷、半导体材料)的化学成分组成及元素含量。如:Si、P、S 、Mn、Cr、Mo、Ni、V、Fe、Co、W等等,精确度为0.1%。 4、同时可观察样品的显微形貌,进行显微选区成分分析。

光学薄膜的研究进展和应用

光学薄膜的研究进展和应用 【摘要】本文介绍了光学薄膜的工作原理,并对光学薄膜的传统光学领域的应用做了简要的概述。又简要说明现代光学薄膜典型应用,对光学薄膜的制备加以介绍,最后介绍了光学薄膜的发展前景。 【关键词】光学薄膜;薄膜应用;薄膜制造; 1.光学薄膜原理简述 所谓光学薄膜是指其厚度能够光的波长相比拟,其次要能对透过其上的光产生作用。具体在于其上下表面对光的反射与透射的作用。光学薄膜的定义是:涉及光在传播路径过程中,附著在光学器件表面的厚度薄而均匀的介质膜层,通过分层介质膜层时的反射、透(折)射和偏振等特性,以达到我们想要的在某一或是多个波段范围内的光的全部透过或光的全部反射或是光的偏振分离等各特殊 形态的光。 光学薄膜的特点是:表面光滑,膜层之间的界面呈几何分割;膜层的折射率在界面上可以发生跃变,但在膜层内是连续的;可以是透明介质,也可以是吸收介质;可以是法向均匀的,也可以是法向不均匀的。实际应用的薄膜要比理想薄膜复杂得多。这是因为:制备时,薄膜的光学性质和物理性质偏离大块材料,其表面和界面是粗糙的,从而导致光束的漫散射;膜层之间的相互渗透形成扩散界面;由于膜层的生长、结构、应力等原因,形成了薄膜的各向异性;膜层具有复杂的时间效应。不同物质对光有不同的反射、吸收、透射性能,光学薄膜就是利用材料对光的这种性能,并根据实际需要制造的。 2.光学薄膜的传统应用 光学薄膜按应用分为反射膜、增透膜、滤光膜、光学保护膜、偏振膜、分光膜和位相膜。减反射膜,是应用最广泛的光学薄膜,它可以减少光学表面的反射率而提高其透射率。对于单一波长,理论上的反射率可以降到零,透射率为100%;对于可见光谱段,反射率可以降低到0.5%,甚至更低,以保证一个由多个镜片组成的复杂系统有足够的透射率和极低的杂散光。现代光学装置没有一个是不经过减反射处理的。由于其具有极低的反射率和鲜艳的表面颜色,现代人们日常生活中的眼镜普遍都镀有减反射膜。 高反射膜,能将绝大多数入射光能量反射回去。当选用介质膜堆时,由于薄膜的损耗极低,随着膜层数的不断增加,其反射率可以不断地增加(趋近于100%)。这种高反射膜在激光器的制造和激光应用中都是必不可少的。 能量分光膜,可将入射光能量的一部分透射,另一部分反射分成两束光,最

光学薄膜技术及其应用

光学薄膜技术及其应用 张三1409074201 摘要:介绍了传统光学薄膜的原理,根据薄膜干涉的基本原理及其特点,介绍了光学薄膜的性能、制备技术,研究了光学薄膜在的应用和今后的发展趋势。 关键词:光学薄膜、薄膜干涉、应用、薄膜制备 引言: 光学薄膜是指在光学玻璃、光学塑料、光纤、晶体等各种材料的表面上镀制一层或多层薄膜,基于薄膜内光的干涉效应来改变透射光或反射光的强度、偏振状态和相位变化的光学元件,是现代光学仪器和光学器件的重要组成部分。 光学薄膜技术的发展对促进和推动科学技术现代化和仪器微型化起着十分重要的作用,光学薄膜在各个新兴科学技术中都得到了广泛的应用。 本文在简单叙述薄膜干涉的一些相关原理的基础上,介绍了光学薄膜常见的几种制备方法,研究了光学薄膜技术的相关应用,并且展望了光学薄膜研究的广阔前景。 正文: 1.光学薄膜的原理 光学薄膜的直接理论基础是薄膜光学, 它是建立在光的干涉效应基础上的、论述光在分层介质中传播行为。一列光波照射到透明薄膜上,从膜的前、后表面或上、下表面分别反射出两列光波,这两列相干光波相遇后叠加产生干涉。该理论可以比较准确地描述光在数十微米层、纳米层甚至原子层厚的薄膜中的传播行为,由此设计出不同波长、不同性能、适应不同要求的光学薄膜元件。 2.光学薄膜的性质及功能 光学薄膜最基本的功能是反射、减反射和光谱调控。依靠反射功能, 它可以把光束按不同的要求折转到空间各个方位;依靠减反射功能,它可以将光束在元件表面或界面的损耗减少到极致, 完美地实现现代光学仪器和光学系统的设计功能;依靠它的光谱调控功能, 实现光学系统中的色度变换, 获得五彩缤纷的颜色世界。 不仅如此, 光学薄膜又是光学系统中的偏振调控、相位调控以及光电、光热和光声等功能调控元件, 光学薄膜的这些功能, 在激光技术、光电子技术、光通信技术、光显示技术和光存储技术等现代光学技术中得到充分的应用, 促进了相关技术和学科的发展。 3.传统光学薄膜和新型光学薄膜 3.1传统光学薄膜 传统的光学薄膜是以光的干涉为基础。光波是一种电磁波,根据其波长的不同可分成红外线、可见光和紫外线等,当光波投射到物体上时,有一部分在它表面上被反射,其余部分经折射进入到该物体中,其中有一部分被吸收变为热能,剩的部分透射。不同的物质对光有不同的反射、吸收、透射性能,光学薄膜就是利用材料对光的这种性能,并根据实际需要制造的。 传统光学薄膜就是利用材料的这种特性,对光线产生特异性行为。传统光学薄膜有反射膜、增透膜、滤光膜、纳米光学薄膜、偏振膜、分光膜、和位相膜等。 3.2新型光学薄膜 现代科学技术特别是激光技术和信息光学的发展,光学薄膜不仅用于纯光学器件,在光电器件、光通信器件上也得到广泛的应用。近代信息光学、光电子技术及光子技术的发展,对光学薄膜产品的长寿命、高可靠性及高强度的要求越来越高,从而发展了一系列新型光学薄膜及其制备技术,并为解决光学薄膜产业化面临的问题提供了全面的解决方案,包括高强度激光器、金刚石及类金刚石膜、软X射线多层膜、太阳能选择性吸收膜和光通信用光学膜等。

光学薄膜技术复习提纲讲解

光学薄膜技术复习提纲 、典型膜系 减反射膜(增透膜) 1、减反射膜的主要功能是什么? 是减少或消除透镜、棱镜、平面镜等光学表面的反射光,从而增加这些元件的透光量, 减少或消除系统的杂散光。 ★ 2、单层减反射膜的最低反射率公式并计算 厂 宀 >2 llo —111 /11;#-1 R= ------------ <山+爲沁+/ ★ 3、掌握常见的多层膜系表达,例如 G| H L | A 代表什么? G| 2 H L | A ? ★ 4、什么是规整膜系?非规整膜系? 把全部由入0/4整数倍厚度组成的膜系称为规整膜系,反之为非规整膜系。 ★ 5、单层减反射膜只能对某个波长和它附近的较窄波段内的光波起增透作用。 为了在较宽的 光谱范围达到更有效的增透效果,常采用双层、三层甚至更多层数的减反射膜。 ★ 6 V 形膜、W 形膜的膜系结构以及它们的特征曲线。P16-17 ㈡高反射膜 ★ 1、镀制金属反射膜常用的材料有铝(AI )、银(Ag )、金(Au )、铬等。 ★ 2、金属反射膜四点特性。P29 ① 高反射波段非常宽阔,可以覆盖几乎全部光谱范围,当然,就每一种具体的金属而言,它 都有自己最佳的反射波段。 V --G I HL| A / M |=! !膜 / fix 一上 —\ >< WG | 2HL | A 0 400 450 500 550 600 650 700 VUavelsnqth (rm ) 43 2 yuf5o2lpu 家

②各种金属膜层与基底的附着能力有较大差距。如Al、Cr、Ni (镍)与玻璃附着牢固;而Au、 Ag与玻璃附着能力很差。 ③金属膜层的化学稳定性较差,易被环境气体腐蚀。 ④膜层软,易划伤。 ㈢分光膜 1什么是分光膜? 中性分束镜能够在一定波段内把一束光按比例分成光谱成分相同的两束光,也即它在一定的 波长区域内,如可见区内,对各波长具有相同的透射率和反射率之比值一一透反比。因而反射光和透射光不带有颜色,呈色中性。 ★2、归纳金属、介质分束镜的优缺点: 金属分束镜p32 优点:中性好,光谱范围宽,偏振效应小,制作简单 缺点:吸收大,分光效率低。 使用注意事项:光的入射方向 介质分束镜p30 优点:吸收小,几乎可以忽略,分光效率高。 缺点:光谱范围窄,偏振分离明显,色散明显。 5、偏振中性分束棱镜是利用斜入射时光的偏振,实现50/50中性分光。 ㈣、截止滤光片 ★1、什么是截止滤光片?什么是长波通、短波通滤光片?p33 截止滤光片是指要求某一波长范围的光束高效透射,而偏离这一波长的光束骤然变化为高反 射的干涉截止滤光片。 抑制短波区、透射长波区的截止滤光片称为长波通滤光片。 抑制长波区、透射短波区的截止滤光片称为短波通滤光片。 2、截止光滤片的应用:彩色分光膜。P51 ①图2.4.13分光原理;②解决棱镜式分光元件偏振效应的方法是合理设计分光棱镜的形式,尽可能减小光束在膜面上的入射角。 ㈤、带通滤光片 ★1、什么是带通滤光片?P58

光学薄膜技术第三章薄膜制造技术

第三早薄膜制造技术 光学薄膜可以采用物理汽相沉积( PVD )和化学液相沉积(CLD )两种工艺来获得。CLD 工艺简单,制造成 本低,但膜层厚度不能精确控制, 膜层强度差,较难获得多层膜,废水废气对环境造成污染, 已很少使用。 PVD 需要使用真空镀膜机,制造成本高,但膜层厚度能够精确控制,膜层强度好,目前已广泛使用。 PVD 分为热蒸发、溅射、离子镀、及离子辅助镀等。 制作薄膜所必需的有关真空设备的基础知识 用物理方法制作薄膜,概括起来就是给制作薄膜的物质加上热能或动量,使它分解为原子、分子或少数几 个原子、分子的集合体(从广义来说,就是使其蒸发) ,并使它们在其他位置重新结合或凝聚。 在这个过程中,如果大气与蒸发中的物质同时存在,那就会产生如下一些问题: 先进行(1)然后进行(2)。因为所有的(超)高真空泵只有在真空室的压力降低到一定程度时才能进行工作, 而且在高真空泵(如油扩散泵)中,要把空气之类的分子排出,就必须使排气口的气体压力降低到一定程 度。 小型镀膜机的真空系统 低真空机械泵+高真空油扩散泵+低温冷阱 ① 蒸发物质的直线前进受妨碍而形成雾状微粒,难以制得均匀平整的薄膜; ② 空气分子进入薄膜而形成杂质; ③ 空气中的活性分子与薄膜形成化合物; ④ 蒸发用的加热器及蒸发物质等与空气分子发生反应形成 化合物,从而不能进行正常的蒸发等等。 因此,必须把空气分子从制作薄膜的设备中排除出去, 过程称为抽气。空气压力低于一个大气压的状态称为真空, 而把产生真空的装置叫做真空泵, 抽成真空的容器叫做真空 室,把包括真空泵和真空室在内的设备叫做真空设备。 薄膜最重要的装备是真空设备. 真空设备大致可分为两类:高真空设备和超高真空设备。 者真空度不 同,这两种真空设备的抽气系统基本上是相同 的,但所用的真空泵和真空阀不 同, 而且用于真空室和抽气 系统的材料也不同, 下图是典型的高真空设备的原理图, 作薄膜所用的高真 空设备大多都属于这一类。 下图是超高真空设备的原理图,在原理上,它与高 真空设备 没有什么不同,但是,为了稍稍改善抽气时空气的流动性, 超高真空设备不太使用管子,多数将超高真空用的真空泵直 接与真空室连接,一般还要装上辅助真空泵(如钛吸气泵) 来辅助超高真空泵。 3.1高真空镀膜机 1.真空系统 现代的光学薄膜制备都是在真空下获得的。普通所说的 真空镀膜,基本都是在高真空中进行的。 I T*?!=E1=* I ■■ 这个 制作 I ! SW2 蝉# t 初真空 低真空 高真空 超高 真空 极高 其空 真空度 Pa 5 2 10 ?10 io 2—10-1 10 L —io'5 10-5—10-12 <10-12 低宾空莱 低真 泵 ?加痕 炉 ■电硯)——

光学薄膜完整版

光学薄膜技术复习提纲 闭卷考试 120分钟 考试时间:17周周三下午3:00---5:00(12月30号)题型:选择题(10*2)填空题(10题24分)判断题(10题)简答题(4题24分)综合题(2题22分,计算1题,论述1题)考试内容包含课本与课件,简答和综合题包含作业和例题 1、判断题 1. 光束斜入射到膜堆时,S-偏振光的反射率总是比p-偏振光的反射率高(正确) 2. 对称膜系可以完全等效单层膜(错误,仅在通带中有类似特性) 3. 对于吸收介质,只要引入复折射率,进行复数运算,那么就可以完全使用无吸收 时的公式(正确) 4. 膜层的特征矩阵有两种表达方式:导纳矩阵和菲涅尔系数矩阵(错误) 5. 简单周期性多层膜,在其透射带内R<<1(错误) 6. 在斜入射情况下,带通滤光片S-偏振光的带宽比p-偏振光的带宽为大(正确) 7. 在包含吸收介质时,光在正反两个入射方向上的透过率是一样的(正确) 8. 发生全反射时,光的能量将不进入第二介质(错误) 9. 斜入射时,银反射膜的偏振效应比铝反射膜大(Al:0.64-i5.50,Ag:0.050- i2.87)(错误,因为银的折射率远小于铝) 10. 高反射介质膜的截止深度是指在截止波长处的反射率(错误,是指截止带中心处 的反射率) 第1章薄膜光学特性计算基础 1、干涉原理:同频率光波的复振幅矢量叠加。 2、产生干涉的条件:频率相同、振动方向一致、位相相同或位相 差恒定。 3、薄膜干涉原理:层状物质的平行界面对光的多次反射和折 射,导致同频率光波的多光束干涉叠加。 4、光学薄膜:薄到可以产生干涉现象的膜层、膜堆或膜系。 5、麦克斯韦方程组: 6、物质方程: 7、光学导纳: 8、菲涅尔系数:菲涅尔系数就是界面上的振幅反射系数和振幅 透射系数。 9、特征矩阵:表征薄膜特性的矩阵,仅包含薄膜的特征参数 10、虚设层:当膜层厚度对于中心波长来说是或其整数倍时,该 层存在对于中心波长处的透过率/反射率无影响,因此称为虚 设层。但该层其他波长处的透过率/反射率还是有影响的。

光学薄膜技术课程简介.

《光学薄膜技术》课程简介 《光学薄膜技术》作为光学专业的技术专业课,系统地介绍薄膜光学的基本理论和器件设计的基本方法,介绍光学薄膜的新设计方法、新器件设计、新工艺技术、制造工艺,介绍光学薄膜的相关材料及其性质,介绍光学薄膜的特性测试方法等。 本《光学薄膜技术》课程将讲授六章,第一章是薄膜光学特性计算基础,第二章介绍介质膜系及其应用,第三章介绍薄膜制造技术,第四章介绍光学薄膜制造工艺,第五章介绍薄膜材料及其性质,第六章介绍光学薄膜特性测试与分析。 课程目录 第一章薄膜光学特性计算基础 1.1 单一界面的反射率和透射率 1.2 单层介质膜的反射率 1.3 多层介质膜的反射率和透射率 1.4 金属薄膜的光学特性 1.5 光学零件的反射率和透射率 第二章介质膜系及其应用 2.1 减反射膜 2.2 高反射膜 2.3 中性分束膜 2.4 截止滤光片

2.5 带通滤光片 2.6 偏振分束膜 2.7 消偏振膜系 第三章薄膜制造技术 3.1 光学真空镀膜机 3.2 真空与物理汽相沉积 3.3 真空获得与检测 3.4 热蒸发 3.5 溅射 3.6 离子镀 3.7 离子辅助镀 第四章光学薄膜制造工艺4.1 光学薄膜器件的质量要素4.2 影响膜层质量的工艺要素4.3 获得精确厚度的方法 4.4 获得均匀膜层的方法 第五章薄膜材料及其性质5.1 薄膜的微观结构与性质5.2 常用光学薄膜材料

第六章光学薄膜特性测试与分析 6.1 光学薄膜特性的检测标准 6.2 薄膜透射率、反射率的测量 6.3 薄膜光学常数和厚度的测量 6.4 薄膜吸收和散射的测量 6.5薄膜激光损伤阈值的测量 6.6 薄膜非光学特性的检测 参考书 1. 卢进军,刘卫国。《光学薄膜技术》,西北工业大学出版社,2005.10; 2. 卢进军。《光学薄膜技术》,电子工业出版社,2011.7; 3. 唐晋发,顾培夫,刘旭,李海峰。《现代光学薄膜技术》,浙江大学出版社,2007.3。

光学薄膜技术第二章课件

光学薄膜技术第二章课件-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

典型膜系介绍 根据其作用可以将光学薄膜的类型简单的分为: 1、减反射膜或者叫增透膜 2、分束膜 3、反射膜 4、滤光片 5、其他特殊应用的薄膜 一. 减反射膜(增透膜) 在众多的光学系统中,一个相当重要的组成部分是镜片上能降低反射的镀膜。在很多应用领域中,增透膜是不可缺少的,否则,无法达到应用的要求。 就拿一个由18块透镜组成的35mm 的自动变焦的照相机来说,假定每个玻璃和空气的界面有4%的反射,没有增透的镜头光透过率为23%,镀有一层膜(剩余的反射为1.3%)的镜头光透过率为62.4%,镀多层膜(剩余的反射为0.5%)的为83.5%。 大功率激光系统要求某些元件有极低的表面反射,以避免敏感元件受到不需要的反射光的破坏。此外,宽带增透膜可以提高象质量、色平衡和作用距离,而使系统的全部性能增强。 当光线从折射率为n0的介质射入折射率为n1的另一介质时,在两介质的分界面上就会产生光的反射, 如果介质没有吸收,分界面是一光学表面,光线又是垂直入射,则反射率R 为: 例,折射率为1.52的冕牌玻璃,每个表面的反射约为4.2%,折射率较高的火石玻璃表面的反射更为显著。 这种表面反射造成了两个严重的后果: ①光能量损失,使像的亮度降低; ②表面反射光经过多次反射或漫射,有一部分成为杂散光,最后也达到像平面,使像的衬度降低,分辨率下降,从而影响光学系统的成像质量。 减反射膜,又称增透膜,它的主要功能是减少或消除透镜、棱镜、平面镜等光学表面的反射光,从而增加这些元件的透光量,减少或消除系统的杂散光。 最简单的增透膜是单层膜,它是镀在光学零件光学表面上的一层折射率较低的介于空气折射率和光学元件折射率之间的薄膜。以使某些颜色的单色光在表面上的反射干涉相消,增加透射。使用最普遍的介质膜材料为氟化镁,它的折射率为1.38。 R T n n n n R -=???? ??+-=121010透射率

现代光学薄膜设计实例-期末设计报告

现代光学薄膜技术 期末报告 学院信息科学与技术学院 系部电子工程系 专业 XXXXX 学号 XXXXXXXXXXXXXX 姓名 XXXXX 任课老师: XXXXX 完成时间 2014、6、8 现代光学薄膜技术 期末报告

图1-典型的LCOS引擎结构 请陈述上述LCOS投影光学引擎中方框中所使用到的光学薄膜器件类型,并将该类型的具体光学特性要求给出;请详细给出方框8中X-cube的具体膜系设计过程与设计结果(设计材料与设计方法不限) 答:按照图上数字标示: 1、光源,需要高亮度,长寿命的白色光源。 2、滤光镜,滤除光源中的紫外光与红外光部分,保留自然光(白光)。 3、匀光镜?得到均匀的平行光。 4、分色镜,通过反射与投射不同波长的光对光进行分色,最终分成红、绿、 蓝三种颜色。 5、反光镜,普通高反放光镜,控制光的路径。 6、偏极化分光镜,(PBS,Polarization Beam Spliter),作用:得到需要的 光,光分为P光与S光,PBS让P光通过,让S光反射。 7、LCOS(Liquid Crystal on Silicon),即液晶附硅,也叫硅基液晶,就是 一种基于反射模式,尺寸非常小的矩阵液晶显示装置。这种矩阵采用 CMOS技术在硅芯片上加工制作而成。在半导体材料上制作驱动电路, 并将主动像素(液晶)矩阵放置在半导体材料之上,在工作时,LCoS只会 对光线进行偏振处理,而不遮挡光线。三色光分别通过各自的PBS后, 会反射S偏光进入LCOS面板,当液晶显示为亮态时,S偏光将改变成P

偏光,最后组合调变过的三道P偏极光,投射至屏幕处得到影像。 8、X-cube合光棱镜,来自三片LCOS调制过的三道P偏极光经过合光棱镜 会聚成一束光线。 9、投影镜,即成像透镜。合成光束经过投影机镜头照射到屏幕上,形成彩 色的图像。 X-cube合光棱镜具体膜系设计 由LCOS引擎结构图分析可知,X-cube合光棱镜如下图,可以分成四个部分胶合,胶合面有1、2、3、4需要镀光学薄膜,且可知胶合面1、3的薄膜一致,膜系要求对长波红光部分高反,同时对绿光蓝光高透。胶合面2、4的薄膜一致,应该对短波蓝光部分高反,同时对绿光红光高透。 这里我们取红绿蓝三个颜色的参考波长如下: 蓝光:430nm~450nm;绿光:490nm~580nm;红光:620nm~760nm。 图2-合色棱镜 长波通LPF的设计 红光:620nm~760nm;绿光:490nm~580nm;蓝光:430nm~450nm。 如图2,胶合面2、4上的设计的薄膜应满足通红光、绿光,反蓝光的长波通。 ?1、首先设定指标:由图可知工作环境,入射角度就是45°,入射介质与出射介质均为玻璃Glass,X-cube合光棱镜的入射光都就是P偏正光,所以在设计过程中就是针对P偏振光而非平均光。膜系要求在420nm~450nm波段透射率低

光学薄膜的制备技术

光学薄膜的制备技术 材料学院无机0701 15 周劲竹 摘要:光学薄膜泛指在光学器件或光电子元器件表面用物理化学等方法沉积的、利用光的干涉现象以改变其光学特性来产生增透、反射、分光、分色、带通或截止等光学现象的各类膜系。它可分为增透膜、高反膜、滤光膜、分光膜、偏振与消偏振膜等。光学薄膜的应用始于20世纪30年代。现代,光学薄膜已广泛用于光学和光电子技术领域,制造各种光学仪器。 关键词:特点基本原理制备应用及市场前景 正文:光学薄膜的特点是:表面光滑,膜层之间的界面呈几何分割;膜层的折射率在界面上可以发生跃变,但在膜层内是连续的;可以是透明介质,也可以是吸收介质;可以是法向均匀的,也可以是法向不均匀的。 光学薄膜的基本原理: 1.利用光线的干涉效应,当光线入射於不同折射系数物质所镀成的薄膜, 产生某种特殊光学特性。 分类:光学薄膜就其所镀材料之不同,大体可分为金属膜和非金属膜。 a.金属膜:主要是作为反射镜和半反射镜用。在各种平面或曲面反射 镜,或各式稜镜等,都可依所需镀上Al、Ag、Au、Cu等各种不同的材料。 不同的材料在光谱上有不同的特性。AI的反射率在紫外光、可见光、近红 外光有良好的反射率,是镀反射镜最常使用的材料之一。Ag膜在可见光和 近红外光部份的反射率比AI膜更高,但因其易氧化而失去光泽,只能短暂 的维持高反射率,所以只能用在内层反射用,或另加保护膜。 b.非金属膜:用途非常广泛,例如抗反射镜片.单一波长滤光片、长或 短波长通过滤光片、热光镜、冷光镜、各种雷射镜片等,都是利用多种不同 的非金属材料,蒸镀在研磨好之镜杯上,层数由单层到数十、百层不等,视 需要的不同,而有不同的设计和方法。目前这些薄膜中被应用得最广泛,最 商业化,也是一般人接触到最多的,就是抗反射膜。例如眼镜、照相机镜头、 显微镜等等都是在镜片上镀抗反射膜。因为若是不加以抗反射无法得到清晰 明亮的影像了,因此如何增加其透射光线就是一个非常重要的课题。 2.利用光波干涉原理,在镜片的表面镀上一层薄膜,厚度为1/4 波长的光 学厚度,使光线不再只被玻璃—空气界面反射,而是空气—薄膜、薄膜—玻 璃二个界面反射,因此产生干涉现象,可使反射光减少。若镀二层的抗反射 膜,使反射率更低,但是镀一层或二层都有缺点:低反射率的波带不移宽, 不能在可见光范围都达到低反射率。1961年Cox、Hass和Thelen三位首先 发表以1/4一1/2一1/4波长光学厚度作三层抗反射膜可以得到宽波带低反 射率的抗反射膜。多层抗反射膜除了宽波带的,也可做到窄波带的。也就是 针对其一波长如氨氟雷射632.8nm波长,要求极高的透射,可使63Z.8nm 这一波长透射率高达99.8%以上,用之於雷射仪器。但若需要对某一波长的 光线有看极高的反射率需要用高低不同折射系数的材料反覆蒸镀数十层才 可达到此效果。 制备光学薄膜通常采用物理气相沉积法(Physical Vapor Deposition,PVD):有传统的真空蒸镀法(Vacuum Evaporation,VE),包括电阻蒸镀、电子束蒸镀;也有新出现的荷能离子镀方法,包括离子辅助沉积(Ion Assisted Deposition,IAD)、低压反应离

光学薄膜的分类及发展趋势

光学薄膜的发展趋势及分类、关键技术汇总科学的发展正在改变传统的光学薄膜的面貌,其应用也由原来的纯粹为光学仪器服务,逐渐渗透到通信、建筑、防伪、医疗和空间技术等领域。而新工艺、新材料、新技术的采用,或用来提高其性能,或与其他薄膜结合构成新的器件,如与电学膜结合起来的光电子薄膜,与高分子有机材料结合起来的光学有机薄膜。这些薄膜有着潜在而十分广阔的应用前景。新型光学薄膜如高强度激光膜、金刚石及类金刚石膜、软X射线多层膜、太阳能选择性吸收膜和光通信用光学膜的制备及其在器件方面的研究和应用情况。下面就目前及未来几年应用广泛、符合薄膜发展方向的设备及技术进行阐述: 一、磁控溅射设备及工艺技术 在光学薄膜领域,真空蒸发技术占据主导地位已经超过50年,并且一直在不断发展。高性能的电子枪、离子辅助镀膜、低压反应离子镀膜、高精度的监控技术、自动化的镀膜过程等一系列的进展,使得蒸发技术达到了极高的水平,制备出了DWDM、GFF增益平坦滤光片等高性能的薄膜元器件,令人叹为观止。但是,随着蒸发镀膜机性能的不断提高,结构亦愈复杂,目前需要控制的工作参数已经超过30个。并且随着真空室状态的变化,还需要适当修正一些参数,因此使过程十分复杂,成为各种故障的潜在因素,生产中已经感到不便。

磁控溅射的工艺过程简化了许多,需要控制的工作参数约为lo个左右,更容易实现过程自动化。溅射薄膜的高聚集密度使其特性对真空室的初始状态不太敏感,所以溅射薄膜的再现性会有所提高,进行工业化生产具有明显的优势。反应磁控溅射技术目前还不太适宜在弯曲面型的基底上淀积成膜;以时间为监控参数使得各个膜层厚度误差之间互不相关;对于多种膜系及膜料的适应程度不及蒸发技术;上述问题都是磁控溅射的局限性。但是,磁控溅射在光学薄膜领域中的应用将日益广泛,可能会成为一种趋势。 磁控溅射在光学多层介质膜的工业化生产中的发展空间巨大,设备和靶材料的成本将随着应用的广泛而得以降低。在一定范围内,蒸发镀膜将会逐步为磁控溅射镀膜所替代。 近年来,磁控溅射技术的应用日趋广泛,在工业生产和科学研究领域发挥巨大作用。随着对具有各种新型功能的薄膜需求的增加,相应的磁控溅射技术也获得进一步的发展。 研究内容: 1)设备的引进调试及工艺参数优化 2)产品的调研及开发应用 3)靶材的选择及利用率的提高。 二、真空紫外薄膜 真空紫外(VUV)是一种波长范围为100~200nm的不可见光线, 由于真空紫外光波长短、热效应不强等独特特性, 而广泛应

光学薄膜基础知识

光学薄膜 讲解内容:①光学薄膜的理论基础及应用范围和发展前景 ②光学薄膜基础理论知识 ③镀膜制备技术 ④镀膜材料 ⑤镀膜检测 光学薄膜是一门综合性非常强的工程技术科学。它的理论基础是电磁场理论和麦克斯韦方程,涉及光在传播过程中,通过多层介质时的反射、反射各偏振性能等。随着科学的进步和人们生活水平的不断提高,促使镀膜技术得到了非速的发展。在许多情况下,人们关心的是材料的表面,在普通的基底材料上若镀以适当的膜,就可以获得奇迹般的效果。膜是物质存在的一种形式。多年来,在膜的理论、制备工艺、测试方法和应用等方面,进行了大量的研究和开发工作,已发展成为一门新兴的边缘科学——膜学。它涉及物理学、化学、数学等基础学科和材料、等离子体、真空、测量与控制等技术领域。它是多种学科综合的产物,同时也促进了相关学科和技术的发展。膜学是材料中最活跃、最富成效、最有前途的一项技术。 镀膜的方法很多,分类方法也各不相同。按膜层的形成方法分类,可以分为干式镀膜和湿式镀膜。

干式镀膜是指要真空的条件下,应用物理或化学的方法,将材料汽化成原子、分子或使成电离成离子,并通过气相过程,在基体表面沉积一层具有特殊性能的薄膜技术。因此也有人称为气相过程或真空镀膜。在干式镀膜中有以真空镀、溅射镀膜、离子镀为代表的物理气相沉积(PVD)和化学气相沉积(CVD)。 湿式镀膜是指将工件置于电解质溶液中,通过化学、电化学的方法,使其表面形成镀层,所以也有人称溶液法为液相沉积法,它可以分为电镀、化学镀、化学转化膜处理几种。 镀膜技术应用广泛,如太阳能电池、太阳能集热管、集成电路、半导体器件、平板显示器、光控及节能玻璃、信息储存作用器件、敏感元件、工模具超硬涂层及手表、眼镜、卫生洁具等日用品精钸层、塑料制品金属化、包装用塑料薄膜等各个领域,在工业现代化和国民经济发展中的越来越大,在国内外生产、科研、教学领域受到普遍重视,得到了迅猛发展。 光学薄膜基础理论知识 光波:紫外光、可见光、红外光。 光的颜色红橙黄绿青蓝紫760-630 630-600 600-570 570-500 500-450 450-430 430-400 波长范围 (nm) 可见光:波长在400nm到760nm之间的电磁波,能引起人眼视觉。 紫外光:波长比400nm短的光波。

《薄膜原理与技术》

《薄膜原理与技术》 课程编号:OPT04038 课程名称:薄膜原理与技术 学分:1.5 学时:24 先修课程:物理光学、应用光学 一、目的与任务 本课程是一门专业技术基础课,适合于光学各专业。本课程的目的是通过光学薄膜原理与技术的学习,培养学生薄膜系统的计算、设计能力,了解薄膜系统的制备技术。 本课程的任务是(1)光学薄膜特性计算,包括光学薄膜的设计理论以及膜系的普遍定理;(2)常用光学薄膜器件,如反射镜、分光镜、截止滤光片和带通滤光片;(3)薄膜制备技术,包括制备薄膜设备、材料、方法与监控;(4)薄膜材料及性质,包括薄膜的光学性质测量、力学性质检测等。(5)介绍薄膜技术领域中的一些前沿研究课题。学生通过这门课的学习应该熟悉薄膜原理、特性、制备与检测以及薄膜领域的最新进展。 二、教学内容及学时分配(24学时) 第一章光学薄膜特性的理论计算(6学时) 1. 单色平面电磁波 2. 平面电磁波在单一界面的反射和折射 3. 光学薄膜特性的理论计算 第二章光学薄膜的设计理论(2学时) 1.矢量作图法 2.有效界面法 3.对称膜系的等效层 第三章光学薄膜系统的设计(8学时) 1.减反射膜 2.高反射膜性 3.分束镜 4.干涉截止滤光片 5.带通滤光片 6.薄膜设计软件使用(Filmaster)

第四章薄膜制备技术(4学时) 1.真空淀积工艺 2.光学薄膜材料 3.薄膜厚度监控技术 4.膜层厚度的均匀性 第五章制备条件对薄膜微观结构和成分的影响(4学时) 1.薄膜的形成过程 2.薄膜的微观结构 3.薄膜成分 4.微观结构和成分对薄膜特性的影响 三、考核与成绩评定 考核:大作业。 成绩评定:大作业占70%,平时作业及日常考核质疑等占30%,按百分制给出最终成绩。 四、大纲说明 1. 本大纲是根据我校电子科学与技术(光电子)、光电信息科学与工程、光电信息工程专业培养计划及其知识结构要求,并适当考虑专业特色而制定的。 2. 在保证基本教学要求的前提下,教师可以根据实际情况,对内容进行适当的调整和删节。 3. 本大纲适合光电类相关专业。 五、教材、参考书 选用教材:唐晋发顾培夫刘旭.现代光学薄膜技术[M].浙江大学出版社,2006. 参考书: [1]卢进军刘卫国.光学薄膜技术[M].西安工大学出版社,2005. [2]唐晋发顾培夫刘旭.现代光学薄膜技术[M].浙江大学出版社,2006. [3]林永昌卢维强. 光学薄膜原理[M].国防工业出版社,1990. 编写教师:蒋玉蓉 责任教授签字: 教学院长签字:

光学薄膜完整版全解

光学薄膜技术复习提纲 闭卷考试 120分钟 考试时间:17周周三下午3:00---5:00(12月30号) 题型:选择题(10*2)填空题(10题24分)判断题(10题) 简答题(4题24分)综合题(2题22分,计算1题,论述1题) 考试内容包含课本与课件,简答和综合题包含作业和例题 一、判断题 1. 光束斜入射到膜堆时,S -偏振光的反射率总是比p -偏振光的反射率高(正确) 2. 对称膜系可以完全等效单层膜(错误,仅在通带中有类似特性) 3. 对于吸收介质,只要引入复折射率,进行复数运算,那么就可以完全使用无吸收时的公式(正确) 4. 膜层的特征矩阵有两种表达方式:导纳矩阵和菲涅尔系数矩阵(错误) 5. 简单周期性多层膜,在其透射带内R<<1(错误) 6. 在斜入射情况下,带通滤光片S -偏振光的带宽比p -偏振光的带宽为大(正确) 7. 在包含吸收介质时,光在正反两个入射方向上的透过率是一样的(正确) 8. 发生全反射时,光的能量将不进入第二介质(错误) 9. 斜入射时,银反射膜的偏振效应比铝反射膜大(Al :0.64-i 5.50,Ag :0.050-i 2.87)(错误,因为 银的折射率远小于铝) 10. 高反射介质膜的截止深度是指在截止波长处的反射率(错误,是指截止带中心处的反射率) 第一章 薄膜光学特性计算基础 1、 干涉原理:同频率光波的复振幅矢量叠加。 2、 产生干涉的条件:频率相同、振动方向一致、位相相同或位相差恒定。 3、 薄膜干涉原理 :层状物质的平行界面对光的多次反射和折射,导致同频率光波的多光束 干涉叠加。 4、 光学薄膜:薄到可以产生干涉现象的膜层、膜堆或膜系。 5、 麦克斯韦方程组: (1) -(2) (3)0(4) D H j t B E t D ρB ???=+ ????=???=??= 6、 物质方程: D E B H j E εμσ=?? =??=?

相关文档
最新文档