热塑性复合材料在飞机上的应用

热塑性复合材料在飞机上的应用
热塑性复合材料在飞机上的应用

热塑性复合材料在飞机上的应用

张磊杨卫平张丽

(中航工业一飞院,西安)

The applications of Thermoplastic matrix Composite on aircraft

摘要:阐述了热固性复合材料的缺点,分析了热塑性复合材料的优势,并介绍了其在国内、外军用飞机和民用飞机上的应用情况,指出了国内外的差距,最后对国内纤维增强热塑性复合材料的发展提出了建议。

Abstract: In this study we analyzed the disadvantage of thermosetting matrix composites, the advantage of thermoplastic matrix composites and introduced the applications of thermoplastic matrix composites on aircraft. In addition we pointed out the gap and summarized the research orientation of thermoplastic matrix composites.

关键词:热塑性、热固性、聚醚醚酮、聚苯硫醚、抗冲击性

Keywords: Thermoplastic、Thermosetting、PEEK、PPS、impact resistance

复合材料按树脂类型可分为热固性复合材料和热塑性复合材料。目前国内外飞机上,大量使用的复合材料为热固性复合材料,包括机翼、机身等主要承力构件。但是热固性复合材料通常采用热压罐生产工艺,成型时间长,而且在材料运输、存储、工艺准备、实施等方面要求都比较严格,因此生产成本比较高。另外热固性复合材料对冲击比较敏感,设计和使用时要重点考虑冲击对结构性能的影响。而热塑性复合材料在这些方面都有一定优势,所以近年来其逐步受到重视[1]。

1 热塑性复合材料的优点

与热固性复合材料相比,热塑性复合材料主要有以下优点[2~5]:

(1)韧性、损伤容限性能、抗冲击,抗裂纹扩展等性能较好。由于热塑性树脂分子链的运动能力比热固性树脂强得多,因此热塑性树脂的韧性普遍要高很多,有利于改善复合材料的抗冲击损伤能力。以碳纤维/聚醚醚酮(PEEK)树脂复合材料为例,其压缩后冲击强度(CAI)值高达342 MPa,与第一代环氧复合材料170 MPa,增韧环氧复合材料250 MPa的平均水平相比,优势明显;

(2)成型周期短,生产效率高,节约成本。热固性复合材料主要的成型方法是预浸料/热压罐工艺,热压罐固化消耗大量的能源和时间,增加制造成本,而热塑性复合材料的成型过程仅仅发生加热变软和冷却变硬的物理变化,只需升温、加压成型、冷却即可完成制备过程,可采用热压成型工艺,故成型周期短、生产效率高、成本低。另外,热塑性复合材料在材料运输、存储、工艺准备、实施等比热固性复合材料要求低,因此生产成本更低。两种材料生产制造对比见下表1;

表1 热固性和热塑性复合材料对比

属性热固性复合材料热塑性复合材料

材料运输材料低温运输,并需要温度监控材料普通运输

材料存储1、低温存储,-18℃以下存储;

2、材料力学性能寿命,一般12个月;

3、工艺性能寿命,一般240小时;

1、室温存储,一般库房即可;

2、材料力学性能寿命无要求;

3、工艺实施无特殊要求;

工艺准备1、材料回暖处理;

2、预浸料需要衬纸保护;

3、材料准备需在净化间内完成;

1、材料无需回暖处理;

2、预浸料或板材无需保护;

3、材料准备在一般环境;

材料切割1、预浸料剪裁自动下料机;

2、边角余料不可利用

1、预浸料CNC,板材水切割;

2、材料可以回收利用;

工艺实施1、手工或自动铺叠;

2、真空加热固化,制造节拍8小时;

1、板材热压成型;

2、无辅助材料,制造节拍5分钟

后续处理1、裁真空袋、工装清理;

2、表面有需打磨处理

1、脱模及完成零件制造;

2、表面质量完好,无需打磨;

(3)实现结构减重。热固性复合材料的密度为1.7~2.0g/cm3,而热塑性复合材料的密度为1.1~1.6g/cm3,密度较热固性复合材料小,因此,采用热塑性复合材料具有一定的减重优势;

(4)具有重塑性,可以循环利用,提高零件的修理性,降低报废率,废料也可回收。热塑性复合材料在成形过程中是一个简单的相变过程(即熔融和凝胶),可二次加工;

(5)良好的耐热性能。以环氧树脂为代表的热固性复合材料长期使用温度最高可达130℃,而某些热塑性复合材料的长期使用温度可达250℃以上,并且耐水性极优,可在湿热环境下长期使用。例如:PEEK树脂的耐热性达220℃,用30%碳纤增强后,使用温度可提高到310℃,可用于某些特殊环境。

因此,热塑性复合材料在飞机结构中的应用,可以缩短零件的制造周期,提高其结构的抗冲击性能,减轻结构的重量,减少飞机的生产和使用成本。

2 国内外飞机应用情况

自20世纪60年代以来,高性能连续纤维增强热塑性复合材料就受到欧美日等发达国家的重视。但长期以来,制约热塑性复合材料在民机上应用的主要原因有以下两个:(1)预浸料制造困难,材料成本高;(2)制件制造成型需要高温高压,对设备和辅料要求高。从20世纪80 年代开始,以美国为主导的西方国家进行了一系列旨在提高热塑性复材预浸料的制造水平、降低制件制造成本的研究计划,并最终取得大量的研究成果,为高性能热塑性复合材料在民机上的应用推广奠定了基础。英国帝国化学公司、德国巴斯夫公司、美国杜邦公司等开发了多类热塑性树脂,经波音、空客、洛克希德、福克等制备成飞机蒙皮、整流罩、升降舵等制件并且进行了飞行试验, 证明了热塑性复合材料不仅强度、刚度满足要求, 而且具有更好的韧性和损伤容限性能[6]。目前常用的先进热塑性树脂主要有: 聚醚醚酮(PEEK)、聚苯硫醚(PPS)、聚醚酰亚胺(PEI)等。

2.1 国外飞机应用情况

热塑性复合材料(TPC)在飞机应用上的巨大潜质,其在国外飞机上的应用如下[7~13]:

(1)机翼前缘

A340-500/600机翼前缘的J字型结构件,它代替原来由5段铝件组成的D型构件,由长度2.5m和3.2m两段组成,是福克特殊飞机公司制造的,采用荷兰TenCate Composite公司的Cetex玻璃纤维/聚苯硫醚(PPS)薄膜"半预浸料"经过预先压实成板(每块板由5层预浸料组成),然后模压成肋及加强件。层合板的尺寸为1.2m×3.6m。玻璃纤维与PPS之间用一种专利化合物粘结。玻璃纤维/PPS材料放入热压罐内,在300℃以上高温固结。自A340-600用于验证航线飞行的首次试飞以来,尚未发现新的机翼前缘出现任何故障。这是热塑性复合材料在民机上首次大规模应用。

A380的机翼前缘也采用热塑性复合材料,如下图1所示,采用了多肋设计理念和用TenCate 公司的玻璃纤维/聚苯硫醚(PPS)制成,相应的选材及加工方式与A340-600类似。

图1 A380机翼固定前缘

Fig.1 Leading edge of A380

(2)舵面结构

新型湾流G650 公务机(JEC2010 创新奖得主)的方向舵和升降舵就是感应焊接的多肋扭力盒结构(见下图2)。感应焊接是由KVE 复合材料集团的荷兰专家开发,并由福克航空结构件公司实现工业化的一项技术。这种碳/PPS(TenCate 先进复合材料公司) 的多肋设计比此前的碳/环氧树脂夹层结构重量降低10%、成本降低20%。

图2 湾流G650方向舵

Fig.2 rudder of G650

(3)舱内地板

空客A400M运输机的驾驶舱地板使用了碳纤维/PPS,如下图3所示。其尺寸3.05m 3.06m,是目前最大的碳纤维热塑性航空结构之一。

图3 空客A400M驾驶舱地板

Fig.3 floor of A400M

(4) 机身连接零件

空客A350客机机体上应用量最大的是机身连接零件。这些零件位于机身11段到15段,连接机身复合材料壁板与内部的复合材料框架结构。这些零件使用碳纤维/PPS材料,外形各异,通过先进的集成化单元完成制造,每个单元都拥有执行材料运输的机器人夹持系统、执行材料预热的红外加热器以及执行材料固化的液压式热冲压机。空客A350热塑性连接角片部位见图4所示。

图4 空客A350热塑性连接角片部位

Fig.4 clips of A350

(5) 主承力件应用

2009年欧盟启动“热塑性经济可承受性航空主结构”(TAPAS)项目,目的是为空客公司开发TPC 平尾扭矩盒和机身结构,进一步增加TPC在当前和未来飞机上的应用比例,如A320neo客机。项目将分为两个阶段,在2017年完成,目标是两个构件的材料、制造工艺、设计概念和模具设备达到技术成熟度分别达到4级和6级。项目的第一阶段是采用碳纤维/PEKK材料开发主承力结构,项目制造的TPC平尾扭矩盒和机身验证件分别达到了技术成熟度3级和5级,已于2013年完成。TPC平尾扭矩盒基于G650的平尾中央部分重新设计,展长12m,其中,蒙皮厚度从2~8mm之间变化,采用单向预浸带制造。由于TPC固有的韧性能更好地阻止裂纹扩展,能够将蒙皮设计得更薄,因此与热固性复合材料构件相比,该扭矩盒减重10%,如下图5左所示。

图5 热塑性主承力验证件

Fig.5 the TPC verification

TPC机身验证件长4m,双曲面外形,其中加强筋长3m,厚度从2.48~5.50mm之间变化。DTC公司开发了该机身加强筋,及其制造工艺:数控切割TPC材料,机器人铺放,真空预固化,自动运输,压力成形,整个过程仅需15min。机身壁板验证件如图5右所示。

项目的第二阶段于2014年初开始,将继续提升TPC扭矩盒和机身的技术成熟度。对于扭矩盒的研究,接下来将开发可获应用认证的材料和工艺,开发一个能够存放燃油的“湿”盒,使用将梁与蒙皮焊接起来的一种结构。对于机身的研究,主要在于控制蒙皮厚度,特别是对于A320neo或者737max这样的单通道客机,韧性的TPC薄蒙皮结构固然更合适,但其厚度极限需要验证,尤其是考虑到如冰雹撞击或维修工具冲击下的局部载荷作用。

2.2 国内飞机应用情况

国内飞机使用复合材料主要是以环氧和双马树脂为基体的热固性复合材料。对于热固性复合材料抗冲击能力差的问题,主要是通过改性/增韧[15]或降低设计许用值的方法处理,直接改用热塑性复合材

料的应用较少。

在实际装机应用方面,“八五”期间采用静电粉末法PEEK预浸料制造了某型机平板舱门,并已在飞机上装机考核,至今工作正常。见下图7左。

图6 舱门实物[16]

Fig.6 the entity of the door[16]

另外某型无人机后机身舱门结构采用了热塑性复合材料。选用的树脂基是聚酰亚胺NGDJ-900树脂膜,纤维为T300碳纤维无纬布和织物。筋条部分则采用短纤维增强树脂。结构件设计时,蒙皮采用树脂膜与增强纤维间隔叠层,加强筋条设计采用短纤维,壁板设计为一个带纵横方向加强筋条的整体,通过高温高压模压融渗成形技术,一次成形,不用进热压罐,不用几次胶结,减少制造工序,易于操作,也不需要真空袋等辅料,制造成本低。并且,整体成型可简化结构,使从前需要多个零件通过螺栓等紧固件连接在一起的部件简化为一个整体的零件,减少了原来各零件之间需要的连接件,降低装配成本。零件实物见图7右所示。

3 与国外的差距

热塑性复合材料的工程应用大致经历了三个阶段:第一阶段,热塑性复合材料应用于飞机内饰、舱门、口盖、整流罩等非承力部件;第二阶段,用于飞机固定面前后缘、襟翼、副翼、方向舵等操纵面等受载较小部位;第三阶段,用于飞机机翼、尾翼、机身等主盒段结构。

目前,国外热塑性复合材料应用已经到达第三阶段。欧盟已启动了“热塑性经济可承受性航空主结构”(TAPAS)第二阶段项目,目标是进一步提高主结构材料、制造工艺、设计概念和模具设备的技术成熟度。国内民机方面,尚无热塑性复合材料结构研制、装机应用,仅在军机方面有少量应用,还局限于少量非承力部件上,处于热塑性复合材料工程应用的第一阶段,因此差距比较大。

(1)结构设计与强度分析方面的差距

热塑性复合材料特有的材料特性和特有的工艺性也决定其结构设计方法及强度分析方法与热固性复合材料有很大的不同,因国内工程应用少,所以对其材料特性、结构形式、受载特点等未充分研究,没有形成相关的结构设计准则和强度分析方法。

(2)制造与工艺方面的差距

热塑性复合材料加工工艺可分为:热塑性基体浸渍工艺和制件成型工艺。由于热塑性树脂熔融温度高、化学性质稳定,预浸、成型等每一个阶段对设备和工艺都有特殊的要求,其复合材料预浸料制备和成型加工的难度均比热固性复合材料大。目前我国在热塑性复合材料工艺方面的研究较少,差距较大。

(3)原材料生产供应的差距

国家曾投资兴建5000t/年产能的生产线,并开发PPS树脂膜、PPS长丝等产品。北京航空材料研究院曾采用该树脂进行过复合材料成型工艺的初步研究。但是近年来该生产线的无法稳定提供树脂基体。吉林大学曾长期开展国产PEEK树脂的研制工作,并于“八五”、“九五”、“十五”期间与北京航空材料研究院合作开展过CF/PEEK复合材料的研究。但吉大曾将其PEEK树脂的生产技术转让,其生产状态及知识产权归属有待明确。

4 结束语

热固性复合材料在国内、外飞机上应用最为广泛,但断裂韧性及抗冲击能力差、难以回收利用、成型加工周期长等问题也长期存在,而热塑性复合材料的出现成为克服以上缺点的一种研究方向。而且热塑性复合材料可回收利用,减少对环境的污染。虽然近期热塑性复合材料不可能大量代替热固性复合材料,但其优异的性能已逐步引起重视,应用也日益广泛,应用范围也将从次承力构件转向主承力构件。

目前热塑性复合材料在国内飞机上的应用还十分有限,设计、工艺、原材料等技术储备严重不

足,因此国内热塑性复合材料的应用需要加强相关的技术研究: (1)PPS、PEEK等常用高性能热塑性树脂与纤维的匹配研究;(2)加强其成型工艺研究;(3)提出适合其特性的结构设计与强度分析方法;(4) 推广应用。

参考文献

[1] 张晓明等. 纤维增强热塑性复合材料及其应用. 北京:化学工业出版社. 2007.

[2] 尹翔宇,朱波,刘洪正,等碳纤维增强热塑性复合材料的研究现状. 高科技纤维与应用.2011,36(6):42~44.

[3] 肖德凯, 张晓云, 孙安垣.热塑性复合材料研究进展. 山东化工.2007,36(2):15~21.

[4] 于志成.热塑性复合材料力学性能特点评述.材料工程.1997.6.

[5] 杨福生, 赵延斌, 吴靖.国外热塑性复合材料现状及发展趋势. 吉林化工学院学报.2001,18(3):74~77.

[6] 娄葵阳,张凤翻 .航空工业用热塑性复合材料研究进展. 材料工程.1996,6:15~16.

[7] 张凤翻.热塑性树脂和其复合材料的应用.复材在线.2006.11.

[8] 炭纤维增强热塑性树脂复合材料.中国钢企网.2010.2.

[9] 李莲青.热塑性复合材料和热固性复合材料的比较以及在航空工业中的应用. 昌河科技.1992.3.

[10] Arnt Offringa.新型热塑性复合材料设计理念及其自动化制造.福克航空结构件公司.2011.1.

[11] 王兴刚,于洋,李树茂,等.先进热塑性复合材料在航天航空上的应用.纤维复合材料,2011,2:44~47.

[12] 陈亚莉.高性能热塑性复合材料在飞机上的应用.航空维修与工程.2003,3:28~30.

[13] 张婷.高性能热塑性复合材料在大型客机结构件上的应用. 航空制造技术.2013.9(15):32-35.

[14]Winand Kok, Raoul Starmans.Cetex Thermoplastic Composites. TenCate公司.2015.6:22-37.

[15]益小苏, 唐邦铭, 王美炫,等.热固/ 热塑复相增韧体系及其先进复合材料的研究. 高分子材料科学与工

程.2002.18(2):37~41.

[16]肖娟,彭兴国,高彬.低成本耐高温整体成形热塑性复合材料构件的应用研究. 2011中国无人机系统峰会论文集:772-778.

作者简介:

张磊(1979- )男,硕士,高级工程师。主要研究方向:飞机复合材料强度。

座机:;手机:

邮箱:

复合材料在飞机上的应用

新视点 NEW VIEWPOINT 64航空制造技术2006年第3期 目前,复合材料在飞机上的应用已非常广泛,但在20世纪90年代初复合材料市场曾一度陷入低靡,究其原因是由于复合材料设计制造的复杂性造成了成本壁垒,人们开始认识到只有重视性能和成本的平衡,才能使复合材料展现辉煌。随着复合材料先进技术的成熟,使其性能最优和低成本成为可能,大大推动了复合材料在飞机上的广泛应用。本文在介绍国外复合材料在飞机上广泛应用的基础 上,对作为技术保障的数字化设计技术和先进制造技术进行了分析研究。从国外情况看,各种先进的飞机都与复合材料的应用密不可分,复合材料在飞机上的用量和应用部位已成为衡量飞机结构先进性的重要指标之一。下面介绍复合材料在飞机上应用的发展趋势。 (1) 复合材料在飞机上的用量日益增多。 复合材料在飞机上 的应用评述 北京航空航天大学机械工程及自动化学院 张丽华 范玉青 复合材料用量通常用其所占飞机机体结构重量的百分比表示,纵观复合材料在民机上的发展情况发现,无论是波音公司还是空中客车公司,随着时间推移,复合材料的用量都呈增长趋势。最具代表意义的是空客公司的A380客机和波音公司最新推出的787客机。在A380上仅碳纤维复合材料的用量就达32t左右,占结构总重的15%,再加上其他种类的复合材料,估计其总用量可达25%左右。787 上初步估计复合材料用量可达50%,远远超过了A380。另外,复合材料 在军机和直升机上的用量也有同样的 增长趋势。(2) 应用部位由次承力结构向主承力结构过渡。 飞机上最初采用复合材料的部位有舱门、整流罩、安定面等次承力结 构,目前已广泛应用于机翼、机身等部位,向主承力结构过渡。从1982年开始用复合材料制造飞行操纵面(如A310-200飞机的升降舵和方向舵),空客公司在主承力结构上使用复合材 料已有20多年的经验。在A380上采用的碳纤维复合材料大型构件主要有中央翼盒、翼肋、机身上蒙皮壁板、机身后段、机身尾段、地板梁、后承压框、垂尾等,大量的主承力结构都采用了复合材料。787复合材料的应用则更让世人瞩目,其机身和机翼部位采用碳纤维增强层合板结构代替铝合金;发动机短舱、水平尾翼和垂直尾翼、舵面、翼尖等部位采用碳纤维增强夹芯板结构;机身与机翼衔接处的整流蒙皮采用玻璃纤维增强复合材料。与A380相比其用量更大,主承载部位的应用更加广泛,这将是世界上采用复合材料最多的大型商用喷气客机。 (3) 复合材料在复杂曲面构件上的应用越来越多。 飞机上复杂曲面零件很多,复合材料的应用也越来越多,比如A380机身19段、19.1段和球面后压力隔框等均为采用复合材料的具有复杂曲 复合材料在飞机上的用量和应用部位已成为衡量飞机结构先进性的重要指标之一;复合材料构件的整体成型、共固化技术不断进展,复杂曲面构件不断扩大应用;复合材料的数字化设计,设计、制造一体化,以及基于三维模型铺层展开的专用设计/制造软件等技术的开发是先进复合材料发展的基本技术保障 复合材料在飞机上的应用

大型飞机复合材料机身结构设计

大型飞机复合材料机身结构设计 李晓乐 (北京航空航天大学航空科学与工程学院,北京 100083) 摘要:本文研究了复合材料在大型飞机机身上的应用。利用相关机身结构数据,进行了结构形式的分析和选 择。参照有关规定,针对所设计的飞机机身在气密载荷作用下的情况进行了强度分析,并用这些分析结果来指 导复合材料的结构设计。复合材料选择为层合结构。并依据层合复合材料的特性,进行了层合板的铺层角度设 计和铺层顺序设计。对所设计的大型飞机复合材料机身结构进行了刚度分析,给出了主要构件的应力、应变结 果,证明了这种层合复合材料设计是合理可行的,为复合材料在我国大飞机项目上的应用提供了参考。 关键词:复合材料;大型飞机;机身结构;刚度 The Structural Design of Composites of Large Airplane Fuselage LI Xiaole (School of Aeronautical Science and Engineering, Beihang University, Beijing 100083, China) Abstract: This paper discusses the application of composite material in the large airplane fuselage. The concrete form of fuselage was analyzed and determined, which based on the data of some existing fuselage structure. Compared with some standard, the strength of the fuselage was analyzed under the pressure load. The result can conduct the structures design. The laminate of composites was chosen. The degree and the order of composite were also determined. The stiffness of the designed composite fuselage was computed, which also showed the result of strain and stress. Analysis manifested that the composites is designed appropriately, and the result can be consulted in the large-aircraft program. Keywords: Composites, Large Airplane, Fuselage Structure, Stiffness 机身是飞机的重要部件之一,它把机翼、尾翼、起落架等部件连接在一起,形成一架完整的飞机。对大型民用飞机来说,机身还能安置空勤组人员、旅客、装载燃油、设备和货物。现代飞机的机身是一种加强的壳体,这种壳体的设计通常称为“半硬壳式设计”。为了防止蒙皮在受压和受剪时失稳,就需要安装隔框、桁条等加强构件[1~2]。 随着时代的发展,复合材料在飞机设计中的用量越来越大,除了以前的非承力构件,现在主承力构件上也开始采用大量的复合材料设计。但到现在为止,虽然复合材料的用量有了相应的增加,可飞机机身仍然是有金属参加的[1]。 本文针对机身所承受的载荷,确定飞机机身的整体刚度、强度。然后以刚度、强度为基准,设计复合材料的结构形式,并对这种形式的机身进行初步的性能计算,旨在为复合材料在我国大飞机项目上的应用提供一些参考。 1 机身结构设计 作者介绍:李晓乐(1985-), 男, 硕士研究生. ft4331789@https://www.360docs.net/doc/5d5289381.html,

复合材料的发展和应用

复合材料的发展和应用 复合材料的发展和应用 具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候 论文格式论文范文毕业论文 全球复合发展概况复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电气、、健身器材等领域,在近几年更是得到了飞速发展。另外,纳米技术逐渐引起人们的关注,纳米复合材料的研究开发也成为新的热点。以纳米改性塑料,可使塑料的聚集态及结晶形态发生改变,从而使之具有新的性能,在克服传统材料刚性与韧性难以相容的矛盾的同时,大大提高了材料的综合性能。树脂基复合材料的增强材料树脂基复合材料采用的增强材料主要有玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等。 1、玻璃纤维目前用于高性能复合材料的玻璃纤维主要有高强度玻璃纤维、石英玻璃纤维和高硅氧玻璃纤维等。由于高强度玻璃纤维性价比较高,因此增长率也比较快,年增长率达到10%以上。高强度玻璃纤维复合材料不仅应用在军用方面,近年来民用产品也有广泛应用,如防弹头盔、防弹服、直升飞机机翼、预警机雷达罩、各种高压压力容器、民用飞机直板、体育用品、各类耐高温制品以及近期报道

的性能优异的轮胎帘子线等。石英玻璃纤维及高硅氧玻璃纤维属于耐高温的玻璃纤维,是比较理想的耐热防火材料,用其增强酚醛树脂可制成各种结构的耐高温、耐烧蚀的复合材料部件,大量应用于火箭、导弹的防热材料。迄今为止,我国已经实用化的高性能树脂基复合材料用的碳纤维、芳纶纤维、高强度玻璃纤维三大增强纤维中,只有高强度玻璃纤维已达到国际先进水平,且拥有自主知识产权,形成了小规模的产业,现阶段年产可达500吨。 2、碳纤维 3、芳纶纤维 20世纪80年代以来,荷兰、日本、前苏联也先后开展了芳纶纤维的研制开发工作。日本及俄罗斯的芳纶纤维已投入市场,年增长速度也达到20%左右。芳纶纤维比强度、比模量较高,因此被广泛应用于航空航天领域的高性能复合材料零部件(如火箭发动机壳体、飞机发动机舱、整流罩、方向舵等)、舰船(如航空母舰、核潜艇、游艇、救生艇等)、汽车(如轮胎帘子线、高压软管、摩擦材料、高压气瓶等)以及耐热运输带、体育运动器材等。 4、超高分子量聚乙烯纤维超高分子量聚乙烯纤维的比强度在各种纤维中位居第一,尤其是它的抗化学试剂侵蚀性能和抗老化性能优良。它还具有优良的高频声纳透过性和耐海水腐蚀性,许多国家已用它来制造舰艇的高频声纳导流罩,大大提高了舰艇的探雷、扫雷能力。除在军事领域,在汽车制造、船舶制造、医疗器械、体育运动器材等领域超高分子量聚乙烯纤维也有广阔的应用前景。该纤维一经问世就引起了世界发达国家的极大兴趣和重视。 5、热固性树脂基复合材料热塑性树脂基复合材料热塑性树脂基复合材料是20世纪80年代发展起来的,主要有长纤维增强粒料、连

飞机复合材料损伤检测与维修【毕业作品】

BI YE SHE JI (20 届) 飞机复合材料损伤检测与维修 所在学院 专业班级飞机结构修理 学生姓名学号 指导教师职称 完成日期年月

摘要 复合材料是由两种或两种以上的原材料,通过各种工艺方法组合成的新材料。其应用在航空领域越来越广泛。对于现代飞机来说复合材料的应用对减重、耐腐蚀和降低成本有着重要的作用。对飞机结构轻质化、小型化和高性能化起着至关重要的作用。复合材料在飞机上的应用日趋广泛,其应用和修理水平亟待提高。论文介绍了飞机复合材料的损伤特征和可用于飞机复合材料损伤无损检测的目视、敲击、阻抗、谐振、超声、射线照像、红外热图和声发射等检测法,并结合实际介绍了不同类型复合材料结构和缺陷检测方法的选择。 关键词:复合材料;损伤检测;维修

ABSTRACT Composite materials are composed of two or more than two kinds of raw materials. Its application in aviation field is more and more extensive. For modern aircraft, the application of composite materials has an important role in weight loss, corrosion resistance and cost reduction. It plays an important role in the light weight, small size and high performance of the aircraft structure. The application of composite materials in aircraft is becoming more and more extensive, and its application and repair level need to be improved. This paper introduces the damage characteristics of aircraft composite material and can be used for nondestructive detection of visual, percussion, impedance, resonance, ultrasound, X-ray, infrared thermography and acoustic emission detection method of damaged aircraft composite materials, and introduces different types of composite structure and defect detection method combined with the actual choice. Key words:composite material; damage detection; maintenance

复合材料在飞机上的应用

复合材料在飞机航空中的应用与发展 学校:西安航空职业技术学院 专业:金属材料与热处理技术 姓名:郭远 摘要 复合材料在飞机上的用量和应用部位已成为衡量飞机结构先进性的重要指标之一;复合材料构件的整体成型、共固化技术不断进展,复杂曲面构件不断扩大应用;复合材料的数字化设计,设计、制造一体化,以及基于三维模型铺层展开的专用设计/制造软件等技术的开发是先进复合材料发展的基本技术保障. 复合材料在飞机航空中的应用与发展 复合材料大量用于航空航天工业和汽车工业,特别是先进碳纤维复合材料用于飞机尤为值得注意。不久前,碳纤维复合材料只能在军用飞机用作主结构,但是,由于技术发展的进步,先进复合材料已开始在民航客机止也应用作主结构,如机身、机翼等。 一.飞机结构用复合材料的优势 现今新一代飞机的发展目标是“轻质化、长寿命、高可靠、高效能、高隐身、低成本”。而复合材料正具备了上面的几个条件,成为实现新一代飞机发展目标的重要途径。

复合材料具有质轻、高强、可设计、抗疲劳、易于实现结构/功能一体化等优点,因此,继铝、钛、钢之后迅速发展成为四大飞机结构材料之一。 复合材料在飞机结构上的应用首先带来的是显着的减重效益,复合材料尤其是碳纤维复合材料其密度仅为cm3左右,如等量代替铝合金,理论上可有42%的减重效果。 近年来随着复合材料技术的深入研究和应用实践的积累,人们清楚地认识到:复合材料在飞机结构上应用效益绝不仅仅是减重,而且给设计带来创新舞台,通过合理设计,还可提供诸如抗疲劳、抗振、耐腐蚀、耐久性和吸透波等其它传统材料无法实现的优异功能特性,可极大地提高其使用效能,降低维护成本,增加未来发展的潜力和空间。尤其与铝合金等传统材料相比,可明显减少使用维护要求,降低寿命周期成本,特别是当飞机进入老龄化阶段后效果更明显,据说B787较之B767机体维修成本会降低30%,这在很大程度上应归功于复合材料的大量应用。同时,大部分复合材料飞机构件可以整体成型,大幅度减少零件数目,减少紧固件数目,减轻结构质量,降低连接和装配成本,从而有效地降低了总成本,如F/A-18E/F零件数减少42%,减重158kg。复合材料整体成型技术还可消除缝隙、台阶和紧固件,无疑对提高军机的隐身性能也具有非常重要的贡献。 二.飞机结构用复合材料的发展过程 先进复合材料于上世纪60年代中期一问世,即首先用于飞行器结构上。30多年来先进复合材料在飞机结构上应用走过了一条由小到大、由次到主、由局部到整体、由结构到功能、由军机应用扩展到民机应用的发展道路。 1.复合材料在军用飞机上的发展过程

飞 机 复 合 材 料 及 应 用

飞机复合材料及应用 【摘要】 本文重点讲述了复合材料的构成、种类、性能以及在飞机上的应用。复合材料是由两种或两种以上的原材料,通过各种工艺方法组合成的新材料。对于一个现代飞机来说复合材料的应用对减重﹑耐腐蚀和降低成本有着重要的作用。对飞机结构轻质化、小型化和高性能化起着至关重要的作用。复合材料结构特点和应用效果,在高性能战斗机实现隐身、超声速巡航、过失速飞行控制,前翼飞机先进气动布局的实际应用。 关键词:复合材料层合板 1概述 复合材料是由两种或两种以上的原材料,通过各种工艺方法组合成的新材料。它既可以保持原材料的某些特点,又具有原材料所不具备的新特征,并可根据需要进行设计,与单一均质材料相比它具有较多的优越性。复合材料飞机结构技术是以实现高结构效率和改善飞机气动弹性与隐身等综合性能为目标的高新技术,对飞机结构轻质化、小型化和高性能化起着至关重要的作用。复合材料结构特点和应用效果,在高性能战斗机实现隐身、超声速巡航、过失速飞行控制,前翼飞机先进气动布局的实际应用,以“飞翼”著称的B-2巨型轰炸机的隐身飞行,舰载攻击∕战斗机耐腐蚀性改善和轻质化,对于客机来说复合材料的应用对减重﹑耐腐蚀和降低成本有着重要作用,如波音777和空中客车A330∕A340上的应用,标志着飞机复合材料结构设计发展已经成熟。 我国从20世纪80年代开始,将复合材料应用技术研究列入重点发展领域。复合材料应用基本实现了从次承力构件到主承力构件的转变。复合材料的垂直安定面﹑水平尾翼、方向舵、前机身等构件已在多种型号飞机上使用,可以小批量生产。带整体油箱复合材料机翼等主承力结构已装机试飞成功。航空先进复合材料已进入实际应用阶段。 2 复合材料的探究 2.1 复合材料的构成 复合材料是由两种或两种以上材料独立物理相,通过复合工艺组合构成的新型材料。其中,连续相称为基体、分散相称为增强体,两相彼此之间有明显的界面。它既保留原组分材料的主要特点,并通过复合效应获得原组分材料所不具备

复合材料在飞机上的应用

复合材料在飞机上的应 用 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

复合材料在飞机航空中的应用与发展 学校:西安航空职业技术学院 专业:金属材料与热处理技术 姓名:郭远 摘要 复合材料在飞机上的用量和应用部位已成为衡量飞机结构先进性的重要指标之一;复合材料构件的整体成型、共固化技术不断进展,复杂曲面构件不断扩大应用;复合材料的数字化设计,设计、制造一体化,以及基于三维模型铺层展开的专用设计/制造软件等技术的开发是先进复合材料发展的基本技术保障. 复合材料在飞机航空中的应用与发展 复合材料大量用于航空航天工业和汽车工业,特别是先进碳纤维复合材料用于飞机尤为值得注意。不久前,碳纤维复合材料只能在军用飞机用作主结构,但是,由于技术发展的进步,先进复合材料已开始在民航客机止也应用作主结构,如机身、机翼等。 一.飞机结构用复合材料的优势 现今新一代飞机的发展目标是“轻质化、长寿命、高可靠、高效能、高隐身、低成本”。而复合材料正具备了上面的几个条件,成为实现新一代飞机发展目标的重要途径。 复合材料具有质轻、高强、可设计、抗疲劳、易于实现结构/功能一体化等优点,因此,继铝、钛、钢之后迅速发展成为四大飞机结构材料之一。 复合材料在飞机结构上的应用首先带来的是显着的减重效益,复合材料尤其是碳纤维复合材料其密度仅为cm3左右,如等量代替铝合金,理论上可有42%的减重效果。

近年来随着复合材料技术的深入研究和应用实践的积累,人们清楚地认识到:复合材料在飞机结构上应用效益绝不仅仅是减重,而且给设计带来创新舞台,通过合理设计,还可提供诸如抗疲劳、抗振、耐腐蚀、耐久性和吸透波等其它传统材料无法实现的优异功能特性,可极大地提高其使用效能,降低维护成本,增加未来发展的潜力和空间。尤其与铝合金等传统材料相比,可明显减少使用维护要求,降低寿命周期成本,特别是当飞机进入老龄化阶段后效果更明显,据说B787较之B767机体维修成本会降低30%,这在很大程度上应归功于复合材料的大量应用。同时,大部分复合材料飞机构件可以整体成型,大幅度减少零件数目,减少紧固件数目,减轻结构质量,降低连接和装配成本,从而有效地降低了总成本,如F/A-18E/F零件数减少42%,减重158kg。复合材料整体成型技术还可消除缝隙、台阶和紧固件,无疑对提高军机的隐身性能也具有非常重要的贡献。 二.飞机结构用复合材料的发展过程 先进复合材料于上世纪60年代中期一问世,即首先用于飞行器结构上。30多年来先进复合材料在飞机结构上应用走过了一条由小到大、由次到主、由局部到整体、由结构到功能、由军机应用扩展到民机应用的发展道路。 1.复合材料在军用飞机上的发展过程 纵观国外军机结构用复合材料所走过的道路,大致可分为三个阶段: 第一阶段复合材料主要用于受力较小或非承力件,如舱门、口盖、整流罩以及襟副翼、方向舵等,大约于上世纪70年代初完成。 第二阶段复合材料主要用于垂尾、平尾等尾翼一级的次承力部件,以F-14硼/环氧复合材料平尾于1971年研制成功作为标志,基本于上世纪80年代初完成。此后F-15、F-16、F-18、幻影2000和幻影4000等均采用了复合材料尾翼,此时复合材料用量大约只占全机结构重量的5%。 第三阶段复合材料开始应用于机翼、机身等主要的承力结构,受力很大,规模也很大。主要以1976年美国原麦道公司研制成功FA-18复合材料机翼作为里程碑,此时复合材料用量已提高到了13%,军机结构的复合材料化进程进一步得到推进。此后世界各国所研制的军机机翼一级的部件几乎无一例外地都采用了复合材料,其复合材料用量不断增加,如美国的AV-8B、B-2、F/A-22、F/A-18E/F、F-35、法国的“阵风”(Rafale)、瑞典的JAS-39、欧洲英、德、意、西四国联合研制的“台风” (EF2000)、俄罗斯的C-37等,具体如表1所示。 应该指出继机翼、机身采用复合材料之后,飞机的最后一个重要部件——起落架也开始了应用复合材料,向着全机结构的复合材料化又迈进了一步。复合材料用在起落架上是代钢而不是代铝,可有更大的减重空间,一般可达40%左右。 2.复合材料在民用航空上的发展 继军机之后,国外大型民机也大量采用复合材料,以波音飞机为例,其进程大致走过了四个阶段:第一阶段:采用复合材料制造受力很小的前缘、口盖、整流罩、扰流板等构件,该阶段于上世纪70年代中期实现。第二阶段:制造升降舵、方向舵、

碳纤维及其复合材料的发展及应用_上官倩芡

第37卷第3期上海师范大学学报(自然科学版)Vol.37,N o.3 2008年6月J ou rnal of ShanghaiNor m alUn i versity(Natural S ci en ces)2008,J un 碳纤维及其复合材料的发展及应用 上官倩芡,蔡泖华 (上海师范大学机械与电子工程学院,上海201418) 摘要:叙述了碳纤维的结构形态、分类以及在力学、物理、化学方面的性能,介绍了碳纤维增强复合材料的特性,着重阐述了碳纤维增强树脂基复合材料中基体的分类、选择和应用,指出了碳纤维及其复合材料进一步发展的趋势. 关键词:碳纤维;复合材料 中图分类号:O636文献标识码:A文章编号:1000-5137(2008)03-0275-05 碳纤维作为一种高性能纤维,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能.此外,还具有纤维的柔曲性和可编性[1~3].碳纤维既可用作结构材料承载负荷,又可作为功能材料发挥作用.因此碳纤维及其复合材料近几年发展十分迅速.本文作者就碳纤维的特性、分类及其在复合材料领域的应用等内容进行介绍. 1碳纤维特性、结构及分类 碳纤维是纤维状的碳材料,由有机纤维原丝在1000e以上的高温下碳化形成,且含碳量在90%以上的高性能纤维材料.碳纤维主要具备以下特性:1密度小、质量轻,碳纤维的密度为1.5~2g/c m3,相当于钢密度的1/4、铝合金密度的1/2;o强度、弹性模量高,其强度比钢大4~5倍,弹性回复为100%;?热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千摄氏度的高温突然降到常温也不会炸裂;?摩擦系数小,并具有润滑性;?导电性好,25e时高模量碳纤维的比电阻为775L8/c m,高强度碳纤维则为1500L8/c m;?耐高温和低温性好,在3000e非氧化气氛下不熔化、不软化,在液氮温度下依旧很柔软,也不脆化;?耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀[4~7].除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性. 碳纤维的结构取决于原丝结构和碳化工艺,但无论用哪种材料,碳纤维中碳原子平面总是沿纤维轴平行取向.用X-射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构[8],如图1所示.构成此结构的基元是六角形碳原子的层晶格,由层晶格组成层平面.在层平面内的碳原子以强的共价键相连,其键长为0.1421n m;在层平面之间则由弱的范德华力相连,层间距在0.3360~0.3440n m之间;层与层之间碳原子没有规则的固定位置,因而层片边缘参差不齐.处于石墨层片边缘的碳原子和层面内部结构完整的基础碳原子不同.层面内部的基础碳原子所受的引力是对称的,键能高,反应活性低;处于表面边缘处的碳原子受力不对称,具有不成对电子,活性 收稿日期:2008-01-04 基金项目:上海市教委科研基金项目(06D Z034). 作者简介:上官倩芡(1974-),女,上海师范大学机械与电子工程学院副教授.

新一代大型客机复合材料结构一体化设计的若干特点

2017年2月第20卷第4期 中国管理信息化 China Management Informationization Feb.,2017 Vol.20,No.4 新一代大型客机主要指使用效率(Efficiency)、经济(Economics)、超凡的乘坐舒适和便利(Extraordinary comfort and convenience)以及环保(Environmental)等综合性能比当前航线使用的客机有很大提高的大型商用运输机。 新一代大型客机的概念指导了波音787飞机和空客A350飞机的研发。新一代大型客机机体结构的突出特点是广泛采用复合材料,复合材料不仅减轻了飞机结构的质量、提高了飞机结构的使用寿命、降低了飞机的维护费用,还可以增加舱内压力和空气湿度,提高民用飞机的经济性、舒适性、环保性。先进复合材料在飞机结构上的应用走过了一条由小到大、由次到主、由局部到整体、由结构到功能和由军机应用扩展到民机的发展道路。 基于近20多年经验的积累和认知的共识,按照适航规章要求,结合民机工程实际,聚合物基纤维增强复合材料在飞机结构中实现了规模化的应用。要实现复合材料结构规模化的应用,结构设计必须要着重考虑复合材料结构在使用寿命期内、安全使用前提下,同时取得较好的经济效益。结构设计在满足型号设计要求的同时,必须要考虑结构规模化应用对制造、使用、维修提出的新需求,在设计主导下,形成“设计—制造—使用—维修”一体化的结构设计,实现飞机复合材料结构的安全性与经济性。 1 新一代大型客机复合材料结构规模化应用的决策 新一代大型客机机体结构需用新材料的决策是依据未来20~30年内大型客机在总体布局上与目前航线飞机不会有很大差别,但在综合性能、安全性、经济性和环保要求等方面,将有很大的提高发展趋势和航线宽体客机的需求增长制定。 新一代大型客机复合材料结构规模化应用的决策主要考虑: ①实现飞机结构明显减重,机翼、机身主结构均采用复合材料制造;②中模量高强碳纤维/增韧环氧(180℃固化)复合材料已经过工程应用的验证,可满足大型客机主结构对材料的要求;③复合材料制造工艺技术革新和新工艺技术发展,可使复合材料大型结构件制造成本明显下降;④先进设计技术和设计—制造一体化、并行工程技术的应用,使结构设计结果更科学合理,可实现异地设计和制造,为复合材料结构制造国际化创造了条件;⑤半个世纪复合材料应用经验的积累和复合材料结构设计理念与验证技术的更新,使新一代飞机研制周期大大缩短、研发费用减少。 因此,波音公司率先将21世纪初开始研制的现代宽体客机波音787复合材料的用量占到机体结构重量的50%,大大提高了结构效率,与同级别客机相比可节省燃油20%。 空中客车公司于2005年5月宣布空客A350项目启动(A350后称A350XWB,extra Wide-Body,型号系列为A350-900)。空中客车公司面对竞争对手的压力和用户的要求,在A350项目推出的三年间,曾对A350的设计方案进行多次重要修改,选材方案的修改多达6次,包括机身由计划初期采用铝和铝锂合金,改为机体由复合材料制造。 2 复合材料关键结构设计的新问题 飞机机体复合材料结构规模化应用的核心问题是突破飞机机体关键结构复合材料的应用技术。 飞机机体关键结构是指其完整性对保持飞机总体安全是至关重要的承受飞行、地面和增压载荷的结构或元件(其破坏会降低飞机结构完整性)。如:机翼、中央翼盒、机身等主结构,对运输类飞机还包括主要结构元件。 复合材料在飞机机体关键结构的应用,首先要考虑飞机总体安全对结构完整性的要求。同时,还应考虑复合材料用量大幅增加带来的固有特性潜在的危害威胁,如对结构制造缺陷、闪电防护及使用、维修提出的一系列要求。复合材料关键结构设计的新问题、新考虑,大致可归纳为以下几方面。 (1)基于对飞行安全性的认知,机体结构疲劳和损伤容限设计是重点,按《运输类飞机适航标准》对复合材料飞机结构的要求,飞机在整个使用寿命期内将避免由于疲劳、环境影响、制造缺陷或意外损伤引起的灾难性破坏。特别关注考虑的是外来物冲击、目视可见损伤及其扩展特性,两垮元件损伤、结构胶结以及“地—空—地”或“飞—续—飞”重复加载引起的材料性能退化和“高—低—高”温度交变引起的附加应力。 (2)质量、产量、成本综合平衡的大型整体结构制造技术。主结构零构件大型化、整体化设计,如翼面加筋壁板、翼梁、机身筒壳壁板、地板梁、中央翼盒壁板等,对制造技术提出了应通过充分的试制和试验,并进行合格鉴定,以保证其可重复生产性和设计的可靠性,结构制造生产能力应满足飞机按期交付的需求。采用成熟的制造技术,如数字化、自动化(包括检测自动化)、减少或消除人为因素影响的制造方法,可实现降低结构的制造成本,设计、制造一体化是必由的技术途径。 (3)复合材料结构闪电防护设计的地位很重要。复合材料(以碳/环氧复合材料为代表)导电性比标准铝合金大约低1 000倍的固有特性,决定了如果不提供恰当的导电闪电防护,闪电雷击可能造成结构破坏或大面积损伤,并可能在金属液压管路、燃油系统管路和电缆诱导上产生高闪电电流和电压。闪电防护可细分为结构完整性、燃油系统、电气和电子系统三个方面进行考虑,复合材料结构闪电防护给飞机带来了重量和成本的增加。 (4)结构耐撞损性的设计要求。飞机的耐撞损性由机身的冲击响应特性控制。对耐撞损性,规章一直随着实际飞机运行使用得到的经验而改变。机群经验还没有证实需要整机级耐撞损性的标 新一代大型客机复合材料结构一体化设计的若干特点 何长川,梁 伟,杨乃宾 (北京航空航天大学 航空科学与工程学院,北京 100083) [摘 要]大量采用复合材料结构是新一代大型客机机体结构设计的突出特点。飞机机体复合材料结构规模化应用的核心问题是突破飞机机体关键结构复合材料应用技术。复合材料结构一体化综合设计是在确保使用寿命期内、飞机安全飞行使用的前提下,实现复合材料结构规模化应用并取得良好经济的、多设计要素变量的综合设计。本文对波音787和空客A350复合材料机身的设计与制造进行了对比,分析了各自的优缺点。 [关键词]大型客机;复合材料结构;机体结构;规模化应用;一体化设计 doi:10.3969/j.issn.1673 - 0194.2017.04.091 [中图分类号]V25 [文献标识码]A [文章编号]1673-0194(2017)04-0139-03 [收稿日期]2017-01-02 / 139 CHINA MANAGEMENT INFORMATIONIZATION

复合材料的发展前景,发展与应用

复合材料的发展及应用 随着科学技术迅速发展,特别是尖端科学技术的突飞猛进,对材料性能提出越来越高,越来越严和越来越多的要求。在许多方面,传统的单一材料已不能满足实际需要。这时候复合材料就出现在了这百家争鸣的舞台上。 基本概论 复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。此定义来自ISO。在复合材料中,通常有一相为连续相,称为基体;另一相为分散相,称为增强材料。从上述定义中可以看出,复合材料是两个或多个连续相与一个或多个分散相在连续相中的复合,复合后的产物为固体时才称为复合材料。所以我们可根据增强材料与基体材料的名称来给复合材料命名,增强基体复合材料。如:玻璃钎维环氧树脂复合材料,可写作玻璃/环氧复合材 料。 分类与性能 按增强材料形态分类可分为(1)连续纤维复合材料;(2)短纤维复合材料;(3)粒状填料复合材料;(4)编织复合材料。按增强纤维种类分类可分为(1)玻璃纤维复合材料;(2)碳纤维复合材料;(3)有机,金属,陶瓷纤维复合材料。在此篇文章中主要讨论以基体材料分类的几种复合材料。1.聚合物基复合材料——比强度,比模量大;耐疲劳性好;减震性好;过载时安全性好;具有多种功能性;

有很好的加工工艺性。2金属基复合材料——高比强度,高比模量;导热,导电性能;热膨胀系数小,尺寸稳定性好;良好的高温性能;耐磨性好;良好的疲劳性能和断裂韧性;不吸潮,不老化,气密性好。此外还有陶瓷,水泥基复合材料,都有与上类似的特点。 基体材料 一:金属材料 选择基体的原则:使用要求,组成特点,基体金属与增强物的相 容性。 结构复合材料的基体:450℃以下的轻金属基体(“铝基和镁基”用于航天飞机,人造卫星,空间站,汽车发动机零件,刹车盘等);450-700℃的复合材料的金属基体(“钛合金”用于航天发动机);1000℃以上的高温复合材料的金属基体(“镍基,铁基耐热合金和金属间化合物”用于燃气轮机)。 二:陶瓷材料 陶瓷是金属和非金属元素的固体化合物,其键合为共价键或离子键,与金属不同,它们不含有大量的电子。一般而言,陶瓷具有比金属更高的熔点和硬度,化学性质非常稳定,耐热性,抗老化性皆佳。常用的陶瓷基体主要包括玻璃(无机材料高温烧结),玻璃陶瓷,氧化物陶瓷(MgO,Al2O3,SiO2,莫来石等),非氧化物陶瓷(氮化物,碳化物,硼化物和硅化物等)。 三:聚合物材料

民用飞机复合材料结构孔隙率的影响及检测

民用飞机复合材料结构孔隙率的影响及检测 廉 伟 中国商用飞机有限责任公司上海飞机设计研究院上海201210 摘要:本文从工程实践出发,总结了民用飞机复合材料结构中孔隙率产生的原因及相关工艺控制措施与孔隙率之间的内在关系,对比分析了目前航空工业界和主制造商可接受的孔隙率标准,探讨了孔隙率对复合材料理化特性及力学特性影响机理,对比了不同孔隙率的检测方法和孔隙率的控制方法,并给出了考虑结构安全和成本,在工程设计、制造和验证中统筹考虑可接受孔隙率的建议。 关键词:民用飞机复合材料结构孔隙率无损检测 1 引言 机体结构主要采用高性能复合材料的新型民机B787引领了复合材料在民机结构中应用的飞跃式发展和航空结构材料的应用变革,其复材用量重量占比接近50%;其竞争机型A350复材用量更高,达到52%;波音最近声明B777的改进型B777X的机身结构和此前宣布的机翼结构同样将采用复合材料;中俄即将联合研制的宽体客机中结构材料用量也将达同等水平。由此可见,航空界已对复合材料在降低结构重量、油耗与排放、全寿命周期成本上达成共识。航空复材结构的飞跃式发展是以材料进步、工艺发展、评价体系逐步成熟和大尺寸产品制造问题解决等为基础的,即便如此,复合材料领域还有诸多问题有待继续研究和解决,孔隙率便是其中之一。 对于孔隙,不同的手册、标准和规范给出了不同的定义,但其本质含义基本统一,即复合材料内部的、几何尺寸很小的、多点分布的孔洞(可能是空气、挥发物或空穴)。孔隙是复合材料结构中常见缺陷的一种,通常用其体积占材料总体积的百分比来表征,也即孔隙率。孔隙的尺寸跨度很大,线性尺寸可能从几个微米到几百个微米不等,在波音公司的规范中,甚至认为一簇密集孔穴缺陷中只要最大的直径小于6.35mm,该簇孔穴即被视为孔隙。 2 孔隙产生的原因及其影响 目前航空工业领域,复合材料结构主要采用预浸料-热压罐固化工艺或液体成型工艺,虽然工艺形式和参数各不相同,但本质过程都是树脂基体与纤维增强材料之间的复合及树脂固化的过程,因此孔隙总存在于基体、树脂纤维界面或层间,典型的孔隙形貌如图1、2所示。 图1 典型复合材料层压板内部孔隙 图2 R区典型内部孔隙 孔隙的产生有多种诱因,且可能源于原材料、铺贴或固化过程中的各个环节。预浸料制备过程中树脂与纤维的浸润可能是不完全的,特别是固定单向纤维的纬线或织物中经纬纤维搭接位置难以

复合材料的发展和应用的论文

复合材料的发展和应用的论文 全球复合材料发展概况 复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。 随着科技的发展,树脂与玻璃纤维在技术上不断进步,生产厂家的制造能力普遍提高,使得玻纤增强复合材料的价格成本已被许多行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。因此,碳纤维、硼纤维等增强复合材料相继问世,使高分子复合材料家族更加完备,已经成为众多产业的必备材料。目前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高价值产品计入,其产值将更为惊人。从全球范围看,世界复合材料的生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景气,发展较为缓慢,但中国尤其是中国内地的市场发展迅速。据世界主要复合材料生产商ppg公司统计,2000年欧洲的复合材料全球占有率约为32%,年产量约200万吨。与此同时,美国复合材料在20世纪90年代年均增长率约为美国gdp增长率的2倍,达到4%~6%。2000年,美国复合材料的年产量达170万吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在全球市场上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化密切相关,各国的占有率变化很大。总体而言,亚洲的复合材料仍将继续增长,2000年的总产量约为145万吨,预计2005年总产量将达180万吨。 从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达万吨,欧洲汽车复合材料用量到2003年估计可达万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在2000年的用量达万吨,汽车等领域的用量仅为万吨。不过从全球范围看,汽车工业是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车制造业中。与此同时,随着近年来人们对环保问题的日益重视,高分子复合材料取代木材方面的应用也得到了进一步推广。例如,用植物纤维与废塑料加工而成的复合材料,在北美已被大量用作托盘和包装箱,用以替代木制产品;而可降解复合材料也成为国内外开发研究的重点。 另外,纳米技术逐渐引起人们的关注,纳米复合材料的研究开发也成为新的热点。以纳米改性塑料,可使塑料的聚集态及结晶形态发生改变,从而使之具有新的性能,在克服传统材料刚性与韧性难以相容的矛盾的同时,大大提高了材料的综合性能。 树脂基复合材料的增强材料 树脂基复合材料采用的增强材料主要有玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等。 1、玻璃纤维 目前用于高性能复合材料的玻璃纤维主要有高强度玻璃纤维、石英玻璃纤维和高硅氧玻璃纤维等。由于高强度玻璃纤维性价比较高,因此增长率也比较快,年增长率达到10%以上。高强度玻璃纤维复合材料不仅应用在军用方面,近年来民用产品也有广泛应用,如防弹头盔、防弹服、直升飞机机翼、预警机雷达罩、各种高压压力容器、民用飞机直板、体育用品、各类耐高温制品以及近期报道的性能优异的轮胎帘子线等。石英玻璃纤维及高硅氧玻璃

飞机复合材料设计

目录 复合材料 (2) 1. 复合材料特点 (2) 1.1 复合材料的应用 (2) 1.2 设计规范的演变 (2) 1.3 复合材料适航验证试验程序 (3) 1.4 碳纤维树脂基复合材料优点 (3) 1.5 碳纤维树脂基复合材料缺点: (4) 2. 材料种类 (4) 2.1 树脂基体 (4) 2.1.1 热塑性复合材料 (4) 2.1.2 热固性复合材料 (5) 2.1.3 树脂材料性能对比 (5) 2.2 增强纤维 (6) 2.2.1 碳纤维 (6) 2.2.2 玻璃纤维 (7) 2.2.3 芳纶纤维 (7) 2.2.4 材料性能对比 (7) 2.3 预浸料 (7) 2.4 芯材 (8) 2.4.1 蜂窝芯 (8) 2.4.2 泡沫芯 (8) 2.5 胶粘剂 (9) 3. 复合材料试验验证步骤 (9) 4. 复合材料结构设计 (9) 4.1 复合材料设计基本要求 (9) 4.2 设计选材 (9) 4.2.1 设计选材需求 (9) 4.2.2 夹层结构的选材 (10) 4.3 层压板设计 (10) 4.3.1 铺层方向和比例 (10) 4.3.2 铺层设计 (10) 4.3.3 丢层要求 (10) 4.3.4 拼接 (11) 4.3.5 开口设计要求 (11) 4.4 夹层结构设计 (11) 4.4.1 制造方法 (11) 4.4.2 面板设计准则 (11) 4.4.3 芯材 (12) 4.5 细节设计 (12) 4.6 复合材料设计优化 (12) 4.7 复合材料连接 (13) 4.7.1 胶接结构 (13) 4.8 垂尾复合材料结构设计 (14)

4.9 复合材料检测 (14) 5. 复合材料制造 (14) 5.1 复合材料的成型方法和特点 (14) 5.2 成型工艺过程 (15) 5.2.1 热压罐工艺 (16) 5.2.2 RTM工艺 (16) 5.2.3 机加工艺 (16) 5.3 制造缺陷 (16) 复合材料 1.复合材料特点 复合材料主要由基体和增强材料组成。非金属基体包括树脂、陶瓷等,增强材料包括碳纤维、芳纶、玻璃纤维等。应用最多的是树脂基碳纤维复合材料,其次是芳纶纤维。玻璃纤维因其强度、刚度较差,难以用在受力结构上,但因为价格便宜,民机上有较多应用。 复合材料的韧性和对环境的耐受能力主要取决于树脂。 韧性:表示材料在塑性变形和破裂过程中吸收能量的能力,韧性越好,则发生脆性断裂的可能性越小。 1.1复合材料的应用 复合材料首次应用于空客A310-300(1985年)的垂尾上,后来应用到了扰流板、方向舵、起落架舱门、整流罩等部位。A340(2001年)首次将复合材料用在机身上,后气密压力框;A380(2005年)将中央翼盒用复合材料,将后压力框后部机身用复合材料,上层客舱底板、龙骨梁。A400M(2009年)第一架使用全碳纤维增强树脂基复合材料的机翼飞机。波音787(2009年)第一家引入全复材机体结构,整个机身结构用了碳纤维增强树脂复合材料。空客后来的A350XWB也是全复材机身。 1.2设计规范的演变 FAA针对复合材料结构合格审定中的新问题,于1978年颁布咨询通告AC-20-107A“复合材料飞机结构”,制定了一个可接受但不是唯一的验证方法,适用于FAR23、25、27和29涉及的所有航空器的复合材料结构,成为制定满足

相关文档
最新文档