质粒的分子生物学与质粒载体

质粒的分子生物学与质粒载体
质粒的分子生物学与质粒载体

第三章质粒的分子生物学与质粒载体

一、填空题

1.基因工程中有3种主要类型的载体:——-------、------------一、-----------.

2.由于不同构型的DNA插入EB的量不同,它们在琼脂糖凝胶电泳中的迁移率也不同,SC DNA的泳动速度—----------—,OC DNA泳动速度—---------—,L DNA居中,通过凝胶电泳和EB染色的方法可将不同构型的DNA分别开来。

3.质粒的复制像染色体的复制一样,是从特定的起始点区开始的。然而,质粒的复制可以是—---—向的、或是—----—向的。在杂种质粒中,每个复制子的起点都可以有效地加以使用。但是在正常条件下只有一个起点可能居支配地位。并认为:当某些具有低拷贝数的严紧型质粒与松弛性质粒融合后,在正常情况下—------—的复制起点可能被苯闭。

4.就克隆一个基因(DNA片段)来说,最简单的质粒载体也必需包括三个部分:—-----—、—---------—、—----------------—。另外,一个理想的质粒载体必须具有低分子量。

5.如果两个质粒不能稳定地共存于同一个寄主细胞中,则属于—---------—群,这是因为它们的——————————所致。

6.质粒拷贝数是指细胞中—------------------------—。

7.复制子由三部分组成:(1)—-----------------—---(2)——-----------————(3)—--------------—。

8.酵母的2μm质粒有------------,可以配对形成哑铃结构。

9.一个带有质粒的细菌在有EB的培养液中培养一段时间后,一部分细胞中已测不出质粒,这种现象叫----------------。

10.pBR322是一种改造型的质粒,它的复制子来源于----——,它的四环素抗性基因来自于—-----------—,它的氨苄青霉素抗性基因来自于—---------—。

11.质粒的消失同染色体基因的突变是不同的,前者不能恢复,后者可以通过—------—恢复该基因的性状。

12.ColEl质粒复制的起始需要三种酶,即—-----------—、一------------和一------。

13.YAC的最大容载能力是—-----------—,BAC载体的最大容载能力是—---------—。

14.pSCl01是一种---------——复制的质粒。

15.把那些没有可检测表型的质粒称为—--------------—。

16.转座子主要由下列部分组成:(1)—-----————————(2)---------------——

(3)—----------------—。

17.pUCl8质粒是目前使用较为广泛的载体。pUC系列的载体是通过——---------和——两种质粒改造而来。它的复制子来自—----------—,Amp抗性基因则是来自—--------—。

18.在基因型的表示中,符号Ω表示—-----------—;符号△表示—--------------—。

二、判断题

1.迄今发现的质粒DNA都是环状的。

2.线性质粒同环状质粒一样都不带有宿主必需的基因。

3.有a、b、c三个质粒,因为a和b能够共存于一个细胞,a和c也可共存于同一个细胞,所以b和c一定能够共存于同一个细胞。

4.插入元件(1S)也是一种转座元件,它除了有转座酶基因外,还有附加基因。

5.如果两个不同的质粒可以稳定地共存于同一个细胞中,这两种质粒则属于同一个不亲和群。

6.一个带有反向重复序列的双链DNA经变性后,复性时其单链可形成发夹环。

7.能够在不同的宿主细胞中复制的质粒叫穿梭质粒。

8.任何一种质粒都可以用氯霉素扩增的方法,增加它的拷贝数。

9.只有完整的复制子才能进行独立复制,一个失去了复制起点的复制子不能进行独立复制。

10.CsCl-EB密度梯度离心法纯化SC DNA原理是根据EB可以较多地插入到SC DNA中,因而沉降速度较快。

11.质粒ColEl同pSCl01共整合后,得到重组质粒pSCl34,具有两个复制起点,这两个起点在任何细胞中都是可以使用的。

12.pBR322可以用于黏性末端连接、平末端连接和同聚物接尾法连接,无论用哪种方法连接,都可以用同一种酶回收外源片段。

13.所谓穿梭质粒载体是能够在两种以上的不同宿主细胞中复制的质粒,所用的复制起点不同。

14.一般情况下,质粒既可以整合到染色体上,也可以独立存在。

15.ColEl是惟一用作基因工程的自然质粒载体,它具有四环素抗性标记,因而很容易选择。

16.某一染色体DNA经内切酶Sal I切割后,产生了若干个具有黏性末端的DNA片段,将这些片段分别在T4 DNA连接酶的作用下自身连接成环,然后导人受体细胞,都可以进行独立地复制。

17.如果细菌的某种表型特征在UV处理下丧失后不再恢复,这种表型有可能是质粒赋予的。

18.基因克隆中,低拷贝数的质粒载体是没有用的。

三、选择题(单选或多选)

1.线性质粒复制的引物来自于( )

(a)细胞中合成的小分子RNA

(b)自身末端的端粒序列

(c)外加的寡聚DNA

(d)自身断裂的小分子DNA

2.下面关于松弛型质粒(relaxedplasmid)性质的描述中,( )是不正确的

(a)质粒的复制只受本身的遗传结构的控制,而不受染色体复制机制的制约,因而有较多的拷贝数

(b)可以在氯霉素作用下进行扩增

(c)通常带有抗药性标记

(d)同严紧型质粒融合后,杂合质粒优先使用松弛型质粒的复制子

3.基因工程中所用的质粒载体大多是改造过的,真正的天然质粒载体很少,在下列载体中只有( )被视为用作基因工程载体的天然质粒载体

(a)pBR322 (b)pSCl01

(c)pUBll0 (d)pUCl8

4.下列哪种克隆载体对外源DNA的容载量最大?( )

(a)质粒

(b)黏粒

(c)酵母人工染色体(YAC)

(d)λ噬菌体

(e)cDNA表达载体

5.反向重复序列:( )

(a)可以回折形成发夹结构 (b)可以是某些蛋白的结合位点

(c)参与转座子的转座 (d)12 1-说法都不对

6.松弛型质粒: ( )

(a)在寄主细胞中拷贝数较多 (b)可用氯霉素扩增

(c)一般没有选择标记 (d)上述(a)、(b)两项正确

7. ColEl是惟一用作基因工程载体的自然质粒,这种质粒: ( )

(a)是松弛复制型 (b)具有四环素抗性

(c)能被氯霉素扩增 (d)能产生肠杆菌素

8.同一种质粒DNA,以三种不同的形式存在,电泳时,它们的迁移速率是:( )

(a)OC DNA>SC DNP>LDNA (b)SC DNA>L DNA>OC DNA

(c)L DNA>OC DNA>SC DNA (d)SC DNA>OC DNA>L DNA

9. pBR322是一种改造型的质粒,含有两个抗性基因,其中四环素抗性基因来自:( )

(a) ColEl (b)Ri质粒 (c)pSCl01 (d)pUCl8

10.关于质粒的相容性,下面哪一种说法不正确? ( )

(a)不同相容群的质粒能够共存于同一个细胞

(b)质粒可以分成若干个不相容群,但不能分成若干个相容群

(c)如果a、b两种质粒不相容,说明它们的复制机制相同

(d)属于同一个不相容群中的质粒,不仅复制机制相同,而且拷贝数和分子量也相同

11.关于穿梭质粒载体,下面哪一种说法最正确?( )

(a)在不同的宿主中具有不同的复制机制

(b)在不同的宿主细胞中使用不同的复制起点

(c)在不同的宿主细胞中使用不同的复制酶

(d)在不同的宿主细胞中具有不同的复制速率

12.能够用来克隆32kb以下大小的外源片段的质粒载体是( )

(a)charomid (b)plasmid (c)cosmid (d)phagemid

13.第一个作为重组DNA载体的质粒是( )

(a)pBR322 (b)ColEl (c)pSCl01 (d)pUCl8

14.Ti质粒:( )

(a)可从农杆菌转到植物细胞中

(b)作为双链DNA被转移

(c)在植物中导致肿瘤

(d)介导冠瘿碱的合成,作为细菌的营养物和植物的生长激素

(e)需要细菌的vir基因帮助转移

(f)在植物细胞中作为染色体外质粒

四、简答题

1. YAC载体具有什么样的功能性DNA序列?为什么在克隆大片段时,YAC具有优越性?

2.列举质粒载体必须具备的4个基本特性。

3.什么叫穿梭载体?

4.说明减少质粒和噬菌体载体上某种酶的识别位点的方法和原理。

5.虽然质粒的带动转移给质粒载体的安全性带来一定的困难,但是通过带动转移将质粒转移到特定的受体菌中也是基因工程中常用的实验技术。请举一例说明之。

6.为什么来自HfrⅹF-的重组体几乎总是F-?

7.解释为什么不同的Hfr菌株具有不同的转移起点和方向?

8.怎样从一个E.coli的Hfr菌株中分离到一个F′gal+的菌株?

9.你已经分离了一个新的F因子,怎样用最简便的方法知道最初的F因子的部分DNA已经被切除,并被一个外源DNA(也就是细菌DNA)所替代?

10.你能用哪一种基因转移的方法确定

(1)Kcoli染色体上一个新发现的基因座在其染色体上的位置;

(2)一个新分离的突变在基因内的位置。

11.用加有注释的图表说明F质粒是怎样从一个P细胞转移到F细胞。并简要说明转移复制如何不同于营养体的复制。

五、问答题

1.什么是复制子(replicon)?

2.什么是质粒的相容性?什么是不相容群?机制是什么?

3.什么是质粒的带动转移?

4.说明变性定位法和限制性内切核酸酶定位法研究质粒复制起点的原理。

5. ColEl衍生质粒拷贝数调节机理的机理是什么?

6. R1质粒拷贝数受到怎样的调节控制?

7.质粒如何维持在细胞中的稳定?

8. 引起质粒不相容性的主要原因是什么?

9.由于基因工程是人为改变遗传信息的操作,因此必须注意被操作基因的安全,进行严格的监控,质粒载体的安全性是十分重要的。请问质粒载体的安全条件包括哪几个方面?

10.请指出质粒pSCl01的一些生物学特性(包括结构和遗传)及在基因工程中的作用。

11.自然界中具备理想条件的质粒载体为数不多,即使是ColEl和pSCl01这两个自然质粒也不尽人意,通常需要进行改造,请问质粒改造包括哪些基本内容?

12.质粒改造的发展过程如何?

13.在质粒中如何增减酶切点?

14.有人用限制性内切核酸酶EcoRl分别切割松弛型质粒ColEl和严紧型质粒pSCl01(各有一个切点),然后重组连接形成一个杂种质粒pSCl34,请推测这种质粒有什么特性和用途。

15.现分离了4种新的大肠杆菌Hfr菌株,通过中断接合实验,针对每一菌株确定了高频转移的标记基因和它们进入F受体的时间分别为:

Hfrl Hfr2 Hfr3 Hfr4

man 13min mal 29 lys 16 pur 6

标记基因和第一 trp 6 met 14 arg 9 trp 3

次进入的时间 his 23 thr 4 mal 2 thr 31

pur 3 uvr 20 his 32 lac 23

gal 14

(gal、lac、mal、man不能发酵半乳糖、乳糖、麦芽糖和甘露糖;arg、his、met、trp:生长需要精氨酸、组氨酸、赖氨酸、甲硫氨酸、嘌呤和色氨酸;uvr:紫外线敏感)。任何没有给出的标记都是不能高频转移的。上述数据能够说明大肠杆菌的染色体是环状的吗?以分钟表示图距构建一个大肠杆菌染色体的连锁图。假定整个染色体用了100分钟转移,而且苏氨酸被认为位于0分钟或100分钟处。

16.YAC克隆载体常出现哪些问题?

(注:本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待你的好评与关注!)

维真生物-如何阅读基因载体图谱

如何阅读基因载体图谱 基因载体是基因工程的核心,也是基因治疗中强有力的生物工具,我们先来认识和阅读载体图谱吧。 一、载体分类及载体组成元件 载体分类 1、按属性分类:病毒载体和非病毒载体 病毒载体是一种常见的分子生物学工具,可将遗传物质带入细胞,原理是利用病毒具有传送其基因组进入目的细胞,进行感染的分子机制。可发生于完整活体或是细胞培养中。可应用于基础研究、基因疗法或疫苗。用于基因治疗和疫苗的病毒载体应具备以下基本条件: (1)携带外源基因并能包装成病毒颗粒; (2)介导外源基因的转移和表达; (3)对人体不致病; (4)在环境中不会引起增殖和传播。 非病毒载体一般是指质粒DNA。 2、按进入受体细胞的类型分类:原核载体、真核载体、穿梭载体(含原核和真核2个复制子,能在原核和真核细胞中复制,并可以在真核细胞中有效表达)。 3、按功能分类:克隆载体、表达载体 克隆载体:具有克隆载体的基本元件(Ori,Ampr,MCS等),可以携带DNA片段或外源基因进入受体细胞并克隆和大量扩增DNA片段(外源基因)的载体。 表达载体:克隆载体中加入一些与表达调控(具有转录/翻译所必需的DNA顺序)有关的元件即成为表达载体。 载体组成元件 1、复制起始位点Ori:即控制复制起始的位点。Ori的箭头指复制方向,其他元件标注的箭头多指转录方向(正向)。 2、抗生素抗性基因:可以便于加以检测,如Amp+ ,Kan+ (1)Ampr:水解β-内酰胺环,解除氨苄的毒性。

(2)tetr :可以阻止四环素进入细胞。 (3)camr:生成氯霉素羟乙酰基衍生物,使之失去毒性。 (4)neor(kanr):氨基糖苷磷酸转移酶,使G418(卡那霉素衍生物)失活。 (5)hygr:使潮霉素β失活。 3、多克隆位点:MCS克隆携带外源基因片段,它具有多个限制酶的单一切点,便于外源基因的插入。如果在这些位点外有外源基因的插入,会导致某种标志基因的失活,便于筛选。决定能不能放目的基因以及如何放置目的基因。还要再看外源DNA插入片段大小。质粒一般只能容纳小于10kb的外源DNA片段。一般来说,外源DNA片段越长,越难插入,越不稳定,转化效率越低。 4、P/E:启动子/增强子 5、Terms:终止信号 6、加poly(A)信号:可以起到稳定mRNA作用 示例阅读载体: pENTER载体 1)human ORF + pENTER载体 2) CMV启动子,T7启动子 3) ORF的C端融合了Flag和His tag 4) 多克隆位点,常用AsisI 和 MluI(人源基因上不常见的)

如何阅读质粒图谱(更新版本)

如何阅读质粒图谱 最近由于实验需要,需要查阅载体图谱,到园子里搜罗一番,发现虽然有人问载体图谱阅读的问题,也有前辈回答,但都不详细,借自己也在琢磨这个问题的机会,将我学到的东西整理一下,于 大家分享。 载体主要有病毒和非病毒两大类,其中质粒DNA是一种新的非病毒转基因载体。 一个合格质粒的组成要素 #复制起始位点Oril 即控制复制起始的位点。原核生物DNA分子中只有一个复制起始点。而真核生物DNA分子有多个复制起始位点。 #抗生素抗性基因可以便于加以检测,如Amp+l ,Kan+ #多克隆位点MCS 克隆携带外源基因片段l #P/E 启动子/增强子l #Termsl 终止信号 #加poly(A)信号l 可以起到稳定mRNA作用 二、如何阅读质粒图谱 第一步:首先看Ori的位置,了解质粒的类型(原核/真核/穿梭质粒) 第二步:再看筛选标记,如抗性,决定使用什么筛选标记。 (1)Ampr 水解β-内酰胺环,解除氨苄的毒性。 (2)tetr 可以阻止四环素进入细胞。 (3)camr 生成氯霉素羟乙酰基衍生物,使之失去毒性。 (4)neor(kanr)氨基糖苷磷酸转移酶使G418(卡那霉素衍生物)失活 (5)hygr 使潮霉素β失活。 第三步:看多克隆位点(MCS)。它具有多个限制酶的单一切点。便于外源基因的插入。如果在这些位点外有外源基因的插入,会导致某种标志基因的失活,而便于筛选。决定能不能放目的基因以及如何放置目的基因。 第四步:再看外源DNA插入片段大小。质粒一般只能容纳小于10Kb的外源DNA片段。一般来说,外源DNA片段越长,越难插入,越不稳定,转化效率越低。 第五步:是否含有表达系统元件,即启动子-核糖体结合位点-克隆位点-转录终止信号。这是用来区别克隆载体与表达载体。克隆载体中加入一些与表达调控有关的元件即成为表达载体。选用那种载体,还是要以实验目的为准绳。 启动子-核糖体结合位点-克隆位点-转录终止信号 #启动子-促进DNA转录的DNA顺序,这个DNA区域常在基因或操纵子编码顺序的上游,是DNA分子上可以与RNApol特异性结合并使之开始转录的部位,但启动子本身不被转录。 #增强子/沉默子-为真核基因组(包括真核病毒基因组)中的一种具有增强邻近基因转录过程的调控顺序。其作用与增强子所在的位置或方向无关。即在所调控基因上游或下游均可发挥作用。/沉默子-负增强子,负调控序列。 #核糖体结合位点/起始密码/SD序列(Rbs/AGU/SDs):mRNA有核糖体的两个结合位点,对于原核而言是AUG(起始密码)和SD序列。l #转录终止顺序(终止子)/翻译终止密码子:结构基因的最后一个外显子中有一个AATAAA的保守序列,此位点down-stream有一段GT或T富丰区,这2部分共同构成poly(A)加尾信号。

如何阅读分析质粒图谱

如何阅读分析质粒图谱 日期:2012-04-18来源:未知作者:xilu点击:次 如何阅读分析质粒图谱 载体主要有病毒和非病毒两大类,其中质粒DNA是一种新的非病毒转基因载体。 一个合格质粒的组成要素 1. 复制起始位点Ori即控制复制起始的位点。原核生物DNA分子中只有一个复制起始点。而真核生物DNA分子有多个复制起始位点。 2. 抗生素抗性基因可以便于加以检测,如Amp+ ,Kan+ 3. 多克隆位点MCS 克隆携带外源基因片段 4. P/E 启动子/增强子 5. Terms 终止信号 6. 加poly(A)信号可以起到稳定mRNA作用 如何阅读质粒图谱 第一步:首先看Ori的位置,了解质粒的类型(原核/真核/穿梭质粒) 所谓穿梭质粒是指一类人工构建的具有两种不同复制起点和选择标记,因而可以在两种不同类群宿主中存活和复制的质粒载体。此概念不仅用于不同的微生物菌群之间,也可以推广到真核生物表达载体的构建,如用于枯草的pBE2、酵母的pPIC9K、哺乳动物表达载体pMT2 和用于植物细胞的Ti 质粒。这些穿梭质粒不仅可以在大肠杆菌中复制扩增,也可以在相应的枯草、酵母、动物或植物细胞中扩增和表达。这样利于对质粒的分子生物学操作和大量制备。 第二步:再看筛选标记,如抗性,决定使用什么筛选标记。 1. Ampr水解β-内酰胺环,解除氨苄的毒性。 2. tetr可以阻止四环素进入细胞。 3. camr生成氯霉素羟乙酰基衍生物,使之失去毒性。

4. neor(kanr) 氨基糖苷磷酸转移酶使G418(长那霉素衍生物)失活 5. hygr使潮霉素β失活。 第三步:看多克隆位点(MCS)。它具有多个限制酶的单一切点。便于外源基因的插入。如果在这些位点外有外源基因的插入,会导致某种标志基因的失活,而便于筛选。决定能不能放目的基因以及如何放置目的基因。 第四步:再看外源DNA插入片段大小。质粒一般只能容纳小于10Kb的外源DNA片段。一般来说,外源DNA片段越长,越难插入,越不稳定,转化效率越低。 第五步:是否含有表达系统元件,即启动子-核糖体结合位点-克隆位点-转录终止信号。这是用来区别克隆载体与表达载体。克隆载体中加入一些与表达调控有关的元件即成为表达载体。选用那种载体,还是要以实验目的为准绳。 启动子-核糖体结合位点-克隆位点-转录终止信号

所有质粒载体汇总

酿酒酵母表达载体 pYES2,pYES2/NT,pYES2/CT,pYES3,pYES6, pYCplac22-GFP, 酵母载体pAUR123,pRS303TEF,pRS304, pRS305,pRS306,pY13TEF,pY14TEF pY15TEF, pY16TEF, 酵母基因重组表达载体pUG6, pSH47, 酵母单杂载体pHISi,pLacZi,pHIS2, pGAD424,酵母双杂交系统:酿酒酵母Y187, 酿酒酵母AH109;质粒pGADT7,pGBKT7 ;对照质粒pGBKT7-53 , pGBKT7-lam , pGADT7-T , PCL1,酿酒酵母菌株INVSc1,YM4271, AH109,丫187,丫190, 毕赤酵母表达载体 pPIC9K,pPIC9K-His,pPIC3.5K,pPICZalphaA,B,C,pPICZA,B,C,pGAPZ a A,pAO815,pPIC9k-His,pHIL-S1,pPink hc , 配套毕赤酵母Pichiapink, 毕赤酵母宿主X33, KM71 , KM71H , GS115, 原核表达载体pQE30,31,32,40,60,61,62等原核表达载体,包括pET系列,pET-GST, pGEX 系列(含GST标签),pMAL 系列pMAL-c2x,-c4x,-c4e,-c5x,- p5x,pBAD,pBADHis,pBADmycHis 系列,pQE 系列,pTrc99a,pTrcHis系列, pBV220,221,222,pTXB 系列,pLLP-ompA,pIN-III-ompA (分泌型表达系列),pQBI63 (原核表达带荧光)pET3a, pET 3d, pET 11a, pET 12a, pET 14b, pET 15b, pET 16b, pET 17b, pET 19b, pET 20b, pET 21a,b,d, pET 22b, pET 23a, pET 23b, pET 24a,b, pET 25b, pET 26b, pET 27b, pET 28a,b, pET 29a, pET 30a, pET 31b, pET 32a, pET 35b, pET 38b, pET 39b, pET 40b, pET 41a,b pET 42a, pET 43.1a,b pET 44a, pET 49b pET302,303 pET His,pET Dsb,pET GST,pET Trx pQE2, pQE9 pQE30,31,32, pQE 40 pQE70 pQE80L pQETirs system pRSET-A pRSET-B pRSET-C pGEX4T-1,-2,-3,5x-1,6p-1,6p-2,2tk,3c pBV220,221,222 pTrcHisA,B,C pBAD24,34,43 pBAD HisA,B,C pPi nPoi nt-Xa1,Xa2,Xa3 pMALc2x, p2x pBV220 pGEM Ex1, pGEM7ZF (+) , pTrc99A, pTwin1, pEZZ18 pkk232-8,pkk 233- 3,pACYC184,pBR322,pUC119 pTYB1,pTYB2,pTYB4,pTYB11 pBlueScript SK (+) ,pBlueScript SK (-) pLLP ompA, pINIIIompA, pMBP-P ,pMBP-C,大肠杆菌冷激质粒:pColdI pColdII pColdIII pColdTF原核共表达质粒:pACYCduet-1,pETduet- 1,pCDFduet-1, pRSFduet-1 Takara公司大肠杆菌分子伴侣:pG-KJE8 pGro7 pKJE7 pGTf2 pTf16 大肠杆菌宿主细胞:DH5a JM101 JM103

第一章1-6噬菌体载体2

3、λ噬菌体载体的优缺点:?优点:包装的λ噬菌体感染大肠杆菌要比 质粒转化细菌的效率高。 ?缺点:λ噬菌体载体的克隆操作要比质粒载体复杂。 ?用途:λ噬菌体载体比质粒载体能插入的DNA长得多,常用于构建cDNA文库或基因组文库。 第一章 分子克隆的工具酶和载体?第八节噬菌体载体 ?一、λ噬菌体 ?(一)λ噬菌体 ?(二)λ噬菌体载体的改造 ?(三)λ噬菌体载体举例 (三)λ噬菌体载体举例?Lambda gt10 ?Lambda gt11 ?EMBL3和EMBL4Lambda gt10 概述: ?Lambda gt10是一种插入载体。 ?在噬菌体阻遏基因cI 内有单一的EcoRⅠ克隆位点。用于插入小的cDNA片段(约6kb),构建cDNA文库或基因文库。 ?该载体克隆效率很高。 ?在构建cDNA文库时,利用Oligo(dT)或随机引物合成的cDNA经过EcoRⅠadaptors或Linkers修饰后,就可以和λgt10连接起来。?克隆到λgt10的噬菌体,可用核酸探针进行筛选。 Lambda gt10map 宿主: ?建议用C600 and C600hf1作受体菌。 筛选: ?如果有外源DNA插入,cI基因失活,该噬 菌体进入裂解生长途径,在培养皿形成噬 菌斑。反之,若无插入,cI基因表达,噬 菌体进入溶原生长途径,不形成噬菌斑。 ?核酸探针杂交。

Insertional cloning ?Insertional cloning into the cI gene of the lambda -gt10 cDNA cloning vector (DNA inserts of ~1-5 kb) can be selected in hfl (high frequency of lysogeny ) mutant strains of E. coli. In hflA strains of E. coli, expression of the lambda cII gene is elevated, resulting in transcriptional induction of the lambda cI repressor gene which promotes lysogeny . Disruption of the lambda cI coding sequence by DNA insertion into the unique EcoRI site of the lambda gt10 cDNA cloning vector, blocks the lysogenic pathway leading to cell lysis and plaque formation. Lambda gt11 ?λgt 载体系列:是插入型载体。插入了大肠 杆菌β-半乳糖苷酶基因片段,可以表达外源cDNA 而形成β-半乳糖苷酶融合蛋白。?λgt18/19 、λgt20/21和λgt 22/23 是λgt 11的衍生载体。?重组体筛选: ?未重组的噬菌体载体转入lac -宿主后,在X-gal 平板上形成淡蓝色噬斑;而外源DNA 片段插入载体后,重组噬菌体形成无色噬斑,很容易辩别。 ?常常用免疫学方法对噬班或菌落进行筛选。 Lambda gt10 map Lambda gt11 map Lambda gt11 概述: ?Lambda gt11是一个克隆和表达载体。 ?用于小的插入(7.2 kb )片断构建cDNA 文库或基因文库。 ?在其β-半乳糖苷酶翻译终止位点上游的LacZ 基因内,有单一的EcoR Ⅰ位点。 ?如果外源DNA 的阅读框与lacZ 吻合,即可表达融合蛋白。 ?在构建cDNA 文库时,利用Oligo (dT)或随机引物合成的cDNA 经过EcoR ⅠAdaptors 或Linkers 修饰后,可以和λgt11连接起来。 宿主: ?建议用Y1089(r-) and Y1090(r-)作受体菌。筛选: ?利用特异的抗体进行筛选。 EMBL3和EMBL4 ?EMBL3/4是由λ1059衍生的λ置换型载体。?是常用的基因组克隆载体,克隆的DNA 片 段大小为9-23kb 。 ?多克隆位点分别位于一个14 kb 填充片段的两侧。 ?两载体均在填充片段内含有red 及gam 基因,可由Spi 表现型筛选重组子。 ?除多克隆位点的顺序相反外,EMBL3和EMBL4的其余特征相同。

质粒图谱的阅读方法

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 质粒图谱的阅读方法 质粒图谱的阅读方法载体主要有病毒和非病毒两大类,其中质粒 DNA 是一种新的非病毒转基因载体。 一、一个合格质粒的组成要素 a. 复制起始位点 Ori 即控制复制起始的位点。 原核生物 DNA分子中只有一个复制起始点。 而真核生物 DNA分子有多个复制起始位点。 b. 抗生素抗性基因可以便于加以检测,如 Amp+ ,Kan+ c. 多克隆位点 MCS 克隆携带外源基因片段 d. P/E 启动子/增强子 e. Terms 终止信号 f. 加 poly(A)信号可以起到稳定 mRNA 作用二、如何阅读质粒图谱第一步: 首先看 Ori 的位置,了解质粒的类型(原核/真核/穿梭质粒)。 第二步: 再看筛选标记,如抗性,决定使用什么筛选标记。 (1) Ampr 水解-内酰胺环,解除氨苄的毒性。 (2) tetr 可以阻止四环素进入细胞。 (3) camr 生成氯霉素羟乙酰基衍生物,使之失去毒性。 (4) neor(kanr)氨基糖苷磷酸转移酶使 G418(长那霉素衍生物)失活(5) hygr 使潮霉素失活。 第三步: 1 / 6

看多克隆位点(MCS)。 它具有多个限制酶的单一切点。 便于外源基因的插入。 如果在这些位点外有外源基因的插入,会导致某种标志基因的失活,而便于筛选。 决定能不能放目的基因以及如何放置目的基因。 第四步: 再看外源 DNA 插入片段大小。 质粒一般只能容纳小于 10Kb 的外源 DNA 片段。 一般来说,外源DNA 片段越长,越难插入,越不稳定,转化效率越低。 第五步: 是否含有表达系统元件,即启动子-核糖体结合位点-克隆位点-转录终止信号。 这是用来区别克隆载体与表达载体。 克隆载体中加入一些与表达调控有关的元件即成为表达载体。 选用那种载体,还是要以实验目的为准绳。 启动子-核糖体结合位点-克隆位点-转录终止信号 a. 启动子-促进 DNA 转录的 DNA 顺序,这个 DNA 区域常在基因或操纵子编码顺序的上游,是 DNA 分子上可以与 RNApol 特异性结合并使之开始转录的部位,但启动子本身不被转录。 b. 增强子/沉默子-为真核基因组(包括真核病毒基因组)

第八讲单链噬菌体载体及噬菌粒载体

第八讲单链噬菌体载体及噬菌粒载体 吴乃虎 中国科学院遗传与发育生物学研究所

第八讲单链噬菌体载体及噬菌粒载体 一、单链噬菌体的一般生物学 1.单链噬菌体的优越性 2.M13噬菌体的生物学特性 二、M13克隆体系 1.M13克隆体系 2.M13克隆体系-半乳糖苷酶的显色反应原理 3.M13载体系列的发展 4.M13载体系列的优点 三、噬菌体展示载体 1.噬菌体展示载体的构建原理 2.噬菌体展示载体 3.噬菌体表面展示文库 4.应用噬菌体展示载体分离有关蛋白质的实例 四、噬菌粒载体

1.M13噬菌体载体克隆的若干难点2.噬菌粒 3.若干常用的噬菌粒载体4.pBluescript噬菌粒载体5.pUC118和pUC119噬菌粒载体

第八讲单链噬菌体载体 一、单链噬菌体一般生物学 大肠杆菌丝状单链DNA噬菌体有M13噬菌体、f1噬菌体及fd 噬菌体,它们均含有分子量约为6400个核苷酸的单链闭环DNA分子。 1.单链DNA phage的优越性 A.具有双链的复制型DNA(RF DNA),可如质粒质粒一样进行遗传操作;RF DNA:Replication Form DNA。 B.RF DNA和ssDNA均可感染感受态的寄主细胞——形成phaque或colony。 C.不受包装的限制。因为单链DNA phage的大小是受其DNA 多寡制约的。 D.可容易地测出外源DNA的插入取向。 E.可产生大量的含有外源DNA的单链DNA分子,这种单链DNA分子有如下用途(作为模板): *1用作双脱氧链终止法进行DNA测序

*2制备单链的放射性标记的杂交用DNA探针 *3利用寡核苷酸进行定点突变 2.M13 phage的生物学特性 A.M13 phage同f1 phage亲缘关系十分密切,例如: ①基因组组织形式相同; ②病毒颗粒大小、形状相近; ③DNA同源性高达98%以上。 B.在M13 phage颗粒中只有(+)链DNA,感染具F性须的大肠杆菌菌株,因此M13噬菌体是雄性E.coli特有的;M13噬菌体的(+)链DNA,又称为感染性单链DNA。 C.复制型双链DNA(RF DNA=Replication Form DNA) 感染过程:当感染的M13 phage颗粒穿过性须时,其外层主要 衣壳蛋白质脱落,M13 DNA及附着其上的Gene Ⅲ 蛋白进E.coli细胞内, ↓ 感染性单链DNA(正链DNA)在细菌胞内酶的作用 下转变为双链DNA,称复制型DNA。通过结构 进行几轮复制。

如何阅读质粒图谱

一、载体主有病毒和非病毒两大类,其中质粒DNA是一种新的非病毒转基因载体。 一、一个合格质粒的组成要素 复制起始位点Ori,即控制复制起始的位点。原核生物DNA分子中只有一个复制起始点。而真核生物DNA分子有多个复制起始位点。抗生素抗性基因:可以便于加以检测,如Amp+ ,Kan+ 多 克隆位点:MCS克隆携带外源基因片段 P/E:启动子/增强子 Terms:终止信号 加poly(A)信号:可以起到稳定mRNA作用 二、如何阅读质粒图谱 第一步:首先看Ori的位置,了解质粒的类型(原核/真核/穿梭质粒) Ori的箭头指复制方向,其他元件标注的箭头多指转录方向(正向)。 第二步:再看筛选标记,如抗性,决定使用什么筛选标记: (1)Ampr:水解β-内酰胺环,解除氨苄的毒性。 (2)tetr :可以阻止四环素进入细胞。 (3)camr:生成氯霉素羟乙酰基衍生物,使之失去毒性。 (4)neor(kanr):氨基糖苷磷酸转移酶,使G418(卡那霉素衍生物)失活。 (5)hygr:使潮霉素β失活。 第三步:看多克隆位点(MCS)。它具有多个限制酶的单一切点,便于外源基因的插入。如果在这些位点外有外源基因的插入,会导致某种标志基因的失活,而便于筛选。决定能不能放目的基因以及如何放置目的基因。 第四步:再看外源DNA插入片段大小。质粒一般只能容纳小于10Kb的外源DNA片段。一般来说,外源DNA片段越长,越难插入,越不稳定,转化效率越低。 第五步:是否含有表达系统元件,即启动子-核糖体结合位点-克隆位点-转录终止信号。这是用来区别克隆载体与表达载体。克隆

载体中加入一些与表达调控有关的元件即成为表达载体。选用那种载体,还是要以实验目的为准绳。 相关概念: 启动子-核糖体结合位点-克隆位点-转录终止信号 启动子-促进DNA转录的DNA顺序,这个DNA区域常在基因或 操纵子编码顺序的上游,是DNA分子上可以与RNApol特异性结合并使之开始转录的部位,但启动子本身不被转录。 增强子/沉默子-为真核λ基因组(包括真核病毒基因组)中的一种具有增强邻近基因转录过程的调控顺序。其作用与增强子所在的位置或方向无关。即在所调控基因上游或下游均可发挥作用。沉默子-负增强子,负调控序列。 核糖体结合位点/起始密码/SD序列(Rbs/AGU/SDs):mRNA有核糖体的两个结合位点,对于原核而言是AUG(起始密码)和SD序列。 λ转录终止顺序(终止子)/翻译终止密码子:结构基因的最后一个外显子中有一个AATAAA的保守序列,此位点down-stream有一段GT 或T富丰区,这2部分共同构成poly(A)加尾信号。结构基因的最后一个外显子中有一个AATAAA的保守序列,此位点down-stream有一段GT或T富丰区,这2部分共同构成poly(A)加尾信号。 三、载体及其分类 载体:即要把一个有用的基因(目的基因——研究或应用基因)通过基因工程手段送到生物细胞(受体细胞),需要运载工具(交通工具)携带外源基因进入受体细胞,这种运载工具就叫做载体(vector)。 P.S.基因工程所用的vector实际上是DNA分子,是用来携带目的 基因片段进入受体细胞的DNA。 载体的分类 按功能分成:(1)克隆载体:都有一个松弛的复制子,能带动 外源基因,在宿主细胞中复制扩增。它是用来克隆和扩增DNA片段(基因)的载体。(所以有时实验时扩增效率低下,要注意是不是使用的严谨型载体)(2)表达载体:具有克隆载体的基本元件 (ori,Ampr,Mcs等)还具有转录/翻译所必需的DNA顺序的载体。

噬菌体载体word版

第三章噬菌体载体 一、填空题 1.噬菌体之所以被选为基因工程载体,主要有两方面的原因:一是—-----------—;二是----------——。 2.第一个报道的全测序的单链DNA噬菌体是ФX174,DNA长5386个碱基对,共一个基因,为一环状DNA分子,基因组的最大特点是—----------—。 3.λ噬菌体的基因组DNA为———————kb,有——多个基因。在体内,它有两种复制方式,扩增时(早期复制)按—-----—复制,成熟包装(晚期复制)则是按—--------—复制。它有一个复制起点,进行—-------—向复制。λ噬菌体的DNA既可以以线性存在又可以环状形式存在,并且能够自然成环。其原因主要是在λ噬菌体线性DNA分子的两端各有一个——个碱基组成的天然黏性末端。这种黏性末端可以自然成环。成环后的黏性末端部位就叫做——————位点。 4.根据噬菌体的包装能力,将野生型λ噬菌体的基因组DNA改造成插入型载体,该载体的最小分子大小约为————kb,插入的外源片段最大不超过——————kb。 5.野生型的M13不适合用作基因工程载体,主要原因是————和--------------—。 6.黏粒(cosmid)是质粒—噬菌体杂合载体,它的复制子来自——、COS位点序列来自—--------—,最大的克隆片段达到—----------—kb。 7.有两类改造型的λ噬菌体载体,即插入型和取代型。从酶切点看,插入型为——个,取代型为——个。 8.野生型的λ噬菌体DNA不宜作为基因工程载体,原因是:(1)---------------——(2)——————————(3)—---------------------—。 9. M13单链噬菌体的复制分为三个阶段:(1)————————(2)—-------------—, (3)———————————。 10.噬菌粒是由质粒和噬菌体DNA共同构成的,其中来自质粒的主要结构是—-----—,而来自噬菌体的主要结构是—-------------------—。 11.M13单链噬菌体基因2和基因4之间的IG区有三个最重要的功能,即(1)—————(2)—------------—(3)—-------------—。 12.野生型的M13有10个基因,分为三个功能集团,其中与复制有关的两个基因是:——------------------和——-----------------。 13.以丸噬菌体载体和黏粒载体构建文库时,起始DNA的长度是不同的,前者为—----— kb,后者为————kb。

常用pGEX载体图谱

Rosetta系列的表达菌株可以提供T7 RNA聚合酶,它能表达PET系列载体上的外源基因。。。pGEX系列载体上的外源基因不需要T7 RNA聚合酶,普通的大肠杆菌经IPTG诱导即可表达 Tac启动子是一组由Lac和trp启动子人工构建的杂合启动子,受Lac阻遏蛋白的负调节,它的启动能力比Lac和trp都强。其中Tac 1是由Trp启动子的-35区加上一个合成的46 bp DNA片段(包括Pribnow 盒)和Lac操纵基因构成,Tac 12是由Trp的启动子-35区和Lac启动子的-10区,加上Lac操纵子中的操纵基因部分和SD序列融合而成 蛋白标签: A myc tag is a polypeptide protein tag derived from the c-myc gene product that can be added to a protein using recombinant DNA technology. It can be used for affinity chromatography, then used to separate recombinant, overexpressed protein from wild type protein expressed by the host organism. It can also be used in the isolation of protein complexes with multiple subunits. A myc tag can be used in many different assays that require recognition by an antibody. If there is no antibody against the studied protein, adding a myc-tag allows one to follow the protein with an antibody against the Myc epitope. Examples are cellular localization studies by immunofluorescence or detection by Western blotting. The peptide sequence of the myc-tag is (in 1- and 3-letter codes, respectively): N-EQKLISEEDL-C, N-Glu-Gln-Lys-Leu-Ile-Ser-Glu-Glu-Asp-Leu-C, where N stands for Amino-terminus and C stands for Carboxy terminus. The tag is approximately 1202 Daltons in atomic mass and has 10 amino acids. It can be fused to the C-terminus and the N-terminus of a protein. It is advisable not to fuse the tag directly behind the signal peptide of a secretory protein, since it can interfere with translocation into the secretory pathway. A monoclonal antibody against the myc epitope, named 9E10, is available from the non-commercial Developmental Studies Hybridoma Bank

质粒载体分类及阅读

质粒载体分类及阅读 一.九种表达载体 Pllp-OmpA, pllp-STII, pMBP-P, pMBP-C, pET-GST, pET-Trx, pET-His, pET-CKS, pET-DsbA 二.克隆载体 pTZ19R DNA pUC57 DNA PMD18T PQE30 pUC18 pUC19 pTrcHisA pTrxFus pRSET-A pRSET-B pVAX1 PBR322 pbv220 pBluescript II KS (+) L4440 pCAMBIA-1301 pMAL-p2X pGD926 三.PET系列表达载体 Protein Expression ? Prokaryotic Expression ? pET Dsb Fusion Systems 39b and 40b Protein Expression ? Prokaryotic Expression ? pET Expression System 33b Protein Expression ? Prokaryotic Expression ? p ET Expression Systems Protein Expression ? Prokaryotic Expression ? pET Expression Systems plus Competent Cells Protein Expression ? Prokaryotic Expression ? pET GST Fusion Systems 41 and 42 Protein Expression ? Prokaryotic Expression ? pET NusA Fusion Systems 43.1 and 44 Protein Expression ? Prokaryotic Expression ? pET Vector DNA Protein Purification ? Purification Systems ? Strep?Tactin Resins and Purification Kits 四.PGEX系列表达载体 T EcoR pGEX-1 I/BAP pGEX-2T pGEX-2TK pGEX-3X

认识质粒图谱

一、如何阅读质粒图谱 载体主要有病毒和非病毒两大类,其中质粒DNA是一种新的非病毒转基因载体。 一、一个合格质粒的组成要素 复制起始位点Ori,即控制复制起始的位点。原核生物DNA分子中只有一个复制起始点。 而真核生物DNA分子有多个复制起始位点。 抗生素抗性基因:可以便于加以检测,如Amp+ ,Kan+ 多l克隆位点:MCS克隆携带外源基因片段 P/E:启动子/增强子 Terms:终止信号 加poly(A)信号:可以起到稳定mRNA作用 二、如何阅读质粒图谱 第一步:首先看Ori的位置,了解质粒的类型(原核/真核/穿梭质粒) Ori的箭头指复制方向,其他元件标注的箭头多指转录方向(正向)。 第二步:再看筛选标记,如抗性,决定使用什么筛选标记: (1)Ampr:水解β-内酰胺环,解除氨苄的毒性。 (2)tetr :可以阻止四环素进入细胞。 (3)camr:生成氯霉素羟乙酰基衍生物,使之失去毒性。 (4)neor(kanr):氨基糖苷磷酸转移酶,使G418(卡那霉素衍生物)失活。 (5)hygr:使潮霉素β失活。 第三步:看多克隆位点(MCS)。它具有多个限制酶的单一切点,便于外源基因的插入。 如果在这些位点外有外源基因的插入,会导致某种标志基因的失活,而便于筛选。决定能不能放目的基因以及如何放置目的基因。 第四步:再看外源DNA插入片段大小。质粒一般只能容纳小于10Kb的外源DNA片段。 一般来说,外源DNA片段越长,越难插入,越不稳定,转化效率越低。 第五步:是否含有表达系统元件,即启动子-核糖体结合位点-克隆位点-转录终止信号。 这是用来区别克隆载体与表达载体。克隆载体中加入一些与表达调控有关的元件即成为表达载体。选用那种载体,还是要以实验目的为准绳。 二、相关概念: 启动子-核糖体结合位点-克隆位点-转录终止信号 启动子-促进DNA转录的DNA顺序,这个DNA区域常在基因或操纵子编码顺序的上游,是DNA分子上可以与RNApol特异性结合并使之开始转录的部位,但启动子本身不被转录。 增强子/沉默子-为真核l基因组(包括真核病毒基因组)中的一种具有增强邻近基因转录过程的调控顺序。其作用与增强子所在的位置或方向无关。即在所调控基因上游或下游均可发挥作用。沉默子-负增强子,负调控序列。 核糖体结合位点/起始密码/SD序列(Rbs/AGU/SDs):mRNA有核糖体的两个结合位点,对于原核而言是AUG(起始密码)和SD序列。 l转录终止顺序(终止子)/翻译终止密码子:结构基因的最后一个外显子中有一个AATAAA 的保守序列,此位点down-stream有一段GT或T富丰区,这2部分共同构成poly(A)加尾信号。结构基因的最后一个外显子中有一个AATAAA的保守序列,此位点down-stream有一段GT或T富丰区,这2部分共同构成poly(A)加尾信号。 三、载体及其分类 载体:即要把一个有用的基因(目的基因——研究或应用基因)通过基因工程手段送到生物细胞(受体细胞),需要运载工具(交通工具)携带外源基因进入受体细胞,这种运载

表达载体的构建方法及步骤

表达载体的构建方法及步骤 一、载体的选择及如何阅读质粒图谱 目前,载体主要有病毒和非病毒两大类,其中质粒DNA 是一种新的非病毒转基因载体。 一个合格质粒的组成要素: (1)复制起始位点Ori 即控制复制起始的位点。原核生物DNA 分子中只有一个复制起始点。而 真核生物DNA 分子有多个复制起始位点。 (2)抗生素抗性基因可以便于加以检测,如Amp+ ,Kan+ (3)多克隆位点MCS 克隆携带外源基因片段 (4)P/E 启动子/增强子 (5)Terms 终止信号 (6)加poly(A)信号可以起到稳定mRNA 作用 选择载体主要依据构建的目的,同时要考虑载体中应有合适的限制酶切位点。如果构建的目 的是要表达一个特定的基因,则要选择合适的表达载体。 载体选择主要考虑下述3点: 【1】构建DNA 重组体的目的,克隆扩增/基因表达,选择合适的克隆载体/表达载体。 【2】.载体的类型: (1)克隆载体的克隆能力-据克隆片段大小(大选大,小选小)。如<10kb 选

质粒。 (2)表达载体据受体细胞类型-原核/真核/穿梭,E.coli/哺乳类细胞表达载体。(3)对原核表达载体应该注意:选择合适的启动子及相应的受体菌,用于表达真核蛋白质时注意克服4个困难和阅读框错位;表达天然蛋白质或融合蛋白作为相应载体的参考。 【3】载体MCS 中的酶切位点数与组成方向因载体不同而异,适应目的基因与载体易于链接,不能产生阅读框架错位。 综上所述,选用质粒(最常用)做载体的5点要求: (1)选分子量小的质粒,即小载体(1-1.5kb)→不易损坏,在细菌里面拷贝数也多(也有大载 体); (2)一般使用松弛型质粒在细菌里扩增不受约束,一般10个以上的拷贝,而严谨型质粒<10个。 (3)必需具备一个以上的酶切位点,有选择的余地; (4)必需有易检测的标记,多是抗生素的抗性基因,不特指多位Ampr(试一试)。 (5)满足自己的实验需求,是否需要包装病毒,是否需要加入荧光标记,是否需要加入标签蛋白,是否需要真核抗性(如Puro、G418)等等。 无论选用哪种载体,首先都要获得载体分子,然后采用适当的限制酶将载体DNA 进行切割,获得线性载体分子,以便于与目的基因片段进行连接。 如何阅读质粒图谱 第一步:首先看Ori 的位置,了解质粒的类型(原核/真核/穿梭质粒)

质粒载体基础

第一节质粒载体 一、质粒的基本特性 1.质粒的复制 通常一个质粒含有一个与相应的顺式作用控制要素结合在一起的复制起始区(整个遗传单位定义为复制子)。在不同的质粒中,复制起始区的组成方式是不同的,有的可决定复制的方式,如滚环复制和θ复制。在大肠杆菌中使用的大多数载体都带有一个来源于pMB1 质粒或ColE1 质粒的复制起始位点。图3-1 是其复制其始示意图。 在复制时,首先合成前RNAⅡ,即前引物,并与DNA 形成杂交体;而后RNase H 切割前RNAⅡ,使之成为成熟的RNAⅡ,并形成三叶草二级结构,该引物引导质粒的复制。形成的RNAⅠ可控制RNAⅡ形成二级结构,同时Rop 增强RNAⅠ的作用,从而控制质粒的拷贝数。削弱RNAⅠ和RNAⅡ之间相互作用的突变,将增加带有pMB1 或(ColE1)复制子的拷贝数。 图3-1 带pMB1(或ColE1)复制起点的质粒在复 制起始阶段所产生的转录的方向及其粗略大小。 2.质粒的拷贝数 质粒拷贝数分为严谨型与松驰型。严谨型质粒每个细胞中拷贝数有限,大约1 ~几个;松驰型质粒拷贝数较多,可达几百。表5-1 就是不同类的质粒与复

制子及拷贝数的大致关系。 表3-1 :质粒载体及其拷贝数 pUC 系列质粒的复制单位来自质粒pMB1 ,但其拷贝数较高。pMB1 质粒的复制并不需要质粒编码的功能蛋白,而是完全依靠宿主提供的半衰期较长的酶(DNA 聚合酶Ⅰ,DNA 聚合酶Ⅲ),依赖于DNA 的RNA 聚合酶,以及宿主基因dnaB 、dnaC 、dnaD 和danZ 的产物。因此,存在抑制蛋白质合成并阻断细菌染色体复制的氯霉素或壮观霉素等抗生素时,带有pMB1(或ColE1)复制子的质粒将继续复制,最后每个细胞中可积聚2~3 千个质粒。3.质粒的不相容性 两个质粒在同一宿主中不能共存的现象称质粒的不相容性,它是指在第二个质粒导入后,在不涉及DNA 限制系统时出现的现象。不相容的质粒一般都利用同一复制系统,从而导致不能共存于同一宿主中。两个不相容性质粒在同一个细胞中复制时,在分配到子细胞的过程中会竞争,随机挑选,微小的差异最终被放

所有质粒载体汇总

酿酒酵母表达载体 pYES2,pYES2/NT,pYES2/CT,pYES3,pYES6,pYCplac22-GFP, 酵母载体pAUR123,pRS303TEF,pRS304, pRS305,pRS306,pY13TEF,p Y14TEF,pY15TEF,pY16TEF, 酵母基因重组表达载体pUG6,pSH47, 酵母单杂载体pHISi,pLacZi,pHIS2, pGAD424, 酵母双杂交系统:酿酒酵母 Y187, 酿酒酵母AH109;质粒pGADT7,pGBKT7;对照质粒pGBKT7-53,pGBKT7-lam,pGADT7-T,PCL1, 酿酒酵母菌株INVSc1,YM4271, AH109,Y187,Y190, 毕赤酵母表达载体pPIC9K,pPIC9K-His,pPIC3.5K,pPICZalphaA,B,C,pP ICZA,B,C,pGAPZαA,pAO815,pPIC9k-His,pHIL-S1,pPink hc, 配套毕赤酵母Pichiapink, 毕赤酵母宿主X33,KM71,KM71H,GS115, 原核表达载体pQE30,31,32,40,60,61,62,等原核表达载体,包括pET系列,pE T-GST,pGEX系列(含GST标签),pMAL系列pMAL-c2x,-c4x,- c4e,-c5x,-p5x,pBAD,pBADHis,pBADmycHis系列,pQE系列,pTrc99 a,pTrcHis系列,pBV220,221,222,pTXB系列,pLLP-om pA,pIN-III-ompA(分泌型表达系列),pQBI63(原核表达带荧光)pET3a, pET 3d, pET 11a,pET12a, pET14b, pET 15b, pET 16b, pET 17b,pET 19b, pET 20b, pET 21a,b,d, pET 22b,pET 23a,pET 23b, pET24a,b,pET 25b, pET 26b, pET27b, pET 28a,b, pET 29a,pET 30a, pET 31b, pET32a, pET35b, pET 38b, pET39b,pET 40b, pET41a,b pET 42a,pET 43、1a,b pET 44a, pET49bpET302,303 pET His,pET Dsb,pET GST,pET Trx pQE2, pQE9 pQE30,31,32, pQE 40pQE70pQE80L pQETirs system pR SET-A pRSET-B pRSET-C pGEX4T-1,-2,-3,5x-1,6p-1,6p-2,2tk,3c pBV220,221,222 pTrcHisA,B,C pBAD24,34,43 pBADHisA,B,C pPinPoint-Xa1,Xa2,Xa3 pMALc2x, p2x pBV220 pGEM Ex1, pGEM7ZF(+), pTrc99A,pTwin1, pEZZ18pkk232-8,pkk 233-3,pACYC184,pBR322,p UC119 pTYB1,pTYB2,pTYB4,pTYB11 pBlueScript SK(+),pBlueScript SK(-) pLLP ompA, pINIIIompA,pMBP-P,pMBP-C, 大肠杆菌冷激质粒: p ColdIpColdII pColdIIIpColdTF 原核共表达质粒:pACYCduet-1,p

相关文档
最新文档