COSRED直接还原技术的应用实践

COSRED直接还原技术的应用实践
COSRED直接还原技术的应用实践

COSRED直接还原技术的应用实践

唐恩李森蓉李建涛周强汪朋陈泉锋付邦豪

(武汉科思瑞迪科技有限公司)

2018年全球直接还原铁(DRI)的产量接近有9800万吨(图1),主要集中在印度、伊朗、俄罗斯、墨西哥等国家(图2),占比达到80%左右,近两年产量有加速增加的趋势,突破一亿吨的产量指日可待。这其中热压块HBI的生产商主要是俄罗斯,委内瑞拉,美国,马来西亚,利比亚和伊朗,冷态DRI的供应商非常少,基本上只有直接还原短流程电炉厂的富余产量,例如在伊朗,还有一些来自巴林。另外,纽柯的特立尼达工厂生产的大量冷DRI运送到其美国的其他钢铁厂。印度生产的海绵铁主要用于国内消费,仅有少量出口到周边市场。

图1 全球直接还原铁产量走势

图2 全球直接还原铁产量分布

随着全球还原铁产量的大量增长,越来越多的中国钢铁企业对其有所认识和了解,仅2019年上半年不完全统计,已从海外进口30万吨以上的还原铁进行钢铁生产,随着钢铁企业对还原铁认知度的不断增加及良好的用户体验,适应我国能源结构特点的COSRED直接还原铁生产技术势必会受到钢铁企业的青睐,未来COSRED基于技术的灵活性处理不同原料生产的各种还原铁产品势必为客户创造价值(图3)。

图3 还原铁产品在钢铁制品中的应用价值

1铁精粉生产直接还原铁

中国作为全球钢铁产量第一大国,未来在还原铁的使用上以普通炼钢还原铁为主,随着选矿技术的进步,使得高品质的铁精粉市场大量供应成为现实,为直接还原铁的发展创造了有利条件。

表1-1 原料条件

表1-2 还原铁产品质量分析(wt%)

*MD=MFe/TFe,即金属化率

表1-3 生产成本

目前,国内铁水的生产成本在2100~2300元/吨,优质废钢的价格也在2500元以上,而自产还原铁价格仅在1600元左右,成本优势明显,加大还原铁的使用量有很好的市场竞争力。

此外,高品质的还原铁熔分后杂质元素少,全铁含量高达99.9%以上,是很好的纯铁及其他优质高端含铁产品的原料(见下表)。

表1-4 熔分后的铁水质量(wt%)

2普通钒钛磁铁矿生产直接还原铁

普通钒钛赤铁矿由于含钛高,导致高炉冶炼透气性差,能耗高,不适宜与高炉流程大比例使用,而COSRED技术有很好的适应性,还原产品高,并能使用高硫煤。

表2-1 原料条件(wt%)

表2-2 还原剂成分(wt%)

表2-3 还原后产品质量(wt%)

对还原后的球团进行了压块后,加入中频炉中熔分,具体过程及铁水成分如下:

冷压块熔分出铁

图2-1 中频炉熔分过程

表2-4 熔分后铁水成分(wt%)

可见,铁水中含铁高,其余有害杂质元素少,是很好的炼钢原料。

3高钒磁铁矿精粉提钒冶炼

COSRED技术为实现复合矿的综合高效利用开辟了一条新的工艺路线,提高了元素的收得率和产品的质量,在高钒铁精粉的处理上具有特有的优势,钒元素的收得率能达到95%以上,较常规的流程提高了40%以上。

表3-1 高钒精粉化学成分

表3-2 还原剂成分

表2-3 还原后产品质量(wt%)

对还原后的还原铁不经压块,直接在电弧炉进行100%的冷料生产测试,过程及结果如下:

图3-1 电弧炉熔分过程

表3-4 熔分产品及收得率

通过电弧炉熔分冶炼,发现直接还原铁的生产较全废钢冶炼有如下操作特点:1)冷装吨铁水电耗600~800kwh,较废钢相当或更低

2)可以实现连续稳定加料或更少批次料篮加料

3)冶炼时间相当或更短

4)起弧容易,冶炼平稳

5)生产噪音大大降低

6)有利于造泡沫渣,渣流动性较好

7)炉内耐材及电极寿命相当甚至更长

8)适应大渣量操作

9)不适应全粉料冶炼

4铁鳞(氧化铁皮)生产直接还原铁

铁鳞作为高品质的含铁固废,目前主要返回烧结使用,造成了资源的错位配置,铁鳞实际是生产高品质产品的一种稀缺原料。

表4-1 原料条件

表4-2 还原铁产品质量分析(wt%)

表4-3 生产成本

这种产品目前在国内,参照优质废钢比价的话,出厂含税售价大概2700元/吨。此种产品在铸造用中频炉上进行了测试,过程及结果如下:

图4-1 熔分过程

表4-4 还原铁替代废钢的应用测试参数

还原铁替代废钢的使用效果:

(1)加料操作:用的振动筛加废钢,废钢大小不均,加料效率低,而球团均匀,操作上更简洁、方便。

(2)烟气量:废钢主要是烟气量大,海绵铁加入后产生大量的煤气,主要是火焰燃烧,有利于提供热能,对生产未有不利影响。

(3)渣量:由于用的是高品位的海绵铁,渣量基本与废钢相当,渣量较小,不影响操作。

(4)电耗:相同配比下,电耗相当。

(5)原料成本:优质废钢价格2800元/t,海绵铁生产成本2200元/t,吨钢综合成本较废钢冶炼大致低10~20元左右,成本上有优势。

(6)冶炼时间:基本与废钢冶炼时间相当,40min左右。

(7)残余元素:表明海绵铁能稀释其他有害元素,提高产品质量。

5含锌尘泥脱锌及生产高金属化率球团

表5-1 原料条件

表5-2 还原铁产品质量分析(wt%)

表5-3 脱除效率(wt%)

1)球团中铁的金属化率基本都能达到90%以上,煤基竖炉的还原功能完全可以满足含锌固废还原的需要。

2)煤基竖炉能确保脱锌效率达到90%以上,其它碱金属如K、Na、Pb的脱除率分别保持在70~80%,60~70%,90~100%,Zn、K、Pb的脱除效果较好。

表5-4 生产成本

6小结

1)随着我国钢铁制造流程的转换,直接还原铁未来的发展空间及发展潜力在中国。

2)COSRED技术适用于各种不同种类的含铁原料,产品质量好,生产成本低,有很好的市场竞争力。

3)COSRED技术生产的还原铁质量稳定、可靠、成本低、环境友好,是适合我国能源结构特点的技术,有很好的应用前景。

中国煤基隧道窑法直接还原铁(海绵铁)生产新工艺技术

中国煤基隧道窑法还原铁(海绵铁)生产最新工艺技术 中国是世界第一大钢产量国,2011 年钢产量突破7 亿吨,年需要废钢9000 多万吨,还原铁需求量为500 万吨。我国年进口还原铁300万吨,而还原铁(海绵铁)年产量仅为60 万吨。 我国是一个贫铁矿资源丰富的国家,低贫呆矿占铁矿资源97%以上,但每年需要从国外进口6 亿吨的铁矿石,国内大量的低贫呆矿没有得到很好的开发。 另外,我国每年还有上亿吨的硫酸渣、铜渣、除尘灰等含铁废料产生。现在,我国是一个非焦煤储量丰富的国家,焦煤资源日益频发,因此国家出台相关政策,鼓励发展直接还原铁和非焦炼铁工艺技术开发与应用。 提高还原铁的产量及开发我国大量的低贫呆矿使其资源化迫在眉睫。 我国目前年生产的60 万吨还原铁(海绵铁),主要是由200 余条隧道窑法生产的。在我国,煤基隧道窑罐式法生产还原铁(海绵铁)走过30 年的历史,其 工艺技术比较稳定、成熟,小项目分布相对比较普遍。但因传统的煤基隧道窑罐式法,必须采用昂贵的耐火罐;同时具有能耗高;还原时间长;劳动力消耗高;产品质量低下等原因,造成生产成本高、销路不畅等实际问题。目前造成煤基隧道窑法还原铁生产停顿状态。 2011年,在北京非高炉会议上,许多隧道窑法海绵铁厂家强烈要求专家、教授们能提供一套新的工艺技术,使煤基隧道窑厂家能焕发生机。 因此,沈阳博联特熔融还原科技有限公司与多家与会海绵铁厂家进行了交流后,半年内通过研发和工业试验,为其解决了两大技术问题,可以让煤基隧道窑法海绵铁厂家获得新生。 一. 实现了煤基隧道窑无罐法生产海绵铁甚至砾铁产品将煤基隧道窑烧嘴位置进行改变,采用直接燃煤新技术,彻底去掉昂贵的耐火罐,实现了无罐法生产海绵铁,入炉铁矿可以多种化。新技术煤基隧道窑法海绵铁的主要特点: 1、降低生产运行成本。取消了昂贵的耐火罐,可以降低生产运行成本200 多元/ 吨。 2、还原时间大大的缩短。 传统隧道窑罐式法生产还原铁的还原时间,一般为:粘土罐28?31小时、

200万吨直接还原铁项目概述(对外)

你好! 我们这项目的基本情况汇报给你。 一、项目内容 200万吨直接还原铁钢厂项目,建厂主要内容包括:码头、原料场、直接还原铁、炼钢、轧钢系统、发电、制氧等公辅设施及办公生活综合设施等。 二、主要产品 一条高速线材生产线年产60万吨,Φ5.5~16mm高速无扭热轧盘条。一条棒材生产线年产60万吨,生产高强度带肋钢筋和圆钢;另一条棒材生产线年产80万吨。生产高强度带肋钢筋和圆钢。 三、工艺及主要设备 序 号 工序项目规格座数 1 码头码头 2 料场原料场 3 直接还原多层炉Φ17.5m*1.5m*12 4 回转窑Φ6m*90m 4 熔分炉110mw 2 4 炼钢提钒设施 转炉100t,5机5流方坯 2 5 轧钢高线高线60万吨,棒材140万吨 3 棒材A 60万吨 棒材B 80万吨 6 公辅设施制氧10000m3/h 2 发电2*160MW 2 给排水 检化验 库房合金、耐材库;成品库 总图运输 检维修 7 综合设施生活、办公 四、直接还原铁工艺流程图

多层炉:干燥脱水、去除挥发分;炉料的排出温度500℃; 回转窑:还原,炉料的出口温度950-1000℃; 熔分炉:熔化、渣铁分离;渣1500-1550℃;铁水1450-1500℃; 五、原料燃料成分 海砂精矿粒度:0.05~0.25mm。 成分Tfe TiO2 V2O5 MnO SiO2 Al2O3 CaO MgO P S 典型值(%)56.8 7.7 0.45 0.66 3.9 3.7 1.5 3.4 0.18 0.04 煤的成分 名称M V A C S 数值21 34 4.5 40.5 0.22 粒度:≤50mm,100%;<3mm,≯20%。 200万吨年耗量 序号名称耗量(万t/a) 日耗量(t/d) 小时耗量 1 海砂矿380 11500 479.17 2 熔剂24 750 31.25 3 煤280 8484.848 353.54 六、我们想了解: 直接还原铁部分4座多层炉(多膛炉)、4条回转窑、2座熔分炉现在造价(估算)? 包含土建、设备、安装等

信息技术应用于课堂教学的实践反思及问题建议

信息技术应用于课堂教学的实践反思及问 题意见 信息技术的飞速发展,教育也相应的跟上了时代发展的需要,最终目的是实现教育信息化。在当前教学中如何利用信息技术提高教学效率也成了一线教师研究实践的一个重大课题。下面将结合几个方面,简单谈谈自己的看法。 一、什么是信息技术? 信息技术,有关数据与信息的应用技术。它是一种技术,一种手段。从教学的角度可以理解为应用于提高教学的一种技术手段,在教学中实现辅助教学,解决教学重、难点的方法之一。所以,在具体的教学过程中,不是有了信息技术就可以抛弃一切常规的教学方法,以多媒体方式代替教师授课等。只有充分发挥信息技术的优势,与各种教学手段协同互补,以达到最佳的教学效果。 二、信息技术与学科整合应用反思。 信息技术应用于教学,就是为了能解决在教学中遇到的难点、重点,从而提高教学效率。在教学中,老师们大多以制作多媒体演示课件来辅助教学。这样显得应用信息技术手段单一化,而在有的课例中又显得不太恰当。 利用课件辅助教学是教育信息化的一种体现方式。教师应认真备课,选取合适的教学内容,利用这些信息化手段解决教学问题。忌“滥

用”,无论什么课都采用信息技术手段进行教学,如果这样,不但不会提高教学效率,反而增加教师的工作量,对学生而言,只会耽误他们的学习时间,学习能力又不能得到提高。 不同重、难内容采用不同的课件设计方式。有些抽象的东西在教学中利用课件来突破时就可以采用演示型课件,让学生直观的理解,不用绕弯子。而需要学生参与、合作完成的内容,可以采用网络型课件,授课环境也相应到计算机网络教室。通过网络平台,师生一起完成教学任务。课件的设计应注重实效,尽量不要去追求的高技术性,能解决问题就行。 对于有些教学内容,学校已有教学资源的就直接利用。比如,学校有农远工程配套的视频教学光盘。教师可先观看光盘内容,再进行教学设计,直接利用这些光盘进行教学也不失为一种好办法。当然,这种方式也不能忽略教学常规,教师为“主导”与学生为“主体”作用发挥好,教师不是光盘播放员。 信息技术应用于学科教学活动,不是什么高级产物,忌“穿新鞋,走旧路”,应走入教师的实际教学。不要认为信息技术是公开课、优质课中才能使用。这样纯粹浪费教学资源,更不能促进教学发展。 综上所述,要利用信息技术提高教学效率,必须先解决问题:更新教师观念,提高教师的信息能力,才能利用好信息技术为教学服务。 当然,要使教育真正信息化,是一个艰巨漫长过程。要解决在实际应用中遇到的问题才能促进教育信息化的进程。 问题及建议:

直接还原炼铁

直接还原炼铁 在低于矿石熔化温度下,通过固态还原,把铁矿石炼制成铁的工艺过程。这种铁保留了失氧时形成的大量微气孔,在显微镜下观察形似海绵,所以也称为海绵铁;用球团矿制成的海绵铁也称为金属化球团。直接还原铁的特点是碳、硅含量低,成分类似钢,实际上也代替废钢使用于炼钢。习惯上把铁矿石在高炉中先还原冶炼成含碳高的生铁。而后在炼钢炉内氧化,降低含碳量并精炼成钢,这项传统工艺,称作间接炼钢方法;而把炼制海绵铁的工艺称作直接还原法,或称直接炼铁(钢)法。 直接还原原理与早期的炼铁法(见块炼铁)基本相同。高炉法取代原始炼铁法后,生产效率大幅度提高,是钢铁冶金技术的重大进步。但随着钢铁工业大规模发展,适合高炉使用的冶金焦的供应日趋紧张。为了摆脱冶金焦的羁绊,18世纪末提出了直接还原法的设想。20世纪60年代,直接还原法得到发展,其原因是:①50~70年代,石油及天然气大量开发,为发展直接还原法提供了方便的能源。②电炉炼钢迅速发展,海绵铁能代替供应紧缺的优质废钢,用作电炉原料,开辟了海绵铁的广阔市场。③选矿技术提高,能提供高品位精矿,使脉石含量可以降得很低,简化了直接还原工艺。1980年全世界直接还原炼铁生产量为713万吨,占全世界生铁产量的1.4%。最大的直接还原工厂规模达到年产百万吨,在钢铁工业中已占有一定的位置。 海绵铁中能氧化发热的元素如硅、碳、锰的含量很少,不能用于转炉炼钢,但适用于电弧炉炼钢。这样就形成一个直接还原炉-电炉的钢铁生产新流程。经过电炉内的简单熔化过程,从海绵铁中分离出少量脉石,就炼成了钢,免除了氧化、精炼及脱氧操作,使新流程具有作业程序少和能耗低的优点。其缺点是:①成熟的直接还原法需用天然气作能源,而用煤炭作能源的直接还原法尚不完善,70年代后期,石油供应不足,天然气短缺,都限制了直接还原法的发展。②直接还原炉-电炉炼钢流程,生产一吨钢的电耗不少于600千瓦·时,不适于电力短缺地区使用。③海绵铁的活性大、易氧化,长途运输和长期保存困难。目前,只有一些中小型钢铁厂采用此法。 现在达到工业生产水平或仍在继续试验的直接还原方法约有二十余种,主要分为两类:使用气体还原剂的直接还原法按工艺设备来分,有三种类型,包括竖炉法、反应罐法和流态化法。作为还原剂的煤气先加热到一定温度(约900),并同时作为热载体,供还原反应所需的热量。要求煤气中H、CO含量高,CO、H O含量低;CH在还原过程中分解离析的碳要影响操作,含量不得超过3%。用天然气转化制造这样的煤气最方便;也可用石油(原油或重油)制造,但价格较高。用煤炭气化制造还原气,是正在研究的课题。 竖炉法在竖炉中炉料与煤气逆向运动,下降的炉料逐步被煤气加热和还原,传热、传质效率较高。竖炉法以Midrex法为代表,是当前发展最快、应用最广的直接还原炼铁法,其改进的生产流程示意见图1[ Midrex法生产流程示意]

直接还原铁生产工艺的分析

直接还原铁生产工艺的分析 世界上直接还原铁生产技术已经成熟, 技术发展极为迅速, 根据Midrex 公司预测, 2010年全世界 直接还原铁产量将超过7300万t。于高炉流程存在着生产成本过高和环境污染的两大难题, 炼铁工艺由 高炉流程逐步向直接还原铁短流程过渡已成为定局。当今的钢铁企业对这一革命性技术工艺越早开发越 能占据主动; 不敢承担风险, 迟疑不前, 必将处于被动和落后的局面。因此, 直接还原铁的开发不是“有 所为”和“有所不为”的问题, 而是生产工艺的选择问题。 1 世界直接还原铁生产技术现状 1.1 生产工艺发展态势 由于某些国家天然气资源丰富, 直接还原铁生产技术在南美洲、南非和东南亚诸国的发展极为迅速, 而印度则后来居上; 特别是委内瑞拉、墨西哥等国, 生产历史已超过20余年, 生产规模不断扩大, 直接 还原铁产量已占本国钢铁产量的绝对份额; 而奥钢联、韩国合作开发的直接还原与熔融还原技术与日俱进; 浦项钢铁公司的直接还原铁生产大有代替高炉炼铁之势。对这样的发展态势, 作为世界钢铁生产大国的中国, 我们绝不可掉以轻心。 1.2 世界直接还原铁主要生产工艺 ??? 世界直接还原铁生产工艺大致可分为两大类: 一种是气基竖炉生产工艺; 一种是煤基回转窑生产工 艺。前者生产量约占总产量的92%, 而后者约占总产量的8%。在这两种生产技术的基础上, 又发展了熔 融还原生产技术。近年来, 将直接还原与熔融还原技术加以组合, 形成了COREX-Midrex联合流程, 颇受 人们的关注。直接还原铁主要生产工艺见表1。 ??? 应该指出, 世界上Midrex法和HYL法应用的比较普遍, 各项技术经济指标亦趋稳定, 生产工艺成熟 可靠。特别是墨西哥的HYL法, 生产技术不断创新, 由于开发了“自重整”技术, 使建设费用减少了 26% , 电炉的耗电降低了5%~6%。印度由于缺乏天然气, 但精煤的资源丰富, 因此多采用煤基回转窑 的生产方法。多年的生产实践证明, 煤基回转窑无论是在生产成本、生产效率还是环境保护方面, 均不及 气基竖炉法。 1.3 熔融还原法 熔融还原法也是采用直接还原的原理, 将铁精矿直接还原成熔融铁, 通常以煤为还原剂, 将还原炉与 熔铁炉置于一身, 其最终产品不是海绵铁或热压铁块, 而是熔融铁。主要的生产厂家如下: (1) 南非的伊斯科公司: COREX—1000, 生产能力为30万t/a, 现已生产了300万t; (2) 韩国:COREX C—2000, 1995年11月投产, 1997 年市场上又出现了C—3000R, 其生产能力约为C—2000的13.5 倍。目前, 世界上采用熔融还原法生产的共有7家, 总生产能力超过500万t/a, 相当 于世界铁水总生产量的1%。 1.4 COREX-Midrex 联合生产工艺 ??? 该技术是奥钢联与浦项钢铁公司联合开发成功的。这项技术一出现, 即显示出其独特的优点, 它具有 气基竖炉和熔融还原的优点, 又不需外来气源, 因此对天然气缺乏的厂家来说是求之不得的。COREX-Midrex 联合流程示意图见图1。 对COREX-Midrex联合流程的三点看法: (1) COREX-Midrex联合流程(正准备建1台90万t/a 的装置, 并计划于2005年代替浦项1号高炉(1666m3) ) 虽有其先进性的一面, 但由于开发成功的时间较短, 因此工业生产的考验约在2010年才能有 结论; (2) 由于煤与熔融铁直接接触, 煤中绝大部分硫进入熔融铁中, 因此生产出的还原铁并非纯净铁, 其 铁中的含硫量(0.015%~0.020%) 相当于高炉铁; (3) 对高炉流程的系统设备和资源(包括技术资源) 未能加以利用。因此该工艺适合于新建的位于城 市周边的钢铁厂或轧钢厂。 2钢铁联合企业生产直接还原铁技术工艺的选择 据专家预测, 在未来30~40年, 全世界钢铁生产工艺仍将以高炉流程为主。就是说, 高炉仍将长时 间存在。有高炉, 就必然有焦炉。如何在现有的高炉流程的基础上, 加以合理地、科学地改造, 使高炉 流程向直接还原铁生产的短流程逐步过渡, 达到既能生产高炉铁, 又能生产直接还原铁, 进一步降低钢材 成本, 改善生产环境的目的, 这是广大钢铁工作者义不容辞的责任。 2.1 铁精矿的准备问题 直接还原铁开发的初级阶段对入还原炉的铁精矿的技术要求非常苛刻, 一般要求块矿入炉, 铁精矿含 铁量在70%以上, SiO2含量在2%以下, 特别对煤基回转窑入炉铁精矿中低熔点金属的含量有更严格的要 求。随着直接还原铁技术的发展, 入炉铁精矿的技术条件越来越放宽, 并以直接还原本身的技术进步加以 补偿。例如, FNEX技术的开发成功, 使块矿入炉变为粉矿或氧化球团矿均可入炉, 这大大有利于直接还 原铁技术的开发。 ??? 西欧炼铁界开发的精矿加工处理技术, 使还原炉入炉铁精矿达到其技术要求, 保证了还原炉生产的顺行, 其流程示意图见图2。 2.2 气基竖炉还原炉两段反应机理 一段: 3Fe2O3 + H2= Fe3O4+ H2O

20161025 煤基竖炉直接还原技术

武汉科思瑞迪科技有限公司(以下简称“科思瑞迪”)坐落于武汉市东湖新技术开发区,是以武汉桂坤科技有限公司为主体,整合相关社会资源,汇集了冶金、工业炉、机电技术等各专业技术人才,集数十年研发、工程及生产经验,组建的一家专业从事煤基竖炉直接还原技术的开发、推广及应用的科技公司。该公司的技术及成套核心设施已经在中国、越南、缅甸等国的工程项目中得到了应用,取得了良好的社会及经济效益。 煤基竖炉直接还原技术 李森蓉李建涛 (武汉科思瑞迪科技有限公司) 摘要:本文对煤基竖炉直接还原技术从工艺流程、技术指标、技术特点等方面进行了较为详实的介绍和分析;该技术生产海绵铁的质量有保证,市场发展前景可期,市场竞争力强。 关键词:煤基竖炉直接还原铁技术特点产品质量 直接还原是指铁矿石或含铁氧化物在低于熔化温度下还原成金属产品的炼铁过程;其所得的产品称为直接还原铁,简称DRI(Direct Reduction Iron),也称海绵铁。优质DRI由于其成分稳定,有害元素含量低,粒度均匀,不仅可以补充废钢资源的不足,而且还可以作为电炉炼钢的原料以及转炉炼钢的冷却剂,对保证钢材的质量特别是合金钢的质量,起着不可替代的作用,是冶炼特钢的优质原料;同时,高品位DRI还可以供粉末冶金行业使用【1】。 直接还原铁生产方法中,主要分为气基法和煤基法。由于我国天然气资源缺乏,但是煤炭资源丰富,煤基直接还原技术成为我国直接还原铁生产的重要工艺方法【2】。煤基直接还原是指直接以廉价的非焦煤作还原剂生产直接还原铁的方法。 在我国煤基直接还原技术主要是回转窑法和隧道窑法【3】,近几年也相继建设了多座转底炉装置,同时也建设了一些煤基连续式竖炉装置。在直接还原技术日益发展、大力提倡环保节能减排的今天,一些新的更先进的直接还原工艺及设备被迫切需要【4,5】。 煤基竖炉直接还原技术是一项符合中国能源结构特点的可大型化生产高品质海绵铁的直接还原铁生产技术【6】,可广泛用于处理高品位铁精粉制取高纯度还原铁粉用于粉末冶金领域,也可用于处理普通品位的铁精粉制取炼钢用海绵铁,处理复合铁矿生产普通铁水及提取钒、钛、硼等高附加值资源。 1发展历程 自2006年至今,已经成功的在中国大陆和国外设计安装了5代炉型五条生产线: 1)一条1000吨/年中试生产线; 2)一条5万吨/年和两条10万吨/年生产线:

直接还原铁的品质与用途

直接还原铁的品质与用途 直接还原铁即粉末冶金还原铁粉生产中的海绵铁。炼钢中的海绵铁的品质要求与粉末冶金用海绵铁的品质要求不同,其含铁量在90%以上,但要控制S,P,Pb,Zn,Bi,As等有害元素的含量。用于生产还原铁粉的直接还原铁其技术条件为:TFe=97.5%~98.0%、金属化率≥95%、C=0.3%~0.4%、S、P≤0.020%、Si≤0.10%。用于炼钢的直接还原铁其技术条件为:TFe≥91%、金属化率≥85%、S、P≤0.020%、Si≤0.20%。 直接还原铁除了作为电弧炉冶炼原料以外,直接还原铁还是氧气转炉的优质冷却剂和炉料,对转炉的冷却效果是废钢的112~2倍。应用直接还原铁后转炉冶炼可获得多种效果,如稀释铁水中的S、P、Bi、Pb、Zn、As等有害杂质元素含量,消除废钢对炉衬的机械损耗作用,改善自动加料和终点控制,提高计算机自控水平,提高生产率等。 所以将钢厂的含铁氧化物为原料建立直接还原铁生产线,投产后其产品在钢铁企业的用途是广泛的、有益的。 基本特点: 1、化学成分稳定,有效稀释钢中残余和夹杂金属元素含量,改善钢的质量; 2、P、S有害元素含量低,可缩短精炼时间; 3、减少装料次数、减少停电作业和热损失,熔化速度快、电耗低、可提高效率、降低成本; 4、熔化期中,供电作业稳定,允许大功率供电、口音低、烟尘少、工作环境好; 5、使用成本低廉,经济效益高。编辑本段生产工艺:在工业上应用较多的有铁磷还原法,铁精矿粉还原法等,即将轧钢氧化铁磷或精矿粉经还原铁压块机压制成块后,装入焙烧管进窑焙烧,生产出了优质还原铁。直接还原铁经粗破(将直接还原铁锭破成块状)中破(将块状直接还原铁破碎成0~15mm的颗粒状)后,再经过磁选,去除SiO2、、CaS和游离碳等杂质。用户可再次使用还原铁压块机压制直接还原铁颗粒,使直接还原铁颗粒成型并达到一定的堆比重g/cm3要求。直接还原铁破碎颗粒直接影响压块物理特性(压缩性、成型性、堆比重g/cm3)对特钢生产起到至关重要的作用。 1. 铁磷还原法:轧钢氧化铁磷是钢材在加热炉中加热后在轧制过程中,其表面氧化层自行脱落而产生的。还原海绵铁可采用热轧沸腾钢氧化铁磷作原料,因为沸腾钢氧化铁磷中的TFe、C、S、P化学成分含量,能满足还原海绵铁生产的技术要求,在还原海绵铁中最好不要以高碳钢或合金钢氧化铁磷为原料。2. 铁精矿粉还原法:磁铁矿的主要成分是Fe3O4经采用湿式球磨、湿式磁选、联合选矿工艺后产出的普通精矿粉,是生产还原海绵铁的优选原料。3. 隧道窑工艺即固态碳还原工艺。碳是通过与耐火罐中的氧在高温下形成一氧化碳以气相还原的,见下式:C+O2→CO2 CO2+C→2CO Fe3O4+CO→3FeO+CO2 FeO+CO→Fe+CO2 为了脱除固态还原剂中的硫配入石灰石粉通过炉中的化学反应吸收还原剂中挥发的H2S以免渗入海绵铁中,见下列反应式:CaCO3→CaO+CO2 CaO+H2S+C→CaS+H2+CO 氧化铁在隧道窑中加热被固体碳还原的过程是比较复杂的过程。炉料以预热到还原、冷却将产生一系列物理化学变化,隧道结构和性能是影响海绵铁产量、质量的重要因素。但控制和调节有关工艺参数使炉内整个系统达到平衡,从而达到还原目的。又是决定产品产量、质量的关键。编辑本段工艺流程:直接还原铁的生产工艺流程可分为如下五个工序:一.原料准备及其烘干破碎工序:将脱硫剂、还原剂两种物料装入定量料斗,定量料斗按两种物料的重量比,通过输送机将物料送到烘干室内对两物料进行烘干、混合。烘干后的物料含水量小于3%,烘干后的物料,通过输送机送到还原剂破碎机内进行粉碎,粉碎粒度为1.5mm以下。破碎后的

信息技术应用成果(最新)

信息技术应用成果要求 作业题目: 这是一个收获的季节,经过一段时间的研修和教学实践,相信您在信息技术应用方面,一定有所提升、有所收获。 请在教学实践中,应用您自己的打磨后的教学设计和教学课件上一节课,并将这一节课录制成课堂实录视频(若没有拍摄设备,可用文字记录),课后根据实践情况,再次修订教学设计和教学课件,并完成教学实践反思;将修订后的教学设计及反思(终稿)、教学课件(终稿)和课堂实录作为信息技术应用成果资源包提交至平台。 温馨提示:根据教育部对本项目的要求,切实推行网络研修与现场实践相结合,促进教师边学习、边实践、边提升。课堂实录能真实的反映“教学实践”,请尽量提交视频格式的课堂实录或课堂片段,坊主在批改作业时将优先考虑视频格式的作业为优秀作业。 作业要求: 1.信息技术应用成果资源包,至少包括三个作品:教学设计(含实践反思)、教学课件(PPT)和课堂实录。 2.作品内容要体现信息技术的应用;教学设计请参照模板要求填写;教学课件需保证能正常播放查看;课堂实录以视频格式为主,若没有拍摄设备也可以提交文字记录。 3.所有作品必须原创,做真实的自己,如出现雷同,视为无效。 4.以附件形式统一提交成果资源包。(注:由于资源包上传需要一定时间,请确保其上传成功后,再点击“提交”按钮)

附件:教学设计模板

五、教学重点及难点(说明本课题的重难点) 教学重点已知两角一边的三角形全等探究. 教学难点灵活运用三角形全等条件证明. 六、教学过程(这一部分是该教学设计方案的关键所在,在这一部分,要说明教学的环节及所需的资源支持、具体的活动及其设计意图以及那些需要特别说明的教师引导语) 教师活动预设学生活动设计意图 教师通过(Flash课件)展示视频内容,提出情境问题 学生独立思考,发表自己的 见解 ①使学生快速 集中精力,调整听课 状态.②知识的呈现 过程与学生已有的生 活密切联系起来,学 有用的数学,激发学 生的学习兴趣。③使 学生产生认知上的冲 突,从而引入本课课 题,明确本节课的探 究方向,激发学习欲 望。 问题1、如图,△ABC是任意一个三角形,画△A1B1C1 ,使A1B1=AB,∠A1=∠A,∠B1=∠B把画得△A1B1C1剪下来放在△ABC进行比较,它们是否重合? 问题2、如图,△ABC是任意一个三角形,画△A1B1C1, 使 A1C1=AC, ∠A1=∠A,∠B1=∠B,请你猜测△A1B1C1与△ABC是否全等?若它们全等,你能用 "ASA"来证明你猜测结论成立吗? 教师通过动画演示作图过程。得出结论:有两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA” 学生思考问题,动手实践、小 组讨论、交流,让学生在合作学习 中共同解决问题,使学生主动探究 三角形全等的条件,培养学生分 析、探究问题的能力. 培养学生的 合作意识和竞争意识。体会合作 交流的重要性。 对于问题1, 因为学生已经在 学习“SSS”条件 有了一定的作图 和探究图形的基 础。所以这里就直 接提出问题让学 生动手操作,教师 适时引导。对于问 题2,学生在问题 1的基础上通过类 比思想可以得出 结论。(即:可以 通过"角边角 "(ASA)来证明。 例1、如图,已知点D在AB上,点E在AC先让学生独立思考,在互相讨培养学生的

流态化还原炼铁技术

流态化还原炼铁技术 流态化(fluidization)是一种由于流体向上流过固体颗粒堆积的床层而使得 固体颗粒具有一般流体性质的物理现象,是现代多相相际接触的工程技术。使用流态化技术的流化床反应器因具有相际接触面积大,温度、浓度均匀,传热传质条件好,运行效率高等优点而应用于现代工业生产。 高炉炼铁技术在矿产资源受限和环保压力增大等形势下,将面临着前所未有的挑战。铁矿石对外依存度过高、铁矿石粒度越来越小和焦炭资源枯竭等状况,迫使人们加快步伐探索改进或替代高炉工艺的非高炉型炼铁工艺。以气固流态化还原技术为代表的非高炉炼铁工艺逐步受到重视。 新工艺的建立和发展需要理论研究作为支撑。目前国内对于流态化还原炼铁 过程中的气固两相流规律的认识还不够深入,特别是对不同属性铁矿粉的流态化特性、不同操作条件下的流态化还原特性,以及反应器结构对流态化还原过程的影响等相关研究还不够充分,基于流态化还原技术的新工艺要成熟应用于大规模工业生产还有明显距离。 发展流态化技术须重视基础研究 流态化技术可以把固体散料悬浮于运动的流体之中,使颗粒与颗粒之间脱离接触,从而消除颗粒间的内摩擦现象,使固体颗粒具有一般流体的特性,以期得到良好的物理化学条件。流态化技术很早就被引入冶金行业,成为非高炉炼铁技术气基还原流程中的一类重要工艺。流态化技术在直接还原炼铁过程中主要有铁矿粉磁化焙烧、粉铁矿预热和低度预还原、生产直接还原铁的冶金功能。 我国从上世纪50年代后期开始流态化炼铁技术的研究。1973年~1982年,为 了开发攀枝花资源,我国进行了3次流态化还原综合回收钒钛铁的试验研究。中国科学院结合资源特点对贫铁矿、多金属共生矿的综合利用,开展了流态化还原过程和设备的研究;钢铁研究总院于2004年提出低温快速预还原炼铁方法(FROL TS),并

直接还原铁简介及伊朗ARFA直接还原铁厂实例

直接还原铁简介及 伊朗ARFA直接还原铁厂实例 张风杰 (中国22冶集团有限公司,唐山) 【摘要】国际钢铁协会统计2009年全球粗钢产量12.197亿吨,中国粗钢产量为5.678亿吨,至此中国已连续14年位居世界第一。显然我们早已步入了钢铁大国行列,但我们离钢铁强国还有很长距离,在某些冶金技术领域相当滞后,尤其直接还原铁方面还我们还处于起步阶段。学习和了解国际先进的直接还原铁技术,发现和弥补我们的不足迎头赶上,中国直接还原铁前景广阔。 【关键字】直接还原铁优势气基竖炉法施工发展空间 直接还原铁(DRI-Direct Reduced Iron),精铁粉或氧化铁在炉内低于融化温度的条件下还原成为多孔状物质,还原失氧形成大量气孔,在显微镜下观察形似海绵而又名海绵铁。其化学成分稳定,杂质含量少,可直接用作电炉炼钢的原料,也可作为转炉炼钢的冷却剂,它还是冶炼优质钢和特种钢的必备原材料。作为一种非高炉炼铁工艺,它越来越得到世界各国的重视。 美国米德雷克斯公司(Midrex)的统计数据显示,2008年世界直接还原铁产量达到6845万吨。自1990年全球还原铁产量从1768万吨增长到2008年的6845万吨,平均年增长幅度在6.0%,这已是直接还原铁产量连续30年增长,即使在2009年严峻的经济环境下,世界直接还原铁产量仍保持在6200万吨。除中国外,在1994~2010年间,全世界新增的炼铁生产能力有一半是基于直接还原流程。 具体到各个国家,2008年印度已经连续6年保持世界最大的直接还原铁生产国地位,当年产量为2120万吨,占世界总产量的31%;伊朗位居第二,产量为744万吨;委内瑞拉位居第三,产量为687万吨;这些国家具有充足的铁矿石和燃料资源,具备发展直接还原铁充分条件。 另外,近年来俄罗斯直接还原铁产量增长较快,2008年较上年增长33.7%。2004年,我国直接还原铁产量为43万吨,2005年为41万吨,2006年为40万吨,2007年为60万吨,2008年产量为60万吨。可见我国的直接还原铁产量相对于印度、伊朗等国是微乎其微的。 直接还原铁得以在世界范围内迅速发展,经分析得益于其产品本身和制作工艺的巨大优势以及市场需求的日益增大 产品优势:(1)还原铁化学成分稳定,炼钢过程中能有效稀释废钢中有害残余和夹杂金属含量,改善钢的质量;(2)还原铁本身P、S有害元素含量低,可缩短精炼时间;(3)可减少冶炼装料次数、减少停电作业和热损失,冶炼过程熔化速度快、电耗低、可提高效率、降低成本;(4)电炉冶炼熔化期,供电作业稳定,允许大功率供电、低噪音、烟尘少、工作环境好;(5)使用成本低廉,经济效益高。 工艺优势:(1)制作流程短,直接还原铁可直接提供于电炉炼钢;(2)不用焦炭,不受炼焦煤短缺的影响;(3)污染少,取消了焦炉、烧结等污染量大的工序;(4)还原铁中硫、磷等有害杂质与有色金属含量低,有利于电炉冶炼优质钢

达涅利ENERGIRON直接还原技术

世界金属导报/2010年/6月/22日/第014版 设备制造 达涅利ENERGIRON直接还原技术 1简介 本文根据CO2排放量分析,比较三种炼钢工艺对环境的影响: ?传统联合炼钢厂,高炉-氧气顶吹转炉(BF-BOF)。 ?现代联合炼钢厂,直接还原工艺(基于天然气)-电弧炉(DRP-EAF)。 ?现代联合炼钢厂,直接还原工艺(基于可气化煤)-电弧炉(DRP-EAF)。 达涅利和HYL开发的ENERGIRON气基直接还原技术是先进的铁矿石冶炼工艺,此项技术的目标是: ?通过减少温室气体排放降低对环境的影响。 ?根据主要能量来源,利用各种工业气体,如天然气或煤气化产生的合成煤气或焦炉煤气。 炼钢产业的特征就是大量使用化石燃料,而化石燃料排放导致全球变暖的温室气体(GHG),给环境造成极大的影响,这些气体主要是CO2。CO2的排放量和特点由炼钢厂使用主要燃料的特性所决定。 在传统联合炼钢高炉工艺中,用来还原氧化铁的主要能源是煤。在现代联合炼钢DRP直接还原工艺中,用来还原氧化铁的主要能源可以是天然气或煤或任何工业气体。 2联合炼钢厂的CO2排放 2.1传统联合炼钢厂的CO2排放 图1显示的是传统联合炼钢厂典型的能量平衡。 这个工厂设备包括:炼焦炉设备、烧结车间、生产铁水(HM)高炉、氧气顶吹转炉(BOF)、钢包炉/真空脱气设备、生产热轧带卷(HRC)的薄板坯连铸机和带钢热轧机。 能从传统联合炼钢厂中回收的主要气态燃料副产品包括:烧结车间气体(sPG)、炼焦炉设备气体(COG)、鼓风炉气体(BFG)和氧气顶吹转炉气体(BOFG)。 传统联合炼钢厂的能量平衡显示大多数气态燃料主要用于产生能量或燃烧发热。传统联合钢厂烟道气排放CO2每吨钢水约为2.104t。 2.2现代联合炼钢厂的CO2排放 图2显示的是现代联合炼钢厂典型的能量平衡,这些ENERGIRON直接还原炼钢厂的主要燃料是天然气。 这个工厂包括:球团车间、生产直接还原铁(DRI)的ENERGIRON直接还原炼钢车间(DRP)、电弧炉(EAF)、钢包炉/真空脱气设备、生产热轧带卷(HRC)的薄板坯连铸机和带钢热轧机。 现代联合炼钢厂中回收的主要气态燃烧副产品包括:球团车间气体(PPG)、直接还原炼钢车间气体(DRPG)、电弧炉气体(EAFG)和钢包炉&真空脱气设备产生气体(LF-VDG)。 现代联合炼钢厂的能量平衡显示大多数气态燃料主要用于产生能量或燃烧发热。基于DRP 天然气现代联合钢厂烟道气排放CO2每吨钢水约为0.812t。 ENERGIRON天然气基直接还原技术的碳平衡见图3。当使用天然气作为还原气体时,ENERGIRON DR工厂能耗为2.30 Gcal/tDRI。从图3可知,这种能量形式输入的碳总量约为140kg/tDRI,其中20Kg/tDRI~35Kg/tDRI将进入DRI,105Kg/tDRI~120kg/tDRI转换成了CO,。ENERGIRON技术能对挑选出的CO2气流进行收集和储存,采用这种方法,在所产生的CO2总量中,仅有约46%排向大气层。 2.3现代联合炼钢厂的CO。排放 图4显示的是现代联合炼钢厂典型的能量平衡,这些ENERGIRON直接还原炼钢厂主要使用

信息技术应用体验经验

信息技术应用体验心得 信息技术与学科课程整合要有助于培养学生的创新精神和实践能力。下文是聘才小编为大家介绍信息技术应用体验心得,让我们一起来看看具体内容吧! 信息技术应用体验心得【1】 信息技术课是一门实践性很强的学科,在学习过程中,要求学生必须掌握一定的计算机操作技能和操作技巧。小学信息技术课程主要是让学生初步学会计算机的使用,培养学生的创新意识和创造能力。下面就结合我的教学实践,谈谈我的几点反思。 一、从游戏入门,自觉学习。 小学生对游戏特别感兴趣,而计算机正具有能玩游戏的特点。根据这一特点,可以把计算机新课的学习寓于游戏之中,激发学生学习的兴趣,在学生浓厚的兴趣中学习新知识,掌握新技能。例如学习指法是非常枯燥的,如果教师一开始直接讲解手指的摆放要求和指法要点,学生不但学的很累,而且很不愿学,更加不能强迫其练习了。我在教学中就采取游戏引入的方法,先让学生玩《金山打字游戏》,比赛谁的成绩好或者与老师比赛。学生在“太空打战”"拯救苹果"等游戏的实践中发现,要取得好成绩就必须练习好指法。于是就有人提出如何能够打得又对又快。在这种情况下,老师再讲解指法练习,学生学得就很认真。经过一段时间的练

习后,学生们再玩这个游戏时就感到轻松自如了。这样,既保持了学生学习计算机的热情,还可以促使学生自觉去学习计算机知识。 二、直观演示,激发学习兴趣 小学生天真活泼、好奇、顽皮好动,但他们形象思维能力强,抽象思维能力差。如果仅仅口头讲授计算机知识,显得比较枯燥,学生会没有兴趣,课堂效果肯定不理想,必须要采取用特殊的方法才能较好地解决这一问题,不是单纯讲解。比如在重大版四年级的幻灯片教学中,有一节是在幻灯片中插入背景音乐,为了激发学生的学习兴趣。我首先直观演示事先做好的课堂范例,一个“桂林山水”图文并茂的幻灯片课件自动播放,丰富的切换方式,学生耳目一新:“哇噻!真好!……”学生不由的赞叹。于是我出示这节课要学习的内容:"如何在幻灯片中插入背景音乐"学生迫不及待了,要学会这一招啊!课堂气氛活跃,学得很快。并要求展示,效果很好。 三、教学仅仅依照教学--学习--评价相结合的思想理念 教学紧扣教材,抓住重点,突破难点。围绕学习目标教学,及时反馈检查学生对知识点的掌握情况,并让学生演示讲解,及时检查学习效果,同时又是对知识点的巩固提高的过程。信息技术教材内容较广泛,知识点很多很细,有的

COSRED直接还原技术的应用实践

COSRED直接还原技术的应用实践 唐恩李森蓉李建涛周强汪朋陈泉锋付邦豪 (武汉科思瑞迪科技有限公司) 2018年全球直接还原铁(DRI)的产量接近有9800万吨(图1),主要集中在印度、伊朗、俄罗斯、墨西哥等国家(图2),占比达到80%左右,近两年产量有加速增加的趋势,突破一亿吨的产量指日可待。这其中热压块HBI的生产商主要是俄罗斯,委内瑞拉,美国,马来西亚,利比亚和伊朗,冷态DRI的供应商非常少,基本上只有直接还原短流程电炉厂的富余产量,例如在伊朗,还有一些来自巴林。另外,纽柯的特立尼达工厂生产的大量冷DRI运送到其美国的其他钢铁厂。印度生产的海绵铁主要用于国内消费,仅有少量出口到周边市场。 图1 全球直接还原铁产量走势 图2 全球直接还原铁产量分布

随着全球还原铁产量的大量增长,越来越多的中国钢铁企业对其有所认识和了解,仅2019年上半年不完全统计,已从海外进口30万吨以上的还原铁进行钢铁生产,随着钢铁企业对还原铁认知度的不断增加及良好的用户体验,适应我国能源结构特点的COSRED直接还原铁生产技术势必会受到钢铁企业的青睐,未来COSRED基于技术的灵活性处理不同原料生产的各种还原铁产品势必为客户创造价值(图3)。 图3 还原铁产品在钢铁制品中的应用价值 1铁精粉生产直接还原铁 中国作为全球钢铁产量第一大国,未来在还原铁的使用上以普通炼钢还原铁为主,随着选矿技术的进步,使得高品质的铁精粉市场大量供应成为现实,为直接还原铁的发展创造了有利条件。 表1-1 原料条件 表1-2 还原铁产品质量分析(wt%) *MD=MFe/TFe,即金属化率 表1-3 生产成本

直接还原铁生产技术及现状

直接还原铁生产技术及现状 【我来说两句】2010-8-4 9:59:55 中国选矿技术网浏览80 次收藏 【摘要】:直接还原铁(DRI/HBI)是电炉冶炼纯净钢最佳的残留元素的稀释剂。直接还原是钢铁工业技术发展的重要方向,气基竖炉和煤基回转窑是成熟的直接还原工业化生产技术。中国直接还铁的生产仍处于起步时期,2008年产量约60万t,占世界总产量不足1.0%。直接还原铁在中国有广阔的发展前景,以国内铁矿资源为原料的氧化球团-煤制气-竖炉是中国发展直接还原铁的主要方向。 一、直接还原铁生产技术及现状 直接还原是铁氧化物在不熔化、不造渣,在固态下还原为金属铁的工艺。直接还原产品统称为直接还原铁(Direct Reduction Iron,缩写为DRI),由于DRI的结构呈海绵状,也称为“海绵铁”,为了提高产品的抗氧化能力和体积密度,DRI热态下挤压成型产品称为热压块(HBI),DRI冷态下挤压成型产品称为DRI压块。 直接还原是已实现大规模工业化生产技术,已实现工业化生产的直接还原法有数10种。2008年世界直接还原铁(DRI/HBI)的产量约6845万t,约为世界生铁产量9.30亿t的7.23%。直接还原铁由于产品纯净、质量稳定、冶金特性优良,成为生产优质钢、纯净钢不可缺少的原料,是世界钢铁市场最紧俏的商品之一,直接还原是世界钢铁生产的一个不可缺少的组成部分。 世界直接还原的现状可归纳为以下几个方面。 (一)产量持续增加,气基竖炉占主导地位 DRI的产量持续迅速增加,见表1。气基竖炉Midrex法及HYL法是生产规模最大的工艺方法,回转窑是煤基直接还原主要方法。气基工艺的产量约占世界总产量的75%。煤基直接还原约占25%。直接还原铁各工艺产量的分布见表2。俄罗斯、印度、中东等地近年来都有大型气基竖炉直接还原生产厂的建设计划。拉美、北非及亚洲天然气丰富地区是直接还原铁主要产地。印度是世界直接还原铁产能和产量最大的国家,2008年产量达到2120万t。 年2001 2002 2003 2004 2005 2006 2007 2008 产量4032 4508 4945 5460 5699 5979 6722 6845 年2001 2002 2003 2004 2005 2006 2007 2008 Midrex法66.3 66.6 64.6 64.1 61.3 59.7 59.10 58.2 HYIJ-Ⅲ17 18.4 18.4 18.9 19.7 18.4 16.8 14.5 HYL-I 2.7 1.3 1.3 1.9 Finmet 4.5 3.6 5.2 2.9 2.3 2.2 2.1 1.6 其它气基 1.0 0.2 0.4 <0.1 O.04 0.0 0.0 0.0 煤基8.4 9.8 10.2 12.1 16.5 19.7 22.6 25.7 (二)煤制气-竖炉直接还原为DRI发展开辟了新途径 由Midrex公司提出,并在南非实现了工业化生产的COREX熔融还原尾气作为Midrex 还原气的工艺技术,以及墨西哥HYL 公司提出的HYL-ZR工艺直接使用焦炉煤气、合成

PF法直接还原铁新工艺工业性试验成功

PF法直接还原铁新工艺工业性试验成功 [我的钢铁] 2007-04-27 00:00:00 近日,由北京冶金设备研究设计总院研究设计的单孔罐式还原炉在河北唐山工业性试验成功。 中冶集团北京冶金设备研究设计总院教授级高工陈守明等技术人员长期坚持竖炉直接还原铁工艺研究,结合国内情况创新,发明了PF法竖炉直接还原工艺,并拥有自主知识产权。1998年在北京科技大学做了固定罐的实验室试验,1999年在山西朔州三元碳素厂煅烧石油焦的罐式炉上进行了半工业性试验,验证了这种工艺的可靠性、主要工艺及设备参数。2006年与唐山企业合作,不断优化设计,建设一座单孔罐式还原炉进行工业性试验。2007年3月5日点火生产,一周内打通流程。受试验设备和检测条件所限,操作技术未达最佳状态,生产稳定时DRI金属化率90%左右,少量达到98.2%。如能进一步优化设计和施工、操作技术,各项技术经济指标可以达到或超过KM法指标。 PF法直接还原铁工艺流程如下: PF法直接还原铁工艺主要特点: 容积利用系数高、设备作业率高,能耗低,大幅度降低工程投资和生产成本。 1、反应室与燃烧室分隔,气氛、温度像反应罐(隧道窑)法一样适宜生产DRI,产品金属化率高。但罐体高得多,预热段、还原段、冷却段分别采用不同材料和结构,能连续生产,比反应罐法生产率高,能耗低;而且罐体不像隧道窑中那样反复加热、冷却,寿命长。 2、能像回转窑和转底炉一样连续生产,但炉体不动而炉料自动下落,炉气逆流上升,设备简单可靠,有利于加热和直接还原反应进行,并可方便地控制炉料还原温度和时间,利用系数高、作业率高,能源和原料消耗低; 3、直接还原与反应罐法和回转窑法一样采用外配碳,还原剂和脱硫剂可适当过量,确保还原和脱硫效果,又不增加产品灰分,使得原燃料选用范围广、工艺设备简单、产品质量好,而投资少、成本低; 4、反应室、燃烧室间隔排列,机构紧凑,每组反应罐都是一座独立的还原设备,若干组并列、组成各种生产能力的还原炉。可根据市场和原燃料情况灵活设计和使用,生产规模可大可小,配套设备可洋可土,遇到停电或其他事故可随时停止和重新启动,适合中国和发展中国家国情; 5、适合作为煤基直接还原铁工艺主体设备,也易改造为气基法竖炉和其他工业炉窑。 试验证明,PF法是一种安全可靠的竖炉直接还原工艺,而且综合了当前几种直接还原铁工艺长处,在节能、环保和工程投资、生产成本等方面有明显改进。这种工艺的研究开发和转化,是我国在探索先进、适用的直接还原铁工艺方面的重大进展。 相关链接: 直接还原铁(DRI),也称海绵铁,是冶炼优质钢必不可少的原料,也可作为高炉炼铁、转炉炼钢、铸造、铁合金、粉末冶金的优质炉料,有色冶金的置换剂、水处理的脱氧剂,供不应求。更重要的是,DRI可以用天然气、煤气和非炼焦煤等作能源,实现无焦炼铁,并且比高炉炼铁碳耗低、CO2排放少,有利于节省能源资源、保护环境,被誉为绿色冶金。 随着生产发展、社会进步,资源短缺、环境污染问题日益突出,发达国家钢铁企业都在改造传统生产工艺,逐步关闭能耗高、污染大的高炉、焦炉,发展优质高效的短流程电炉钢厂,世界DRI产量近二十年翻了三番。中国钢铁产量连续十几年高速增长,2006年已达4.2亿吨,生产能力达到6亿吨左右,但DRI生产能力只有几十万吨。目前国家制定政策、采取措施,限制传统钢铁生产工艺低水平重复建设,鼓励发展直接还原、熔融还原非焦炼铁工艺。

应用信息技术教学的好处和改进措施

应用信息技术教学的好处和改进措施 用信息手段代替传统落后的教学方法,熟练使用信息技术管理教学、辅助教学,让学生进入新的领域,激发学生的创造性思维,是近年来学校教育教学方式的重大改变,也对教育教学起了巨大的推动作用。 那么,应用信息技术教学有什么好处呢? 一、信息技术拓展了教学的广度和深度 信息服务能够广泛应用于学校管理工作的各个环节,如对外宣传与联系、学籍管理、学校、教师、学生、家长之间的联系,寄宿生管理等;也广泛应用于校内课程教学、课外小组活动,以及校外学习活动中。为学生、教师和专家相互联系提供讨论的平台,为教师提供课内外学习活动的网上备课环境和教学活动管理平台。信息技术还具有综合处理图形、图像、动画、视频以及声音、文字和语言、符号等多种信息的功能,从声音、色彩、形象、情节、过程等创设的“情境”中,学生学会了探索、实践,激发了联想、判断,从而加深了对问题的理解。 二、信息技术教学能够培养学生良好的学习品质。 学生通过对信息实行积极、深入的加工,加深了对所学知识的理解和记忆;一些学生还意识到学习过程的重要,而非考试分数才是教学的终极目标,对学习有了更深刻的理解。在这个过程中,学生还会持续地获得成就感,持续的激发求知欲望,逐步形成一个心智活动的良性循环,从而培养出独立探索、勇于开拓进取的自学水平。 三、有利于学生高级思维活动的发展

在教学活动中自然地结合使用信息教学技术,能够协助学习者对教学的内容更明晰,使学习者的探究行为更易于发生,促动了高级思维活动。与所有其它工具一样使用者借助它可更灵巧地工作,它不但提升了学生的计算机技能,最重要的还在于它促动了高级思维技能。实践表明,使用信息化教学有利于学生高级思维技能的发展。 四、促动了以教师为中心的教学模式向在教师指导下学生自主与协作学习相结合的教学模式的转换。 信息技术教学条件,为学生学习提供了得天独厚的环境,在信息技术教学的环境下,因为对新事物的接受学生要快得多,他们的兴趣与注意力也集中得多,所以他们之间的交流与协作更多,当然,在这之中也离不开教师的指导。 那么,又如何提升信息技术教学水平呢? 一、循序渐进 不同年龄段的学生,甚至同一年龄段的学生,他们接受知识的水平往往会有很大的差异。教师实行信息技术教学时,要从学生实际出发,充分考虑学生现有的文化知识、认知水平、年龄、兴趣等特点,遵循由浅入深、由表及里、循序渐进等原则。操作目标一般能够采用初步学会、学会、熟练三个层次的学习水平。信息技术课是一门实践性很强、极富创造性、具有明显的时代发展性特点的课程。由表及里、逐层深入的学习途径,便于学生循序渐进地学习信息技术的知识和技能。在信息技术课中让学生在一个个典型的信息处理下展开教学活动,引导学生由简到繁、由易到难、循序渐进地完成一系列“任务”,

相关文档
最新文档