板式换热器换热面积的计算

板式换热器换热面积的计算
板式换热器换热面积的计算

(1)求热负荷Q:Q=G.ρ.CP.Δt

Q—换热量(取冷热流体换热量的平均值),w;

Δt—流体进出口温差,K。

(2)求冷热流体进出口温度:t2=t1+ Q /G .ρ .CP

(3)冷热流体流量:G= Q / ρ .CP .(t2-t1 )

(4)求平均温度差Δtm

Δtm=(T1-t2)-(T2-t1)/In(T1-t2)/(T2-t1)或Δtm=(T1-t2)+(T2-t1)/2 (5)选择板型

若所有的板型选择完,则进行结果分析。

(6)由K值范围,计算板片数范围Nmin,Nmax

Nmin = Q / Kmax .Δtm .F P .β

Nmax = Q / Kmin .Δtm .F P .β(7)取板片数N(Nmin≤N≤Nmax )

若N已达Nmax,做(5)。

(8)取N的流程组合形式,若组合形式取完则做(7)。

(9)求Re,Nu

Re = W .de / ν

Nu =a1.Re a2.Pr a3

(10)求a,K传热面积F

a = Nu .λ / de

K= 1 / 1/a h+1/ a c+γc+γc+δ/λ0

F= Q /K .Δtm .β

(11)由传热面积F求所需板片数NN

板式换热器换热面积与传热系数的关系

传热效率高: 板片波纹的设计以高度的薄膜导热系数为目标,板片波纹所形成的特殊流道,使流体在极低的流速下即可发生强烈的扰动流(湍流),扰动流又有自净效应以防止污垢生成因而传热效率很高。 一般地说,板式换热器的传热系数K值在3000~6000W/m2.oC范围内。这就表明,板式换热器只需要管壳式换热器面积的1/2~1/4 即可达到同样的换热效果。 随机应变: 由于换热板容易拆卸,通过调节换热板的数目或者变更流程就可以得到最合适的传热效果和容量。只要利用换热器中间架,换热板部件就可有多种独特的机能。这样就为用户提供了随时可变更处理量和改变传热系数K值或者增加新机能的可能。 热损失小: 因结构紧凑和体积小,换热器的外表面积也很小,因而热损失也很小,通常设备不再需要保温。 使用安全可靠: 在板片之间的密封装置上设计了2道密封,同时又设有信号孔,一旦发生泄漏,可将其排出热换器外部,即防止了二种介质相混,又起到了安全报警的作用。 有利于低温热源的利用: 由于两种介质几乎是全逆 流流动,以及高的传热效果,板式 换热器两种介质的最小温差可达到 1oC。用它来回收低温余热或利用低 温热源都是最理想的设备。

冷却水量小: 板式换热器由于其流道的几何形状所致,以及二种液体都又很高的热效率,故可使冷却水用量大为降低。反过来又降低了管道,阀门和泵的安装费用。 占地少,易维护: 板式换热器的结构极为紧凑,在传热量相等的条件下,所占空间仅为管壳式换热器的1/2~1/3。并且不象管壳式那样需要预留出很大得空间用来拉出管束检修。而板式换热器只需要松开夹紧螺杆,即可在原空间范围内100%地接触倒换热板的表面,且拆装很方便。 阻力损失少: 在相同传热系数的条件下,板式换热器通过合理的选择流速,阻力损失可控制在管壳式换热器的1/3范围内。 投资效率高: 在相同传热量的前提下,板式换热器与管壳式换热器相比较,由于换热面积,占地面积,流体阻力,冷却水用量等项目数值的减少,使得设备投资、基建投资、动力消耗等费用大大降低,特别是当需要采用昂贵的材料时,由于效率高和板材薄,设备更显经济。

传热计算习题--附详细答案

传热计算题 1.在一内径为0.25cm的管轴心位置上,穿一直径为 0.005cm的细导线,用以测定气体的导热系数。当导线以0.5A 的电流时,产生的电压降为0.12V/cm,测得导线温度为167℃,空心管内壁温度为150℃。 试求充入管内的气体的导热系数 试分析仪器精度以外造成结果误差的客观原因。 2.有两个铜质薄球壳,内球壳外径为0。015m,外球壳内径为 0.1m,两球壳间装入一种其导热系数待测的粉粒料。内球用电加热,输入功率为 50w,热量稳定地传向外球,然后散发到周围大气中。两球壁上都装有热电偶,侧得内球壳的平均温度为120℃,外求壳的平均温度为50℃,周围大气环境温度为20℃;设粉粒料与球壁贴合,试求: (1)待测材料的导热系数 (2)外球壁对周围大气的传热系数 3.有一面积为10cm2带有保护套的热电偶插入一输送空气的长管内,用来测量空气的温度。已知热电偶的温度读数为300℃,输气管的壁温为 200℃,空气对保护套的对流传热系数为60w/m2.k,该保护套的黑度为 0.8,试估算由于辐射造成的气体温度测量误差。并叙述减小测量误差的途径。已知 Stefan-Bohzman常数σ=5.67×10-9w/m2k 。4.用两个结构尺寸相同的列管换热器按并联方式加热某中料液。换热器的管束由32根长 3m 的Ф25×3mm 的钢管组成。壳程为120℃的饱和蒸汽。料液总流量为20m3/h,按相等流量分配到两个换热器中作湍流流动,由 25℃加热到 80℃。蒸汽冷凝对流传热系数为8Kw/m2.℃,管壁及污垢热阻可不记,热损失为零,料液比热为 4.1KJ/kg.℃,密度为 1000kg/m3。试求: (1)管壁对料液的对流传热系数 (2)料液总流量不变,将两个换热器串联,料液加热程度有何变化? (3)此时蒸汽用量有无变化?若有变化为原来的多少倍? (两者情况下蒸汽侧对流传热系数和料液物性不变) 5.某厂现有两台单壳程单管程的列管式空气加热器,每台传热面积为A0=20m2(管外面积),均由128根Ф25×2.5mm的钢管组成。壳程为 170℃的饱和水蒸汽冷凝(冷凝潜热为r=2054KJ/kg),凝液不过冷。空气走管程,其入口温度t1=30℃,流量为4500kg/h 假定空气的物性参数不随温度、压力变化,可视为常数,分别为C P=1.005KJ/Kg.K,ρ=1.06Kg/m3,μ=20.1×10-3cp ,λ=0.029w/m.k。热损失可略,管内湍流时空气的对流给热系数可用下式计算: N u=0.02R e0.8。 (1)若两台换热器并联使用,通过两台换热器的空气流量均等,试求空气的出口温度t2(℃)及水蒸汽的总冷凝量 m1(kg/h) (2)若两台改为串联使用,试求此时空气的出口温度t2(℃)及水蒸汽的总冷凝量m1(kg/h)。 (3)试比较并联及串联时传热效率的大小,并求两种方式下总传热能力的比值 Q串/ Q并。 6.现有两台单壳程单管程的传热面积均为20m2的列管式空气加热器,每台加热器均由64根Ф57×3.5mm钢管组成,壳程为170℃的饱和水蒸汽,空气入口温度为30℃,流量为 2.5kg/s ,以湍流方式通过管内。 (1)若两台换热器并联使用,通过两台换热器的空气流量均等,此时空气的对流传热系数为38w/m2℃,求空气的出口温度t2(℃)

板式换热器的换热计算方法Word版

板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: ?总传热量(单位:kW). ?一次侧、二次侧的进出口温度 ?一次侧、二次侧的允许压力降 ?最高工作温度 ?最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。

(1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; m h,m c-----热、冷流体的质量流量,kg/s; C ph,C pc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。

简单计算板式换热器板片面积

选用板式换热器就是要选择板片的面积的简单方法: Q=K×F×Δt, Q——热负荷 K——传热系数 F——换热面积 Δt——传热温差(一般用对数温差) 传热系数取决于换热器自身的结构,每个不同流道的板片,都有自身的经验公式,如果不严格的话,可以取2000~3000。最后算出的板换的面积要乘以一定的系数如1.2。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。

ARD艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD已发展成为可拆式板式换热器领域卓越的厂家。 ARD艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、风凯/FUNKE、萨莫威孚/Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号将近2000种的板式换热器板片和垫片,ARD艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD 提供的换热器配件或接受ARD的维护服务(包括定期清洗、维修及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD都能为您提供板式换热器领域的系统解决方案。

低压给水加热器设计计算说明书

低压给水加热器设计计算说明书

目录 符号表 (3) 设计任务书 (4) 设计计算过程 (4) 参考文献 (7)

符号表 A——传热面积(m2) ——流量(kg/h) q m L——长度(m) ν——比体积(m3/kg) h——焓(J/kg) K——传热系数[W/(m2? C)] n——传热管数量 Q——换热量 Re——雷诺数 Pr——普朗特数 R——热阻(m2? C/W) t——温度( C) λ——热导率[W/(m? C)] α——表面传热系数[W/(m2? C)] μ——动力粘度(Pa?s) ρ——密度(kg/m3) ——传热管外径(m) d r ——传热管内经(m) d i D——直径(mm) ——流速(m/s) c t s——管心距(mm) u——汽化潜热kJ/kg F——安全系数 ξ——局部阻力系数

设计任务书 1. 管侧技术参数: 给水流量:q 6 m =80t/h 给水进口温度:t 6 =100 C 给水出口温度: t 9 =120 C 管侧压力:0.5MPa 2.壳侧技术参数 蒸汽压力:0.2MPa 蒸汽入口温度:t 1 =130 C 疏水出口温度:t 5 =120.24 C 3. 设计一台低压给水加热器 设计计算过程 1.由《工程热力学》(第四版,严家騄编著)附表8查得在0.5MPa,100 C状态下水的焓值 h 6=419.36kJ/kg,120 C时水的焓值h 9 =503.97kJ/kg 换热量Q Q=q 6 m (h 9 -h 6 )=1880.2kJ/s 2. 查GB 151-1999先取锡黄铜铜管管外径d r =19mm,壁厚s=2mm,则d i =d r -2s=15mm 查《轻工化工设备及设计》70页,管程中流速范围是0.5-3.0m/s,选取流速c t =0.95m/s 查《工程热力学》附表7得管侧水的平均比体积 w =0.00105165m3/kg 管子根数n

换热面积的计算

F=Q/kK*△tm F 是换热器的有效换热面积 Q 是总的换热量 k 是污垢系数一般取0.8-0.9 K 是传热系数 △tm 是对数平均温差 1.板式换热器简介 板式换热器是由一系列具有一定波纹形状的金属片叠装而成的一种新型高效换热器。各种板片之间形成薄矩形通道,通过半片进行热量交换。它与常规的管壳式换热器相比,在相同的流动阻力和泵功率消耗情况下,其传热系数要高出很多,在适用的范围内有取代管壳式换热器的趋势。 板式换热器的型式主要有框架式(可拆卸式)和钎焊式两大类,板片形式主要有人字形波纹板、水平平直波纹板和瘤形板片三种。 1.1板式换热器的基本结构 板式换热器主要由框架和板片两大部分组成。 板片由各种材料的制成的薄板用各种不同形式的磨具压成形状各异的波纹,并在板片的四个角上开有角孔,用于介质的流道。板片的周边及角孔处用橡胶垫片加以密封。 框架由固定压紧板、活动压紧板、上下导杆和夹紧螺栓等构成。 板式换热器是将板片以叠加的形式装在固定压紧板、活动压紧板中间,然后用夹紧螺栓夹紧而成。 1.2板式换热器的特点(板式换热器与管壳式换热器的比较) a.传热系数高由于不同的波纹板相互倒置,构成复杂的流道,使流体在波纹板间流道内呈旋转三维流动,能在较低的雷诺数(一般Re=50~200)下产生紊流,所以传热系数高,一般认为是管壳式的3~5倍。 b.对数平均温差大,末端温差小在管壳式换热器中,两种流体分别在管程和壳程内流动,总体上是错流流动,对数平均温差修正系数小,而板式换热器多是并流或逆流流动方式,其修正系数也通常在0.95左右,此外,冷、热流体在板式换热器内的流动平行于换热面、无旁流,因此使得板式换热器的末端温差小,对水换热可低于1℃,而管壳式换热器一般为5℃. c.占地面积小板式换热器结构紧凑,单位体积内的换热面积为管壳式的2~5倍,也不像管壳式那样要预留抽出管束的检修场所,因此实现同样的换热量,板式换热器占地面积约为管壳式换热器的1/5~1/10。 d.容易改变换热面积或流程组合,只要增加或减少几张板,即可达到增加或减少换热面积的目的;改变板片排列或更换几张板片,即可达到所要求的流程组合,适应新的换热工况,而管壳式换热器的传热面积几乎不可能增加。 e.重量轻板式换热器的板片厚度仅为0.4~0.8mm,而管壳式换热器的换热管的厚度为 2.0~2.5mm,管壳式的壳体比板式换热器的框架重得多,板式换热器一般只有管壳式重量的1/5左右。 f. 价格低采用相同材料,在相同换热面积下,板式换热器价格比管壳式约低40%~60%。 g. 制作方便板式换热器的传热板是采用冲压加工,标准化程度高,并可大批生产,管壳式换热器一般采用手工制作。 h. 容易清洗框架式板式换热器只要松动压紧螺栓,即可松开板束,卸下板片进行机械清洗,这对需要经常清洗设备的换热过程十分方便。

冷凝器换热面积计算方法

冷凝器换热面积计算方法 (制冷量+压缩机功率)/200~250=冷凝器换热面 例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃ 制冷量12527W+压缩机功率11250W 23777/230=气冷凝器换热面积103m2 水冷凝器换热面积与气冷凝器比例=概算1比18;(103/18)= 6m2 蒸发器的面积根据制冷量(蒸发温度℃×Δt进气温度) 制冷量=温差×重量/时间×比热×安全系数 例如:有一个速冻库1库温-35℃,2冷冻量1ton/H、3时间2/H内,4冷冻物品(鲜鱼);5环境温度27℃; 6安全系数1.23 计算:62℃×1000/2/H×0.82×1.23=31266kcal/n 可以查压缩机蒸发温度CT=40;CE-40℃;制冷量=31266kcal/h NFB与MC选用 无熔丝开关之选用 考虑:框架容量AF(A)、额定跳脱电流AT(A)、额定电压(V), 低电压配线建议选用标准 (单一压缩机) AF 取大于AT 一等级之值.(为接点耐电流的程度若开关会热表示AF选太小了) AT(A ) = 电动机额定电流×1 .5 ~2 .5(如保险丝的IC值) (多台压缩机) AT(A )=(最大电动机额定电流×1 .5 ~2 .5)+ 其余电动机额定电流总和 IC启断容量,能容许故障时的最大短路电流,如果使用IC:5kA的断路器,而遇到10kA的短路电流,就无法承受,IC值愈大则断路器内部的消弧室愈大、体积愈大,愈能承受大一点的故障电流,担保用电安全。要搭配电压来表示220V 5KA 电压380V时IC值是2.5KA。

电磁接触器之选用 考虑使用电压、控制电压,連续电流I t h 之大小(亦即接点承受之电流大小),連续电流I th 的估算方式建议为I t h=马达额定电流×1.25/√ 3。 直接启动时,电磁接触器之主接点应选用能启闭其额定电流之10倍。 额定值通常以电流A、马力HP或千瓦KW标示,一般皆以三相220V电压之额定值为准。 电磁接触器依启闭电流为额定电流倍数分为: (1).AC1级:1.5倍以上,电热器或电阻性负载用。 (2).AC2B级:4倍以上,绕线式感应电动机起动用。 (3).AC2级:4倍以上,绕线式感应电动机起动、逆相制动、寸动控制用。 (4).AC3级:闭合10倍以上,启断8倍以上,感应电动机起动用。 (5).AC4级:闭合12倍以上,启断10倍以上,感应电动机起动、逆相制动、寸动控制用。 如士林sp21规格 ◎额定容量CNS AC3级 3相 220~240V→kW/HP/A:5.5/7.5/24 380~440V→kW/HP/A:11/15/21 压缩功率计算 一. 有关压缩机之效率介绍: 1.体积效率(EFF V) :用以表示该压缩机泄漏或阀门间隙所造成排出的气体流量 减少与进入压缩机冷媒因温度升高造成比体积增加之比值 体积效率(EFF V)=压缩机实际流量/压缩机理论流量 体积效率细分可分为二部分 (1)间隙体积效率 ηvc=V′ / V V′:实际之进排气量 V :理论之排气量 间隙体积效率一般由厂商提供,当压缩机之压缩比(PH / PL)增大,即高压愈高或低压愈低,则膨胀行程会增长,ηvc减少。 (2)过热体积效率 ηvs=v / v′

冷凝器换热面积计算方法

冷凝器换热面积计算方法 (制冷量 +压缩机功率)/200~250=冷凝器换热面 例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃ 制冷量12527W+压缩机功率11250W 23777/230=气冷凝器换热面积103m2 水冷凝器换热面积与气冷凝器比例=概算1 比18;(103/18)= 6m2 蒸发器的面积根据制冷量(蒸发温度℃× Δt 进气温度) 制冷量=温差×重量/时间×比热×安全系数例如:有一个速冻库1 库温-35℃,2冷冻量1ton/H、3时间2/H 内,4 冷冻物品(鲜鱼);5环境温度27℃;6 安全系数1.23 计算:62℃×1000/2/H×0.82×1.23=31266kcal/n 可以查压缩机蒸发温度CT=40;CE-40℃;制冷量=31266kcal/h NFB 与MC 选用 无熔丝开关之选用 考虑:框架容量AF(A)、额定跳脱电流AT(A)、额定电压(V),低电压配线建议选用标准 (单一压缩机) AF 取大于AT 一等级之值.(为接点耐电流的程度若开关会热表示AF选太小了) AT(A ) =电动机额定电流×1 .5 ~2 .5(如保险丝的IC 值) (多台压缩机) AT(A )=(最大电动机额定电流×1 .5 ~2 .5)+其余电动机额定电流总和 IC启断容量,能容许故障时的最大短路电流,如果使用IC:5kA的断路器,而遇到10kA的短路电流,就无法承受,IC值愈大则断路器内部

的消弧室愈大、体积愈大,愈能承受大一点的故障电流,担保用电安全。要搭配电压来表示220V 5KA 电压380V时IC值是2.5KA。 电磁接触器之选用 考虑使用电压、控制电压,連续电流I t h 之大小( 亦即接点承受之电流大小),連续电流I th 的估算方式建议为I t h=马达额定电流×1.25/√ 3。直接启动时,电磁接触器之主接点应选用能启闭其额定电流之10 倍。额定值通常以电流A、马力HP或千瓦KW标示,一般皆以三相220V 电压之额定值为准。 电磁接触器依启闭电流为额 定电流倍数分为: (1).AC1级:1.5 倍以上,电热器或电阻性负载用。 (2).AC2B级:4 倍以上,绕线式感应电动机起动用。 (3).AC2级:4 倍以上,绕线式感应电动机起动、逆相制动、寸动控制用。 (4).AC3级:闭合10 倍以上,启断8 倍以上,感应电动机起动用。 (5).AC4级:闭合12 倍以上,启断10 倍以上,感应电动机起动、逆相制动、寸动控制用。 如士林sp21 规格 ◎额定容量CNS AC3级3 相 220~240V→kW/HP/A:5.5/7.5/24 380~440V→kW/HP/A:11/15/21 压缩功率计算 一. 有关压缩机之效率介绍: 1.体积效率(EFF V): 用以表示该压缩机泄漏或阀门间隙所造成排出的气体 流量减少与进入压缩机冷媒因温度升高造成比体积增加之比值 体积效率(EFF V)=压缩机实际流量/压缩机理论流量体积效率细分可分为二部分 (1)间隙体积效率 η vc=V′ / V V′:实际之进排气量V :理论之排气量间隙体积效率一般由厂商提供,当压

板式换热器传热板片对换热效果和换热面积的影响

传热板片沿流体流动方向的流道断面形状不断变化,大大加强了流动的扰动,因而能在很低的雷诺数下形成湍流,从而增强了流体的传热性能。通常情况下,同一种流体在列管式换热器内当雷诺数为4000~6000时,才能达到湍流状态,而在全焊式板式换热器垫片内当雷诺数为100~300时,就可达到湍流状态。 全焊式板式换热器的板型结构设计合理,使传热与流体阻力特性匹配合理,故传热效率高、压降低、综合性能较佳,消除了管壳式换热器和可拆卸板式换热器存在的死区现象。采用周边组焊的板束形式,取消了密封垫片,故耐热、耐压性能优于可拆卸板式换热器。同时板片系模块化结构,可根据不同的工艺要求改变流程形式和流道面积的大小。 随着中国工业化进程的快速推进,煤转气技术的推广及燃料乙醇的兴起,我们相信,在石油原油、石油化工、天然气处理以及属于21世纪的生物制药工业等诸多领域,全焊接板式换热器将得到更为广泛的应用,具有更广阔的市场。 艾瑞德专注于中国板式换热器市场的发展,为了能够更快更有力地开发中国换热器市场,英国ARD艾瑞德板式换热器(江阴)有限公司集团经过长期调研与论证,最终确定合作在中国投资建立具有国际一流水准的板式换热器专业生产基地--艾瑞德板式换热器(江阴)有限公司。艾瑞德依靠英国ARD艾瑞德板式换热器(江阴)有限公司的先进换热技术和生产制造技术,并结合英国ARD艾瑞德板式换热器(江阴)有限公司独有的A系列板型,致力于ARD艾瑞德板式换热器(江阴)有限公司板式换热器在中国市场的推广和应用。 艾瑞德每种规格的板片,均具有至少两个板型,采用热混合技术,可以综合换热器的传热和压降,使其运行在最佳工作点。内旁通,双流道技术和不等流通截面积装配为两侧介质流量相差较大的工况提供了完美的解决方案。ARD艾瑞德板式换热器(江阴)有限公司板式换热器有AB系列、AM系列、AL系列、AP系列、AS系列等几大系列百余种板型。各种型号都有深波纹、浅波纹、大角度、小角度等,完全确保满足不同用户的需要,特殊工况可按用户需要专门设计制造。

换热面积计算

换热面积计算 800KW蒸发器、冷凝器换热面积计算一、800KW蒸发器换热面积: A=Q/(K*?t), ?t=,t-t,/ln(t-t/ t-t) 21c1c2 2A:换热面积m(基于工作介质:水、R22); Q:压缩机制冷量KW,为800KW; K:传热系数,采用波纹状螺纹管取3.4 t为进水温度,为12?; 1 t为出水温度,为7? 2 t为蒸发温度= t-(2-4)?,取t=4? c2c 22经计算A=46.23 m,实际A=A*(1.1-1.15)=51.78 m(取1.12) 计计 二、800KW冷凝器换热面积: A=Q*1.2/(K*?t), ?t=(t-t)/ln(t-t/ t-t) 21c1c2 2A:换热面积m(基于工作介质:水、R22); Q:压缩机制冷量KW,为800KW; K:传热系数,采用波纹状螺纹管取3.14 t为进水温度,为30?; 1 t为出水温度,为35? 2 t为冷凝温度= t+5?,取t=40? c2c 22经计算A=42.46 m,实际A=A*(1.1-1.15)=47.5 m(取1.12) 计计 三、无锡约克公司蒸发器换热面积: 无锡约克公司提供给我司一款直径为650mm,制冷量为967KW, 蒸发温度为5.2?干式蒸发器(基于工作介质:水、R134a)的设计参 数为:采用直径为9.52 mm,壁厚0.8 mm波纹状螺纹管,铜管长度为2446mm,数量为1400根。 采用上述计算公式: 22换热面积A=55.88 m,实际A=A(1.1-1.15)=62.59 m(取1.12) 计计

根据GB151-1999管壳式换热器中3.7.1有关换热面积的解释及计算方法,1400根铜管的外表面积就为换热面积A。 2 A=3.14DL*1400=3.14*0.00952*(2.446-0.05*2)*1400=98.18 m 2(大于62.59 m,满足设计要求) 四、铜管数量的计算: 按江苏萃隆铜业有限公司推荐的行业用铜管材料,蒸发器用 ,12.7*0.85(名义壁厚)波纹状螺纹管;冷凝器用,15.88*0.64(名义壁厚)波纹状螺纹管。 经初步设计二容器均采用3米长铜管,根据GB151-1999管壳式换热器每根铜管的换热面积: 2A=3.14*(12.7/1000)*(3-0.5*2)=0.1156 m 蒸发器 2 A=3.14*(15.88/1000)*(3-0.5*2)=0.1446 m冷凝器 (其中0.5为铜管伸入管板内的长度)。 蒸发器所用铜管数量n=A/ A=51.78/0.1156=448根蒸发器 冷凝器所用铜管数量n=A/ A=47.5/0.1446=329根冷凝器 考虑到铜管在折流板中尚有部分换热面积的损失,同时根据GB151-1999管壳式换热器5.6.3中布管要求,方便布管取蒸发器所用铜管数量为454根,冷凝器所用铜管数量为338根。 ---------------------------------------------------------------精品范文 ------------------------------------------------------------- 精品范文 3 / 4 ---------------------------------------------------------------精品范文 ------------------------------------------------------------- 精品范文

简单计算板式换热器板片面积

简单计算板式换热器板 片面积 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

选用板式换热器就是要选择板片的面积的简单方法: Q=K×F×Δt, Q——热负荷 K——传热系数 F——换热面积 Δt——传热温差(一般用对数温差) 传热系数取决于换热器自身的结构,每个不同流道的板片,都有自身的经验公式,如果不严格的话,可以取2000~3000。最后算出的板换的面积要乘以一定的系数如。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。 ARD艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD已发展成为可拆式板式换热器领域卓越的厂家。 ARD艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/、风凯/FUNKE、萨莫威孚/Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号将近2000种的板式换热器板片和垫片,ARD艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD提供的换热器配件或接受ARD的维护服务(包括定期清洗、维修及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD都能为您提供板式换热器领域的系统解决方案。

冷凝器换热面积计算方法

冷凝器換熱面積計算方法 (製冷量+壓縮機功率)/200~250=冷凝器換熱面 例如:(3SS1-1500壓縮機)CT=40℃:CE=-25℃ 製冷量12527W+壓縮機功率11250W 23777/230=氣冷凝器換熱面積103m2 水冷凝器換熱面積與氣冷凝器比例=概算1比18;(103/18)= 6m2 蒸發器的面積根據製冷量(蒸發溫度℃×Δt進氣溫度) 製冷量=溫差×重量/時間×比熱×安全係數 例如:有一個速凍庫1庫溫-35℃,2冷凍量1ton/H、3時間2/H內,4冷凍物品(鮮魚);5環境溫度27℃;6安全係數1.23 計算:62℃×1000/2/H×0.82×1.23=31266kcal/n 可以查壓縮機蒸發溫度CT=40;CE-40℃;製冷量=31266kcal/h NFB與MC選用 無熔絲開關之選用 考慮:框架容量AF(A)、額定跳脫電流AT(A)、額定電壓(V), 低電壓配線建議選用標準 (單一壓縮機) AF 取大於AT 一等級之值.(為接點耐電流的程度若開關會熱表示AF選太小了) AT(A ) = 電動機額定電流×1 .5 ~2 .5(如保險絲的IC值) (多台壓縮機) AT(A )=(最大電動機額定電流×1 .5 ~2 .5)+ 其餘電動機額定電流總和 IC啟斷容量,能容許故障時的最大短路電流,如果使用IC:5kA的斷路器,而遇到10kA的短路電流,就無法承受,IC值愈大則斷路器內部的消弧室愈

大、體積愈大,愈能承受大一點的故障電流,擔保用電安全。要搭配電壓來表示220V 5KA 電壓380V時IC值是2.5KA。 電磁接觸器之選用 考慮使用電壓、控制電壓,連續電流I t h 之大小(亦即接點承受之電流大小),連續電流I th 的估算方式建議為I t h=馬達額定電流×1.25/√3。直接啟動時,電磁接觸器之主接點應選用能啟閉其額定電流之10倍。 額定值通常以電流A、馬力HP或千瓦KW標示,一般皆以三相220V電壓之額定值為準。 電磁接觸器依啟閉電流為 額定電流倍數分為: (1).AC1級:1.5倍以上,電熱器或電阻性負載用。 (2).AC2B級:4倍以上,繞線式感應電動機起動用。 (3).AC2級:4倍以上,繞線式感應電動機起動、逆相制動、寸動控制用。 (4).AC3級:閉合10倍以上,啟斷8倍以上,感應電動機起動用。 (5).AC4級:閉合12倍以上,啟斷10倍以上,感應電動機起動、逆相制動、寸動控制用。 如士林sp21規格 ◎額定容量CNS AC3級3相 220~240V→kW/HP/A:5.5/7.5/24 380~440V→kW/HP/A:11/15/21 壓縮功率計算 一. 有關壓縮機之效率介紹: 1.體積效率(EFF V) :用以表示該壓縮機洩漏或閥門間隙所造成排出的 氣體流量減少與進入壓縮機冷媒因溫度升高造成比體積增加之比值 體積效率(EFF V)=壓縮機實際流量/壓縮機理論流量 體積效率細分可分為二部分 (1)間隙體積效率 ηvc=V′/ V V′:實際之進排氣量V :理論之排氣量 間隙體積效率一般由廠商提供,當壓縮機之壓縮比(PH / PL)增大,即高壓愈高或低壓愈低,則膨脹行程會增長,ηvc減少。

板式换热器设计及其选用

题目:板式换热器设计及其选用 目录 一、说明书 (2) 二、设计方案 (3) 三、初步选定 (4) (1)已知两流体的工艺参数 (2)确定两流体的物性数据 (3)计算热负荷和两流体的质量流速 (4)计算两流体的平均传热温差 (5)初选换热器型号 四、验证 (6) (1)算两流体的流速u (2)算雷诺数Re (3)计算努塞尔特数Nu (4)求两流体的传热系数α (5)求污垢热阻R (6)求总传热系数K,并核算 五、核算 (7) (1)压强降△P核算 (2)换热器的换热量核算 六、结论 (7) 七、设计结果 (8) 八、附录 (9) 表1:板式换热器的污垢热阻 图1:多程流程组合的对数平均温差修正系数 九、参考文献 (9)

一、说明书 现有一块建筑用地,建筑面积为12500 m2,采用高温水在板式换热器中加热暖气循环水。高温水进入板式换热器的温度为100℃,出口的温度为75℃;循环水进入板式换热器的温度为65℃,出口的温度为90℃。供暖面积热强度为293 kJ/(m2·h)。要求高温水和循环水经过板式换热器的压强降均不大于100 kPa。请选择一台型号合适的板式换热器。(假设板壁热阻和热损失可以忽略) 已知的工艺参数: 二、设计方案 (1) 根据热量平衡的关系,求出未知的换热量和质量流量,同时算出两流体的平均温度差; (2) 参考有关资料、数据,设定总传热系数K,求出换热面积S,根据已知数据初选换热器的型号;

(3) 运用有关关联式验证所选换热器是否符合设计要求; (4) 参考有关资料、数据,查出流体的污垢热阻; (5) 根据式??? ? ??++++= 2211111 αλδαR R K O O 求得流体的总传热系数,该值应不 小于初设的总传热系数,否则改换其他型号的换热器,由(3)开始重新计算; (6) 如果大于初设值,则再进一步核算两流体的压强降和换热量,是否满足设计要求,否则改换其他型号的换热器,由(3)开始重新计算; (7) 当所选换热器均满足设计要求时,该换热器才是合适的。 三 、初步选定 (1) 已知两流体的工艺参数 高温水 t 1′= 100℃ t 1〞= 75℃ △P 1≤100 kPa 循环水 t 2′= 65℃ t 2〞= 90℃ △P 2≤100 kPa (2) 确定两流体的物性数据 高温水的定性温度为:C t ?=+= 5.87275 1001 循环水的定性温度为:C t ?=+= 5.772 90 652 根据定性温度,分别查取两流体的有关物性数据: ① 热的一侧(高温水)在87.5℃下的有关数据如下: 密度 ρ 1 = 970.17 kg /m 3

蒸汽加热器计算

一.产品概述: 暖风器是利用蒸汽加热空气的一种新颖热交换设备.该设备采用螺旋翅片管作为传热元件,重量轻,体积少,结构紧凑,传热面积大,使用寿命长.主要应用于电厂锅炉系统,提高了机组热力系统的循环效率.如:空气预热器的空气入口端,冷却制粉系统.也可用作其它行业中利用蒸汽加热空气的相关设备. 二.性能特点: 1.蒸汽加热器是利用汽轮机蒸汽作为热源来加热空气的.其设计是以蒸汽的凝结放热过程为设计基础,就是使用热蒸汽冷凝放热成饱和蒸汽,再冷凝放热成饱水,加热蒸汽对螺旋翅片管外部横掠空气产生稳定的相变放热过程,释放出全部的汽化潜热,将空气加热后凝结成饱和水排出. 2.采用管簇组合式结构,采用钢铝复合螺旋翅片管组成的管排构成换热器单片,单个或数个换热单片并联成组,各组串联后组装成蒸汽加热器,串,并联的换热片采用积木式装配结构,体积小,结构紧凑,便于维修更换. 3.蒸汽加热器由壳体,进汽管联箱,疏水管联箱,管束固定板,螺旋翅片管束,疏水管和疏水热膨胀弯管,定位套管,风道过渡段和风道法兰等部分组成. 4.加热蒸汽首先通过蒸汽入口管导入蒸汽联箱,通过螺旋翅片管冷凝放热后变成饱和水进入疏水联箱,再通过疏水管不断的排放出去. 5.传热元件采用双金属钢铝复合螺旋翅片,基管为钢制管,铝翅片采用模具整体一次轧制成形,与基管连接紧密,接触热阻小,传热系数高. 6.双金属钢铝复合螺旋支片管在较大温度变化范围内保持稳定的低阻值,传热稳定性好,并且对温度突变及震动有良好抗力 7.钢铝复合螺旋翅片管的内部钢管(基管)由外层铝管壁保护不受腐蚀,防腐蚀性能更好. 8.翅片管采用错列布置方式,传热面积大,换热系数高. 9.管排设计布置合理,空气流动均匀,无汌流发生. 10.螺旋翅片管的直径.翅高,翅间距,翅厚,管间距的结构参数和布置形式设计合理,传热效率高,阻力小. 11.设备整体重量轻,结构紧凑,体积小,传热效率高. 12.所有承压部件按国家现行标准设计和制造. 13.蒸汽加热汽出厂前进行水压试验,试验压力为设计压力的1.5倍,确保水压试验时无任何泄漏现象发生. 14.蒸汽加热器设计适合室外布置,可以长期安全运行,整体设计寿命不小于30年. 15.设备的噪声水平符合"工业企业噪声卫生标准"的规定,即距设备外壳1米处的噪声不大于85dB(A).

换热器的传热系数K汇总

介质不同,传热系数各不相同我们公司的经验是: 1、汽水换热:过热部分为800~1000W/m2.℃ 饱和部分是按照公式K=2093+786V(V是管内流速)含污垢系数0.0003。 水水换热为:K=767(1+V1+V2)(V1是管内流速,V2水壳程流速)含污垢系数0.0003 实际运行还少有保守。有余量约10% 冷流体热流体总传热系数K,W/(m2.℃) 水水 850~1700 水气体 17~280 水有机溶剂 280~850 水轻油 340~910 水重油60~280 有机溶剂有机溶剂115~340 水水蒸气冷凝1420~4250 气体水蒸气冷凝30~300 水低沸点烃类冷凝 455~1140 水沸腾水蒸气冷凝2000~4250 轻油沸腾水蒸气冷凝455~1020 不同的流速、粘度和成垢物质会有不同的传热系数。K值通常在

800~2200W/m2·℃范围内。 列管换热器的传热系数不宜选太高,一般在800-1000 W/m2·℃。 螺旋板式换热器的总传热系数(水—水)通常在1000~2000W/m2·℃范围内。 板式换热器的总传热系数(水(汽)—水)通常在3000~5000W/m2·℃范围内。 1.流体流径的选择 哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例) (1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。 (2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。 (3) 压强高的流体宜走管内,以免壳体受压。 (4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。 (5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。 (6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。 (7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)

换热器的传热计算

换热器的传热计算 换热器的传热计算包括两类:一类是设计型计算,即根据工艺提出的条件,确定换热面积;另一类是校核型计算,即对已知换热面积的换热器,核算其传热量、流体的流量或温度。这两种计算均以热量衡算和总传热速率方程为基础。 换热器热负荷Q 值一般由工艺包提供,也可以由所需工艺要求求得。Q=W c p Δt ,若流体有相变,Q=c p r 。 热负荷确定后,可由总传热速率方程(Q=K S Δt )求得换热面积,最后根据《化工设备标准系列》确定换热器的选型。 其中总传热系数K= 0011 h Rs kd bd d d Rs d h d o m i i i i ++++ (1) 在实际计算中,总传热系数通常采用推荐值,这些推荐值是从实践中积累或通过实验测定获得的,可以从有关手册中查得。在选用这些推荐值时,应注意以下几点: 1. 设计中管程和壳程的流体应与所选的管程和壳程的流体相一致。 2. 设计中流体的性质(粘度等)和状态(流速等)应与所选的流体性质和 状态相一致。 3. 设计中换热器的类型应与所选的换热器的类型相一致。 4. 总传热系数的推荐值一般范围很大,设计时可根据实际情况选取中间的 某一数值。若需降低设备费可选取较大的K 值;若需降低操作费用可取较小的K 值。 5. 为保证较好的换热效果,设计中一般流体采用逆流换热,若采用错流或 折流换热时,可通过安德伍德(Underwood )和鲍曼(Bowman )图算法对Δt 进行修正。 虽然这些推荐值给设计带来了很大便利,但是某些情况下,所选K 值与实际值出入很大,为避免盲目烦琐的试差计算,可根据式(1)对K 值估算。 式(1)可分为三部分,对流传热热阻、污垢热阻和管壁导热热阻,其中污垢热阻和管壁导热热阻可查相关手册求得。由此,K 值估算最关键的部分就是对流传热系数h 的估算。

板式换热器换热面积的计算

板式换热器换热面积的 计算 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

(1) 求热负荷Q : Q=G .ρ.CP .Δt Q —换热量(取冷热流体换热量的平均值),w; Δt —流体进出口温差,K 。 (2) 求冷热流体进出口温度:t 2=t 1+ Q /G .ρ .CP (3) 冷热流体流量:G=Q / ρ .CP .(t2-t1 ) (4) 求平均温度差Δtm Δtm=(T1-t2)-(T2-t1)/In(T1-t2)/(T2-t1)或Δtm=(T 1-t2)+(T2-t1)/2 (5) 选择板型 若所有的板型选择完,则进行结果分析。 (6) 由K值范围,计算板片数范围Nmin ,Nmax Nmin = Q / Kmax .Δtm .F P .β Nmax = Q / Kmin .Δtm .F P .β (7) 取板片数N (Nmin ≤N≤Nmax ) 若N 已达Nmax ,做(5)。 (8) 取N 的流程组合形式,若组合形式取完则做(7)。 (9) 求Re ,Nu Re = W .de/ ν Nu =a 1.Re a 2.Pr a 3 (10)求a ,K 传热面积F a = Nu .λ/ de K= 1 / 1/a h+1/ a c +γc +γc +δ/λ0

(11)由传热面积F求所需板片数NN NN= F/ Fp+ 2 (12)若N<NN,做(8)。 (13)求压降Δp Eu = a4.Re a5 Δp = Eu .ρ.W2.ф (14) 若Δp>Δ 允,做(8);

换热站建设标准

换热站工程建设标准

为保证换热站系统安全运行,保障供热质量,达到高效运行、节能降耗的目的,制定如下换热站建设标准。 一、环境要求 1、换热站内必须干净整洁,进、出通道畅通。换热站地面为混凝土地面,地面刷浅蓝色油漆,换热站内墙面刷内墙涂料。 2、换热站的平面布置设置换热设备区、电气仪表区,并设置单独的值班室和控制室。 3、门、窗、墙、屋顶、设备基础按《工业企业噪声控制设计规范》采取隔声减振措施。 4、换热站内有良好的采光、通风、防潮、防洪、防火消防设施。 5、换热站内设置连通的排水沟槽,保证管道和设备排水集中引出;站内排水不能直接排入市政排水网时,设集水坑和排水泵。 6、换热站内设置足够的设备检修、拆卸空间,换热器侧面离墙不小于0.8m,周围留有宽度不小于0.7米的通道。 7、换热站内各种设备和阀门的布置便于操作和检修,站内各种水管道及设备的高处设有放气阀,低处设放水阀。 8、换热站内架设的管道不得阻挡通道,不得跨越配电盘。 9、供热面积小于5万平米的换热站占地面积须≧200平米;供热面积10万平米的换热站的占地面积须≧350平米;供热面积20万平米的换热站占地面积须≧550平米。 二、安全要求

1、换热站应备有必要的消防设备和用具,如消防栓、水龙带、灭火器等。消防设备应放在易于取用的位置,并保证随时可用。 2、换热站需经常检查和操作的设备不应设在高处,如必须设在高处,位置较高且超过2米时,需经常操作的设备处应设置移动扶梯、移动平台等设施; 3、换热站内设备间的门向外开,换热站长度大于12米时设两个出口。 4、换热器、水泵基础高于地面不小于0.1m,水泵基础距墙不小于0.7m,两台以上水泵不做联合基础,设备间距不小于0.7m; 5、换热站的照明应保证足够的亮度。安装用于紧急情况处理和人员逃生的事故照明设施,还应备有一定数量的便携式照明工具。 6、电缆在进入控制室、电缆夹层、控制柜、开关柜等处的电缆孔洞,必须用防火材料严密封闭,并在封堵处的电缆两端按规定刷防火涂料; 7、换热站及其附属设施不得存在渗水、漏水的现象。 8、换热站所有电气设备的金属外壳均应有良好的接地装置。使用中不准拆除接地装置或对其进行任何工作。 三、热机系统一般要求 1、换热站热机部分由换热器、管道阀门、安全阀、循环水泵、补水泵、除污器以及软化水补水装置组成。 2、板式换热器主要零部件的材料应符合GB/T16049中的规定;密封材质: 一、二次水侧为三元乙丙橡胶,框架材质:Q235-A,环氧煤沥青漆或环氧富锌漆防腐,压紧板采用整体材料,框架能力板片扩容数为≥20%。 3、板式换热器换热面积应为需求的130%,换热效率90%以上,传热系数K=3000-6000W/m2·℃。

相关文档
最新文档