振动、位移监测系统装置抗干扰的分析研究及技术措施

振动、位移监测系统装置抗干扰的分析研究及技术措施
振动、位移监测系统装置抗干扰的分析研究及技术措施

抗干扰措施

抗干扰措施的基本原则是:抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。 1、抑制干扰源 抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。 抑制干扰源的常用措施如下: (1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。 (2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K到几十K,电容选0.01uF),减小电火花影响。 (3)给电机加滤波电路,注意电容、电感引线要尽量短。 (4)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的影响。注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。 (5)布线时避免90度折线,减少高频噪声发射。 (6)可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。 2、切断干扰传播路径的常用措施 (1)充分考虑电源对单片机的影响。电源做得好,整个电路的抗干扰就解决了一大半。许多单片机对电源噪声很敏感,要给单片机电源加滤波电路或稳压器,以减小电源噪声对单片机的干扰。比如,可以利用磁珠和电容组成π形滤波电路,当然条件要求不高时也可用100Ω电阻代替磁珠。 (2)如果单片机的I/O口用来控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。 (3)注意晶振布线。晶振与单片机引脚尽量靠近,用地线把时钟区隔离起来,晶振外壳接地并固定。此措施可解决许多疑难问题。 (4)电路板合理分区,如强、弱信号,数字、模拟信号。尽可能把干扰源(如电机,继电器)与敏感元件(如单片机)远离。 (5)用地线把数字区与模拟区隔离,数字地与模拟地要分离,最后在一点接于电源地。A/D、D/A芯片布线也以此为原则,厂家分配A/D、D/A芯片引脚排列时已考虑此要求。(6)单片机和大功率器件的地线要单独接地,以减小相互干扰。大功率器件尽可能放在电路板边缘。 (7)在单片机I/O口,电源线,电路板连接线等关键地方使用抗干扰元件如磁珠、磁环、电源滤波器,屏蔽罩,可显著提高电路的抗干扰性能。

抗干扰的措施主要包括屏蔽、隔离、滤波、接地和软件

数控车床如何抗干扰 数控车床作为cnc机床自然也会像其他的电子仪器仪表一样受到众多的干扰,所以面对有可能发生的干扰我们必须有应对的措施,抗干扰的措施主要包括屏蔽、隔离、滤波、接地和软件处理等。 ①屏蔽技术:屏蔽是目前采用最多也是最有效的一种方式。屏蔽技术切断辐射电磁噪声的传输途径通,常用金属材料或磁性材料把所需屏蔽的区域包围起来,使屏蔽体内外的场相互隔离,切断电磁辐射信号,以保护被屏蔽体免受干扰,屏蔽分为电场屏蔽、磁场屏蔽及电磁屏蔽。在实际工程应用时,对于电场干扰时,系统中的强电设备金属外壳(伺服驱动器、变频器、驱动器、开关电源、电机等)可靠接地实现主动屏蔽;敏感设备如智能纠错装置等外壳应可靠接地,实现被动屏蔽;强电设备与敏感设备之间距离尽可能远;高电压大电流动力线与信号线应分开走线,选用带屏蔽层的电缆,对于磁场干扰,选用高导磁率的材料,如玻莫合金等,并适当增加屏蔽体的壁厚;用双绞线和屏蔽线,让信号线与接地线或载流回线扭绞在一起,以便使信号与接地或载流回线之间的距离最近;增大线间的距离,使得干扰源与受感应的线路之间的互感尽可能地小;敏感设备应远离干扰源强电设备变压器等。 ②隔离技术:隔离就是用隔离元器件将干扰源隔离,以防干扰窜入设备,保证电火花机床的正常运行。常见的隔离方法有光电隔离、变压器隔离和继电器隔离等方法。 (1)光电隔离:光电隔离能有效地抑制系统噪声,消除接地回路的干扰。在智能纠错系统的输入和输出端,用光耦作接口,对信号及噪声进行隔离;在电机驱动控制电路中,用光耦来把控制电路和马达高压电路隔离开。 (2)变压器隔离是一种用得相当广泛的电源线抗干扰元件,它最基本的作用是实现电路与电路之间的电气隔离,从而解决地线环路电流带来的设备与设备之间的干扰,同时隔离变压器对于抗共模干扰也有一定作用。隔离变压器对瞬变脉冲串和雷击浪涌干扰能起到很好的抑制作用,对于交流信号的传输,一般使用变压器隔离干扰信号的办法。 (3)继电器隔离,继电器的线圈和触点之间没有电气上的联系。因此,可以利用继电器的线圈接受电气信号,而用触点发送和输出信号,从而避免强电和弱电信号之间的直接联系,实现

测试系统的干扰及其抑制

测试系统的干扰及其抑制 Interference in Te sting Syste m and It s E limination 李传伟 (山东威海职业技术学院,威海 264200) 摘 要 阐述了检测系统中的各类干扰,并对其产生的原因作了较详细的分析。针对干扰的特性,指出了它们的危害范围及程度,提出了检测系统抗干扰的方法和措施。 关键词 测试系统 干扰 抑制 Abstract Various kinds of interference in testing system are described and the causes are analyzed in detail.In accordance with the characteristics of the interference,their harm ful scope and degree are put forward.The methods and s olutions of anti-interference for detecting systems are given. K eyw ords T esting System Interference E lim ination 0 引言 随着自动控制的迅速发展,测试系统已经广泛应用于科学研究和生产实践的各个领域。由于存在干扰,它对测试系统的稳定度和精确度产生直接的影响,严重时可使测试系统不能正常工作。因此,系统的设计、安装、制造、使用方式以及工作环境等各个方面都需要考虑抗干扰的问题。所以对干扰的研究是测试技术的重要课题。 1 干扰因素 干扰形成的全过程是由于干扰源发出的干扰信号,经过耦合通道传到感受器上,构成对整个系统的干扰。干扰的三个环节,称之为干扰系统的三要素,如图1所示。要有效地抑制干扰,首先要找到干扰的发源地,抑制发源地的干扰是抑制整个系统受干扰的积极措施。当产生了难以避免的干扰时,削弱通道对干扰的耦合以及提高感受器的抗干扰能力就成为非常重要的方法。 图1 干扰系统三要素 检测系统中,主要存在空间辐射干扰,信号通道干扰、电源干扰、数字电路干扰、地线干扰及系统内部的其他干扰等。 1.1 空间辐射干扰 1.1.1 自然干扰 自然干扰包括雷达、大气层电场的变化、电离层变化以及太阳黑子的电磁辐射等等。雷电能在传输线上产生幅值很高的高频浪涌电压,对系统形成干扰,甚至破坏无线电通信设备。太阳黑子的电磁辐射能量很强,可造成无线电通信中断。来自宇宙的自然干扰,只有高频才能穿过地球外层的电离层,频率在几十MH z 到200MH z之间,电压一般在μV量级,对低频系统影响甚微。 1.1.2 放电干扰 ①电晕放电 最常见的电晕放电来自高压输出线。高压输电线因绝缘失效会产生间隙脉冲电流,形成电晕放电。在输电线垂直方向上的电晕干扰,其电平随频率升高而衰减。当频率低于1MH z时,衰减微弱;当频率高于1MH z时,急剧衰减。因此电晕放电干扰对高频系统影响不大,而对低频系统影响较为严重,应引起注意。 ②辉光放电 辉光放电即气体放电。当两个接点之间的气体被电离时,由于离子碰撞而产生辉光放电,肉眼可见到蓝色的辉光。辉光放电所需电压与接点之间的距离、气体类型和气压有关。荧光灯、霓虹灯、闸流管以及工业生产中使用的大型辉光离子氧化炉等,均是利用这一原理制造的辉光放电设备。这类设备对测试系统而言都是干扰源,频率一般为超高频。如荧光灯干扰,电压为几十到几千微伏,甚至可达几十毫伏。 ③弧光放电 弧光放电即金属雾放电。最具典型的弧光放电是金属电焊。弧光放电产生高频振荡,以电波形式形成干扰。这种干扰对测试系统危害较大,甚至对具有专门防干扰的设备,在半径为50m的范围内,当频率为0115~015MH z时,干扰电压最低仍可达1000μV;当频 7

计算机控制系统中的抗干扰技术

第9章计算机控制系统中的抗干扰技术 ●本章的教学目的与要求 掌握各种干扰的传播途径与作用方式以及软硬件抗干扰技术。 ●授课主要内容 ●干扰的传播途径与作用方式 ●软硬件抗干扰技术 ●主要外语词汇 ●重点、难点及对学生的要求 说明:带“***”表示要掌握的重点内容,带“**”表示要求理解的内容,带“*”表示要求了解的内容,带“☆”表示难点内容,无任何符号的表示要求自学的内容 ●干扰的类型*** ●干扰的传播途径***☆ ●各类干扰的抑制方法*** ●辅助教学情况 多媒体教学课件(POWERPOINT) ●复习思考题 ●干扰的类型 ●干扰的传播途径 ●各类干扰的抑制方法 ●参考资料 刘川来,胡乃平,计算机控制技术,青岛科技大学讲义

干扰是客观存在的,研究抗干扰技术就是要分清干扰的来源,探索抑制或消除干扰的措施,以提高计算机控制系统的可靠性和稳定性。 9.1 干扰的传播途径与作用方式 干扰是指有用信号以外的噪声或造成计算机设备不能正常工作的破坏因素。产生干扰信号的原因称为信号源。干扰源通过传播途径影响的器件或系统称为干扰对象。干扰源、传播途径及干扰对象构成了干扰系统的三个要素。 9.1.1 干扰的来源 1.外部干扰 2.内部干扰 9.1.2 干扰传播途径 干扰传播途径主要有:静电耦合、磁场耦合、公共阻抗耦合。 1. 静电耦合 静电耦合是通过电容耦合窜入其他线路的。 2. 磁场耦合 在任何载流导体周围都会产生磁场,当电流变化时会引起交变磁场,该磁场必然在其周围的闭合回路中产生感应电势引起干扰,它是通过导体间互感耦合进来的。 3公共阻抗耦合 公共阻抗耦合干扰是由于电流流过回路间公共阻抗,使得一个回路的电流所产生的电压降影响到另一回路。 9.1.3 干扰的作用方式 按干扰作用方式的不同,可分为串模干扰、共模干扰和长线传输干扰。 1. 串模干扰 串模干扰是指叠加在被测信号上的干扰噪声,它串联在信号源回路中,与被测信号相加输入系统. 图9.6 串模干扰示意图图9.7 共模干扰示意图

浅谈单片机应用系统的软件抗干扰措施

浅谈单片机应用系统的软件抗干扰措施 摘要分析单片机应用系統的软件干扰因素以及实现抗干扰必要条件,并针对单片机应用系统易出现的软件失控、软件数据出错、数字量输入错误等问题提出可行的软件抗干扰措施。 关键词单片机;软件;抗干扰 引言 单片机应用系统产生故障的最主要的原因在于干扰问题。干扰对于单片机应用系统产生的影响一方面会造成测量与控制精度失衡,另一方面也会造成应用系统完全失效。所以对于单片机应用系统软件的干扰问题必须进行解决。 1 单片机应用系统的软件抗干扰措施的必要条件[1] 1.1 干扰因素及影响分析 随着科学技术的不断发展,单片机系统应用的领域越来越广泛,因而对单片机系统的稳定性要求也变得越来越高。但是受到单片机应用系统结构复杂性以及工作环境的多变性的影响,决定单片机系统性能的因素相对来说也比较复杂,尤其是软件的抗干扰措施就是其中比较重要的组成部分。从专业角度分析,单片机系统稳定性影响因素主要分为四种,即浪涌干扰、放电干扰、电磁干扰和高频振荡干扰。在这些干扰因素的影响下单片机系统会发生采集的数据出现失真、程序的运行受到干扰、硬件控制发生失效等现象,而更加直观的表现就是视频图像发生串色、网纹,音频信号失真或者是声音发生串扰现象等。 1.2 软件抗干扰的必要条件分析 在对单片机软件抗干扰稳定性进行设计时,从安全角度考虑,将软件的程序数据放在了ROM中。而一般情况下,单片机抗干扰软件应当具有以下几个方面的条件:①当单片机系统受到外界干扰后,在抗干扰软件的作用下系统的硬件组成不应受到损坏,另外为了方便对系统运行状态的监控,应当在关键核心的位置设置相应的检测状态;②当程序区因外界因素受到干扰后不会产生一定的损坏。一般情况下,在RAM中与系统有关的表格、常数等即使在受到干扰后也不会发生损坏,但是RAM程序中的系统可能因外界等的干扰发生一定的故障。而一旦RAM区的有关程序受到外界干扰,为了从根本上消除干扰带来的不利影响,应当向RAM区重新输入有关的程序。 2 单片机应用系统的软件抗干扰措施[2] 2.1 失控软件的抗干扰措施

PLC控制系统抗干扰技术设计策略

PLC控制系统抗干扰技术设计策略 中文摘要 自动化系统所使用的各种类型PLC中,有的是集中安装在控制室,有的是安装在生产现场和各电机设备上,它们大多处在强电电路和强电设备所形成的恶劣电磁环境中。要提高PLC控制系统可靠性,一方面要求PLC生产厂家提高设备的抗干扰能力,另一方面要求应用部门在工程设计、安装施工和使用维护中引起高度重视,多方配合才能完善解决问题,有效地增强系统的抗干扰性能。 关键词PLC,industry automation,anti-interference,可编程控制器,自动化

Title:PLC control system anti-jamming technology design strategy Abstract Automation systems used in various types of PLC , some centrally installed in the control room , some installation on production sites and electrical equipment , most of them in a harsh electromagnetic environment formed by the strong electric circuits and power installations . Keywords PLC industry automation anti-interference Programmable controllers automation

软件抗干扰的几种办法

软件抗干扰的几种办法 在提高硬件系统抗干扰能力的同时,软件抗干扰以其设计灵活、节省硬件资源、可靠性好越来越受到重视。下面以MCS-51单片机系统为例,对微机系统软件抗干扰方法进行研究。 1、软件抗干扰方法的研究 在工程实践中,软件抗干扰研究的内容主要是:一、消除模拟输入信号的噪声(如数字滤波技术);二、程序运行混乱时使程序重入正轨的方法。本文针对后者提出了几种有效的软件抗干扰方法。 (1) 指令冗余 CPU取指令过程是先取操作码,再取操作数。当PC受干扰出现错误,程序便脱离正常轨道“乱飞”,当乱飞到某双字节指令,若取指令时刻落在操作数上,误将操作数当作操作码,程序将出错。若“飞”到了三字节指令,出错机率更大。 在关键地方人为插入一些单字节指令,或将有效单字节指令重写称为指令冗余。通常是在双字节指令和三字节指令后插入两个字节以上的NOP。这样即使乱飞程序飞到操作数上,由于空操作指令NOP的存在,避免了后面的指令被当作操作数执行,程序自动纳入正轨。 此外,对系统流向起重要作用的指令如RET、RETI、LCALL、LJMP、JC等指令之前插入两条NOP,也可将乱飞程序纳入正轨,确保这些重要指令的执行。 (2) 拦截技术

所谓拦截,是指将乱飞的程序引向指定位置,再进行出错处理。通常用软件陷阱来拦截乱飞的程序。因此先要合理设计陷阱,其次要将陷阱安排在适当的位置。 软件陷阱的设计 当乱飞程序进入非程序区,冗余指令便无法起作用。通过软件陷阱,拦截乱飞程序,将其引向指定位置,再进行出错处理。软件陷阱是指用来将捕获的乱飞程序引向复位入口地址0000H的指令。通常在EPROM中非程序区填入以下指令作为软件陷阱: NOPNOPLJMP 0000H其机器码为0000020000。 陷阱的安排 通常在程序中未使用的EPROM空间填0000020000。最后一条应填入020000,当乱飞程序落到此区,即可自动入轨。在用户程序区各模块之间的空余单元也可填入陷阱指令。当使用的中断因干扰而开放时,在对应的中断服务程序中设置软件陷阱,能及时捕获错误的中断。如某应用系统虽未用到外部中断 1,外部中断1的中断服务程序可为如下形式: NOPNOPRETI返回指令可用“RETI”,也可用“LJMP0000H”。如果故障诊断程序与系统自恢复程序的设计可靠、完善,用“LJMP0000H”作返回指令可直接进入故障诊断程序,尽早地处理故障并恢复程序的运行。 考虑到程序存贮器的容量,软件陷阱一般1K空间有2-3个就可以进行有效拦截。 (3)软件“看门狗”技术

分析位移共振和速度共振的条件

分析位移共振和速度共振的条件 高中物理教材关于发生共振条件的论述,现行教材和以前的教材相比说法有所变化。以前的教材讲:“当策动力(现行教材改为驱动力)的频率等于物体的固有频率时,物体做受迫振动的振幅最大,这种现象叫做共振。”,意思是说驱动力的频率等于物体的固有频率是发生共振的条件。现行教材改为“当驱动力的频率接近物体的固有频率时,物体做受迫振动的振幅增大,这种现象称为共振。”究竟怎样才算接近固有频率呢?看高中物理教材共振曲线(见图1),如图2中由12f f →或由43f f →所示的情况也算是接近固有频率吗?如果算,此时却未发生共振,又当如何理解? 再看各种复习参考资料,相关的习题都沿用“驱动力的频率等于固有频率时发生共振”的说法,似乎“驱动力的频率等于物体的固有频率是发生共振的条件”更为可信。然而,根据又是什么呢? 要弄清这个问题,还要从受迫振动说起。为了与高中物理教材吻合,我们只讨论在弱阻尼振动系统上加周期性外力发生的受迫振动。 以弹簧振子为例,质点受三种力:弹性力-kx ,阻尼力dx dt γ-,驱动力F ,设其按余弦(或正弦)规律变化且初相为零,则有 0cos F F t ω= 由牛顿第二定律,有 202cos d x dx m kx F t dt dt γω=--+ 令 2000,2,F k f m m m γ ωβ= == 得 20022cos d x dx x f t dt dt βωω++= 1.1 A f f ′ O 受迫振动的振幅 图2 f 1 f 2 f 3 f 4 A f f ′ O 受迫 振 动的 振 幅 图1

这就是受迫振动的方程,为二阶常系数非齐次微分方程。根据微分方程理论,上式的解为 0cos(')cos()t x Ae t A t βωαω?-=+++ 1.2 A 和α是由初始条件决定的积分常数。(1.2)式为两项之和,表明质点运动包含两个分运动,第一项为阻尼振动,随时间的推移而趋于消失,它反映受迫振动的暂态行为,与驱动力无关。第二项表示与驱动力频率相同且振幅为A 0的周期性振动。开始时,受迫振动的振幅较小,经过一定时间后,阻尼振动消失。质点进行由(1.2)式第二项决定的与驱动力同频率的振动,称为受迫振动的稳定振动状态,可表示如下: 0cos()x A t ω?=+ (1.3) 稳定振动状态表面上像简谐运动,其实不然。ω并非固有频率,而是驱动力的频率;振幅A 0和初相?也并非决定于初始条件,而是依赖于振动系统本身的性质,阻尼的大小和驱动力的特征,将(1.3)式代入(1.1)式,得 20020 00(cos cos sin sin )2(sin cos cos sin )(cos cos sin sin )cos A t t A t t A t t f t ωω?ω?βω?ω?ωω?ω?ω---++-= 由等式性质,有 2 20000 22 00 0()cos 2sin ()sin 2cos 0 A A f A A ωω?βω?ωω?βω?--=-+= 可解出 022 2 2 ()4f A ωωβω = -+ (1.4) 当驱动力频率取某值时,振幅获得最大值(振动系统做受迫振动时,其振幅大最大值的现象叫做位移共振——即高中物理教材中所说的共振)。由上式,并用微分法关于极大值的判据,可求出共振时驱动力的圆频率为 2202r ωωβ=- 这一频率称为位移共振频率。显然,位移共振频率一般不等于振动系统的固有频率。 物体做受迫振动达到稳定状态时,其速度做周期性变化,由(1.3)式可得 0sin()2 x dx v A t dt πωω?= =++ 由此可知速度幅(即速度的最大值) 00v A ω= 由(1.4)式可知,由于A 0随驱动力的频率变化而变化,驱动力频率ω达到某一数值时可使振动的速度幅取最大值,这种现象称为速度共振。将(1.4)式代入00v A ω=,并应用极值的微分判据可得速度共振的条件为 0ωω=

电磁抗干扰来源及电路与软件抗干扰(EMC)措施

电磁抗干扰来源及电路与软件抗干扰(EMC)措施 概述 可靠性是用电设备的基木要求之一,也是所有控制单元最基木的要求。它包括两方面的含义:故障时不拒动和正常时不误动。之所以会存在这两个方面的隐患是因为电磁干扰的存在。因此为了保障控制单元可靠的工作,除了采用合适的保护原理外,本章主要考虑抗干扰设计。 电磁干扰的传播方式主要有两种:(1)辐射:电磁干扰的能量通过空间的磁场、电场或者电磁波的形式使干扰源与受干扰体之间产生藕合。(2)传导:电磁干扰的能量可以通过电源线和信号电缆以电压或电流的方式进行传播。电磁干扰的频率包括(1)低频干扰(DC10~20Hz);(2)高频干扰(几百兆赫,辐射干扰和达几千兆赫):(3)瞬变干扰(持续周期从几毫秒到几纳秒)。 造成电力系统中形成电磁干扰的原因有诸多方面,我们知道,同一电力系统中的各种电力设备通过电和磁紧密的联系起来,相互影响,由于运行方式的改变、故障、开关设备的操作等引起的电磁振荡会对智能控制单元产生影响:另外,软起动工作在环境恶劣的煤矿井下,空气非常潮湿,到处充满着煤尘,电磁干扰尤为严重。控制单元在工作时不仅要受到从电网上传来的“噪声”干扰,其木身也是一个很强的干扰源,比如负载上电流的频繁变化和通过导线空间进入单片机系统内部,造成程序跑飞,使系统工作不正常,甚至损坏系统。所以对控制单元各个部分的抗干扰性能提出了较高的要求,尤其是单片机系统的抗干扰问题。因此,在整个单片机应用系统的研发过程中,始终将抗干扰性能作为系统设计时首先考虑的问题之一。 电磁干扰的来源 所谓干扰,简单来说就是指电磁干扰(Electro-Magnetic Interference 简称EMI),它在一定条件下干扰电子设备、通信电路的正常工作。 电源干扰 电源干扰是单片机应用系统的主要干扰源,据统计,实时系统的干扰约70%来自

共振现象利弊的分析

共振现象利弊的分析 创新自1101班张旭1111560129 众所周知,共振现象在我们的生活中广泛的存在着,小到乐器的演奏,大到桥梁的倒塌,就连我们“电厂热力设备及运行”一课都讲到要防止汽轮机由于应力变形引起共振。对于共振的探究,我先对涉及到的名词进行了查找。 所谓共振,是指激振频率接近机器结构固有频率时的一种工作状态。而固有频率是指一旦振动频率达到这个值结构就会发生共振,而如果振动频率稍一变化共振就会消失。 共振现象最有名的例子就是18世纪中叶,一座桥因大队士兵齐步走产生的频率正好与大桥的固有频率一致,使桥的振动加强,最终断裂。其实就算是人们注意了人为因素,建筑物还是要经受共振现象的考验,比如风。1940年,美国塔柯姆大桥因大风引起的共振,尽管当时的风速不及设计风速限值的1/3,可是因为这座大桥的实际的抗共振强度没有过关,所以导致事故而塌毁。大风中大楼剧烈摇晃也不是“风吹的”,而是因大风造成的共振而剧烈摇摆。更极端的例子地震波引发的共振就更不用说了。 由于人体柔软的特性,人也会遭受共振的威胁。我记得我在看《小崔说事》采访战地记者的一集里,战地记者说如果手榴弹在附近爆炸,卧倒的同时一定要把心脏离开地面,否则心脏就有受到振动波而被震碎的危险。 当然,共振现象也为科技发明者们广泛应用。我查到一个咋一看

用不到共振的例子,微波炉。以前我只是知道微波炉利用的是水分子振动,通过查找资料我才知道微波是具有2500赫兹左右频率的电磁波。食物中水分子的振动频率也在这附近,为了达到共振,微波炉加热食品时,炉内产生很强的振荡电磁场,使食物中的水分子作受迫振动,这是一个能量转化的过程,电磁辐射能转化为热能,从而使食物的温度迅速升高。微波路通过对物体内部的整体加热,完全不同于以往的从外部对物体进行加热的方式,极大地提高了加热效率。 我个人还有听广播的爱好,只不过我是用手机自动搜索,老式收音机的旋钮就是使收音机电路和广播台发射的信号达到共振,进而起到放大信号的作用。这和我们模拟电子电路课学到的知识相同。 结合我们课上讲的宇宙的内容,我还查了关于轨道共振的资料,在天体力学中,轨道共振发生在两个天体的运行轨道的公转周期成简单整数比关系,它们之间互相受到周期性引力影响。这使它们的轨道在引力扰乱中保持稳定。比如冥王星与其它一些类似冥王星的天体的轨道与海王星的轨道成3:2的共振,保持了它们轨道的稳定性,这与短片里讲到行星轨道能保持稳定是很多因素共同作用的结果的观点一致。 和其他物理现象一样,共振有利有弊。记得第一节课上讲过《庄子?天下》文曰: “判天地之美,析万物之理。”化用仓央嘉措的诗,你认或不认,共振就在那里。我们要做的正是利用而不是试图改变自然的规律,让共振使生活更美好。

抗干扰措施

提高变电所自动化系统可靠性的措施 一、概述 变电所综合自动化系统具有功能强、自动化水平高、可节约占地面积、减轻值班员操作及监视的工作量、缩短维修周期以及可实现无人值班等优越性。这已为越来越多的电力部门的专家和技术人员所共识。但一方面,由于它是高技术在变电所的应用,是一种新生事物,很多人对它还不够了解,因此也不放心。特别是目前不少工作在变电所第一线的技术人员与运行人员,对综合自动化系统的技术和系统结构还不了解,对其可靠性问题比较担心。另一方面,变电所综合自动化系统内部各个子系统都为低电平的弱电系统,但它们的工作环境是电磁干扰极其严重的强电场所,在研制综合自动化系统的过程中,如果不充分考虑可靠性问题,没有采取必要的措施,这样的综合自动化系统在强电磁场干扰下,也确实很容易不能正工作,甚至损坏元器件。因此,综合自动化系统的可靠性是个很重要的问题。 可靠性是指综合自动化系统内部各子系统的部件、元器件在规定的条件下、规定的时间内,完成规定功能的能力。不同功能的自动装置有不同的反映其可靠性的指标和术语。例如,保护子系统的可靠性通常是指在严重干扰情况下,不误动、不拒动。远动子系统的可靠性通常以平均无故障间隔时间MTBF来表示。 提高综合自动化系统可靠性的措施涉及的内容和方面较多,本章将从电磁兼容性、抗电磁干扰的措施和自动化系统本身的自纠错和故障自诊断等方面讨论提高变电所综合自动化系统的可靠性措施问题。 二、变电所内的电磁兼容 (一)电磁兼容意义 变电所内高压电器设备的操作、低压交、直流回路内电气设备的操作、雷电引起的浪涌电压、电气设备周围静电场、电磁波辐射和输电线路或设备短路故障所产生的瞬变过程等都会产生电磁干扰。这些电磁干扰进入变电所内的综合自动化系统或其他电子设备,就可能引起自动化系统工作不正常,甚至损坏某些部件或元器件。 电磁兼容的意义是,电气或电子设备或系统能够在规定的电磁环境下不因电磁干扰而降低工作性能,它们本身所发射的电磁能量不影响其他设备或系统的正常工作,从而达到互不干扰,在共同的电磁环境下一起执行各自功能的共存状态。

关于CBTC系统无线通信抗干扰技术的研究

技术装备 52 MODERN URBAN TRANSIT 6/2009现代城市轨道交通 0引言 列车控制系统在地铁信号的发展过程中,经历了从单向轨道电路到双向无线通信的变革。目前广泛应用于地铁列车控制系统的是基于无线通信的列车控制系统(CBTC)(图1)。而无论基于无线局域网还是专用无线网的通信,都存在同频或邻频干扰的问题。为此,如何引入技术手段,提高CBTC系统的抗干扰能力,保证其可靠、稳定运行十分重要。 1无线局域网 1.1结构 无线局域网(WLAN)是计算机 网络与无线通信技术相结合的产物,它以无线多址信道作为传输媒介,利用电磁波完成数据交互,实现传统有线局域网的功能。WLAN的核心结构如图2所示。 从图2可以看到,WLAN的工作层有介质访问控制层(MAC)和物 理层(PHY),其中物理层分为PLCP(物理层收敛过程)子层和PMD(物理机制相关)子层。PLCP子层通过将MAC层信息映射到PMD子层,使MAC层对物理层的依赖减到最低,而PMD子 层则提供了控制无线介质 的方法和手段。WLAN的物理层采用扩频工作方式,包括FHSS(跳频扩频)、DSSS(直接序列扩频)、HR/DSSS(高速直接序列扩频)和OFDM(正交分复用),无线工作频段为ISM:2.4~2.4875GHz以及U-NII:5.725~5.850 GHz(取决于采用的标准)。在IEEE802.11结构内还包含两个管理实体(MAC层管理实体MLME和PHY 物理层管理实体PLME)和管理信息库(MIB),从而控制MAC层和PHY层的工作状态。 1.2MAC层干扰问题 无线局域网的MAC层的载波监听多路访问/冲突检测方法(CSMA/CD)协议问题,从理论上讲,MAC层的CSMA/CD协议完全能够满足局域网级的多用户信道竞争问题,但是,对应无线环境而 邱鹏:南京恩瑞特实业有限公司轨道交通事业部,助理工程师,南京 211106 关于CBTC系统无线通信 抗干扰技术的研究 邱鹏 李亮 摘 要:研究基于无线传输的CBTC系统车-地通信抗干扰技术,通过 分析无线局域网中的同频干扰,结合重复累积码、感知无线电、一致性测试3项技术,提出1套在CBTC系统设计和系统运营两个阶段抑制同频干扰的完整解决方案。 关键词:车地通信;同频干扰;重复累积码;感知无线电;一致性测试 注:LLC即逻辑链路控制;WEP即有线等效保密 图2WLAN 的核心结构 图1CBTC 系统框图 车载部分 车载ATC定位 数据通信部分 无线传输系统 轨旁网络装置 ATS 轨旁ATC系统 LLC WEPMAC PHY DSSS FH IR OFDMMACMgmt MIB LLC MAC 业务接口 MAC管理业务接口MAC子层 MAC管理层 PHY业务接口 PHY管理业务接口PHY管理层 PLCP子层PMD 子层

关于自动化装置受干扰及抗干扰措施的分析(精)

关于自动化装置受干扰及抗干扰措施的分析 摘要:电磁兼容是现代自动化装置抗电磁干扰能力方面非常关注的目标。许多同行专业人士已作了大量的工作,制定了相关的标准和试验方法。在抗电磁干扰方面,也有许多论文发表,大家从理论到实践提出了许多提高产品抗电磁干扰能力的措施。 关键词:自动化装置干扰抗干扰措施分析 电磁兼容是现代自动化装置抗电磁干扰能力方面非常关注的目标。许多同行专业人士已作了大量的工作,制定了相关的标准和试验方法。在抗电磁干扰方面,也有许多论文发表,大家从理论到实践提出了许多提高产品抗电磁干扰能力的措施。 本文先以一台同期装置作为被试产品,对其干扰及抗干扰措施进行分析,随后提出一系列在设计实践中的经验抗干扰措施。干扰源是一个简单的电磁式的中间继电器。 干扰源分析:在上面简单的电路中可能会存在以下三种干扰源。 1、如图(一)中操作电源带有一个电感性负载(即许继中间继电器),当切断电感性负载时,在电感线圈上产生很高的感生电动势,一般在5~10倍电源电压,高达几千伏,我在试验中测得大于1千伏。该高电压使得断开接点击穿,产生火花或电弧,而火花或电弧是一个发射高频噪声的干扰源,该干扰直接串入电源中,形成串模干扰,该干扰是本线路中试验发现最明显的。 火花或电弧熄灭时间很短,又将产生感应电压,所以在不断地“通断”的瞬变过程中电源上串入了很大的高频干扰信号和浪涌电流。而自动装置内部的电子元件尤其IC片都是弱

电工作元器件,该干扰信号和浪涌流对继电器造成逻辑紊乱,以致误动,实际上对继电器内部元器件也具有很大的伤害性。尤其是静态的继电器产品表现更为严重,对于同期继电器,内部回路复杂,电源(稳压管)负载较重,在此重负荷下受干扰就会显得影响很大。 对于这种干扰实际上最有效的办法是在电感负载上并接一个吸收回路即可,但是电感负载是多种不同设备,且有很多是在运行中的产品,这样就自然的把问题踢给了新产品(被试产品)。 在试验中本人启用了图(二)接线的抑制回路,作用是用以抑制高频干扰,试验效果明显。 2、直流电压纹波引起的工频干扰,该种干扰在一般的产品设计中都有措施抑制,在试验中很少发现这种干扰。对于这种干扰,在试验中采用了以下图三的电路,该电路具有消除低频干扰和高频干扰双重作用,但对于电容耐压要求较高。 3、线间串扰,该干扰是因信号线(电源、交流等)靠近和平行放置在一起而引起,虽在电压不高时显示不出来,但在受冲击电压时难免会引起干扰,这就是该干扰最难预测和最难控制的因素之一。这一点要求在布线方面注意干扰。 以上仅是一个简单的电路,旨在只说明干扰存在的普遍性,根据电力系统的运行环境和自动化装置发展的实际情况,现在很多产品在“静电放电干扰、快速瞬变干扰和辐射电磁场干扰”方面实际上都没有很好办法,有些产品对电磁干扰还非常敏感,拒动、误动、死机、改变定值等现象都有发生。因此,自动化装置抗电磁干扰能力的提高,仍然需各位专业人士艰苦努力。以下是根据我在多年的产品设计中,针对“静电放电干扰、快速瞬变干扰和辐射电磁场干扰电磁干扰”采取的一些措施和方法,供大家参考,不当之处请批评指正。 一、抗静电放电干扰

模拟传感器的主要干扰源及抗干扰措施

模拟传感器的主要干扰源及抗干扰措施 本文由https://www.360docs.net/doc/5e6453006.html,提供 主要干扰源: 1)静电感应 静电感应是由于两条支电路或元件之间存在着寄生电容,使一条支路上的电荷通过寄生电容传送到另一条支路上去,因此又称电容性耦合。 (2)电磁感应 当两个电路之间有互感存在时,一个电路中电流的变化就会通过磁场耦合到另一个电路,这一现象称为电磁感应。例如变压器及线圈的漏磁、通电平行导线等。 (3)漏电流感应 由于电子线路内部的元件支架、接线柱、印刷电路板、电容内部介质或外壳等绝缘不良,特别是传感器的应用环境湿度较大,绝缘体的绝缘电阻下降,导致漏电电流增加就会引起干扰。尤其当漏电流流入测量电路的输入级时,其影响就特别严重。 (4)射频干扰 主要是大型动力设备的启动、操作停止的干扰和高次谐波干扰。如可控硅整流系统的干扰等。 (5)其他干扰 现场安全生产监控系统除了易受以上干扰外,由于系统工作环境较差,还容易受到机械干扰、热干扰及化学干扰等。 模拟传感器抗干扰的措施: 1、供电系统的抗干扰设计对传感器、仪器仪表正常工作危害最严重的是电网尖峰脉冲干扰,产生尖峰干扰的用电设备有:电焊机、大电机、可控机、继电接触器、带镇流器的充气照明灯,甚至电烙铁等。尖峰干扰可用硬件、软件结合的办法来抑制。 (1)用硬件线路抑制尖峰干扰的影响 常用办法主要有三种: ①在仪器交流电源输入端串入按频谱均衡的原理设计的干扰控制器,将尖峰电压集中的能量分配到不同的频段上,从而减弱其破坏性; ②在仪器交流电源输入端加超级隔离变压器,利用铁磁共振原理抑制尖峰脉冲; ③在仪器交流电源的输入端并联压敏电阻,利用尖峰脉冲到来时电阻值减小以降低仪器从电源分得的电压,从而削弱干扰的影响。 (2)利用软件方法抑制尖峰干扰

振动频率判别方法

实验三振动系统固有频率的测量 一、实验目的 1、了解和熟悉共振前后利萨如图形的变化规律和特点; 2、学习用“共振法”测试机械振动系统的固有频率(幅值判别法和相位判别法); 3、学习用“锤击法”测试机械振动系统的固有频率(传函判别法); 4、学习用“自由衰减振动波形自谱分析法”测试振动系统的固有频率(自谱分析法)。 二、实验装置框图

图3-1实验装置框图 三、实验原理 对于振动系统,经常要测定其固有频率,最常用的方法就是用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。另一种方法是锤击法,用冲击力激振,通过输入的力信号和输出的响应信号进行传函分析,得到各阶固有频率。以下对这两种方法加以说明: 1、简谐力激振 简谐力作用下的强迫振动,其运动方程为: t F Kx x C x m e ωsin 0=++ 方程式的解由21X X +这两部分组成: ) sin cos (211t w C t w C e X D D t +=-ε 21D w w D -= 式中1C 、2C 常数由初始条件决定: t w A t w A X e e sin cos 212+= 其中 ( ) () 2 2 2 22 2 214e e e q A ω εω ω ωω+--= , () 22 222 242e e e q A ω εω ω ε ω+-= , m F q 0= 1X 代表阻尼自由振动基,2X 代表阻尼强迫振动项。 自由振动周期: D D T ωπ 2= 强迫振动项周期: e e T ωπ 2= 由于阻尼的存在,自由振动基随时间不断得衰减消失。最后,只剩下后两项,也就是通常讲的定常强动,即强迫振动部分: ( ) () () t q t q x e e e e e e e e ωω εω ω ε ωωω εω ω ωωsin 42cos 422 222 22 222 2 2+-+ +--= 通过变换可写成

电磁干扰以及抗干扰措施的研究

电磁干扰以及抗干扰措施的研究 摘要抗干扰是一个非常复杂、实践性很强的问题。文章介绍了出现电磁干扰的常见原因、传播途径和干扰对象,针对经常出现的电磁干扰问题,提出了相应的抗干扰措施,并对这些方法的原理及应用环境进行了分析和研究。 关键词抗干扰;电磁干扰;原因;措施 1 电磁干扰产生的原因 电磁干扰问题不仅影响到电子仪器工作的质量,有时更是破坏整个系统正常运行的祸害。一种干扰现象可能是由若干个因素引起的。在系统调试过程中,很大部分工作是在处理电磁干扰问题。可以说,电磁干扰问题处理的好坏直接关系到整个系统能否稳定、可靠的运行,是系统需要解决的关键问题。步进电机在工作过程中,不断接受控制器产生的脉冲信号,信号的频率和个数控制着步进电机的转速和进给步数。由于信号是方波,同时电机各相绕组需按指定顺序轮流导通,对单片机控制回路会产生较大的电磁干扰,引起步进电机工作状态不稳定甚至损坏电器元件,直接影响到系统的可靠性[1]。 系统中主要的干扰源有: (1)供电干扰。工作时,交流电网负载突变,产生瞬变电压波动,其幅值较大,可以经过直流稳压电源进入电子控制回路。 (2)控制器与步进电机驱动回路之间存在电磁干扰。驱动回路产生的干扰信号通过线路串入控制器,使控制器产生错误指令,从而导致步进电机“多步”或“丢步”。 (3)步进电机的电枢绕组通断频繁,当通电时,会产生较大的du/dt、di/dt 值,导致磁场耦合,形成严重的电磁干扰。当电枢绕组断电时,线圈中的磁场突然消失会产生很高的瞬变电压窜入控制回路,对系统中其他电子装置产生相当大的电能冲击,甚至损坏元件。 (4)布线不合理。同一回路或不同回路布线不合理,容易产生感生电动势,引起电磁干扰现象。 2 传播途径和干扰对象 干扰信号可以通过公共导线、电容、相邻导线的互感以及空间辐射等途径从干扰源耦合到敏感元件上[2]。系统电磁干扰的传播途径和干扰对象如图1所示。 图1 系统电磁干扰示意图

测试技术中的抗干扰技术

测试技术中的抗干扰技术 本文叙述了电子电器设备产生传导干扰、辐射干扰的几个主要因素:干扰源、干扰源传输通道、受干扰的测试仪器与设备,同时介绍了抑制干扰也需要从这几个方面着手的方法。 关键词:传导干扰、辐射干扰 电子技术的高速发展已让世界进入了信息时代,电子技术的广泛应用使得应用的电子、电气设备也越来越多和越来越复杂,电磁环境越来越恶劣,大中功率的发射机对非相应通道的高灵敏度测试仪器设备构成了灾难性的干扰,使得测试仪器设备系统不能正常工作、性能降低甚至损坏。 这种干扰源来自外部,是有损于网络信号的一种电磁现象。这种干扰的电磁能量通过某种媒体传输至测试仪表等敏感设备,而此设备又以某种形式表示“响应”,并产生干扰的“效果”,例如示波器图像失真、杂散信号粒子、图像对比度差以及几何图形弯曲等等,这个作用过程和结果,即称之电磁干扰效应。显而易见,电磁干扰已是测试技术发展中必须跨越的巨大障碍。为了保障测试技术设备的正常工作,我们必须研究分析电磁干扰,研究限制抑制各类干扰的技术手段,提高测试环境的抗干扰能力。并对电子实验室的电磁测试环境进行合理的设计。 电磁干扰类别(一)——传导干扰 这种干扰是沿着导体传播的,诸如导线、传输线、电感和电容元件等均是传导干扰的传输通道。

从干扰源观察:它有不带任何信息的噪声及带有信息的无用信号。如电源开关接通的瞬间所产生的火花对一个敏感电路可能会产生干扰。一个带信息的信号在其对应通道是有用的信号,如果它进入别的通道,虽带信息都是无用信号,可对其它仪器造成干扰。所以说,任何一台电子设备都可能成为一个干扰信号源。 传导电磁干扰的路径我们称谓电磁干扰的传输通道。就是将干扰源通过线路传输给的输入端,它在测试仪器仪表设备电路中产生相应的干扰电压和电流。所以研究电磁干扰必须分析电磁干扰源和测试仪器仪表设备电路之间的传输路径问题。 传导干扰的抑制方法 综上所述,形成传导干扰的原因是干扰源、传输通道、测试仪器仪表设备。所以抗干扰也必须从这三方面着手解决。 一、干扰源的处理和解决: 仪器机壳内、电路板上的变压器、线圈是产生强磁场的器件,在设计布置时应加以屏蔽或远离接收电路,对网络系统无作用的、且存在干扰的电源设备必须取消。 在电子仪器设备中的高频放大、输入及振荡电路以外还有频率相同或接近的电路是引起自激振荡的一种传导干扰源,在设计布置时必须远离。 在设计开关器件和振荡器电路的工作速度时不必追求过高的工作速度,只需满足网络系统工作特性的速度即可。对于脉冲波形状的干扰源,因为脉冲上升沿较慢并且持续时间较长时,产生的电磁干扰

电磁干扰来源和抗干扰设计

电磁干扰来源和抗干扰设计 随着工业设备自动化控制技术的发展,可编程控制器(PLC)在工业设备控制中的应用越来越广泛。PLC控制系统的可靠性直接影响到企业的安全生产和经济运行,系统的抗干扰能力是关系到整个系统可靠运行的关键。本文详细介绍了影响PLC运行的干扰类型及来源,并提出抗干扰设计的实施策略。 自动化系统所使用的各种类型PLC中,有的是集中安装在控制室,有的是安装在生产现场和各电机设备上,它们大多处在强电电路和强电设备所形成的恶劣电磁环境中。要提高PL C控制系统可靠性,一方面要求PLC生产厂家提高设备的抗干扰能力,另一方面要求应用部门在工程设计、安装施工和使用维护中引起高度重视,多方配合才能完善解决问题,有效地增强系统的抗干扰性能。 电磁干扰类型及其影响 影响PLC控制系统的干扰源与一般影响工业控制设备的干扰源一样,大都产生在电流或电压剧烈变化的部位,这些电荷剧烈移动的部位就是干扰源。 干扰类型通常按干扰产生的原因、噪声干扰模式和噪声波形性质来划分。按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质不同,可分为持续噪声、偶发噪声等;按噪声干扰模式不同,分为共模干扰和差模干扰。 共模干扰和差模干扰是一种比较常用的分类方法。共模干扰是信号对地的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压迭加所形成。共模电压有时较大,特别是采用隔离性能差的配电器供电时,变送器输出信号的共模电压普遍较高,有的可高达130V以上。共模电压通过不对称电路可转换成差模电压,影响测控信号,造成元器件损坏(这就是一些系统I/O模件损坏率较高的主要原因),这种共模干扰可为直流、亦可为交流。差模干扰是指作用于信号两极间的干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的,这种干扰叠加在信号上,直接影响测量与控制精度。 电磁干扰的主要来源 1.来自空间的辐射干扰。空间辐射电磁场(EMI)主要是由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生的,通常称为辐射干扰,其分布极为复杂。若PLC系统置于其射频场内,就会受到辐射干扰,其影响主要通过两条路径:一是直接对PLC内部的辐射,由电路感应产生干扰;二是对PLC通信网络的辐射,由通信线路感应引入干扰。辐射干扰与现场设备布置及设备所产生的电磁场大小特别是频率有关,一般通过设置屏蔽电缆和PLC局部屏蔽及高压泄放元件进行保护 2.来自系统外引线的干扰。主要通过电源和信号线引入,通常称为传导干扰。这种干扰在我国工业现场较为严重,主要有下面三类: 第一类是来自电源的干扰。实践证明,因电源引入的干扰造成PLC控制系统故障的情况很多,笔者在某工程调试中遇到过,后更换隔离性能更高的PLC电源问题才得到解决。

相关文档
最新文档