测试技术中的抗干扰技术

测试技术中的抗干扰技术
测试技术中的抗干扰技术

测试技术中的抗干扰技术

本文叙述了电子电器设备产生传导干扰、辐射干扰的几个主要因素:干扰源、干扰源传输通道、受干扰的测试仪器与设备,同时介绍了抑制干扰也需要从这几个方面着手的方法。

关键词:传导干扰、辐射干扰

电子技术的高速发展已让世界进入了信息时代,电子技术的广泛应用使得应用的电子、电气设备也越来越多和越来越复杂,电磁环境越来越恶劣,大中功率的发射机对非相应通道的高灵敏度测试仪器设备构成了灾难性的干扰,使得测试仪器设备系统不能正常工作、性能降低甚至损坏。

这种干扰源来自外部,是有损于网络信号的一种电磁现象。这种干扰的电磁能量通过某种媒体传输至测试仪表等敏感设备,而此设备又以某种形式表示“响应”,并产生干扰的“效果”,例如示波器图像失真、杂散信号粒子、图像对比度差以及几何图形弯曲等等,这个作用过程和结果,即称之电磁干扰效应。显而易见,电磁干扰已是测试技术发展中必须跨越的巨大障碍。为了保障测试技术设备的正常工作,我们必须研究分析电磁干扰,研究限制抑制各类干扰的技术手段,提高测试环境的抗干扰能力。并对电子实验室的电磁测试环境进行合理的设计。

电磁干扰类别(一)——传导干扰

这种干扰是沿着导体传播的,诸如导线、传输线、电感和电容元件等均是传导干扰的传输通道。

从干扰源观察:它有不带任何信息的噪声及带有信息的无用信号。如电源开关接通的瞬间所产生的火花对一个敏感电路可能会产生干扰。一个带信息的信号在其对应通道是有用的信号,如果它进入别的通道,虽带信息都是无用信号,可对其它仪器造成干扰。所以说,任何一台电子设备都可能成为一个干扰信号源。

传导电磁干扰的路径我们称谓电磁干扰的传输通道。就是将干扰源通过线路传输给的输入端,它在测试仪器仪表设备电路中产生相应的干扰电压和电流。所以研究电磁干扰必须分析电磁干扰源和测试仪器仪表设备电路之间的传输路径问题。

传导干扰的抑制方法

综上所述,形成传导干扰的原因是干扰源、传输通道、测试仪器仪表设备。所以抗干扰也必须从这三方面着手解决。

一、干扰源的处理和解决:

仪器机壳内、电路板上的变压器、线圈是产生强磁场的器件,在设计布置时应加以屏蔽或远离接收电路,对网络系统无作用的、且存在干扰的电源设备必须取消。

在电子仪器设备中的高频放大、输入及振荡电路以外还有频率相同或接近的电路是引起自激振荡的一种传导干扰源,在设计布置时必须远离。

在设计开关器件和振荡器电路的工作速度时不必追求过高的工作速度,只需满足网络系统工作特性的速度即可。对于脉冲波形状的干扰源,因为脉冲上升沿较慢并且持续时间较长时,产生的电磁干扰

最小,所以某种控制部件在设计脉冲电路时它的速度只要能在设定的时间内保证工作可靠即可。在设计电路用扫频仪观察时必须选取特性曲线线性最佳的部分,因为这个区域所含谐波分量最小,它的干扰也最小。

二、传输通道的处理

在电子仪器设备的控制网络中,必须将有干扰源的导线、元件或元件回线与连接接收网络的布线、接收器回线隔离开来;用粗的隔离线和隔离套来减少级间的电容耦合;在控制电路中,使用的传输导线应尽量短,对高频电路须特别注意这个问题,且应避免平行排列导线,须杜绝象低频电路把各种导线扎成一束的平行放线方法;对于放大器的输入与输出导线,必须避免相距过近及平行排列,以避免引起反馈交链和自激振荡;在同一机箱内的几套独立功能的控制板若共用一套电源,必须同时配置高频及低频旁路退耦电容,以消除干扰。

三、测试仪器的受干扰的处理

测试仪器系统的设备、器件、控制电路板在选用电子元器件时应基本不使用低电平的产品部件,对技术指标的灵敏度只需保证其能稳定可靠工作即可。若接收电路对电磁场感应灵敏,则可配置基本封闭型的屏蔽,仅留出相关的信号通道接口以增强抗干扰能力。并取消那些在系统工作时不需要的接收器电源。

电磁干扰类别(二)——辐射干扰

辐射干扰是以电磁波的形式通过空间以电磁波特性规律传播的

一种干扰源,它与传导干扰的明显区别在于前者是以导线器件作为传

输通道的干扰,而后者是以自由空间传播的一种电磁波干扰。

组成辐射干扰源必须具备两个条件:首先是有产生电磁波的源泉,其后是将这种电磁波能量辐射出去。普通的装置不一定能辐射电磁波,其构造必须是开放式的,相关尺寸和电磁波的波长必须是在同一等量级的。当然,无线电设备的天线是辐射电磁波最有效的设备,另外,如果导线、结构件、元器件若能满足辐射条件,则能起着发射天线的作用,也就是说它产生了天线效应。

辐射干扰与传导干扰也有类似之处,其辐射干扰源也有信息辐射干扰源和电磁噪声辐射干扰源之分。

信息辐射干扰源是带有信息的无用信号,通过辐射对接收设备、测试仪器进行干扰。电磁噪声辐射干扰源指的是不带任何信息的电磁噪声,通过辐射对接收设备、测试仪器进行干扰。

解决辐射干扰的方法

如同解决传导干扰的方法一样,辐射干扰的解决也必须从辐射干扰源、传输路径和接收器这三方面着手方能奏效。

怎样减少发射类的仪器部件的辐射干扰对非本通道接收器的影响,从干扰源可从以下方面着手处理:前一章节中叙述的传导干扰源的处理和解决的方法同样适用于辐射干扰的解决,还可对仪器的天线发射方向和极化方向进行改变,并在发射机的输出端配置相应的滤波器,滤掉对接收机构成干扰的频率。

从通信技术角度讲,传输通道的损耗越小越好,这样对有用信号衰减小,使接收质量高。但从接收器产生干扰来看,希望传输通道损

耗能大些,将无用信号或者电磁辐射噪声完全损耗掉,这似乎是矛盾的,当然我们也可以增加传输通道的长度,使其损耗增加用以减少辐射干扰,但这样增加器材成本一般很少使用。常规的方法是在辐射干扰源和接收器之间的通道上设置屏蔽,这样能明显降低辐射干扰。如果是直射波,可在传输通道上加阻挡层,用以切断接收器的辐射干扰通路。

对于接收器设置的灵敏度同样存在着上述矛盾,对于通信来说,自然是灵敏度越高越好,这样接收的距离才能远。但从干扰角度讲则相反,其灵敏度越低越好,低到根本收不到辐射干扰则更好。常规采用抗辐射干扰是在接收机输入端加滤波器,滤掉相应的干扰频率。或改变天线的接收方向,使接收机和干扰源天线不同极化和天线不对着干扰源,以减少干扰,这和处理传导干扰也有许多相似之处。

抗干扰是一门既有理论又有技术的综合性科学,它涉及电磁干扰计算方法、无线电系统干扰检测方法、电磁兼容的基本概念和原理、电磁干扰抑制技术等诸多方面的知识,本文只从实践应用的角度作一简单的叙述,文中若有不妥之处,敬请读者赐教。

单片机抗干扰能力

单片机抗干扰能力 单片机的抗干扰性能历来为大家所重视,现在市面上的单片机就我所接触过的,就有 十家左右了,韩国的三星和现代;日本的三菱,日立,东芝,富士通,NEC;台湾的 EMC,松汉,麦肯特,合泰;美国的摩托罗拉,国半的cop8系列,microchip系列,TI 的msp430系列,AVR系列,51系列,欧洲意法半导体的ST系列。。。。。。 这些单片机的抗干扰性能大多数鄙人亲自测试过,所用机器是上海三基出的两种 高频脉冲干扰仪,一种是欧洲采用的标准,一种是日本采用的标准;

日本的标准是高 频脉冲连续发出,脉冲宽度从50ns到250ns可调,欧洲采用的标准是脉冲间歇(间歇 时间和发出时间可调)发出,脉宽也是从50ns到250ns可调;我们国家采用的是欧洲 标准。 一般情况下,脉冲干扰这一项能够耐受2000V以上就算不错了(好像我国家电标准 是1200V),有些可以达到3000V,于是很多人为此很得意。 单片机在高频脉冲干扰下程序运行是否正常,或者说抗干扰是否通过,有些人以

程序不飞掉,或者说“死机”为标准,有些人以不复位并且程序正常运行为标准。 很多情况下,芯片复位程序是可以继续运行的,表面上看的不是很清楚。我一般就看 单片机在干扰下是否复位,复位了我就认为不行了。不复位并且程序正常运行当然比 复位来说要好了。 好多人看到自己做的电路抗干扰达到2000V或者3000V就很高兴,实际上芯片的抗 干扰并不一定就很好。这里我不能不说一下日本的标准,高频脉冲连续发出的形式。 别小看一个连续和一个间歇的区别,实际上,大家如果有机会,用日本的标准测试一

下你的芯片和电路,你就会发现,几乎和欧洲标准差别很大很大,采用日本标准你会 很伤心,因为大多数单片机过不了! 日本的标准是1600V。上面我提到的十几家单片机: 意法的也就是ST的≥1800 三菱的≥1800 富士通和日立的≥1600V nec的≥1500 东芝的≥1300V 摩托罗拉的≥1300

EMC测试标准及方案

EMC EMS(电磁抗扰度测试) 抗扰度测试项目 1.静电放电引用IEC61000-4-2(GB/T17626.2); EMC对策 v 箝位二极管保护电路 v 稳压管保护电路 v TVS(瞬态电压抑制器)二极管 v 分流电容滤波器 v 在易感CMOS、MOS器件中加入保护二极管; v 在易感传输线上串几十欧姆的电阻或铁氧体磁珠; v 使用静电保护表面涂敷技术; v 尽量使用屏蔽电缆; v 在易感接口处安装滤波器;无法安装滤波器的敏感接口加以隔离; v 选择低脉冲频率的逻辑电路; v 外壳屏蔽加良好的接地。 2.辐射射频电磁场引用IEC61000-4-3(GB/T17626.3); YY0505的规定 v 80MHz ~ 2.5GHz v 10V/m(生命支持EUT) v 3V/m (非生命支持EUT) v 场地校准时的频率步长:≤1% v 调制频率:2Hz,1kHz v 最小驻留时间:足够长,能被激励并响应 ●≥3秒,用2Hz调制时 ●≥1秒,其它 ●平均周期的1.2 倍,对数据取时间平均值的EUT ●对有多参数和子系统的EUT,驻留时间选最大者。 v 在屏蔽室内使用的设备 ●试验电平:Llimit-⊿L v 为工作目的而接收RF能量的设备 ●在其独占频带内应保持安全,可免予基本性能要求 ●接收部分调谐至优选的接收频率,或可选接收频段的中心

v 患者耦合电缆的规定 ●应采用制造商允许的最大长度 ●患者耦合点对地应无有意的导体或电容连接 v 对永久性安装的大型设备和系统 ●在安装现场或开阔场测试 ●用手机/无绳电话、对讲机和其它合法的发射机等的信号对EUT进行测试 ●另外,在80MHz~2.5GHz,在ITU为ISM指定的频率上进行测试,但调制信 号可与手机/无绳电话、对讲机等的调制信号相同 v EUT的供电可以是任一标称输入电压和频率 3.电快速瞬变脉冲群(EFT) 引用IEC61000-4-4(GB/T17626.4); v ±2kV, 电源线;±1kV, I/O线、信号电缆、互连电缆 v 长度短于3米的信号和互连电缆不测 v 所有患者用电缆免测,但必须连上 v 在患者耦合点处,将规定的模拟手接到参考地 v 手持式设备和部件应使用模拟手进行试验 v 对有多额定电压的EUT,在最小、最大额定输入电压下分别测试 v 可在任何额定电源频率下测试 v 对于有内部备用电池的EUT,应在试验后验证EUT脱离网电源继续工作的能力 EMC对策 v 压敏电阻保护电路 v 稳压管保护电路 v 滤波(电源线和信号线的滤波) v 共模滤波电容 v 差模电容(X电容)和电感滤波器 v 用铁氧体磁芯来吸收 v 电缆屏蔽 v 共模扼流圈 4.浪涌(冲击) 引用IEC61000-4-5(GB/T17626.5); YY0505的规定 v 交流电源端口: ●±0.5kV, ±1kV,差模注入(AC L-N) ●±0.5kV, ±1kV, ±2kV,共模注入(AC L-PE、N-PE) ●交流电压波形相角0o或180o、90o和270o ●如果EUT在初级电源电路中无浪涌保护装置,可免掉低等级的试验。 v 其它端口的电缆免测,但需要接上。 v 没有任何接地互连的Ⅱ类设备和系统,免予线对地试验 v 对没有交直流适配器,仅靠内部供电的设备,可免测本试验 v 对有多额定电压或自动量程的EUT,在最小、最大额定输入电压下分别测试

单片机上拉电阻的抗干扰设计方案

单片机上拉电阻的抗干扰设计 在电子电路设计中,干扰的存在让设计者们苦不堪言,干扰会导致电路发生异常,甚至会导致最终的产品无法正常使用。如何巧妙地减少甚至避免干扰始终是设计者们关心的重点,其中单片机的抗干扰设计就是较为重要的一环,本文将为大家介绍与上拉电阻有关的单片机抗干扰。 想要实现单片机抗干扰,首先要综合考虑各I/O 口的输入阻抗,采集速率等因素设计I/O 口的外围电路。一般决定一个I/O 口的输入阻抗有3种情况。 第一种情况:I/O 口有上拉电阻,上拉电阻值就是I/O 口的输入阻抗。人们大多用4K-20K电阻做上拉,(PIC的B 口内部上拉电阻约 20K)。 由于干扰信号也遵循欧姆定律,所以在越存在干扰的场合,选择上拉电阻就要越小,因为干扰信号在电阻上产生的电压就越小。 由于上拉电阻越小就越耗电,所以在家用设计上,上拉电阻一般都是10-20K,而在强干扰场合上拉电阻甚至可以低到1K。(如果在强干扰场合要抛弃B口上拉功能,一定要用外部上拉。) 第二种:I/O 口与其它数字电路输出脚相连,此时I/O 口输入阻抗就是数字电路输出口的阻抗,一般是几十到几百欧。

可以看出用数字电路做中介可以把阻抗减低到最理想,在许多工业控制板上可以看见大量的数字电路就是为了保证性能和保护MCU 第三种:I/O 口并联了小电容。 由于电容是通交流阻直流的,并且干扰信号是瞬间产生,瞬间熄灭的,所以电容可以把干扰信号滤除。但代价是造成I/O 口收集信号的速率下降,比如在串口上并电容是绝不可取的,因为电容会把数字信号当干扰信号滤掉。 对于一些特殊器件,如检测开关、霍尔元件等,是能够进行并电 容设计的,这主要是因为其开关量的变化较为迟缓,并不能形成很高的速率,所以即便电路中并联电容,对信号的采集也是不会有任何影响的。本文主主要对于上拉电阻有关的如何规避单片机干扰进行了介绍,正被单片机干扰困扰的朋友不妨花上几分钟阅读,相信一定会有所收获。

测试系统的干扰及其抑制

测试系统的干扰及其抑制 Interference in Te sting Syste m and It s E limination 李传伟 (山东威海职业技术学院,威海 264200) 摘 要 阐述了检测系统中的各类干扰,并对其产生的原因作了较详细的分析。针对干扰的特性,指出了它们的危害范围及程度,提出了检测系统抗干扰的方法和措施。 关键词 测试系统 干扰 抑制 Abstract Various kinds of interference in testing system are described and the causes are analyzed in detail.In accordance with the characteristics of the interference,their harm ful scope and degree are put forward.The methods and s olutions of anti-interference for detecting systems are given. K eyw ords T esting System Interference E lim ination 0 引言 随着自动控制的迅速发展,测试系统已经广泛应用于科学研究和生产实践的各个领域。由于存在干扰,它对测试系统的稳定度和精确度产生直接的影响,严重时可使测试系统不能正常工作。因此,系统的设计、安装、制造、使用方式以及工作环境等各个方面都需要考虑抗干扰的问题。所以对干扰的研究是测试技术的重要课题。 1 干扰因素 干扰形成的全过程是由于干扰源发出的干扰信号,经过耦合通道传到感受器上,构成对整个系统的干扰。干扰的三个环节,称之为干扰系统的三要素,如图1所示。要有效地抑制干扰,首先要找到干扰的发源地,抑制发源地的干扰是抑制整个系统受干扰的积极措施。当产生了难以避免的干扰时,削弱通道对干扰的耦合以及提高感受器的抗干扰能力就成为非常重要的方法。 图1 干扰系统三要素 检测系统中,主要存在空间辐射干扰,信号通道干扰、电源干扰、数字电路干扰、地线干扰及系统内部的其他干扰等。 1.1 空间辐射干扰 1.1.1 自然干扰 自然干扰包括雷达、大气层电场的变化、电离层变化以及太阳黑子的电磁辐射等等。雷电能在传输线上产生幅值很高的高频浪涌电压,对系统形成干扰,甚至破坏无线电通信设备。太阳黑子的电磁辐射能量很强,可造成无线电通信中断。来自宇宙的自然干扰,只有高频才能穿过地球外层的电离层,频率在几十MH z 到200MH z之间,电压一般在μV量级,对低频系统影响甚微。 1.1.2 放电干扰 ①电晕放电 最常见的电晕放电来自高压输出线。高压输电线因绝缘失效会产生间隙脉冲电流,形成电晕放电。在输电线垂直方向上的电晕干扰,其电平随频率升高而衰减。当频率低于1MH z时,衰减微弱;当频率高于1MH z时,急剧衰减。因此电晕放电干扰对高频系统影响不大,而对低频系统影响较为严重,应引起注意。 ②辉光放电 辉光放电即气体放电。当两个接点之间的气体被电离时,由于离子碰撞而产生辉光放电,肉眼可见到蓝色的辉光。辉光放电所需电压与接点之间的距离、气体类型和气压有关。荧光灯、霓虹灯、闸流管以及工业生产中使用的大型辉光离子氧化炉等,均是利用这一原理制造的辉光放电设备。这类设备对测试系统而言都是干扰源,频率一般为超高频。如荧光灯干扰,电压为几十到几千微伏,甚至可达几十毫伏。 ③弧光放电 弧光放电即金属雾放电。最具典型的弧光放电是金属电焊。弧光放电产生高频振荡,以电波形式形成干扰。这种干扰对测试系统危害较大,甚至对具有专门防干扰的设备,在半径为50m的范围内,当频率为0115~015MH z时,干扰电压最低仍可达1000μV;当频 7

单片机的抗干扰能力

单片机的抗干扰能力 在我一次产品中有AVR 和PIC 两种芯片同时存在,当用AVR 推动继电器-- 再推动接触器。用PIC 来显示。发现PIC 居然有点小小的干扰,不得不在外围电路上加措施才解决问题。都说PIC 的抗干扰一流的,我怀疑之下对两种单片机做一个小小的测试。首先说明,我只是比较单个芯片的最小系统,比较单片机的自身抗干扰能力。 1。电源用变压器变压12V ,7805 稳压,输入输出均接电解电容和104 电容。 2。单片机最小系统,用3 个I/O ,按钮,指示灯,驱动三极管(继电器-- 再推动接触器)不用的管脚不管。 3。干扰源,由于没有仪器,只好用接触器的线圈来做干扰源,为了加强干扰,接触器线圈两端没有加104 电容。 4。软件,最小最简单,不加任何处理只推动作用。 5。元件选择,PIC 的用PIC16C54 ,PIC16F54 ,PIC16F877A , PIC16F716。AVR 的选用M8。AT28 , AT13。 接下来做测试了: PIC16C54 :先是接触器放在芯片旁边。无论怎么按动按钮,接触器的干扰对它一点反映也没有,真是稳如泰山。再用接触器线圈引线缠绕芯片。在6 圈以下还是稳如泰山。上了7 圈就有干扰 了。看来PIC16C54 真是强悍啊。佩服。接下去就试PIC16F54

了。 PIC16F54 :先是接触器放在芯片旁边。不得了!程序简直没有办法运行,和PIC16C54 简直一个在天上,一个在地下。万思不得其解。查阅PIC 资料都说PIC 的F 系列比C 系列差,就是F 系列的不同产品抗干扰也不一样。于是又测试 PIC16F716 。PIC16F716 : 先是接触器放在芯片旁边。果然好多了,10 次也就1 次复位。PIC16F877A : 先是接触器放在芯片旁边。无论怎么按动按钮,接触器的干扰对它一点反映也没有,再用接触器线圈引线缠绕芯片。在 1 圈就有干扰复位了。 以上就是对我有的几种PIC 片子的测试结果。接下来对AVR 的M8 做测试。 M8:先是接触器放在芯片旁边。先是接触器放在芯片旁边。无论怎么按动按钮,接触器的干扰对它一点反映也没有,再用接触器线圈引线缠绕芯片。在1 圈就有干扰复位了。 AT28 :结果和PIC16F54 一样。 AT13 :先是接触器放在芯片旁边。先是接触器放在芯片旁边。无论 怎么按动按钮,接触器的干扰对它一点反映也没有,再用接触器线圈引线缠绕芯片。在1-2 圈就有干扰复位了。从我自己测试的效果看,PIC 的C 系列很好。F 系列的早期产品如PIC16F54 很

计算机控制系统中的抗干扰技术

第9章计算机控制系统中的抗干扰技术 ●本章的教学目的与要求 掌握各种干扰的传播途径与作用方式以及软硬件抗干扰技术。 ●授课主要内容 ●干扰的传播途径与作用方式 ●软硬件抗干扰技术 ●主要外语词汇 ●重点、难点及对学生的要求 说明:带“***”表示要掌握的重点内容,带“**”表示要求理解的内容,带“*”表示要求了解的内容,带“☆”表示难点内容,无任何符号的表示要求自学的内容 ●干扰的类型*** ●干扰的传播途径***☆ ●各类干扰的抑制方法*** ●辅助教学情况 多媒体教学课件(POWERPOINT) ●复习思考题 ●干扰的类型 ●干扰的传播途径 ●各类干扰的抑制方法 ●参考资料 刘川来,胡乃平,计算机控制技术,青岛科技大学讲义

干扰是客观存在的,研究抗干扰技术就是要分清干扰的来源,探索抑制或消除干扰的措施,以提高计算机控制系统的可靠性和稳定性。 9.1 干扰的传播途径与作用方式 干扰是指有用信号以外的噪声或造成计算机设备不能正常工作的破坏因素。产生干扰信号的原因称为信号源。干扰源通过传播途径影响的器件或系统称为干扰对象。干扰源、传播途径及干扰对象构成了干扰系统的三个要素。 9.1.1 干扰的来源 1.外部干扰 2.内部干扰 9.1.2 干扰传播途径 干扰传播途径主要有:静电耦合、磁场耦合、公共阻抗耦合。 1. 静电耦合 静电耦合是通过电容耦合窜入其他线路的。 2. 磁场耦合 在任何载流导体周围都会产生磁场,当电流变化时会引起交变磁场,该磁场必然在其周围的闭合回路中产生感应电势引起干扰,它是通过导体间互感耦合进来的。 3公共阻抗耦合 公共阻抗耦合干扰是由于电流流过回路间公共阻抗,使得一个回路的电流所产生的电压降影响到另一回路。 9.1.3 干扰的作用方式 按干扰作用方式的不同,可分为串模干扰、共模干扰和长线传输干扰。 1. 串模干扰 串模干扰是指叠加在被测信号上的干扰噪声,它串联在信号源回路中,与被测信号相加输入系统. 图9.6 串模干扰示意图图9.7 共模干扰示意图

单片机抗干扰方法

如何提高抗干扰性能 搞过产品的朋友都有体会,一个设计看似简单,硬件设计和代码编写很快就搞定,但在调试过程中却或多或少的意外,这些都是抗干扰能力不够的体现。 下面讨论一下如何让你的设计避免走弯路: 抗干扰体现在2个方面,一是硬件设计上,二是软件编写上。 这里重点提醒:在MCU设计中主要抗干扰设计是在硬件上,软件为辅。因为MCU的计算能力有限,所以要在硬件上花大工夫。 看看干扰的途径: 1:干扰信号干扰MCU的主要路径是通过I/O口,一是影响了MCU的数据采集,二是影响内部其它寄存器。 解决方法:后面讨论。 2:电源干扰:MCU虽然适应电压较宽(3-5。5V),但对于电源的波动却很敏感,比如说MCU可以在3V电压下稳定工作,但却不能在电压在3V-5。5V波动的情况下稳定工作。 解决方法:用电源稳压块,做好电源的滤波等工作,提示:一定要在电源旁路并上0。1UF 的瓷片电容来滤除高频干扰,因为电解电容对超过几十KHZ的高频干扰不起作用。 3:上下电干扰:但每个MCU系统在上电时候都要经过这样一个过程,所以要尤其注意。MCU虽然可以在3V电压下稳定工作,但并不是说它不能在3V以下的电压下工作,当然在如此低的电压下MCU是超不稳定状态的。在系统加电时候,系统电源电压是从0V上升到额定电压的,比如当电压到2V时候,MCU开始工作了,但这时是超不稳定的工作,极容易跑飞。 解决方法:1让MCU在电源稳定后才开始工作。PIC在片内集成了POR(内部上电延时复位),这功能一定要在配置位中打开。 外部上电延时复位电路。有多种形式,低成本的就是在复位脚接个阻容电路。高成本的是用专用芯片。这方面的资料特多,到处都可以查找。 最难排除的就是上面第一种干扰,并且干扰信号随时可以发生,干扰信号的强度也不尽相同。但它们也有相同点:干扰信号也遵循欧姆定律,干扰信号偶合路径无非是电磁干扰,一是电火花,二是磁场。 其中干扰最厉害的是电火花干扰,其次是磁场干扰。电火花干扰表现场合主要是附近有大功率开关、继电器、接触器、有刷电机等。磁场干扰表现场合主要是附近有大功率的交流电机、变压器等。 解决方法: 第一点:也是最经典的,就是在PCB步线和元件位置安排上下工夫,这中间学问很多,说几天都说不完^^。 二:综合考虑各I/O口的输入阻抗,采集速率等因素设计I/O口的外围电路。 一般决定一个I/O口的输入阻抗有3种情况: A:I/O口有上拉电阻,上拉电阻值就是I/O口的输入阻抗。 一般大家都用4K-20K电阻做上拉,(PIC的B口内部上拉电阻约20K)。 由于干扰信号也遵循欧姆定律,所以在越存在干扰的场合,选择上拉电阻就要越小,因为干扰信号在电阻上产生的电压就越小。 由于上拉电阻越小就越耗电,所以在家用设计上,上拉电阻一般都是10-20K,而在强干扰场合上拉电阻甚至可以低到1K。 (如果在强干扰场合要抛弃B口上拉功能,一定要用外部上拉。)

PLC控制系统抗干扰技术设计策略

PLC控制系统抗干扰技术设计策略 中文摘要 自动化系统所使用的各种类型PLC中,有的是集中安装在控制室,有的是安装在生产现场和各电机设备上,它们大多处在强电电路和强电设备所形成的恶劣电磁环境中。要提高PLC控制系统可靠性,一方面要求PLC生产厂家提高设备的抗干扰能力,另一方面要求应用部门在工程设计、安装施工和使用维护中引起高度重视,多方配合才能完善解决问题,有效地增强系统的抗干扰性能。 关键词PLC,industry automation,anti-interference,可编程控制器,自动化

Title:PLC control system anti-jamming technology design strategy Abstract Automation systems used in various types of PLC , some centrally installed in the control room , some installation on production sites and electrical equipment , most of them in a harsh electromagnetic environment formed by the strong electric circuits and power installations . Keywords PLC industry automation anti-interference Programmable controllers automation

上拉电阻&单片机硬件抗干扰

上拉电阻的作用 上下拉电阻: 1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。 2、OC门电路必须加上拉电阻,以提高输出的高电平值。 3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。 4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。 5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。 6、提高总线的抗电磁干扰能力。管脚悬空就比较容易接受外界的电磁干扰。 7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。 上拉电阻阻值的选择原则包括: 1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。 2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。 3、对于高速电路,过大的上拉电阻可能边沿变平缓。综合考虑以上三点,通常在1k到10k之间选取。对下拉电阻也有类似道理. 如果有10V的电源 串联了两个两欧的的电阻那么这两个电阻中间的电位就是10除以4再乘以2 ,那么就是5V了,如过我要提高中间的电位,我在在中间电位点和另一个2欧电阻串联一个1欧的电阻  那么这个中间电位点就是 10除以5在乘以3,那么就是6v了所以相对与5v就提高了1v,只是电流降了0.5A 关于单片机硬件抗干扰 在研制带处理器的电子产品时,如何提高抗干扰能力和电磁兼容性? 一、下面的一些系统要特别注意抗电磁干扰: 1、微控制器时钟频率特别高,总线周期特别快的系统。 2、系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。 3、含微弱模拟信号电路以及高精度A/D变换电路的系统。 二、为增加系统的抗电磁干扰能力采取如下措施: 1、选用频率低的微控制器: 选用外时钟频率低的微控制器可以有效降低噪声和提高系统的抗干扰能力。同样频率的方波和正弦波,方波中的高频成份比正弦波多得多。虽然方波的高频成份的波的幅度,比基波小,但频率越高越容易发射出成为噪声源,微控制器产生的最有影响的高频噪声大约是时钟频率的3倍。 2、减小信号传输中的畸变 微控制器主要采用高速CMOS技术制造。信号输入端静态输入电流在1mA左右,输入电容10PF左右,输入阻抗相当高,高速CMOS电路的输出端都有相当的带载能力,即相当大的输出值,将一个门的输出端通过一段很长线引到输入阻抗相当高的输入端,反射问题就很严重,它会引起信号畸变,增加系统噪声。当Tpd>Tr时,就成了一个传输线问题,必须考虑信号反射,阻抗匹配等问题。

如何解决单片机的抗干扰问题

如何解决单片机的抗干扰问题 随着单片机的发展,单片机在家用电器、工业自动化、生产过程控制、智能仪器仪表等领域的应用越来越广泛。然而处于同一电力系统中的各种电气设备通过电或磁的联系彼此紧密相连,相互影响,由于运行方式的改变,故障,开关操作等引起的电磁振荡会波及很多电气设备。这对我们单片机系统的可靠性与安全性构成了极大的威胁。单片机测控系统必须长期稳定、可靠运行,否则将导致控制误差加大,严重时会使系统失灵,甚至造成巨大损失。因此单片机的抗干扰问题已经成为不容忽视的问题。 1 干扰对单片机应用系统的影响 1.1测量数据误差加大 干扰侵入单片机系统测量单元模拟信号的输入通道,叠加在测量信号上,会使数据采集误差加大。特别是检测一些微弱信号,干扰信号甚至淹没测量信号。 1.2 控制系统失灵 单片机输出的控制信号通常依赖于某些条件的状态输入信号和对这些信号的逻辑处理结果。若这些输入的状态信号受到干扰,引入虚假状态信息,将导致输出控制误差加大,甚至控制失灵。 1.3 影响单片机RAM存储器和E2PROM等 在单片机系统中,程序及表格、数据存在程序存储器EPROM或FLASH中,避免了这些数据受干扰破坏。但是,对于片内RAM、外扩RAM、E2PROM 中的数据都有可能受到外界干扰而变化。 1.4 程序运行失常 外界的干扰有时导致机器频繁复位而影响程序的正常运行。若外界干扰导致单片机程序计数器PC值的改变,则破坏了程序的正常运行。由于受干扰后的PC 值是随机的,程序将执行一系列毫无意义的指令,最后进入“死循环”,这将使输出严重混乱或死机。 2 如何提高我们设备的抗干扰能力 2.1 解决来自电源端的干扰

单片机控制系统的抗干扰设计

单片机控制系统的抗干扰设计 摘要:单片机相关控制的灵敏度和系统所受的干扰具有一定的正相关关系,对 单片机的控制系统而言,具有较高的灵敏度才能确保系统运行正常,但灵敏度越高,系统受到的干扰就越强,设计单片机控制系统时需要重视其抗干扰能力,确 保系统能够稳定运行。 关键词:单片机;控制系统;抗干扰设计 引言 单片机控制系统是集通信技术、计算机技术以及自动化控制技术于一体的工 业通用自动控制系统,其不但操作便捷、扩展性能好,而且还具有较强的控制功能,目前已在我国电力、化工、交通以及冶金等行业得到广泛的应用。但由于工 业作业环境较为恶劣,使得单片机容易被电源波形畸变、电磁设备启停等影响而 受到干扰,使得信号接收能力大大下降,进而对测量的质量与效率造成了影响, 严重的还会对单片机的软件、硬件造成损坏,使其难以正常运作。所以,加强单 片机控制系统的抗干扰设计,正确掌握其干扰源,并采取针对性的改进措施来提 高其抗干扰能力,对单片机控制系统功能的正常发挥有着重要的作用。 1系统干扰源及干扰因素 1.1现场干扰源 电磁干扰一般分为两类,即传导和辐射。传导类型的干扰主要是通过金属、 电感、电容以及变压器传播的;而辐射类型干扰的传播途径很多,比如设备外壳 和外壳上的缝隙,设备间的连接电缆,甚至是一根导线也可以成为辐射类型干扰 的传统途径。这两种干扰往往是相辅相成的,并且在干扰吸收上可以相互转化。 在测控系统中,电磁干扰主要通过“场”进入,即电磁干扰源的能量通过电磁场传 递给测控系统。电场主要是电容性耦合干扰,在导线和电路分布的电容中,干扰 信号进入测控系统。而磁场干扰是互感性耦合干扰,借助导线和电路的互感耦合,干扰信号进入测控系统。 1.2单片机控制系统自身干扰源 单片机控制系统自身干扰源主要包括了散粒噪声、热噪声、常模噪声、共模 噪声以及接触噪声等几方面内容。散粒噪声是由于晶体管基区内的载流子发生随 即扩散,与电子空穴发生复合反应而形成的,其主要存在于半导体原件内部;热 噪声是指在没有连接电源的情况下,仍然有微弱电压存在于电阻两端,电阻两端 出现电子热运动而形成的噪音电压;常模噪声即线间感应噪声或对称噪声,往往 难以将其完全消除;共模噪声恰好与常模噪声相反,其指的是地感应噪声、不对 称噪声或是纵向噪声,该类噪声可以进行消除,但也可由共模噪声转变为常模噪声;接触噪声通常是由于两种材料进行不完全接触,使得电导率出现变化而产生的,常出现在导体连接部位。 2单片机硬件抗干扰设计 2.1电源电路的设计 在单片机控制系统中,将模拟电路电源和逻辑电路电源分离,不仅有利于去 除电源耦合逻辑电路产生的干扰,还可以抑制通过电源耦合对ECU干扰。那么单 片机控制系统电源电路设计过程中,可以采用7812和7805三端稳压集成芯片, 对电源进行负压差保护,避免因其中一个稳压电源故障导致整个电路崩溃。为改 善电源波形,可以采用低通滤波器,从而减少以高次谐波为主的干扰源,从而确

关于CBTC系统无线通信抗干扰技术的研究

技术装备 52 MODERN URBAN TRANSIT 6/2009现代城市轨道交通 0引言 列车控制系统在地铁信号的发展过程中,经历了从单向轨道电路到双向无线通信的变革。目前广泛应用于地铁列车控制系统的是基于无线通信的列车控制系统(CBTC)(图1)。而无论基于无线局域网还是专用无线网的通信,都存在同频或邻频干扰的问题。为此,如何引入技术手段,提高CBTC系统的抗干扰能力,保证其可靠、稳定运行十分重要。 1无线局域网 1.1结构 无线局域网(WLAN)是计算机 网络与无线通信技术相结合的产物,它以无线多址信道作为传输媒介,利用电磁波完成数据交互,实现传统有线局域网的功能。WLAN的核心结构如图2所示。 从图2可以看到,WLAN的工作层有介质访问控制层(MAC)和物 理层(PHY),其中物理层分为PLCP(物理层收敛过程)子层和PMD(物理机制相关)子层。PLCP子层通过将MAC层信息映射到PMD子层,使MAC层对物理层的依赖减到最低,而PMD子 层则提供了控制无线介质 的方法和手段。WLAN的物理层采用扩频工作方式,包括FHSS(跳频扩频)、DSSS(直接序列扩频)、HR/DSSS(高速直接序列扩频)和OFDM(正交分复用),无线工作频段为ISM:2.4~2.4875GHz以及U-NII:5.725~5.850 GHz(取决于采用的标准)。在IEEE802.11结构内还包含两个管理实体(MAC层管理实体MLME和PHY 物理层管理实体PLME)和管理信息库(MIB),从而控制MAC层和PHY层的工作状态。 1.2MAC层干扰问题 无线局域网的MAC层的载波监听多路访问/冲突检测方法(CSMA/CD)协议问题,从理论上讲,MAC层的CSMA/CD协议完全能够满足局域网级的多用户信道竞争问题,但是,对应无线环境而 邱鹏:南京恩瑞特实业有限公司轨道交通事业部,助理工程师,南京 211106 关于CBTC系统无线通信 抗干扰技术的研究 邱鹏 李亮 摘 要:研究基于无线传输的CBTC系统车-地通信抗干扰技术,通过 分析无线局域网中的同频干扰,结合重复累积码、感知无线电、一致性测试3项技术,提出1套在CBTC系统设计和系统运营两个阶段抑制同频干扰的完整解决方案。 关键词:车地通信;同频干扰;重复累积码;感知无线电;一致性测试 注:LLC即逻辑链路控制;WEP即有线等效保密 图2WLAN 的核心结构 图1CBTC 系统框图 车载部分 车载ATC定位 数据通信部分 无线传输系统 轨旁网络装置 ATS 轨旁ATC系统 LLC WEPMAC PHY DSSS FH IR OFDMMACMgmt MIB LLC MAC 业务接口 MAC管理业务接口MAC子层 MAC管理层 PHY业务接口 PHY管理业务接口PHY管理层 PLCP子层PMD 子层

从六方面提高单片机系统的抗干扰能力

从六方面提高单片机系统的抗干扰能力 干扰问题,一直是电力设备仪器的一个难点。对于单片机也不例外。单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。单片机测控系统必须长期稳定、可靠运行,否则将导致控制误差加大,严重时会使系统失灵,甚至造成巨大损失。因此单片机的抗干扰问题已经成为不容忽视的问题。单片机的干扰问题,一般可以从六个方面来解决。 模拟信号采样干扰 单片机应用系统中通常要对一个或多个模拟信号进行采样,并将其通过A/D转换成数字信号进行处理。为了提高测量精度和稳定性,不仅要保证传感器本身的转换精度、传感器供电电源的稳定、测量放大器的稳定、A/D转换基准电压的稳定,而且要防止外部电磁感应噪声的影响,如果处理不当,微弱的有用信号可能完全被无用的噪音信号淹没。在实际工作中,可以采用具有差动输入的测量放大器,采用屏蔽双胶线传输测量信号,或将电压信号改变为电流信号,以及采用阻容滤波等技术。 数字信号传输通道的干扰 数字输出信号可作为系统被控设备的驱动信号(如继电器等),数字输入信号可作为设备的响应回答和指令信号(如行程开关、启动按钮等)。数字信号接口部分是外界干扰进入单片机系统的主要通道之一。在工程设计中,对数字信号的输入/输出过程采取的抗干扰措施有:传输线的屏蔽技术,如采用屏蔽线、双胶线等;采用信号隔离措施;合理接地,由于数字信号在电平转换过程中形成公共阻抗干扰,选择合适的接地点可以有效抑制地线噪声。 硬件监控电路的干扰 在单片机系统中,为了保证系统可靠、稳定地运行,增强抗干扰能力,需要配置硬件监控电路,硬件监控电路从功能上包括以下几个方面: (1)上电复位:保证系统加电时能正确地启动; (2)掉电复位:当电源失效或电压降到某一电压值以下时,产生复位信号对系统进行复位; (3)电源监测:供电电压出现异常时,给出报警指示信号或中断请求信号; (4)硬件看门狗:当处理器遇到干扰或程序运行混乱产生“死锁”时,对系统进行复位。 解决来自电源端的干扰 单片机系统中的各个单元都需要使用直流电源,而直流电源一般是市电电网的交流电经过变压、整流、滤波、稳压后产生的,因此电网上的各种干扰便会引入系统。除此之外,由于交流电源共用,各电子设备之间通过电源也会产生相互干扰,因此抑制电源干扰尤其重要。电源干扰主要有以下几类: 1.电源线中的高频干扰(传导骚扰) 供电电力线相当于一个接受天线,能把雷电、电弧、广播电台等辐射的高频干扰信号通过电源变压器初级耦合到次级,形成对单片机系统的干扰;解决这种干扰,一般通过接口防护;在接口增加滤波器、或者使用隔离电源模块解决。 2.感性负载产生的瞬变噪音(EFT) 切断大容量感性负载时,能产生很大的电流和电压变化率,从而形成瞬变噪音干扰,成为电磁干扰的主要形式;解决这种干扰,一般通过屏蔽线与双胶线,或在电源接口、信号接口进行滤波处理。这二种方法都需要在系统接地良好的情况下进行,滤波器、接口滤波电路都必须良好的接地,这样才能有效的将干扰泄放。 软件抗干扰原理及方法 尽管我们采取了硬件抗干扰措施,但由于干扰信号产生的原因错综复杂,且具有很大的

综述单片机控制系统的抗干扰设计

摘要:单片机应用系统在发动机电喷中得到了广泛的应用,然而由于发动机工作环境恶劣,提高控制系统的抗干扰性至关重要。分析了单片机干扰的主要来源,并从硬件和软件抗干扰设计中总结了一些取得良好抗干扰性的方法。 关键词 在进行单片机应用开发的过程中,经常遇到在实验室调整很好的单片机一到工作现场就会出现这样或那样的问题,这主要是由于设计未充分考虑到外界环境存在的干扰,如机械震动、各种电磁波和环境温差都会影响硬件系统的性能,导致电控单元不能正常工作。鉴于此本文较全面分析了干扰单片机应用系统的因素并结合自己的研究课题,提出一些可增强系统抗干扰性的方法。 1单片机系统的主要干扰源 (1)无线电设施的射频干扰; (2)发动机上的高压点火线圈向外辐射磁场强度大、频带宽的电磁波; (3)单片机内部的晶振电路是内部干扰源之一; (4)数字电路本身门电路频繁的导通、截止造成电源地线电流变化,也会产生很大的高频电磁干扰,各种开关电子设备通断时产生的急剧变化的电流会产生较宽频谱干扰; (5)外界交流电路中产生的工频干扰亦会影响模拟电路输出信号的准确性。 2干扰的耦合方式 隔离干扰源与控制系统之间的耦合信道。表1列出了干扰源的主要干扰方式及特征。

3单片机的硬件抗干扰设计 断干扰的传输信道。常用的措施有:滤波技术、去耦技术、屏蔽技术和接地技术。 3.1电源电路的设计 源耦合逻辑电路产生的干扰进入模拟电路,二是为了避免传感器通过电源耦合对ECU干扰。各功能模块供电系统如图1所示,皆采用7812和7805三端稳压集成芯片,且都单独对电源进行负压差保护,这样不会因其中某一稳压电源出现故障而影响整个系统电路;使用低通滤波器亦可减少以高次谐波为主的干扰源,从而改善电源波形;在输出端采用了过压保护电路。通过上述设计可大大提高供电的 可靠性。图中D 1、D 2 用于负压差保护,防止压差击穿稳压器的be结使器件永久 失效,稳压管WY1、晶闸管Q 1用于过压保护,电容E 1 、E 2 、C 1 、C 2 使输出电压波 3.2模拟电路抗干扰设计 比较大,因此在模拟电路中应选择低温漂系数的集成放大器;在模拟电路中共模信号对电路板影响较大,故在模拟电路中采用差动放大电路,可得出两端输出信号;接收时,将双端信号转化为单端信号,可非常有效地抑制共模信号。若电路中输入信号变化比较大,需在放大器或比较器前加输入端保护电路以避免器件的损坏。外界交流电路产生的工频干扰对模拟信号有较大的影响,在电路中采用有源滤波器和低通滤波器。 3.3选用时钟频率低的单片机 干扰。因此选用低频率的单片机是提高抗干扰性的原则之一。其同为1 μs时,8051单片机外时钟为12 MH z,Atmel公司单片机外时钟为6 MHz,而Microchip和Motorola 的单片机时钟频率为4 MHz。 3.4输入、输出隔离 用的隔离方法有光电隔离、继电器隔离和变压器隔离。变压器隔离是传递脉冲输入、输出信号时,不能传递直流分量,因此常用于不要求传递直流分量的输入输

EMC测试复习过程

EMC测试-概述 电磁兼容(EMC)是对电子产品在电磁场方面干扰大小(EMI)和抗干扰能力(EMS)的综合评定,是产品质量最重要的指标之一,电磁兼容的测量由测试场地和测试仪器组成。 EMC测试-构成 EMC包含两大项:EMI(干扰)和EMS(敏感度,抗干扰) EMI测试项包括:RE(辐射,发射) CE(传导干扰) Harmonic(谐波) Flicker (闪烁) EMS测试项包括:ESD (静电) EFT(瞬态脉冲干扰) DIP(电压跌落) CS(传导抗干扰) RS(辐射抗干扰) Surge(浪涌,雷击) PMS(工频磁场搞扰度) EMC测试-指南 一、EMI(电磁骚扰)分射频和工频两类测试 l 射频类测试项目: 1.1 射频分传导和辐射两项测试 射频传导(屏蔽室测试) 1.1.1 传导分电压和功率两项测试 1.1.2 传导电压标准:CISPR11、14、15、22 1.1.3 传导功率标准:CISPR11、14 射频辐射(电波暗室测试) 1.1.4 射频辐射标准:CISPR11、22、IEC60571 l 工频类测试项目(实验室测试) 1.2 工频分谐波和闪烁两项测试 工频谐波1.2.1 IEC6100-3-2 工频闪烁1.2.2 IEC6100-3-3 二、EMS(电磁敏感度)分瞬变、射频、低频磁场、电源质量 l 瞬变类测试项目(实验室测试) 2.1 瞬变分静电、瞬变脉冲和浪涌三项测试 瞬变静电IEC6100-4-2 瞬变脉冲IEC6100-4-4 瞬变浪涌IEC6100-4-5 l 射频类项目 2.2 射频分传导和辐射两项测试 射频传导IEC61004-6(实验室测试)

单片机系统抗干扰性能方面分析方案

时间:来源: 前言 作为工业自动化核心部件地称重仪表,不同于商用衡器,往往面临更复杂地工况.对于拌和站电磁环境比较恶劣地情况下,一些大规模集成电路常常会受到干扰,导致不能正常工作或在错误状态下运行,造成地后果往往是很严重地.因此对抗干扰性能地了解是称量仪表选型地关键.我们在对珠海市长陆工业自动控制系统有限公司生产地与和其它同类厂家产品进行反复比较过程中,获得了一个好单片机系统(称重仪表)应具备地抗干扰性能方面地分析经验.在此与同行分享,希望以此促进行业技术水平地提高.资料个人收集整理,勿做商业用途 仪表电磁兼容性()是一项重要指标,它包含系统地发射和敏感度两方面地问题.如果一个单片机系统符条件合下面三个条件,则该系统是电磁兼容地:资料个人收集整理,勿做商业用途 .对其他系统不产生干扰; .对其他系统地发射不敏感; .对系统本身不产生干扰; 假若干扰不能完全消除,但也要使干扰减少到最小.干扰地产生不是直接地(通过导体、公共阻抗耦合等),就是间接地(通过串扰或辐射耦合).电磁干扰地产生是通过导体和通过辐射,很多磁电发射源、如光照、继电器、电机和日光灯都可以引起干扰;电源线、互连电缆、金属电缆和子系统地内部电路也都可能产生辐射或接收到不希望地信号.在高速单片机系统中,时钟电路通常是宽带噪声地最大产生源,这些电路可产生高达地谐波失真,在系统中应该把他们去掉.另外,在单片机系统中最容易受影响地是复位线,中断线和控制线.资料个人收集整理,勿做商业用途 .干扰地耦合方式 ()传导性 一种最明显而往往被忽略地能引起电路中噪声地路径是经过导体.一条穿过噪声环境地导线可检拾噪声并把噪声送到其他电路引起干扰.设计人员必须避免导线检拾噪声和在噪声引起干扰前用去耦办法去除噪声.最普通地例子是噪声通过电源进入电路.若电源本身或连接到电源地其他电路是干扰源,则在电源线进入电路之前必须对其去耦.资料个人收集整理,勿做商业用途 ()公共阻抗耦合 当来自两个不同电路地电流流经一个公共阻抗时就会产生共阻抗耦合.阻抗上地压降由两个电路决定,来自两个电路地地电流流过共地阻抗.电路地地电位被电流调制,噪声信号或补偿经共地阻抗从电路耦合到电路.资料个人收集整理,勿做商业用途 ()辐射耦合 经辐射地耦合通称串扰.串扰发生在电流流经导体时产生电磁场,而电磁场在邻近地导体中感应瞬态电流. ()辐射发射 辐射发射有两种基本类型;差分模式()和共模().共模辐射或单极天线辐射是由无意地压降引起地,它使电路中所有地连接抬高到系统电地位之上.就电场大小而言,辐射是比辐射更为严重地问题.为使辐射最小,必须用切合实际地设计使共模电流降到零.资料个人收集整理,勿做商业用途 .影响地因数

电磁兼容EMC测试

灯具做CE认证时的电磁兼容测试 灯具做CE认证时的电磁兼容测试 CE-EMC认证是CE认证关于电磁兼容方面的认证,灯具的EM C认证的测试包括以下方面: 1、静放电(ESD) 2、射频干扰(RI) 3、工频磁场(HI) 4、快速脉冲群(EFT) 5、电流注入(CI) 6、浪涌(Surge) 7、电压跌落(VD) 关于目前EMC测试项目说明: EMI(CISPR 15): 1,骚扰电压(Disturbance voltage) 2,辐射电磁骚扰(Radiated electromagnetic disturbance) 3,插入损耗(电感镇流器)(Insertion loss) EMS(IEC 61000-4-6): 1,传导抗扰度(Conducted immunity) 备注(Remark):电子变压器、电子镇流器需要做上述EMI中的1、2项即可,电感镇流器只需要做上述EMI中的第3项即可,电子感应器、电子调光器需要做上述EMI、EMS中的所有项目。 抗干扰标准简介 如果打算把电子产品销往国外,就不但要了解一些有关抗干扰方面的问题,还要知道用哪些测试方法和设备才能使产品符合欧盟(EU)的标准。 欧盟的EMC标准要求所有的电子产品都要进行抗干扰试验,包括认为干扰和自然干扰两种。标准还要求产品不能发射出有害的信号,因为这种信号会干扰其他产品的正常工作。 产品是否符合EMC要求,应根据欧洲标准(EN-European Norms)进行测试。欧洲标准由电子技术标准化委员会颁布,而EN的抗干扰标准则是由国际电工技术委员会(IEC-International Electrotechnical Commission)制定而成,并从1997年1月起,采用与EN同样的编号。如IEC1000-4-2变成IEC61000-4-2,这和EN61000-4-2的静电放电(ESD-Electrostatic Discharge)标准是相同的。 由IEC制定的抗干扰标准有一定的设备要求,并与放射标准有明显的差别,对于美国厂商销售产品会带来一些问题。因此,选择正确的设备和了解正确的测试方法具有同样的重要性,最终的目的是使产品符合要求。 本文介绍四种抗干扰标准: 1.IEC61000-4-2静电放电测试:这是一项对产品的一般性测试,目的是考察仪器在ESD条件下的 性能。放电在人与仪器附近的目标之间进行,或者使放电干扰直接传到仪器中去。 在IEC61000-4-2中,要求一个人手持一金属物(如改锥等)去接近仪器的某个部位。该标准规定了空气放电方式和直流放电方式。在空气放电方式下,从ESD信号发生器的测试探头发出的火花传向待测的设备(EUT)。测试探头必须能提供8kV的可调充电电压。直流放电方式要求用ESD 信号发生器的冲击脉冲,当信号发生器的探头尖部接触到EUT时,发生放电。在这种方式下,信号发生器应能提供4kV的可调电压。 2.IEC61000-4-3辐射电磁场测试: 这项测试是考察电子产品对辐射EMI场的敏感度。例如,考察一台计算机在非常靠近一个辐射能量的天线时的性能。该标准规定了产品在保持正常工作的情况下所能承受的辐射能量等级。例如,产品经受得住手提无线电收发信机、荧光、工业焊机或半地TV天线等产生的强电磁场的电磁干扰。 测试过程和测试等级由标准加以规定,并作为测试设备的共同标准。测试频率为80MHz-1000MHz,调制度为80%,到EUT的距离为3米。

相关文档
最新文档