数列中体现的数学思想

数列中体现的数学思想
数列中体现的数学思想

数列中体现的数学思想

恩施市第一中学高二(11)班杨义内容摘要:数学思想犹如一把开启解题的大门,拥有它就能在解答数学问题中游刃有余。能否有意识地正确运用数学思想方法解答数学问题,是衡量数学素质和数学能力的重要标志。在解题时如果能够充分运用数学思想方法,可以使很多数列问题获得直观、简捷、巧妙地解答。

关键词:数列函数方程整体分类讨论等价转化

在数列中蕴涵了许多重要的数学思想方法,例如整体思想,方程思想,函数思想,分类讨论思想,等价转化思想,等等。本文主要通过例题剖析来体现数列中的数学思想,下面就简单介绍数列中几种常见的数学思想。

1.整体思想

整体思想就是从整体着眼,把一些看起来很复杂,很繁琐的数学形式看成一个整体,看成一个元素,从而达到简捷地解题的目的.

例已知数列为等差数列,前12项和为354,前12项中奇数项和与偶数项和之比为27:32,求公差d.

分析:此题常规思路是利用求和公式列方程组求解,但是计算量较大,应考虑利用整体思想去解决,解法十分简捷。

解: 由题意令奇数项和为,偶数项和为.

∵.

2.方程思想

方程思想就是通过设未知数建立方程,研究方程解决问题的方法.在解数列问题时,利用等差、等比数列的通项公式、求和公式及性质构造方程(组),是解数列问题基本方法.

例 在等比数列{}a n 中,已知a a 6424-=,a a 3564=,求{}a n 的前8项的和S 8.

解:a a a q q 64132124-=-=() (1) 由a a a q 3513264==() (2) 由(1)(2)得:

a q 138=±

将a q 138=-代入(1),得q 22=-(舍去) 将a q 138=代入(1),得q =±2.

当2=q 时,a 11=,S 8255=;当q =-2时,a S 18185=-=,. 3.函数思想

函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。数列是一类特殊的函数,因此可以用函数的观点来认识和理解数列,这是解决数列问题的有效方法. 例 等差数列的前n 项和为

.已知

问数列的多少

项和最大?

分析:易知所给数列不是常数列,等差数列的前n项和是n的二次函数,且常数项为零,所以可利用函数思想研究的最值。

解法1:由得

,∴.

从而;

故前13项的和最大,其最大值为169.

解法2: ,的图象是开口向下的抛物线上一群离散的点,由知最高点的横坐标为,即前13项的和最大.

4.分类讨论思想

我们在解答某些数学问题时,通常会遇到多种情况,此时需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法.. 例已知数列的前n项和,试求数列的前n 项和的表达式.

分析:解题的关键是求出数列的通项公式,并弄清数列中各项的符号以便化去的绝对值.故需分类探讨.

解: 当n=1时,;

当n≥2时,

.

∴当1≤n≤9时,,当n≥10时,.从而

当1≤n≤9时,=

=;

当n≥10时,=

=

.

∴=

5.等价转化思想

等价转化是把未知解的问题转化成为同学们熟悉的或容易解决的问题的一种重要的思想方法,这是解决数列问题重要方法之一.

例等差数列的前n项和为,.若中,最大,数列的前多少项和最大?

分析:求的最大值有多种转化方法.本题可将满足的要求转化为公差d满足的要求;再将k所满足的条件转化为它的几何意义,借助图示直接写出结果.

解设数列的公差为d,则最大

.

设的前k项和最大,则有,且,故有

.(*)

, .

如图,数轴的两个阴影区间中,左边是的取值范围,右边是

的取值范围,(*)的成立等价于k取两个区间之间的自然数,所以k=3,即的前3项和最大.

参考文献:

[1] 曲一线. 5年高考3年模拟. 2011 6 7.

[2] 贾鸿玉. 绿色通道. 2010 6 2

高中数学竞赛数列问题

高中数学竞赛数列问题 一、 高考数列知识及方法应用(见考纲) 二、 二阶高次递推关系 1.因式分解降次。例:正项数列{a n },满足12+=n n a S ,求a n (化异为同后高次) 2.两边取对数降次。例:正项数列{a n },a 1=1,且a n ·a n+12 = 36,求a n 三、 线性递推数列的特征方程法 定理1:若数列{a n }的递推关系为a n+2=λ1a n+1+λ2a n ,则设特征方程x 2=λ1x+λ2, 且此方程有相异两根x 1,x 2(x 1≠x 2),则必有 a n =c 1x 1n +c 2x 2n ,其中c 1,c 2由此数列已知前2项解得,即 ???+=+=2 222112 2 2111x c x c a x c x c a 或由???+=+=22111 2 10x c x c a c c a 得到。(见训练及考试题) 定理2:若方程x 2=λ1x+λ2有相等重根x 0,则有 a n =(c 1+c 2n )x 0n ,其中c 1,c 2仍由定理1方程组解得。 例如.:1,已知.数列{}n a 满足)(,11221+++∈+===N n a a a a a n n n ,求数列{}n a 的 通项公式 2,.数列{}n a 中,设,2,1321===a a a 且)3(32 1 1≥+= --+n a a a a n n n n ,求数列{}n a 的通项公式 3,.数列}{n a 满足:.,2 36 457,12 10N n a a a a n n n ∈-+= =+ 证明:(1)对任意n a N n ,∈为正整数;(2)求数列}{n a 的通项公式。 4,已知.数列{}n a 满足121,2,a a n N +==∈都有2144n n n a a a ++=-,求数列 {}n a 的通项公式 四、 特殊递推的不动点法 ( f (x )= x 的解称为f (x )的不动点 ) 定理1:若数列{a n }满足递推:a n+1=a ·a n +b (a ,b ∈R ), 则设x=ax+b ,得不动点1 0--= a b x 且数列递推化为:a n+1-x 0=a (a n -x 0),

例谈数列中的数学思想

例谈数列中的数学思想 高中数学常见的数学思想有:方程思想、函数思想、分类讨论思想、化归与转化、整体思想等;在高中数学教学过程中,加强数学思想方法的渗透,培养学生的思维能力,显得非常重要。下面通过几道例题浅谈数列解题过程中渗透的数学思想,不当之处,敬请批评指正. 1、方程思想在数列中运用 等差(比)数列一般涉及五个基本量:n n S a n q d a ,,),,1(或.于是“知三求二”成为等差(比)数列中的基本问题,可运用方程思想,通过解方程(组)求解。 例1:等差数列 {}n a 的前n 项和为S n ,且S 12 =84,S 20 =460,求S 28。 解:由已知得 ??? ????=-+=-+4602)112(2020842)112(121211d a d a , 解得4,151=-=d a . 故10922 ) 128(2828128=-+ =d a S . 在解决问题中利用方程揭示问题隐含的等量关系,从而显露设问与条件的联系。等差(比)数列基本量之间的关系决定了方程思想在等差(比)数列问题中得以广泛运用。 例2、实数4321,,,a a a a 都不为0,且0)(2)(23224312242221=+++-+a a a a a a a a a ,求证: 321,,a a a 成等比数列,且4a 为其公比。 分析:题中出现了四个变量,切不可乱了阵脚眉毛胡子一把抓,要抓住一个进行研究,观察后发现以4a 为主研究简单。 证明:由题设知,4a 是一元二次方程0)(2)(2 32231222221=+++-+a a x a a a x a a 的实数 根 所以0)(4))((4)(4231222322222123122≥--=++-+=?a a a a a a a a a a 所以312231220a a a a a a =?=- 因为)4,3,2,1(0=≠i a i 所以321,,a a a 成等比数列 由求根公式得:12 3 1213122 2213124)()(2)(2a a a a a a a a a a a a a a =++=++= 所以4a 为其公比。 评注:对已知等式进行整体观察,发现4a 是某一元二次方程的根,从而得出巧妙的解答,颇具代表性。 例3、已知),0(,5 1 cos sin πααα∈= +,则αcot 的值是__________。 分析:初观之,易两边同时平方---比较复杂;细察之,联想等差数列的性质,构造等差中项求解---非常简洁。

高中数学竞赛_数列【讲义】

第五章 数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。 定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式: S n =d n n na a a n n 2 )1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn . 定义3 等比数列,若对任意的正整数n ,都有 q a a n n =+1,则{a n }称为等比数列,q 叫做公比。 定理3 等比数列的性质:1)a n =a 1q n -1 ;2)前n 项和S n ,当q ≠1时,S n =q q a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。 定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极限,记作.lim A a n n =∞ → 定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为q a -11(由极限的定义可得)。 定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程x 2=ax +b 的两个根为α,β:(1)若α≠β,则x n =c 1a n -1+c 2βn -1,其中c 1, c 2由初始条件x 1, x 2的值确定;(2)若α=β,则x n =(c 1n +c 2) αn -1,其中c 1, c 2的值由x 1, x 2的值确定。 二、方法与例题 1.不完全归纳法。 这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。 例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。 【解】1)a n =n 2-1;2)a n =3n -2n ;3)a n =n 2-2n . 例2 已知数列{a n }满足a 1= 21,a 1+a 2+…+a n =n 2a n , n ≥1,求通项a n . 【解】 因为a 1= 2 1,又a 1+a 2=22·a 2,

高考数学数列题型篇

2019年高考数学数列题型篇 数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。 近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。 知识整合 1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题; 2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基

本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力, 语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。结果教师费劲,学生头疼。分析完之后,学生收效甚微,没过几天便忘的一干二净。造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。 一般说来,“教师”概念之形成经历了十分漫长的历史。杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。这儿的“师资”,其实就是先秦而后历代对教师的别称之一。《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。

高中数学竞赛专题讲座数列

高中数学竞赛专题试题讲座——数列 一、选择题部分 1.(2006年江苏)已知数列{}n a 的通项公式2 2 45 n a n n =-+,则{}n a 的最大项是( B ) ()A 1a ()B 2a ()C 3a ()D 4a 2(2006安徽初赛)正数列满足()231221,10,103n n n t a a a a a n --===≥,则100lg ()a = ( ) A 、98 B 、99 C 、100 D 、101 3. (2006吉林预赛)对于一个有n 项的数列P=(p 1,p 2,…,p n ),P 的“蔡查罗和”定义为s 1、s 2、…s n 、的算术平均值,其中s k =p 1+p 2+…p k (1≤k≤n ),若数列(p 1,p 2,…,p 2006)的“蔡查罗和”为2007,那么数列(1,p 1,p 2,…,p 2006)的“蔡查罗和”为 ( A ) A. 2007 B. 2008 C. 2006 D. 1004 4.(集训试题)已知数列{a n }满足3a n+1+a n =4(n ≥1),且a 1=9,其前n 项之和为S n 。则满足不等式|S n -n-6|<125 1 的最小整数n 是 ( ) A .5 B .6 C .7 D .8 解:由递推式得:3(a n+1-1)=-(a n -1),则{a n -1}是以8为首项,公比为- 3 1 的等比数列, ∴S n -n=(a 1-1)+(a 2-1)+…+(a n -1)= 3 11] )31 (1[8+--n =6-6×(-31)n ,∴|S n -n-6|=6×(31)n <1251,得:3n-1 >250,∴满足条件的最小整数n=7,故选C 。 5.(集训试题)给定数列{x n },x 1=1,且x n+1= n n x x -+313,则 ∑=2005 1 n n x = ( ) A .1 B .-1 C .2+3 D .-2+3 解:x n+1= n n x x 3 3 133 - +,令x n =tan αn ,∴x n+1=tan(αn +6 π), ∴x n+6=x n , x 1=1,x 2=2+3, x 3=-2-3, x 4=-1, x 5=-2+3, x 6=2-3, x 7=1,……,∴有 ∑===2005 1 11n n x x 。故选A 。 6、(2006陕西赛区预赛)已知数列{}{}n n a b 、 的前n 项和分别为n A ,n B 记

(完整版)高中数学七大数学思想

高中数学七大数学思想 第一:函数与方程思想 (1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础 高考把函数与方程思想作为七种重要思想方法重点来考查 第二:数形结合思想: (1)数学研究的对象是数量关系和空间形式,即数与形两个方面 (2)在一维空间,实数与数轴上的点建立一一对应关系 在二维空间,实数对与坐标平面上的点建立一一对应关系 数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化 第三:分类与整合思想 (1)分类是自然科学乃至社会科学研究中的基本逻辑方法 (2)从具体出发,选取适当的分类标准 (3)划分只是手段,分类研究才是目的 (4)有分有合,先分后合,是分类整合思想的本质属性 (5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性 第四:化归与转化思想

(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题 (2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法 (3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化 第五:特殊与一般思想 (1)通过对个例认识与研究,形成对事物的认识 (2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程 (4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程 (5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向 第六:有限与无限的思想: (1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路 (2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向 (3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用

蕴含数列中的数学思想方法

蕴含数列中的数学思想方法 山东省五莲一中 王振香 数列是高中数学的重要内容之一,与其它数学知识有着广泛、密切而又深入的交汇,这类数列综合问题往往蕴含着许多重要的数学思想与方法(如函数思想、方程思想、分类讨论、化归与转化思想、归纳猜想等),在分析与处理解决时,若能灵活地以这些数学思想与方法作思路指导,则会取得事半功倍的效果. 一 函数思想 由于数列是以正整数为自变量的一种特殊离散型函数,则我们若能有意识地多从函数的角度去看待数列,在这种整体的、动态的观点之下加强数列与函数的联系,利用函数的图象和性质去解决数列的一系列问题,就会使数列的一些性质显现得更加清楚,使某些问题得到更好地解决. 例1.已知数列{}n a 是等差数列,若10=n S ,502=n S ,求n S 3. 分析:因{}n a 是等差数列,则知n S n ?????? 也为等差数列,由此可用一次函数的方法解决问题. 解:)1(2)1(2111-+=-+=n d a n d n n na n S n ,故? ?????n S n 为等差数列, 其通项为一次函数,将之设为b ax x f +=)(,则点),(n S n n 、)2,2(2n S n n 在其图象上,n b an 10=+∴,5022a n b n ?+=,则解得155,an b n n ==-. 故n n n S n n a n f n 5315353)3(3-?==-?=,解之得1203=n S . 评注:n S n 是关于n 的一次函数,其图象是直线上的离散点.上述解法是利用待定系数法建立一次函数来求解n S 3.当然更可利用结论“232,,n n n n n S S S S S --成等差数列”这个等差数列的重要结论而简单解决本题. 二 方程(组)思想 数列与以前所学过的数、式、方程、函数、不等式、简易逻辑等许多知识都有广泛的联系,方程(组)思想在学习过程中得以较为充分的体现,许多数列习题都可通过列出方程或方程

高中数学竞赛讲义(五)──数列

高中数学竞赛讲义(五) ──数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n,…. 数列分有穷数列和无穷数列两种,数列{a n}的一般形式通常记作a1, a2,a3,…,a n或a1, a2, a3,…,a n…。其中a1叫做数列的首项,a n是关于n的具体表达式,称为数列的通项。 定理1 若S n表示{a n}的前n项和,则S1=a1, 当n>1时,a n=S n-S n-1. 定义2 等差数列,如果对任意的正整数n,都有a n+1-a n=d(常数),则{a n}称为等差数列,d叫做公差。若三个数a, b, c成等差数列,即2b=a+c,则称b为a和c的等差中项,若公差为d, 则a=b-d, c=b+d. 定理2 等差数列的性质:1)通项公式 a n=a1+(n-1)d;2)前n项和公式: S n=;3)a n-a m=(n-m)d,其中n, m 为正整数;4)若n+m=p+q,则a n+a m=a p+a q;5)对任意正整数p, q,恒有a p-a q=(p-q)(a2-a1);6)若A,B 至少有一个不为零,则{a n}是等差数列的充要条件是S n=An2+Bn.

定义3 等比数列,若对任意的正整数n,都有 ,则{a n}称为等比数列,q叫做公比。 定理3 等比数列的性质:1)a n=a1q n-1;2)前n 项和S n,当q1时,S n=;当q=1时,S n=na1;3)如果a, b, c成等比数列,即b2=ac(b0),则b叫做a, c的等比中项;4)若m+n=p+q,则a m a n=a p a q。 定义4 极限,给定数列{a n}和实数A,若对任意的>0,存在M,对任意的n>M(n∈N),都有|a n-A|<,则称A为n→+∞时数列{a n}的极限,记作 定义5 无穷递缩等比数列,若等比数列{a n}的公比q满足|q|<1,则称之为无穷递增等比数列,其前n 项和S n的极限(即其所有项的和)为(由极限的定义可得)。 定理3 第一数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)时n=k成立时能推出p(n)对n=k+1成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)对一切n ≤k的自然数n都成立时(k≥n0)可推出p(k+1)成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。 定理5 对于齐次二阶线性递归数列x n=ax n-1+bx n-2,设它的特征方程x2=ax+b的两个根为α,β:(1)若αβ,则x n=c1a n-1+c2βn-1,其中c1, c2由初始条件x1, x2的值确定;(2)若α=β,则x n=(c1n+c2) αn-1,其中c1, c2的值由x1, x2的值确定。 二、方法与例题 1.不完全归纳法。 这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是 人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。

高中数学竞赛讲义_数列

数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。 定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式: S n =d n n na a a n n 2 )1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn . 定义3 等比数列,若对任意的正整数n ,都有 q a a n n =+1,则{a n }称为等比数列,q 叫做公比。 定理3 等比数列的性质:1)a n =a 1q n -1 ;2)前n 项和S n ,当q ≠1时,S n =q q a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。 定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极限,记作.lim A a n n =∞ → 定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为q a -11(由极限的定义可得)。 定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程x 2=ax +b 的两个根为α,β:(1)若α≠β,则x n =c 1a n -1+c 2βn -1,其中c 1, c 2由初始条件x 1, x 2的值确定;(2)若α=β,则x n =(c 1n +c 2) αn -1,其中c 1, c 2的值由x 1, x 2的值确定。 二、方法与例题 1.不完全归纳法。 这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。 例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。 【解】1)a n =n 2-1;2)a n =3n -2n ;3)a n =n 2-2n . 例2 已知数列{a n }满足a 1= 21,a 1+a 2+…+a n =n 2a n , n ≥1,求通项a n . 【解】 因为a 1= 2 1,又a 1+a 2=22·a 2,

《高中数学竞赛》数列

竞赛辅导 数列(等差数列与等比数列) 数列是高中数学中的一个重要课题,也是数学竞赛中经常出现的 问题。数列最基本的是等差数列与等比数列。 所谓数列,就是按一定次序排列的一列数。如果数列{a n}的第n项a n与项数(下标)n之间的函数关系可以用一个公式a n=f(n)来表示,这个公式就叫做这个数列的通项公式。 从函数角度看,数列可以看作是一个定义域为正整数集N*(或它的有限子集{1,2,…n})的函数当自变量从小到大依次取值时对应的一列函数值,而数列的通项公式也就是相应函数的解析式。 为了解数列竞赛题,首先要深刻理解并熟练掌握两类基本数列的定义、性质有关公式,把握它们之间的(同构)关系。 一、等差数列 如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。等差数列{a n}的通项公式为: 前n项和公式为: 从(1)式可以看出,是的一次数函()或常数函数(),()排在一条直线上,由(2)式知,是的二次函数()或一次函数(),且常数项为0。在等差数列{ }中,等差中项:且任意两项的关系为: 它可以看作等差数列广义的通项公式。 从等差数列的定义、通项公式,前项和公式还可推出: 若 二、等比数列 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比。公比通常用字母表示。等比数列{a n}的通项公式是: 前项和公式是:

在等比数列中,等比中项: 且任意两项的关系为 如果等比数列的公比满足0<<1,这个数列就叫做无穷递缩等比数列,它的各项的和(又叫所有项的和)的公式为: 从等比数列的定义、通项公式、前项和公式可以推出: 另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂,则{}是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。重要的不仅是两类基本数列的定义、性质,公式;而且蕴含于求和过程当中的数学思想方法和数学智慧,也是极其珍贵的,诸如“倒排相加”(等差数列),“错位相减”(等比数列)。 数列中主要有两大类问题,一是求数列的通项公式,二是求数列的前n项和。 三、范例 例1.设a p,a q,a m,a n是等比数列{a n}中的第p、q、m、n项,若p+q=m+n, 求证: 证明:设等比数列{}的首项为,公比为q,则 说明:这个例题是等比数列的一个重要性质,它在解题中常常会用到。它说明等比数列中距离两端(首末两项)距离等远的两项的乘积等于首末两项的乘积, 即:a1+k·a n-k=a1·a n 对于等差数列,同样有:在等差数列{ }中,距离两端等这的两项之和等于首末两项之和。即:a1+k+a n-k=a1+a n 例2.在等差数列{}中,a4+a6+a8+a10+a12=120,则2a9-a10= A.20 B.22 C.24 D28 解:由a4+a12=2a8,a6+a10 =2a8及已知或得 5a8=120,a8=24 而2a9-a10=2(a1+8d)-(a1+9d)=a1+7d=a8=24。

数列中的数学思想和方法

数列中的数学思想和方 法 文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

数列中的数学思想和方法 数学思想方法是数学知识的精髓,是知识转化为能力桥梁.能否有意识地正确运用数学思想方法解答数学问题,是衡量数学素质和数学能力的重要标志.数列中蕴涵了许多重要的数学思想,下面我们一起来看一看吧! 一、方程思想 方程思想就是通过设元建立方程,研究方程解决问题的方法.在解数列问题时,利用等差、等比数列的通项公式、求和公式及性质构造方程(组),是解数列问题基本方法. 例1 已知等差数列{}n a 的公差d 是正数,且3712,a a =- 464a a +=-,求其前n 项和n S 。 解:由等差数列{}n a 知:3746a a a a +=+,从而373712,4a a a a =-+=-, 故37,a a 是方程24120x x +-=的两根,又0d >,解之,得:376,2a a =-=。 再解方程组:112662 a d a d +=-?? +=?110 2a d =-??? =?, 所以10(1)n S n n n =-+-。 <法一> 法二、基本量法,建立首项和公差的二元方程 知三求二 点评:本题利用了3746a a a a +=+这一性质构造了二次方程巧妙的解出了 376,2a a =-=,再利用方程求得了首项与公差的值,从而使问题得到解决,由此可知在数列解题时往往可借助方程的思想与n m p q a a a a +=+(或n m p q a a a a ?=?)找出解题的捷径。关注未知数的个数,关注独立方程的个数。 点评基本量法:性质法 技巧 备用:设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和. 已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列. (1)求数列{a n }的通项; (2)令b n =ln a 3n +1,n =1,2,…,求数列{b n }的前n 项和T n . 解 (1)由已知得? ?? a 1 +a 2 +a 3 =7, ?a 1 +3?+?a 3 +4? 2=3a 2 , 解得a 2=2. 设数列{a n }的公比为q ,由a 2=2,可得a 1=2 q ,a 3=2q , 又S 3=7,可知2 q +2+2q =7,即2q 2-5q +2=0. 解得q 1=2,q 2=1 2 .由题意得q >1,∴q =2,∴a 1=1. 故数列{a n }的通项为a n =2n -1. (2)由于b n =ln a 3n +1,n =1,2,…,

高中数学基本数学思想:函数与方程思想在数列中的应用

高中数学基本数学思想:函数与方程思想在数列中的应用 函数思想和方程思想是学习数列的两大精髓.“从基本量出发,知三求二.”这是方程思想的体现.而“将数列看成一种特殊的函数,等差、等比数列的通项公式和前n项和公式都是关于n的函数.”则蕴含了数列中的函数思想.借助有关函数、方程的性质来解决数列问题,常能起到化难为易的功效。以下是小编给大家带来的方程思想在数列上的应用,仅供考生阅读。 函数与方程思想在数列中的应用(含具体案例) 本文列举几例分类剖析: 一、方程思想 1.知三求二 等差(或等比)数列{an}的通项公式,前n项和公式集中了等差(或等比)数列的五个基本元素a1、d(或q)、n、an、Sn.“知三求二”是等差(或等比)数列最基本的题型,通过解方程的方法达到解决问题的目的. 例1等差数列{an}的前n项和为Sn,已知a10=30,a20=50,(1)求数列{an}的通项公式;(2)若Sn=242,求n的值. 解(1)由a10=a1+9d=30, a20=a1+19d=50, 解得a1=12, 因为n∈N*,所以n=11. 2.转化为基本量 在等差(等比)数列中,如果求得a1和d(q),那么其它的量立即可得. 例2在等比数列{an}中,已知a6―a4=24,a3a5=64,求{an}的前8项的和S8. 解a6―a4=a1q3(q2―1)=24.(1) 由a3a5=(a1q3)2=64,得a1q3=±8. 将a1q3=―8代入(1), 得q2=―2(舍去); 将a1q3=8代入(1),得q=±2. 当q=2时,a1=1,S8=255; 当q=―2时,a1=―1,S8=85.

高中数学竞赛专题之数列

高中数学竞赛专题之数列 一、数列的性质 等差数列与等比数列是中学阶段的两种重要数列,也是各年高考、竞赛的重点,现将它们的主要性质及容对照讨论如下: 性质1:若K K ,,,,21n a a a 是等差(等比)数列,那么K K ,,,,kj i j i i a a a ++仍是等差(等比)数列。 性质2:若}{n a 为等差数列,且 ∑∑===k l l k l l j i 11 ,那么 ∑∑===k l j k l i l l a a 1 1 (脚标和相同则对应的 项的和相同);若}{n a 为等比数列,且∑∑===k l l k l l j i 1 1 ,那么l l j k l i k l a a 1 1 ===ππ(脚标和相同则对 应的项的积相同)。 性质3:若}{n a 为等差数列,记K K ,,,,1 )1(1 2 1 1∑∑∑=-+=+==== k i k m i m k i k i k i i a S a S a S ,那么 }{m S 仍为等差数列,}{n a 为等比数列,记K K ,,,,)1(1 1 21 1k m i k l m k i k l i k l a P a P a P -+=+=====πππ, 那么}{m P 仍为等比数列。 性质4:若}{n a 为等比数列,公比为q ,且|q|〈1,则q a S n n -= ∞ →1lim 1 。 例1、若}{n a 、}{n b 为等差数列,其前n 项和分别为n n T S ,,若 1 32+=n n T S n n , 则=∞→n n n b a lim ( )A.1 B. 36 C. 32 D.94 例2、等差数列}{n a 的前m 项和为30,前2m 项和为100,则它的前3m 项的和为( ) A.130 B. 170 C. 210 D.260 例3、}{n a 、}{n b 为等差数列,其前n 项和分别为n n T S ,,若 3 3131 3++=n n T S n n (1)求2828a b 的值, (2)求使n n a b 为整数的所有正整数n 。

高中数学竞赛数论

高中数学竞赛 数论 剩余类与剩余系 1.剩余类的定义与性质 (1)定义1 设m 为正整数,把全体整数按对模m 的余数分成m 类,相应m 个集合记为:K 0,K 1,…,K m-1,其中K r ={qm+r|q ∈Z,0≤余数r ≤m-1}称为模m 的一个剩余类(也叫同余类)。K 0,K 1,…,K m-1为模m 的全部剩余类. (2)性质(ⅰ)i m i K Z 1 0-≤≤=Y 且K i ∩K j =φ(i ≠j). (ⅱ)每一整数仅在K 0,K 1,…,K m-1一个里. (ⅲ)对任意a 、b ∈Z ,则a 、b ∈K r ?a ≡b(modm). 2.剩余系的定义与性质 (1)定义2 设K 0,K 1,…,K m-1为模m 的全部剩余类,从每个K r 里任取一个a r ,得m 个数a 0,a 1,…,a m-1组成的数组,叫做模m 的一个完全剩余系,简称完系. 特别地,0,1,2,…,m -1叫做模m 的最小非负完全剩余系.下述数组叫做模m 的绝对最小完全剩余系:当m 为奇数时,2 1 ,,1,0,1,,121,21--+----m m m ΛΛ;当m 为偶数时,12 ,,1,0,1,,12,2--+-- m m m ΛΛ或2,,1,0,1,,12m m ΛΛ-+-. (2)性质(ⅰ)m 个整数构成模m 的一完全剩余系?两两对模m 不同余. (ⅱ)若(a,m)=1,则x 与ax+b 同时遍历模m 的完全剩余系. 证明:即证a 0,a 1,…,a m-1与aa 0+b, aa 1+b,…,aa m-1+b 同为模m 的完全剩余系, 因a 0,a 1,…,a m-1为模m 的完系时,若aa i +b ≡aa j +b(modm),则a i ≡a j (modm), 矛盾!反之,当aa 0+b, aa 1+b,…,aa m-1+b 为模m 的完系时,若a i ≡a j (modm),则有 aa i +b ≡aa j +b(modm),也矛盾!

中学数学中重要数学思想

中学数学中重要数学思想——分类讨论思想的教 中学数学中重要数学思想—— 分类讨论思想 数学思想是人们对数学内容的本质认识,是对数学方法的进一步抽象和概括,属于对数学规律的理性认识的范畴,数学教学中不仅要注重数学知识的传授,能力的提高,更要注重揭示知识发生、发展过程中,解决问题过程中蕴含的数学思想方法。数学思想方法在人的能力培养和素质提高方面具有重要作用。 分类讨论是一种重要的数学思想方法:是按照数学对象的相同点和相异点将数学对象区分为不同种类的思想方法(朱人杰.数学思想方法研究导论);分类讨论是根据需要对研究对象进行分类,然后将划分的每一类别分别进行求解,综合后即得答案(任子朝.数学标准解读)。分类讨论贯穿在整个高中数学学习的全过程,通过分类可以使大量繁杂的材料条理化、系统化,从而为人们进行分门别类的深入研究创造条件,分类讨论不仅在数学知识的探究和概念学习中十分重要,而且在解决数学问题过程中起着重要作用。学会用这种思想方法解决问题,对提高学生思维能力、解决问题的能力有很大作用。 数学思想方法需要在教学过程中多次孕育,初步形成以致应用发展,使思想方法由隐到显,以致明朗化、深刻化。本文针对部分学生不会分类,分类不全面,标准不统一,以致有畏难情绪,结合学生学习实际,提出分类讨论的三个教学策略,以求学生能理解该思想方法的含义,初步掌握该方法的操作步骤,会运用分类讨论思想方法解决问题。 1、分类讨论的教学策略一、“按需而分” 分类讨论是按照数学对象的相同点和相异点,将数学对象区分为不同种类的思想方法。是根据研究数学对象、数学问题过程的需要进行分类讨论,需要是根本。在教学过程中要挖掘教材中采用分类讨论解决问题的材料,渗透、孕育分类讨论思想,同时一定要让学生体验到分类讨论的必要性,是解决问题的需要而讨论。逐步内化为学生的思想意识。 1.1、从数学知识的发生、发展过程,分类是一种重要的逻辑方法,通过分类研究可以使问题化繁为简,化零乱为条理,化分散为系统。如研究函数,从函数的解析式、定义域、值域、性质和图像,先一般函数后特殊函数,指数函数、对数函数、三角函数。数列也可以看成特殊的函数来进行研究,以期更深刻地理解数列的本质。 1.2、在高中数学教学过程中着重在以下方面对学生加以引导,让学生体悟分类讨论思想的运用: 绝对值概念的定义;一元二次方程根的判别式与实根数的情况;二次函数二次项系数正负与抛物线开口方向;指数函数、对数函数的单调性与底a的关系;等比数列的求和公式中q=l与q≠1的区别;由数列的前n项和求数列的通项公式n=1与n≠1;不等式的性质,

高中数学竞赛辅导讲义-第五章--数列【讲义】

第五章 数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。 定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式:S n = d n n na a a n n 2 ) 1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有 a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数 列的充要条件是S n =An 2+Bn . 定义3 等比数列,若对任意的正整数n ,都有q a a n n =+1 ,则{a n }称为等比数列,q 叫做公比。

定理3 等比数列的性质:1)a n =a 1q n -1;2)前n 项和S n ,当q ≠1时, S n =q q a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即 b 2=a c (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。 定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极 限,记作.lim A a n n =∞ → 定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为 q a -11 (由极限的定义可得)。 定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程

相关文档
最新文档