加拿大国际袋鼠数学竞赛试题-2013年

加拿大国际袋鼠数学竞赛试题-2013年
加拿大国际袋鼠数学竞赛试题-2013年

Grade 1-2
International Contest-Game MATH KANGAROO
Part A: Each correct answer is worth 3 points. 1. Which digits are missing?
Year 2013
(A) 3 and 5 (B) 4 and 8
(C) 2 and 0
(D) 6 and 9
(E) 7 and 1
2. There are twelve books on a shelf and four children in a room. How
many books will be left on the shelf if each child takes one book?
(A) 12
(B) 8
(C) 4
(D) 2
(E) 0
3. Which of the dresses has less than seven dots, but more than five dots?
(A)
(B)
(C)
(D)
(E)

Grade 1-2
Year 2013
4. A lot of babies were born in the zoo last year: two baby lions, three baby dolphins and four baby eagles.
How many legs do all these babies have altogether?
(A) 20
(B) 18
(C) 16
(D) 14
(E) 12
5. Several students want to plant 20 tulips in the school garden. It takes ten minutes for them to plant five
tulips. They started at 9:00 in the morning. At what time will they finish planting all 20 tulips?
(A) At 9:10
(B) At 9:20 (C) At 9:40
(D) At 9:50
(E) At 10:00
6. How many more bricks are there in the larger stack?
(A) 4
(B) 5
(C) 6
(D) 7
Part B: Each correct answer is worth 4 points.
(E) 10
7. Ann has
. Barb gave Eve
. Jim has
. Bob has
. Who is Barb?
(A)
(B)
(C)
8. There is a path with square tiles.
(D)
(E)
How many tiles fit in the area inside?
(A) 5
(B) 6
(C) 7
(D) 8
(E) 9

Grade 1-2
Year 2013
9. Cat and Mouse are moving to the right. When Mouse jumps 1 tile, Cat jumps 2 tiles at the same time.
On which tile does Cat catch Mouse?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5
10. I am a number. If you count by tens you will say my name. I am not ten. If you add me to 30, you will get a
number less than 60. Who am I?
(A) 20
(B) 30
(C) 40
(D) 50
(E) 60
11. There is a house on each corner of the streets. The houses
are shown on the map. Two new houses will be built on
each street between the corner houses. How many houses
will there be in all?
(A) 8
(B) 12
(C) 16
(D) 20
(E) Other answer
12. Kasia has 3 brothers and 3 sisters. How many brothers and how many sisters does her brother Mike have?
(A) 3 brothers and 3 sisters
(B) 3 brothers and 4 sisters
(C) 2 brothers and 3 sisters
(D) 3 brothers and 2 sisters
(E) 2 brothers and 4 sisters
Part C: Each correct answer is worth 5 points.
13. Ania makes a large cube from 27 small white cubes. She paints all the faces of the large cube. Then Ania removes four small cubes from four of the corners, as shown. While the paint is still wet, she stamps each of the new faces onto a piece of paper. How many of the following stamps can Ania make?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5
14. Ann has a lot of these pieces:
She tries to put them in the square, as many as possible. How many cells shall be left empty?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

Grade 1-2
15. In a game it is possible to make the following exchanges:
Year 2013
Adam has 6 pears. How many strawberries will Adam have, when he trades all his pears for just
strawberries?
(A) 12
(B) 36
(C) 18
(D) 24
(E) 6
16. Sophie makes a row of 10 houses with matchsticks. In the picture you can see the beginning of the row. How many matchsticks does Sophie need altogether?
(A) 50
(B) 51
(C) 55
(D) 60
(E) 62
17. A square box is filled with two layers of identical square pieces of chocolate. Kirill has eaten all 20 pieces in the upper layer, which are along the walls of the box. How many pieces of chocolate are left in the box?
(A) 16
(B) 30
(C) 50
(D) 52
(E) 70
18. In a park there are babies in four-wheel strollers and children on two-wheel bikes. Paula counted wheels and the total was 12. When she added the number of strollers to the number of bikes, the total was 4. How many two-wheel bikes are there in the park?
(A) 1
(B) 2
(C) 3
(D) 4
(E) Other number

Grade 3-4
Year 2013
International Contest-Game MATH KANGAROO
Part A: Each correct answer is worth 3 points. 1. In which figure is the number of black kangaroos bigger than the number of white kangaroos?
(A)
(B)
(C)
(D)
(E)
2. Aline writes a correct calculation. Then she covers two digits which are the same with a sticker:
Which digit is under the stickers?
(A)
(B)
(C)
(D)
(E)
3. Monica arrived in the Kangaroo Camp on July 25th in the morning and left the camp on August 3rd in
the afternoon. How many nights did she sleep in the camp?
(A) 7
(B) 9
(C) 10
(D) 30
(E) 8
4. How many triangles of all sizes can be seen in the picture below?
(A) 9
(B) 10
(C) 11
(D) 13
(E) 12
5. In London 2012, the USA won the most medals: 46 gold, 29 silver and 29 bronze. China was second
with 38 gold, 27 silver and 23 bronze. How many more medals did the USA win compared to China?
(A) 6
(B) 14
(C) 16
(D) 24
(E) 26

Grade 3-4
Year 2013
6. There are three families in my neighbourhood with three children each; two of the families have
twins. All twins are boys. At most how many girls are in these families?
(A) 2
(B) 3
(C) 4
(D) 5
(E) 6
7. Vero's mother prepares sandwiches with two slices of bread each. A package of bread has 24 slices.
How many sandwiches can she prepare from two and a half packages of bread?
(A) 24
(B) 30
(C) 48
(D) 34
(E) 26
8. About the number 325, five boys said:
Andrei: "This is a 3-digit number"
Boris: "All digits are distinct"
Vick: "The sum of the digits is 10"
Greg: "The units digit is 5"
Danny: "All digits are odd"
Which of the boys was wrong?
(A) Andrei
(B) Boris
(C) Vick
(D) Greg
(E) Danny
Part B: Each correct answer is worth 4 points. 9. The rectangular mirror was broken.
Which of the following pieces is the missing part of the broken mirror?
(A)
(B)
(C)
(D)
(E)
10. When Pinocchio lies, his nose gets 6 cm longer. When he tells the truth, his nose gets 2 cm shorter. When his nose was 9 cm long, he told three lies and made two true statements. How long was Pinocchio's nose afterwards?
(A) 14 cm
(B) 15 cm
(C) 19 cm
(D) 23 cm
(E) 31 cm

Grade 3-4
Year 2013
11. John is 33 years old. His three sons are 5, 6 and 10 years old. In how many years will the three sons together be as old as their father?
(A) 4
(B) 6
(C) 8
(D) 10
(E) 12
12. On the map, white lines represent streets. There are pictograms on some intersections (for example, trafic light, basket, tram). Ann started walking at the beginning of the middle vertical street in the direction of the arrow. At every intersection of streets she turned either to the right or to the left. First she turned right, then left, then again left, then right, then left, and finally again left. Which of the landmarks did Ann approach in the end?
(A)
(B)
(C)
(D)
(E)
13. Schoolmates Andy, Betty, Cathie and Dannie were born in the same year. Their birthdays were on February 20th, April 12th, May 12th and May 25th, not necessarily in this order. Betty and Andy were born in the same month. Andy and Cathie were born in the same day of different months. Who of these schoolmates is the oldest?
(A) Andy
(B) Betty
(C) Cathie (D) Dannie (E) impossible to determine
14. In the Adventure Park, 30 children took part in two of the adventures. 15 of them participated in the "moving bridge" contest, and 20 of them went down the zip-wire. How many of the children took part in both adventures?
(A) 25
(B) 15
(C) 30
(D) 10
(E) 5
15. Which of the five pieces in the answers fits with the piece in the separate picture, so that together they form a rectangle?
(A)
(B)
(C)
(D)
(E)
16. Children in the school club had to arrange fitness balls according to their size from the biggest to the smallest one. Rebecca was comparing them and said: the red ball is smaller than the blue one, the yellow one is bigger than the green one, and the green one is bigger than the blue one. What is the correct order of the fitness balls?
(A) green, yellow, blue, red (D) yellow, green, blue, red
(B) red, blue, yellow, green (E) blue, yellow, green, red
(C) yellow, green, red, blue

Grade 3-4
Year 2013
Part C: Each correct answer is worth 5 points.
17. In the shown triangle, first we join the midpoints of all the three sides. This way, we form a smaller triangle. We repeat this one more time with the smaller triangle, forming a new even smaller triangle, which we colour in red. How many triangles of the size of the red triangle are needed to cover completely the original triangle, without overlapping?
Note: Midpoint of a side is the point that divides the side in two parts of the same length.
(A) 5
(B) 8
(C) 10
(D) 16
(E) 32
18. There are oranges, apricots and peaches in a big basket. How many fruits are there in the basket if the peaches and the apricots together are 18, the oranges and the apricots together are 28 and 30 fruits are not apricots?
(A) 46
(B) 20
(C) 40
(D) 38
(E) 29
19. In December Tom-the-cat slept for exactly 3 weeks. Which calculations should we do in order to find how many minutes he stayed awake during this month?
(A) (31 – 7) × 3 × 24 × 60
(B) (31 – 7 × 3) × 24 × 60
(C) (30 – 7 × 3) × 24 × 60
(D) (31 – 7 ) × 24 × 60
(E) (31 – 7 × 3) × 24 × 60 × 60
20. Basil has several domino tiles, as shown in the figure. He wants to arrange them in a line according to the well-known "domino rule": in any two tiles that are next to each other, the squares that touch must have the same number of points. What is the largest number of tiles he can arrange in this way?
(A) 3
(B) 4
(C) 5
(D) 6
(E) 7
21. Cristi has to sell 10 glass bells that vary in price: 1 euro, 2 euro, 3 euro, 4 euro, 5 euro, 6 euro, 7 euro, 8 euro, 9 euro, 10 euro. In how many ways can Cristi divide all the glass bells in three packages so that all the packages have the same price?
(A) 1
(B) 2
(C) 3
(D) 4
(E) Such a division is not possible.

Grade 3-4
Year 2013
22. Nancy bought 17 cones of ice-cream for her three children. Misha ate twice as many cones as Ana. Dan ate more ice-cream than Ana but less than Misha. How many cones of ice-cream did Dan eat?
(A) 4
(B) 5
(C) 6
(D) 7
(E) 8
23. Peter bought a carpet 36 dm wide and 60 dm long. The figure shows part of this carpet. As seen, the carpet has a pattern of small squares containing either a sun or a moon. You can count that along the width there are nine squares. When the carpet is fully unrolled, how many moons will be seen?
(A) 68
(B) 67
(C) 65
(D) 63
(E) 60
24. Beatrice has a lot of pieces like the grey one in the picture. At least how many of these grey pieces will she need to make a grey square?
(A) 3
(B) 4
(C) 6
(D) 8
(E) 16

Grade 11-12
International Contest-Game MATH KANGAROO
Part A: Each correct answer is worth 3 points.
Year 2013
1. Which of the following numbers is the largest?
(A) 2013
(B) 20+13
(C) 2013
(D) 2013
(E) 20 × 13
2. Four circles of radius 1 are touching each other and a smaller circle as seen in the picture. What is the radius of the smaller circle?
(A) 2 ?1
1 (B)
2
3 (C)
4
3 (D)
4
7 (E)
16
3. A three-dimensional object bounded only by polygons is called a polyhedron. What is the smallest
number of polygons that can bind a polyhedron, if we know that one of the polygons has 12 sides?
(A) 12
(B) 13
(C) 14
(D) 16
(E) 24
4. The cube root of 333 is equal to
(A) 33
(B) 333 ?1
(C) 323
(D) 332
(E) ( 3)3
5. The year 2013 has the property that its number is made up of the consecutive digits 0, 1, 2 and 3.
How many years have passed since the last time a year was made up of four consecutive digits?
(A) 467
(B) 527
(C) 581
(D) 693
(E) 990
6. Let f be a linear function for which f(2013) – f(2001) = 100. What is f(2031) – f(2013)?
(A) 75
(B) 100
(C) 120
(D) 150
(E) 180
7. Given that 2 < x < 3, how many of the following statements are true?
4 < x2 < 9
4 < 2x < 9
6 < 3x < 9 0 < x2 ? 2x < 3
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
8. Six superheroes capture 20 villains. The first superhero captures one villain, the second captures
two villains and the third captures three villains. The fourth superhero captures more villains than
any of the other five. What is the smallest number of villains the fourth superhero must have
captured?
(A) 7
(B) 6
(C) 5
(D) 4
(E) 3

Grade 11-12
Year 2013
9. In the cube to the right you see a solid, non-transparent pyramid ABCDS with base ABCD, whose vertex S lies exactly in the middle of an edge of the cube. You look at this pyramid from above, from below, from behind, from ahead, from the right and from the left. Which view does not arise?
(A)
(B)
(C)
(D)
(E)
10.
When
a certain
solid substance
melts,
its
volume increases
by
1 12
.
By how much does
its
volume
decrease when it solidifies again?
(A)
1 10
(B)
1 11
(C)
1 12
(D)
1 13
(E)
1 14
Part B: Each correct answer is worth 4 points.
11. The diagram shows two squares of equal side length placed so that
they overlap. The squares have a common vertex and the sides make an
angle of 45 degrees with each other, as shown. What is the area of the
overlap as a fraction of the area of one square?
1 (A)
2
1 (B)
2
(C) 1? 1 2
(D) 2 ?1
2 ?1 (E)
2
12.
How many positive integers n exist such that both
n 3
and 3n
are three-digit integers?
(A) 12
(B) 33
(C) 34
(D) 100
(E) 300
13. A circular carpet is placed on a floor of square tiles. All the tiles which have more than one point in common with the carpet are marked grey. Which of the following is an impossible outcome?
(A)
(B)
(C)
(D)
(E)
14. Consider the following statement about a function f on the set of integers: "For any even x, f(x) is even." What would be the negation of this proposition?
(A) For any even x, f(x) is odd
(B) For any odd x, f(x) is even
(C) For any odd x, f(x) is odd
(D) There exists an even number x such that f(x) is odd
(E) There exists an odd number x such that f(x) is odd

Grade 11-12
Year 2013
15. How many pairs (x,y) of positive integers satisfy the equation x2 y3 = 612 ?
(A) 6
(B) 8
(C) 10
(D) 12
(E) Another number.
16. Given a function W (x) = (a ? x)(b ? x)2 , where a < b. Its graph is in one of the following figures. In which one?
(A)
(B)
(C)
(D)
(E)
17. Consider a rectangle, one of whose sides has a length of 5. The rectangle can be cut into a square
and a rectangle, one of which has the area 4. How many such rectangles exist?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5
18. Assume that x2 ? y2 = 84 , where x and y are positive integers. How many values may the
expression x2 + y2 have?
(A) 1
(B) 2
(C) 3
(D) 5
(E) 6
19. In the triangle ABC the points M and N on the side AB are such that AN = AC
and BM = BC. Find ∠ACB if ∠MCN = 43°.
(A) 86°
(B) 89°
(C) 90°
(D) 92°
(E) 94°
20. A box contains 900 cards numbered from 100 to 999. Any two cards have different numbers.
Fran?ois picks some cards and determines the sum of the digits on each of them. At least how many
cards must he pick in order to be certain to have three cards with the same sum?
(A) 51
(B) 52
(C) 53
(D) 54
(E) 55
Part C: Each correct answer is worth 5 points.
21. How many pairs (x,y) of integers with x ≤ y exist such that their product equals 5 times their sum?
(A) 4
(B) 5
(C) 6
(D) 7
(E) 8
22. Let f (x), x ∈ R be the function defined by the following properties: f is periodic with period 5 and
f (x) = x2 when x ∈[?2,3) . What is f(2013) ?
(A) 0
(B) 1
(C) 2
(D) 4
(E) 9
23. We have many white cubes and many black cubes, all of the same size. We want to build a rectangular prism composed by exactly 2013 of these cubes so that they are placed alternating a white cube and a black cube in all directions. If we start putting a black cube in one of the eight corners of the prism, how many black squares will we see on the exterior surface of the solid?
(A) 887
(B) 888
(C) 890
(E) It depends on the dimensions of the prism
(D) 892

Grade 11-12
Year 2013
24. How many solutions (x,y), where x and y are real numbers, does the equation x2 + y2 = x + y
have? (A) 1
(B) 5
(C) 8
(D) 9
(E) Infinitely many.
25. There are 2013 points marked inside a square. Some of them are connected to the vertices of the
square and with each other so that the square is divided into non-overlapping triangles. All marked
points are vertices of these triangles. How many triangles are formed this way?
(A) 2013
(B) 2015
(C) 4026
(D) 4028
(E) impossible to determine
26. There are some straight lines drawn on the plane. Line a intersects exactly three other lines and line
b intersects exactly four other lines. Line c intersects exactly n other lines, with n ≠ 3, 4 .
Determine the number of lines drawn on the plane.
(A) 4
(B) 5
(C) 6
(D) 7
(E) Another number.
27. The sum of the first n positive integers is a three-digit number in which all of the digits are the
same. What is the sum of the digits of n?
(A) 6
(B) 9
(C) 12
(D) 15
(E) 18
28. On the island of Knights and Knaves there live only two types of people: Knights (who always speak the truth) and Knaves (who always lie). I met two men who lived there and asked the taller man if they were both Knights. He replied, but I could not figure out what they were, so I asked the shorter man if the taller was a Knight. He replied, and after that I knew which type they were. Were the men Knights or Knaves?
(A) They were both Knights.
(B) They were both Knaves.
(C) The taller was a Knight and the shorter was a Knave.
(D) The taller was a Knave and the shorter was a Knight.
(E) Not enough information is given.
29. Julian has written an algorithm in order to create a sequence of numbers as a1 = 1,
am+n = am + an + mn , where m and n are natural numbers. Find the value of a100.
(A) 100
(B) 1000
(C) 2012
(D) 4950
(E) 5050
30. The roundabout shown in the picture is entered by 5 cars at the same time, each
one from a different direction. Each of the cars drives less than one round and no
two cars leave the roundabout in the same direction. How many different
combinations are there for the cars leaving the roundabout?
(A) 24
(B) 44
(C) 60
(D) 81
(E) 120

Year 2013
Grade 1 and 2 DBACCB DEDABE DACBDB
Grade 3 and 4 DDBBCDBE BDBADEBD DDBCEBBB
Grade 5 and 6 ECCBEBBECD CCDBADDACD ADBABDBBDB
Grade 7 and 8 DBACEECEAC DEBCBAABBC AEDCCABDBC
Grade 9 and 10 DBCCBAECBC DBDADDBCEB DCCEEDCCBB
Grade 11 and 12 CABDCDEBED DAEDEADBEC ADCED*CBDEB
*Answer E was also accepted as correct for Q25
Answers

历年国际奥数题

第一届(1959) 1.求证(21n+4)/(14n+3) 对每个自然数 n都是最简分数。 2.设√(x+√(2x-1))+√(x-√(2x-1))=A,试在以下3种情况下分别求出x的实数解:(a) A=√2; (b)A=1;(c)A=2。 、b、c都是实数,已知 cos x的二次方程 acos2x + bcos x + c = 0,试用a,b,c作出一个关于cos 2x的二次方程,使它的根与原来的方程一样。当a=4,b=2,c=-1时比较 cos x和cos 2x的方程式。 4.试作一直角三角形使其斜边为已知的 c,斜边上的中线是两直角边的几何平均值。 5.在线段AB上任意选取一点M,在AB的同一侧分别以AM、MB为底作正方形AMCD、MBEF,这两个正方形的外接圆的圆心分别是P、Q,设这两个外接圆又交于M、N,(a.) 求证 AF、BC相交于N点;(b.) 求证不论点M如何选取直线MN 都通过一定点 S;(c.) 当M在A与B之间变动时,求线断 PQ的中点的轨迹。 6.两个平面P、Q交于一线p,A为p上给定一点,C为Q上给定一点,并且这两点都不在直线p上。试作一等腰梯形ABCD(AB平行于CD),使得它有一个内切圆,并且顶点B、D分别落在平面P和Q上。 第二届(1960) 1.找出所有具有下列性质的三位数 N:N能被11整除且 N/11等于N的各位数字的平方和。 2.寻找使下式成立的实数x: 4x2/(1 - √(1 + 2x))2<2x + 9 3.直角三角形ABC的斜边BC的长为a,将它分成 n 等份(n为奇数),令a为从A点向中间的那一小段线段所张的锐角,从A到BC边的高长为h,求证: tan a = 4nh/(an2 - a). 4.已知从A、B引出的高线长度以及从A引出的中线长,求作三角形ABC。 5.正方体ABCDA'B'C'D'(上底面ABCD,下底面A'B'C'D')。X是对角线AC上任意一点,Y是B'D'上任意一点。a.求XY中点的轨迹;b.求(a)中轨迹上的、并且还满足 ZY=2XZ的点Z的轨迹。 6.一个圆锥内有一内接球,又有一圆柱体外切于此圆球,其底面落在圆锥的底面上。令V1为圆锥的体 积,V2为圆柱的体积。(a).求证:V1不等于V2 ;(b).求V1/V2 的最小值;并在此情况下作出圆锥顶角的一般。 第三届(1961) 1.设a、b是常数,解方程组 x + y + z = a;x2 + y2 + z2 = b2;xy=z2并求出若使x、y、z是互不相同的正数,a、b应满足什么条件 2.设a、b、c是某三角形的边,A 是其面积,求证:a2 + b2 + c2 >= 4√3 A. 并求出等号何时成立。 3.解方程 cosnx - sinnx = 1, 其中n是一个自然数。 是三角形ABC内部一点,PA交BC于D,PB交AC于E,PC交AB于F,求证AP/PD, BP/PE, CP/PF 中至少有一个不大于2,也至少有一个不小于2。 5.作三角形ABC使得 AC=b, AB=c,锐角AMB = a,其中M是线断BC的中点。求证这个三角形存在的充要条件是 b tan(a/2) <= c < b.又问上式何时等号成立。 6.三个不共线的点A、B、C,平面p不平行于ABC,并且A、B、C在p的同一侧。在p上任意取三个点A', B', C', A'', B'', C''设分别是边AA', BB', CC'的中点,O是三角形A''B''C''的重心。问,当A',B',C'变化时,O的轨迹是什么 第四届(1962) 1.找出具有下列各性质的最小正整数 n:它的最后一位数字是6,如果把最后的6去掉并放在最前面所得到的数是原来数的4被。 2.试找出满足下列不等式的所有实数 x:√(3-x)- √(x+1) > 1/2. 3.正方体 ABCDA'B'C'D'(ABCD、A'B'C'D'分别是上下底)。一点 x沿着正方形ABCD的边界以方向ABCDA 作匀速运动;一点Y以同样的速度沿着正方形B'C'CB的边界以方向B'C'CBB'运动。点X、Y在同一时刻分别从点A、B'开始运动。求线断XY的中点的轨迹。 4.解方程cos2x + cos22x + cos23x = 1。 5.在圆K上有三个不同的点A、B、C。试在K上再作出一点D使得这四点所形成的四边形有一个内切圆。

高中数学竞赛模拟试题一汇总

高中数学竞赛模拟试题一 一 试 (考试时间:80分钟 满分100分) 一、填空题(共8小题,5678=?分) 1、已知,点(,)x y 在直线23x y += 上移动,当24x y +取最小值时,点(,)x y 与原点的距离是 。 2、设()f n 为正整数n (十进制)的各数位上的数字的平方之和,比如 ()22212312314 f =++=。记 1()() f n f n =, 1()(()) k k f n f f n +=, 1,2,3... k =,则 =)2010(2010f 。 3、如图,正方体1 111D C B A ABCD -中,二面角 1 1A BD A --的度数 是 。 4、在2010,,2,1 中随机选取三个数,能构成递增等差数列的概率是 。 5、若正数c b a ,,满足 b a c c a b c b a +- +=+,则c a b +的最大值是 。 6、在平面直角坐标系xoy 中,给定两点(1,2)M -和(1,4)N ,点P 在X 轴上移动,当MPN ∠取最大值时,点P 的横坐标是 。 7、已知数列...,,...,,,210n a a a a 满足关系式18)6)(3(1=+-+n n a a 且30=a ,则∑=n i i a 01 的值是 。 8、函数sin cos tan cot sin cos tan cot ()sin tan cos tan cos cot sin cot x x x x x x x x f x x x x x x x x x ++++=+++++++在(,)2 x o π∈时的最 小值为 。

二、解答题(共3题,分44151514=++) 9、设数列}{n a 满足条件:2,121==a a ,且 ,3,2,1(12=+=++n a a a n n n ) 求证:对于任何正整数n ,都有:n n n n a a 111+≥+ 10、已知曲线m y x M =-22:,0>x ,m 为正常数.直线l 与曲线M 的实轴不垂直,且依次交直线x y =、曲线M 、直线x y -=于A 、B 、C 、D 4个点,O 为坐标原点。 (1)若||||||CD BC AB ==,求证:AOD ?的面积为定值; (2)若BOC ?的面积等于AOD ?面积的3 1,求证:||||||CD BC AB == 11、已知α、β是方程24410()x tx t R --=∈的两个不等实根,函数=)(x f 1 22 +-x t x 的定义域为[,]αβ. (Ⅰ)求);(min )(max )(x f x f t g -= (Ⅱ)证明:对于) 2 ,0(π∈i u )3,2,1(=i ,若1sin sin sin 321=++u u u ,则 64 3 )(tan 1)(tan 1)(tan 1321<++u g u g u g . 二 试 (考试时间:150分钟 总分:200分) 一、(本题50分)如图, 1O 和2 O 与 ABC ?的三边所在的三条直线都相 切,,,,E F G H 为切点,并且EG 、FH 的 延长线交于P 点。 求证:直线PA 与BC 垂直。 二、(本题50分)正实数z y x ,,,满 足 1≥xyz 。证明: E F A B C G H P O 1。 。 O 2

希望杯数学竞赛小学三年级试题知识讲解

希望杯数学竞赛小学三年级试题

希望杯数学竞赛(小学三年级)赛前训练题1.观察图1的图形的变化进行填空. 2.观察图2的图形的变化进行填空. 3.图3中,第个图形与其它的图形不同. 4.将图4中A图折起来,它能构成B图中的第个图形. 5.找出下列各数的排列规律,并填上合适的数. (1)1,4,8,13,19,(). (2)2,3,5,8,13,21,(). (3)9,16,25,36,49,().

(4)1,2,3,4,5,8,7,16,9,(). (5)3,8,15,24,35,(). 6.寻找图5中规律填数. 7.寻找图6中规律填数. 8.(1)如果“访故”变成“放诂”,那么“1234”就变成. (2)寻找图7中规律填空. 9.用0、1、2、3、4、5、6、7、8、9十个数字组成图8的加法算式,每个数字只用一次,现已写出三个数字,那么这个算式的结果是.

10.图9、图10分别是由汉字组成的算式,不同的汉字代表不同的数字,请你把它们翻译出来. 11.在图11、图12算式的空格内,各填入一个合适的数字,使算式成立. 12.已知两个四位数的差等于8765,那么这两个四位数和的最大值是. 13.中午12点放学的时候,还在下雨.已经连续三天下雨了,大家都盼着晴天,再过36小时会出太阳吗? 14.某年4月份,有4个星期一、5个星期二,问4月的最后一天是星期几?

15.张三、李四、王五三位同学中有一个人在别人不在时为集体做好事,事后老师问谁做的好事,张三说是李四,李四说不是他,王五说也不是他.它们三人中只有一个说了真话,那么做好事的是. 16.小李,小王,小赵分别是海员、飞行员、运动员,已知:(1)小李从未坐过船;(2)海员年龄最大;(3)小赵不是年龄最大的,他经常与飞行员散步.则是海员,是飞行员,是运动员. 17.用凑整法计算下面各题: (1)1997+66 (2)678+104 (3)987-598 (4)456-307 18.用简便方法计算下列各题: (1)634+(266-137)(2)2011-(364+611) (3)558-(369-342)(4)2010-(374-990-874)19.用基准法计算: 108+99+93+102+97+105+103+94+95+104 20.用简便方法计算:899999+89999+8999+899+89 21.求100以内的所有正偶数的和是多少? 22.有一数列3,9,15,…,153,159.请问:

2019全国高中数学联赛模拟试题(二

A A 1 1 1 图1 2019全国高中数学联赛模拟试题(二) 第一试 一、选择题(每小题6分,共36分) 1、已知集合()??????+=--=123,a x y y x A ,()()(){} 1511,2=-+-=y a x a y x B .若?=B A ,则a 的所有取值是 (A )-1,1 (B )-1,21 (C )±1,2 (D )±1,-4, 25 2、如图1,已知正方体ABCD -A 1B 1C 1D 1,点M 、N 在AB 1、BC 1上,且AM =BN .那么, ①AA 1⊥MN ; ②A 1C 1∥MN ; ③MN ∥平面A 1B 1C 1D 1; ④MN 与A 1C 1异面. 以上4个结论中,不正确的结论的个数为 (A )1 (B )2 (C )3 (D )4 3、用S n 与a n 分别表示区间[)1,0内不含数字9的n 位小数的和与个数.则n n n S a ∞→lim 的值为 (A ) 43 (B )45 (C )47 (D )4 9 4、首位数字是1,且恰有两个数字相同的四位数共有 (A )216个 (B )252个 (C )324个 (D )432个 5、对一切实数x ,所有的二次函数()c bx ax x f ++=2(a <b )的值均为非负 实数.则c b a a b ++-的最大值是 (A )31 (B )21 (C )3 (D )2 6、双曲线122 22=-b y a x 的一个焦点为F 1,顶点为A 1、A 2,P 是双曲线上任意一点.则分别以线段PF 1、A 1A 2为直径的两圆一定 (A )相交 (B )相切 (C )相离 (D )以上情况均有可能

历届(第1-21届)希望杯数学竞赛初一试题及答案(最新整理)

希望杯第一届(1990年)初中一年级第一试试题................................................ 003-005 希望杯第一届(1990年)初中一年级第二试试题................................................ 010-012 希望杯第二届(1991年)初中一年级第一试试题................................................ 017-020 希望杯第二届(1991年)初中一年级第二试试题................................................ 023-026 希望杯第三届(1992年)初中一年级第一试试题................................................ 031-032 希望杯第三届(1992年)初中一年级第二试试题................................................ 037-040 希望杯第四届(1993年)初中一年级第一试试题................................................ 047-050 希望杯第四届(1993年)初中一年级第二试试题................................................ 055-058 希望杯第五届(1994年)初中一年级第一试试题................................................ 063-066 希望杯第五届(1994年)初中一年级第二试试题 ............................................... 070-073 希望杯第六届(1995年)初中一年级第一试试题................................................ 077-080 希望杯第六届(1995年)初中一年级第二试试题................................................ 084-087 希望杯第七届(1996年)初中一年级第一试试题................................................ 095-098 希望杯第七届(1996年)初中一年级第二试试题................................................ 102-105 希望杯第八届(1997年)初中一年级第一试试题................................................ 110-113 希望杯第八届(1997年)初中一年级第二试试题................................................ 117-120 希望杯第九届(1998年)初中一年级第一试试题................................................ 126-129 希望杯第九届(1998年)初中一年级第二试试题................................................ 135-138 希望杯第十届(1999年)初中一年级第二试试题................................................ 144-147 希望杯第十届(1999年)初中一年级第一试试题................................................ 148-151 希望杯第十一届(2000年)初中一年级第一试试题............................................ 158-161 希望杯第十一届(2000年)初中一年级第二试试题............................................ 166-169 希望杯第十二届(2001年)初中一年级第一试试题............................................ 170-174 希望杯第十二届(2001年)初中一年级第二试试题............................................ 175-178 希望杯第十三届(2002年)初中一年级第一试试题............................................ 181-184 希望杯第十三届(2001年)初中一年级第二试试题............................................ 185-189 希望杯第十四届(2003年)初中一年级第一试试题............................................ 192-196 希望杯第十四届(2003年)初中一年级第二试试题............................................ 197-200

加拿大国家中小学数学竞赛( kangaroo math 袋鼠竞赛)2017年五六年级(含答案)

I N T ER N A T I ON A L CO N T E S T-GA M E M A TH KA N GA RO O C A N A DA, 2017 INSTRUCTIONS GRADE 5-6 1.You have 75 minutes to solve 30 multiple choice problems. For each problem, circle only one of the proposed five choices. If you circle more than one choice, your response will be marked as wrong. 2.Record your answers in the response form. Remember that this is the only sheet that is marked, so make sure you have all your answers transferred here by the end of the contest. 3.The problems are arranged in three groups. A correct answer of the first 10 problems is worth 3 points. A correct answer of problems 11-20 is worth 4 points. A correct answer of problems 21-30 is worth 5 points. For each incorrect answer, one point is deducted from your score. Each unanswered question is worth 0 points. To avoid negative scores, you start from 30 points. The maximum score possible is 150. 4.Calculators and graph paper are not permitted. You are allowed to use rough paper for draft work. 5.The figures are not drawn to scale. They should be used only for illustration. 6.Remember, you have about 2-3 minutes for each problem; hence, if a problem appears to be too difficult, save it for later and move on to the other problems. 7.At the end of the allotted time, please submit the response form to the contest supervisor. Please do not forget to pick up your Certificate of Participation! Good luck! Canadian Math Kangaroo Contest team 2017 CMKC locations: Algoma University; Bishop's University; Brandon University; Brock University; Carlton University; Concordia University; Concordia University of Edmonton; Coquitlam City Library; Dalhousie University; Evergreen Park School; F.H. Sherman Recreation & Learning Centre; GAD Elementary School; Grande Prairie Regional College; Humber College; Lakehead University (Orillia and Thunder Bay); Laurentian University; MacEwan University; Memorial University of Newfoundland; Mount Allison University; Mount Royal University; Nipissing University; St. Mary’s University (Calgary); St. Peter’s College; The Renert School at Royal Vista; Trent University; University of Alberta-Augustana Campus; University of British Columbia (Okanagan); University of Guelph; University of Lethbridge; University of New Brunswick; University of Prince Edward Island; University of Quebec at Chicoutimi; University of Quebec at Rimouski; University of Regina; University of Toronto Mississauga; University of Toronto Scarborough; University of Toronto St. George; University of Windsor; The University of Western Ontario; University of Winnipeg; Vancouver Island University; Walter Murray Collegiate, Wilfrid Laurier University; YES Education Centre; York University; Yukon College. 2017 CMKC supporters: Laurentian University; Canadian Mathematical Society; IEEE; PIMS.

高二数学竞赛模拟试题及答案

高二数学竞赛模拟试题 考生注意:⒈用钢笔、签字笔或圆珠笔作答,答案写在答卷上; ⒉不准使用计算器; ⒊考试用时120分钟,全卷满分150分. 一、选择题:本大题共8小题,每小题6分,满分48分.在每小题给出的四个选项中,只有一 项是符合题目要求的. 1、定义集合M,N 的一种运算*,:1212*{|,,}M N x x x x x Mx N ==∈∈,若{1,2,3}M =, N={0,1,2},则M*N 中的所有元素的和为( ) (A).9 ( B).6 (C).18 (D).16 2.函数2 54()2x x f x x -+=-在(,2)-∞上的最小值是 ( ) (A).0 (B).1 (C).2 (D).3 3、若函数)sin(2θ+=x y 的图象按向量)2,6 (π 平移后,它的一条对称轴是4 π = x ,则θ的一个 可能的值是( ) (A)125π (B)3π (C)6 π (D)12π 4.设函数()f x 对0x ≠的一切实数均有 ()200823f x f x x ?? ? ?? +=,则()2f 等于( ) ﹙A ﹚2006. ﹙B ﹚2008. ﹙C ﹚2010. ﹙D ﹚2012. 5.已知,αβ分别满足100411004,10g βαα β=?=?,则αβ?等于( ) ﹙A ﹚ ﹙B ﹚1004. ﹙C ﹚ ﹙D ﹚2008. 6.直线20ax y a -+=与圆22 9x y +=的位置关系是( ) (A )相离 (B )相交 (C )相切 (D )不确定 7.已知等差数列{a n }的前n 项和为S n ,若1O a B =200OA a OC +,且A 、B 、C 三点共线(该直线不过原点O ),则S 200=( ) (A).100 (B). 101 (C).200 (D).201 8.()f x 是定义在R 上的奇函数,且(2)f x -是偶函数,则下列命题中错误的是( )

(完整word版)希望杯数学竞赛小学三年级试题

希望杯数学竞赛(小学三年级)赛前训练题1.观察图1的图形的变化进行填空. 2.观察图2的图形的变化进行填空. 3.图3中,第个图形与其它的图形不同. 4.将图4中A图折起来,它能构成B图中的第个图形. 5.找出下列各数的排列规律,并填上合适的数. (1)1,4,8,13,19,(). (2)2,3,5,8,13,21,(). (3)9,16,25,36,49,(). (4)1,2,3,4,5,8,7,16,9,(). (5)3,8,15,24,35,(). 6.寻找图5中规律填数. 7.寻找图6中规律填数.

8.(1)如果“访故”变成“放诂”,那么“1234”就变成.(2)寻找图7中规律填空. 9.用0、1、2、3、4、5、6、7、8、9十个数字组成图8的加法算式,每个数字只用一次,现已写出三个数字,那么这个算式的结果是. 10.图9、图10分别是由汉字组成的算式,不同的汉字代表不同的数字,请你把它们翻译出来. 11.在图11、图12算式的空格内,各填入一个合适的数字,使算式成立. 12.已知两个四位数的差等于8765,那么这两个四位数和的最大值是. 13.中午12点放学的时候,还在下雨.已经连续三天下雨了,大家都盼着晴天,再过36小时会出太阳吗?

14.某年4月份,有4个星期一、5个星期二,问4月的最后一天是星期几? 15.张三、李四、王五三位同学中有一个人在别人不在时为集体做好事,事后老师问谁做的好事,张三说是李四,李四说不是他,王五说也不是他.它们三人中只有一个说了真话,那么做好事的是. 16.小李,小王,小赵分别是海员、飞行员、运动员,已知:(1)小李从未坐过船;(2)海员年龄最大;(3)小赵不是年龄最大的,他经常与飞行员散步.则是海员,是飞行员,是运动员. 17.用凑整法计算下面各题: (1)1997+66 (2)678+104 (3)987-598 (4)456-307 18.用简便方法计算下列各题: (1)634+(266-137)(2)2011-(364+611) (3)558-(369-342)(4)2010-(374-990-874) 19.用基准法计算: 108+99+93+102+97+105+103+94+95+104 20.用简便方法计算:899999+89999+8999+899+89 21.求100以内的所有正偶数的和是多少? 22.有一数列3,9,15,…,153,159.请问: (1)这组数列共有多少项?(2)第15项是多少?(3)111是第几项的数? 23.有10只盒子,54只乒乓球,把这54只乒乓球放到10只盒子中,要求每个盒子中最少放1只乒乓球,并且每只盒子中的乒乓球的只数都不相同,如果能放,请说出放的方法;如果不能放,请说明理由.

高中数学竞赛历届IMO竞赛试题届完整中文版优选稿

高中数学竞赛历届I M O 竞赛试题届完整中文版 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

第1届I M O 1.求证(21n+4)/(14n+3) 对每个自然数 n都是最简分数。 2.设√(x+√(2x-1))+√(x-√(2x-1))=A,试在以下3种情况下分别求出x的实数解: (a) A=√2;(b)A=1;(c)A=2。 3.a、b、c都是实数,已知 cos x的二次方程 a cos2x + b cos x + c = 0, 试用a,b,c作出一个关于 cos 2x的二次方程,使它的根与原来的方程一样。当a=4,b=2,c=-1时比较 cos x和cos 2x的方程式。 4.试作一直角三角形使其斜边为已知的 c,斜边上的中线是两直角边的几何平均值。 5.在线段AB上任意选取一点M,在AB的同一侧分别以AM、MB为底作正方形AMCD、MBEF,这两个正方形的外接圆的圆心分别是P、Q,设这两个外接圆又交于M、N, (a.) 求证 AF、BC相交于N点; (b.) 求证不论点M如何选取直线MN 都通过一定点 S; (c.) 当M在A与B之间变动时,求线断 PQ的中点的轨迹。 6.两个平面P、Q交于一线p,A为p上给定一点,C为Q上给定一点,并且这两点都不在直线p上。试作一等腰梯形ABCD(AB平行于CD),使得它有一个内切圆,并且顶点B、D分别落在平面P和Q上。 第2届IMO 1.找出所有具有下列性质的三位数 N:N能被11整除且 N/11等于N的各位数字的平方和。

2.寻找使下式成立的实数x: 4x2/(1 - √(1 + 2x))2 < 2x + 9 3.直角三角形ABC的斜边BC的长为a,将它分成 n 等份(n为奇数),令为从A点向中间的那一小段线段所张的锐角,从A到BC边的高长为h,求证: tan = 4nh/(an2 - a). 4.已知从A、B引出的高线长度以及从A引出的中线长,求作三角形ABC。 5.正方体ABCDA'B'C'D'(上底面ABCD,下底面A'B'C'D')。X是对角线AC上任意一点,Y是B'D'上任意一点。 a.求XY中点的轨迹; b.求(a)中轨迹上的、并且还满足 ZY=2XZ的点Z的轨迹。 6.一个圆锥内有一内接球,又有一圆柱体外切于此圆球,其底面落在圆 锥的底面上。令V 1为圆锥的体积,V 2 为圆柱的体积。 (a). 求证:V 1不等于 V 2 ; (b). 求V 1/V 2 的最小值;并在此情况下作出圆锥顶角的一般。 7.等腰梯形ABCD,AB平行于DC,BC=AD。令AB=a,CD=c,梯形的高为h。X点在对称轴上并使得角BXC、AXD都是直角。试作出所有这样的X 点并计算X到两底的距离;再讨论在什么样的条件下这样的X点确实存在。 第3届IMO 1.设a、b是常数,解方程组 x + y + z = a; x2 + y2 + z2 = b2; xy=z2

2019-2020年初中数学竞赛模拟试题

2019-2020年初中数学竞赛模拟试题 一、选择题(每小题6分,共30分) 1.方程1) 1(3 2=-++x x x 的所有整数解的个数是( )个 (A )2 (B )3 (C )4 (D )5 2.设△ABC 的面积为1,D 是边AB 上一点,且3 1 =AB AD .若在边AC 上取一点E , 使四边形DECB 的面积为 43,则EA CE 的值为( ) (A )21 (B )31 (C )41 (D )5 1 3.如图所示,半圆O 的直径在梯形ABCD 的底边AB 上,且与其余三边BC ,CD ,DA 相切,若BC =2,DA =3,则AB 的长( ) (A )等于4 (B )等于5 (C )等于6 (D )不能确定 4.在直角坐标系中,纵、横坐标都是整数的点,称为整点。设k 为整数,当直线2+=x y 与直线4-=kx y 的交点为整点时,k 的值可以取( )个 (A )8个 (B )9个 (C )7个 (D )6个 5.世界杯足球赛小组赛,每个小组4个队进行单循环比赛,每场比赛胜队得3分,败队得0分,平局时两队各得1分.小组赛完后,总积分最高的2个队出线进入下轮比赛.如果总积分相同,还有按净胜球数排序.一个队要保证出线,这个队至少要积( )分. (A )5 (B )6 (C )7 (D )8 二、填空题(每小题6分,共30分) 6.当x 分别等于 20051,20041,20031,20021,20011,2000 1 ,2000,2001,2002,2003,2004,2005时,计算代数式2 2 1x x +的值,将所得的结果相加,其和等于 . 7.关于x 的不等式x b a )2(->b a 2-的解是x <2 5 ,则关于x 的不等式b ax +<0的解为 . 8.方程02 =++q px x 的两根都是非零整数,且 198=+q p ,则p = . 9.如图所示,四边形ADEF 为正方形,ABCD 为等腰直角三角形,D 在BC 边上,△ABC 的面积等于98,BD ∶DC =2∶5.则正方形ADEF 的面积等于 . A B F C E D · D C O B A

2009年第二十届“希望杯”全国高二数学邀请赛(第2试)

第20届全国希望杯高二数学邀请赛 第二试 一、选择题(每题4分,40分) 1、设的定义域为D ,又()()().h x f x g x =+若(),()f x g x 的最大值分别是M ,N ,最小值分别是m ,n ,则下面的结论中正确的是( ) A .()h x 的最大值是M+N B .()h x 的最小值是m +n C .()h x 的值域为{|}x m n x M N +≤≤+ D .()h x 的值域为{|}x m n x M N +≤≤+的一个子集 2、方程log (0,1)x a a x a a -=>≠的实数根的个数为( ) A .0 B .1 C .2 D .3 3、已知函数32()1(0)f x ax bx cx a =++-<,且(5)3f =,那么使()0f x =成立的x 的个数为( ) A .1 B .2 C .3 D .不确定的 4、设22{(,)|S x y x y =-是奇数,,}x y R ∈,22{(,)|sin(2)sin(2)T x y x y ππ=-= 22cos(2)cos(2),,}x y x y R ππ-∈,则S ,T 的关系是( ) A .S ≠?T B .T ≠ ?S C .S=T D .S T =Φ 5、定义集合M,N 的一种运算*,:1212*{|,,}M N x x x x x Mx N ==∈∈,若{1,2,3}M =,N={0,1,2},则M*N 中的所有元素的和为( ) A .9 B .6 C .18 D .16 6、关于x 的整系数一元二次方程20(0)ax bx c a ++=≠中,若a b +是偶数,c 是奇数,则( ) A .方程没有整数根 B .方程有两个相等的整数根 C .方程有两个不相等的整数根 D .不能判定方程整数根的情况 7、设x 是某个三角形的最小内角,则cos cos sin 22 x y x x =-的值域是( ) A .( B .( C . D . 8、已知e tan )

高中数学竞赛历届IMO竞赛试题届完整中文版

第1届I M O 1.? 求证(21n+4)/(14n+3) 对每个自然数 n都是最简分数。 2.??设√(x+√(2x-1))+√(x-√(2x-1))=A,试在以下3种情况下分别求出x的实数解:? (a) A=√2;(b)A=1;(c)A=2。 3.?a、b、c都是实数,已知 cos x的二次方程 a cos2x + b cos x + c = 0, 试用a,b,c作出一个关于 cos 2x的二次方程,使它的根与原来的方程一样。当 a=4,b=2,c=-1时比较 cos x和cos 2x的方程式。 4.? 试作一直角三角形使其斜边为已知的 c,斜边上的中线是两直角边的几何平均值。 5.? 在线段AB上任意选取一点M,在AB的同一侧分别以AM、MB为底作正方形AMCD、MBEF,这两个正方形的外接圆的圆心分别是P、Q,设这两个外接圆又交于M、N, ??? (a.) 求证 AF、BC相交于N点; ?? (b.) 求证不论点M如何选取直线MN 都通过一定点 S; ??? (c.) 当M在A与B之间变动时,求线断 PQ的中点的轨迹。 6.? 两个平面P、Q交于一线p,A为p上给定一点,C为Q上给定一点,并且这两点都不在直线p上。试作一等腰梯形ABCD(AB平行于CD),使得它有一个内切圆,并且顶点B、D分别落在平面P和Q上。 第2届IMO 1.? 找出所有具有下列性质的三位数 N:N能被11整除且 N/11等于N的各位数字的平方和。 2.? 寻找使下式成立的实数x: 4x2/(1 - √(1 + 2x))2 ?< ?2x + 9

3.? 直角三角形ABC的斜边BC的长为a,将它分成 n 等份(n为奇数),令?为从A点向中间的那一小段线段所张的锐角,从A到BC边的高长为h,求证: tan ? = 4nh/(an2 - a). 4.? 已知从A、B引出的高线长度以及从A引出的中线长,求作三角形ABC。 5.? 正方体ABCDA'B'C'D'(上底面ABCD,下底面A'B'C'D')。X是对角线AC上任意一点,Y是B'D'上任意一点。 a.求XY中点的轨迹; b.求(a)中轨迹上的、并且还满足 ZY=2XZ的点Z的轨迹。 6.? 一个圆锥内有一内接球,又有一圆柱体外切于此圆球,其底面落在圆锥的底面上。令V1为圆锥的体积,V2为圆柱的体积。 ??? (a).? 求证:V1不等于 V2; ??? (b).? 求V1/V2的最小值;并在此情况下作出圆锥顶角的一般。 7.? 等腰梯形ABCD,AB平行于DC,BC=AD。令AB=a,CD=c,梯形的高为 h。X点在对称轴上并使得角BXC、AXD都是直角。试作出所有这样的X点并计算X到两底的距离;再讨论在什么样的条件下这样的X点确实存在。 第3届IMO 1.? 设a、b是常数,解方程组 x + y + z = a; ? ? x2 + y2 + z2 = b2; ? ? xy=z2 并求出若使x、y、z是互不相同的正数,a、b应满足什么条件? 2.? 设a、b、c是某三角形的边,A 是其面积,求证: a2 + b2 + c2>= 4√3 A. 并求出等号何时成立。 3.? 解方程 cos n x - sin n x = 1, 其中n是一个自然数。 4.? P是三角形ABC内部一点,PA交BC于D,PB交AC于E,PC交AB于F,求证AP/PD,

全国初中数学竞赛模拟试题及答案

全国初中数学竞赛初赛模拟试卷 (本试卷共4页,满分120分,考试时间:3月22日8:30——10:30) 一、选择题(本大题满分50分,每小题5分) 在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号下的方格内 1. 方程 020091 1=-x 的根是 A. 20091 - B. 20091 C. -2009 D. 2009 2. 如果0<+b a ,且0>b ,那么2a 与2b 的关系是 A .2a ≥2b B .2a >2b C .2a ≤2b D .2a <2b 3. 如图所示,图1是图2中正方体的平面展开图(两图中的箭头位置和方向是一致的),那么,图1中的线段AB 在图2中的对应线段是 A .k B .h C .e D .d 4. 如图,A 、B 、C 是☉O 上的三点,OC 是☉O 的半径,∠ABC=15°,那么∠OCA 的度数是 A .75° B .72° C .70° D .65° 图2 (第3题图) (第4题图) 5. 已知a 2=3,b 2=6,c 2=12,则下列关系正确的是 A .c b a +=2 B .c a b +=2 C .b a c +=2 D. b a c +=2 6. 若实数n 满足 (n-2009 )2 + ( 2008-n )2=1,则代数式(n-2009 ) ( 2008-n )的值是

A .1 B .21 C .0 D. -1 7. 已知△ABC 是锐角三角形,且∠A >∠B >∠C ,则下列结论中错误的是 A .∠A > 60° B .∠C <60° C .∠B >45° D .∠B +∠C <90° 8. 有2009个数排成一行,其中任意相邻的三个数中,中间的数总等于前后两数的和,若第一个数是1,第二个数是-1,则这2009个数的和是 A .-2 B .-1 C .0 D .2 9. ⊙0的半径为15,在⊙0内有一点 P 到圆心0的距离为9,则通过P 点且长度是整数值的弦的条数是 A .5 B .7 C .10 D .12 10. 已知二次函数)0(2≠++=a c bx ax y 的图象 如图所示,记b a p +=2,a b q -=,则下列 结论正确的是 A .p >q >0 B .q >p >0 C .p >0>q D .q >0>p 二、填空题(本大题满分40分,每小题5分) 11. 已知 |x |=3,2y =2,且y x +<0,则y x = . 12. 如果实数b a ,互为倒数,那么=+++221111 b a . 13. 口袋里只有红球、绿球和黄球若干个,这些球除颜色外,其余都相同,其中红球4个, 绿球6个,又知从中随机摸出一个绿球的概率为52 ,那么,随机从中摸出一个黄球的概 率为 . 14. 如图,在直线3+-=x y 上取一点P ,作PA ⊥x 轴,PB ⊥y 轴,垂足分别为A 、B , 若矩形OAPB 的面积为4,则这样的点P 的坐标是 . 15. 如图,AD 是△ABC 的角平分线,∠B=60°, E, F 分别在AC 、AB 上,且AE=AF ,∠CDE= ∠BAC ,那么,图中长度一定与DE 相等的线段共有 条. (第10题图) D F B A E C C

数学希望杯竞赛

刚刚结束的“中环杯”初赛,今年题型的变化纷纷让学生们措手不及,历来中环杯的难度都是各热门的数学杯赛竞赛中偏高的,小学中热门的数学竞赛,由于“希望杯”相对而言更注重基础,因此似乎对考生来说是最有“希望”拿到证书的数学竞赛。而掌握“希望杯”备考及竞赛过程中的几个要点,对取得好成绩大有帮助。更多信息请点击>> 破解简单题目中的玄机 “希望杯“主要考察学生奥数基础知识的掌握情况,一般奥数教材里的数论、几何、应用题等都会考到,覆盖面较广。比如学生的计算能力;是否能熟记基本的知识点;有无学会对知识和解题方法进行归纳总结,并举一反三,触类旁通等。 相对于其他杯赛,“希望杯”命题风格非常直白,考察学生运用知识点解决实际问题的能力。考试题目虽然比较简单,但可能暗藏陷阱,学生一不留神就可能“中招”。 “希望杯”竞赛的一个特色就是面向的参赛群体非常广泛。在校成绩突出的学生有机会获奖;成绩并不突出但学习踏实的学生同样也有机会获奖。“希望杯”的最终评奖结果在每年的六月初揭晓,而第一试是在每年三月初就公布成绩,进入第二试的比例为20%。有一点要提醒大家注意,“希望杯”第一试往往是“一题两解”,考生在解题时要考虑周全可能包含的各种情况,切勿粗心大意。

专家认为,“希望杯”思维能力竞赛的试题内容不超教学大纲,不超进度,贴近现行的数学课本,又稍高于课本。试题活而不难,巧而不偏,能将知识、能力的考察和思维能力的培养结合起来,而不只是让学生单纯地解答数学题目。 更重视解题过程 由于“希望杯”考察的知识点不偏不刁,这就对不一定具有数学天分但是学习踏实的同学很有利;而且“希望杯”的第二试试题重视解题过程,平时学习习惯好,作业过程认真清晰的学生有希望冲击更高的奖项。从这两点可以看出,“希望杯”非常有利于大部分成绩并不突出的同学获奖,这也是“希望杯”有别于其他杯赛的重要区别之一。 奥数知识基础相对扎实、解题认真的考生最适合报考“希望杯”,那些在学校学习处于中等偏上、学有余力的同学都可以参加。对他们来说,参加考试最大的意义在于检验知识的灵活运用能力。“希望杯”强调灵活的变通,这正符合喜欢思考、善于思考的学生的需求。学生不妨看看“希望杯”基础在哪,基础之上的变通又在哪,从而检测自己对于数学学习的掌握情况。我们建议只要对数学有兴趣者都可以参加,“希望杯”注重基础知识点的考察,难度又稍高于平时。考生要想获得名次,就肯定要花时间去“吃透”这些知识点。如果学生能以此标准来要求自己,那学起基础数学就更是应对自如了。 历年真题是法宝

相关文档
最新文档