智能天线在移动通信中的应用概要

智能天线在移动通信中的应用概要
智能天线在移动通信中的应用概要

智能天线在移动通信中的应用

摘要:介绍了移动通信中关键技术之一的智能天线技术,并就它的结构、算法以及在第三代移动通信中的应用进行了较全面的阐述。

关键词:移动通信;智能天线;天线阵列;自适应算法

Abstract:Smartantennaisoneofthekeytechnologiesofmobilecommunications.Itdescribesthetechnologyandfocusonitsarchitecture,algorithmandapplicationto 3Gmobilecommunication.

Keywords:MobilecommunicationsSmartantennaArraySelf-adaptingalgorithm

0 前言

随着移动通信的发展,人们不仅从时域和频域的角度来探讨提高移动通信系统数量和质量的各种手段,而且进一步研究信号在空域的处理方法。智能天线技术就是典型的代表。

智能天线技术起源于20世纪40年代的自适应天线组合技术,在当时采用了锁相环技术进行天线的跟踪。1965年,Howells提出了自适应陷波的旁瓣对消器技术用于阵列信号处理,之后,又陆续出现了等一系列技术,后来,Gabriel将自适应波束形成技术上升到“智能阵列”概念。早在1978年,智能天线就在军事通信中得到了应用,进入20世纪90年代后,才在民用移动通信系统中开始研究应用。该项技术主要应用于以下方面:a)信号源定位,确定天线阵列到信号源的方位角;

b)信号源分离,确定各个信号源发射信号的波形;

c)信道估计,确定信号源与天线阵列间传输信道的参数。

1 智能天线的组成

智能天线技术是利用信号传输的空间特性,达到抑制干扰,提取信号的目的。它主要包括天线阵列部分、模数转换、波束形成网络以及自适应信号处理,其结构框图如图1所示。

1.1 天线阵列部分

天线阵列即在空间分开设置一系列天线阵元,并将各阵元接收到的信号作加权处理,通过改变阵列的权值。可使波束形状发生改变。天线阵列相当于在空域对空间信号做离散采样,如同时域中自适应滤波器处理方法一样,也进行诸如滤波、分离及参数估计等。通过信号处理,可使阵列在有效信号方向上产生的波束得到加强,而在干扰信号方向上产生“陷点”(Null),从而提高系统容量、降低系统干扰、扩大系统覆盖范围。图2给出了示意图。

1.2 波束形成网络

智能天线所形成的波束可实现空间滤波的作用,它对期望信号方向具有高增益,而对不希望的干扰信号实现陷波作用。智能天线波束成形的基本方法是:通过将各天线单元输出信号进行加权求和,将天线阵列波束指向到一个方向,使期望的信号得到最大的输出。理想情况下天线单元的加权值如下:

式中:

μ——与相关阵最大特征根有关的比例常数

R——输入信号相关矩阵

a(θ

)——方向矢量

1.2 自适应信号处理

自适应信号处理是智能天线智能体现的一个重要方面,它以自适应算法为核心,动态地调整最优加权系数。

2 常用智能算法及其性能比较

自适应算法是智能天线的核心,目前国际上已提出许多算法,归纳起来主要分为盲算法和非盲算法。

所谓盲算法是指发送端不需发送导频信号,训练序列等,接收端可自行估计发送信号,并以此作为参考信号进行接收端的信号处理。盲算法一般是利用调制信号本身固有的一些特征来进行接收处理,这些特征有循环平稳、子空间法等。

非盲算法需要参考信号,利用这些参考信号实现自适应算法。如在3G中就有专门发送导频信道的信号。

应该说非盲算法相对盲算法而言误差较小,收敛速度较快,但它需要额外的参考信息,而盲算法的优缺点正好相反。现在又有人提出将非盲算法和盲算法相结合的半盲算法,即先利用非盲算法确定初始值,再利用盲算法进行跟踪与调整,这样就可以结合两者的优点更好地进行信号处理。

3 智能天线在3G中的应用

智能天线技术在3G中的应用主要体现在2个方面,即基站的收和发,具体而言就是上行收与下行发。

智能天线的上行收技术研究较早,因此也较为成熟。上行收主要包含全自适应方式和基于预波束的波束切换方式。在自适应方式中,可根据一定的自适应算法,对空、时域处理的各组权值系数进行调整,并与当前传输环境进行最大限度的匹配,从而实现任意指向波束的自适应接收。全自适应方式在理论研究中具有很大的实用价值。但在实际工程中,由于全自适应算法的计算量大等因素而很不实用。在工程设计时,更感兴趣的是基于预波束的波束切换方式。因为波束切换中的各权值系数只能从预先计算好的几组中挑选,因此计算量、收敛速度等方面较全自适应方式有优势。然而在这种方式下由于智能天线的工作模式只能从预先设计好的几个波束中选择,因而它不能完全实现自适应性的任意指向,在理论上只是准最优的。

实现基站智能天线下行发难度相对较大,这主要因为智能天线在设计波束时很难准确获知下行信道的特征信息。目前在这方面主要有下述两种方案:a)利用类似第二代移动通信的IS-95中的上行功率控制技术,形成闭环反馈测试结构形式,也就是说基站通过正向链路周期性地向移动台发射训练序列,而移动台通过反向链路反馈信号,从而估计最佳正向链路加权系数;

b)利用上行信道信息估计下行信道。

对于FDD方式,由于上下行频率间隔相差90 MHz,衰落特性完全独立因而不能使用。但对TDD方式,只要上下行的帧长较短完全可以实现。

4 智能天线的优点

a)动态调整的智能天线阵列的波束跟踪高速率用户,能起到空间隔离、消除干扰的作用,动态调整的智能天线阵列的性能优于固定的多波束天线;

b)增加系统容量;

c)增加覆盖范围,改善建筑物中的和高速运动时的信号接收质量;

d)提高信号接收质量,降低掉话率,提高语音质量;

e)减少发射功率,延长移动台电池寿命;

f)提高系统设计时的灵活性。

参考文献

1 王大庆等.CDMA中智能天线的接收准则及自适应算法.通信学报.1998,(6)

2.郭梯云等.数字移动通信.北京:人民邮电出版社

3 向卫东,姚彦.智能天线及其在无线通信中的应用.无线通信技术.1999,(2)

移动通信中的智能天线技术

移动通信中的智能天线技术【摘要】对现代移动通信系统中采用的智能天线技术进行了研究。介绍了智能天线技术的概念;阐述了智能天线的工作原理,基本结构,应用技术和类型;列举了智能天线技术采用算法,并重点说明了现今智能天线技术采用较多的几种自适应算法;同时,还叙述了智能天线在TD-SCDMA 中的应用,以及未来的发展前景。 一、概述 智能天线又称为自适应天线阵列,兴起于20世纪60年代。智能天线技术的核心是阵列信号处理,早期应用集中于雷达和声纳检测领域,70年代后期被引入军事通信,而应用于民用蜂窝通信则是近10年的事情。一般而言,智能天线是专指用于移动通信中的自适应天线阵列。在移动通信中引入智能天线技术的目的是为了充分利用空域资源,提高系统的性能和容量。移动通信中信道传输条件较恶劣,信号在到达接收端前会经历衰减、衰落和时延扩展,另外还有来自其他用户的干扰,它们是限制系统通信质量和容量的重要因素。为了对抗这些影响,在第2代系统中广泛采用了诸如调制、信道编码、均衡(TDMA系统)、RAKE接收(CDMA 系统)等时频域信号处理技术,以及分集天线、扇形天线等简单空间处理技术,在发挥各自功效的同时,它们有共同的不足,即无法对空域资源进行有效利用。理论研究和实测结果均表明,有用信号、其延时样本和干扰信号往往具有不同的DOA(波达角)和空间信号结构,利用这一空域信息可以使我们获得附加的信号处理自由度,从而能更有效地对抗衰落和抑制干扰。为了满足人们不断增长的对移动通信质量和容量的要求,越来越多的研究者和工程技术人员将目光投向智能天线技术。 在移动通信中引入智能天线技术后,可以起到空域滤波作用:在用户信号方向形成高的接收增益,而在干扰方向形成“零陷”或较低的接收增益,提高信号噪声干扰比,进而提高系统性能和容量。 二、智能天线的工作原理 移动通信系统中采用的智能天线技术在工作时引入了空分多址的概念,利用用户空间位置的不同来区分用户。系统通过调整天线阵列中各个天线单元上的可编程器件,来改变各个天线单元的权值,从而将天线用于接收信号的波束导向具体某一方向,产生定向的空间波束,产生的天线波束的主波束对准期望信号方向,旁瓣或零陷对准干扰信号,有效地接收了期望信号,并消除了干扰;智能天线系统还利用各个移动用户间信号空间特征的差异,通过阵列天线技术,在同一信道上实现了接收和发送多个移动用户信号,而互不干扰的效果,使不同的移动用户可以使用同一段频谱资源,实现了资源共享。 三、智能天线结构 智能天线系统在结构上已经形成了模块化设计,大体分为天线阵列,模/数或者数/模转换,自适应处理,波束成型网络等四大部分。其中天线阵列用于在接收或发送模拟信号时形成期望的波束,主要分为线阵,面阵,圆阵,三角阵,不规则阵和随机阵等;模/数或数/模转换部分在接收信号时将模拟信号转换成数

中国移动互联网发展史

中国移动互联网发展史 赛迪研究院互联网研究所陆峰博士本世纪以来,我国移动互联网伴随着移动网络通信基础设施的升级换代快速发展,尤其是2009年国家开始大规模部署3G网络,2014年又开始大规模部署4G网络,两次移动通信基础设施的升级换代,有力地促进了中国移动互联网快速发展,服务模式和商业模式大规模创新。 一、萌芽期(2000年-2007年) 技术发展:WAP应用是移动互联网应用的主要模式。 该时期由于受限于移动2G网速和手机智能化程度,中国移动互联网发展处在一个简单WAP应用期。WAP应用把Internet网上HTML的信息转换成用WML描述的信息,显示在移动电话的显示屏上。由于WAP只要求移动电话和WAP 代理服务器的支持,而不要求现有的移动通信网络协议做任何的改动,因而被广泛地应用于GSM、CDMA、TDMA等多种网络中。在移动互联网萌芽期,利用手机自带的支持WAP协议的浏览器访问企业WAP门户网站是当时移动互联网发展的主要形式。 市场竞争:移动梦网催生了一大批SP服务商。 2000年12月中国移动正式推出了移动互联网业务品牌“移动梦网Monternet”,移动梦网就像一个大超市,囊括

了短信、彩信、手机上网(WAP),百宝箱(手机游戏)等各种多元化信息服务。在移动梦网技术支撑下,当时涌现了雷霆万钧、空中网等一大批基于梦网的SP服务提供商,用户通过短信、彩信、手机上网等模式享受移动互联网服务。但由于移动梦网服务提供商存在业务不规范、乱收费等现象,2006年4月,国家开展了移动梦网专项治理行动,明确要求扣费必须用户确认、用户登录WAP需要资费提示等相关规范,大批SP服务商因为违规运营退出了市场。 二、成长培育期(2008年-2011年) 技术发展:3G移动网络建设掀开了中国移动互联网发展新篇章 随着3G移动网络的部署和智能手机的出现,移动网速大幅提升初步破解了手机上网带宽瓶颈,简单应用软件安装功能的移动智能终端让移动上网功能得到大大增强,中国移动互联网掀开了新的发展篇章。经过3G网络一年多的试点商用,2009年1月7日工业和信息化部宣布,批准中国移动、中国电信、中国联通三大电信运营商分别增加TD-SCDMA、CDMA2000、WCMDA技术制式的第三代移动通信(3G)业务经营许可,中国3G网络大规模建设正式铺开,中国移动互联网全面进入了3G时代。 市场竞争:各大互联网公司都在探索抢占移动互联网入口

第三代移动通信TD-SCDMA系统主要技术简介

3. 第三代移动通信TD-SCDMA系统主要设备和技术介绍 .1 TD-SCDMA标准的提出与形成 .2 TD-SCDMA系统概述 .2.1 TD-SCDMA系统主要技术性能 概括地讲,TD-SCDMA系统的主要技术性能有: 1. 工作频率: 2010~2025MHz 2. 载波带宽: 1.6MHz 3. 占用带宽: 5MHz (容纳三个载波,即1.6MHz×3) 4. 每载波码片速率: 1.28Mcps 5. 扩频方式: DS , SF=1/2/4/8/16 6. 调制方式: QPSK 7. 帧结构:超帧720ms, 无线帧10ms 8. 子帧: 5ms 9. 时隙数: 7 10. 支持的业务种类: * 高质量的话音通信 * 电路交换数据 (与当前GSM网络9.6Kbps兼容) * 分组交换数据(9.6~384Kbps,以后达到2Mbps) * 多媒体业务 * 短消息 11. 每载波支持对称业务容量: 每时隙话音信道数:16 (8Kbps话音,双向信道,同时工作;也可以用 两个信道支持13Kbps话音) 每载波话音信道数:16×3=48 (对称业务) 频谱利用率: 25Erl./MHz 12. 每载波支持非对称业务容量: 每时隙总传输速率:281.6Kbps (数据业务) 每载波总传输速率:1.971Mbps 频谱利用率: 1.232Mbps/MHz 13. 基站覆盖范围: 在人口密集市区: 3~5Km (根据电波传播环境条件决定) 在城市郊区;适当调整时隙结构可达到10~20Km (与FDD制式相同) 14. 通信终端移动速度:基于智能天线和联合检测的高性能数字信号处理 技术,经 过仿真,通信终端的移动速度可以达到250km/h。

4G系统中多天线技术

4G系统中多天线技术 由于第三代移动通信系统(3G)还存在一些不足,包括很难达到较高的通信速率,提供服务速率的动态范围不大,不能满足各种业务类型要求,以及分配给3G系统的频率资源已经趋于饱和等,于是人们提出了第四代移动通信系统(4G)的构想。4G的关键技术包括:(1)调制和信号传输技术(OFDM">OFDM);(2)先进的信道编码方式(Turbo 码和LDPC);(3)多址接入方案(MC- CDMA和FH-OFCDMA);(4)软件无线电技术;(5)MIMO 和天线">智能天线技术;(6)基于公共IP 网的开放结构。研究表明,在基于CDMA技术的3G 中使用多天线技术能够有效降低多址干扰,空时处理能够极大增加CDMA系统容量。凭在提高频谱利用率方面的卓越表现,MIMO和智能天线成为4G发展中炙手可热的课题。智能天线技术智能天线最初用于雷达、声纳及军事通信领域。使用智能天线可以在不显著增加系统复杂程度的情况下满足服务质量和扩充容量的需要。1.基本原理和结构智能天线利用数字信号处理技术,采用先进的波束转换技术(switchedbeamtechnology)和自适应空间数字处理技术(adaptivespatialdigitalprocessingtechnology),判断有用信号到达方向(DOA)通过选择适当的合并权值,在此方向上形成天线主波束,同时将低增益旁瓣或零陷对准干扰信号方向。在发射时,能使期望用户的接收信号功率最大化,同时使窄波束照射范围外的非期望用户受到的干扰最小,甚至为零。智能天线引入空分多址(SDMA)方式。在相同时隙、相同频率或相同地址码的情况下,用户仍可以根据信号空间传播路径的不同而区分。实际应用中,天线阵多采用均匀线阵或均匀圆阵。智能天线系统由天线阵;波束成形成网络;自适应算法控制三部分组成(见图1)。 图 1典型的智能天线系统 2.智能天线的分类智能天线主要分为波束转换智能天线(switchedbeamantenna)和自适应阵列智能天线(adaptivearrayantenna)。(1)波束转换智能天线波束转换智能天线具有有限数目的、固定的、预定义的方向图,它利用多个并行窄波束(15°~30°水平波束宽度)覆盖整个用户区,每个波束的指向是固定的,波束宽度也随天线元的数目而确定(见图2)。波束转换系统实现比较经济,与自适应天线相比结构简单,无需迭代,响应快、鲁棒性好。但预先设计好的工作模式有限,窄波束的特性将极大地影响系统性能。 图 2波束转换智能天线 (2)自适应阵列智能天线自适应阵列智能天线实时地对用户到达方向(DOA)进行估计,在此方向上形成主波束,同时使旁瓣或零陷对准干扰方向。自适应天线阵列一般采用4~16天线阵元结构,阵元间距为1/2波长(若阵元间距过大会使接收信号彼此相关程度降低,太小则会在方向图形成不必要的栅瓣,可能放大噪声或干扰)。图3对自适应阵列智能天线与波束转换智能天线进行了比较。 图 3自适应阵列智能天线(a)与束转换智能天线(b)的比较 3.智能天线的自适应波束成形技术智能天线技术研究的核心是自适应算法,可分为盲算法、半盲算法和非盲算法。非盲算法需借助参考信号,对接收到的预先知道的参考信号进行处理可以确定出信道响应,再按一定准则(如迫零准则)确定各加权值,或者直接根据某一准则自适应地调整权值(即算法模型的抽头系数)。常用的准则有最小均方误差MMSE(Minimummeansquareerror)、最小均方 LMS(Leastmeansquare)和递归最小二乘等;而自适应调整则采取最优化方法,最常见的是最陡梯度下降法。盲算法无须参考信号或导频信号,它充分利用调制信号本身固有的、与具体承载信息比特无关的一些特征(如恒包络、子空间、有限符号集、循环平稳等)来调整权值,以使输出误差尽量小。常见的算法有常数模算法CMA(Constantmodulearithmetic)、子空间算法、判决反馈算法等。非盲算法相对盲算法而言,通常误差较小,收敛速度也较快,但发送参考信号浪费了一定的系统带宽。为此,又发展了

关于3G移动通信系统的网络安全分析(有用)

1、引言 移动通信的发展大致经历了三代。第一代模拟蜂窝移动通信系统几乎没有采取安全措施,移动台把其电子序列号(ESN)和网络分配的移动台识别号(MIN)以明文方式传送至网络,若二者相符,即可实现用户的接入,结果造成大量的克隆手机,使用户和运营商深受其害;第二代数字蜂窝移动通信系统(2G)主要有基于时分多址(TDMA)的GSM系统、DAMPS 系统及基于码分多址(CDMA)的CDMAone系统,这两类系统的安全机制的实现虽然有很大区别,但是,它们都是基于私钥密码体制,采用共享秘密数据(私钥)的安全协议,来实现对接入用户的认证和数据信息的保密,因而在身份认证及加密算法等方面存在着许多安全隐患;第三代移动通信系统(3G)在2G的基础上进行了改进,继承了2G系统安全的优点,同时针对3G系统的新特性,定义了更加完善的安全特征与鉴权服务。未来的移动通信系统除了能够提供传统的语音、数据、多媒体业务外,还应当能支持电子商务、电子支付、股票交易、互联网业务等,个人智能终端将获得广泛使用,移动通信网络最终会演变成开放式的网络,能向用户提供开放式的应用程序接口,以满足用户的个性化需求。因此,网络的开放性以及无线传输的特性,使安全问题将成为整个移动通信系统的核心问题之一。 2、移动通信系统的安全威胁 安全威胁产生的原因来自于网络协议和系统的弱点,攻击者可以利用网络协议和系统的弱点非授权访问和处理敏感数据,或是干扰、滥用网络服务,对用户和网络资源造成损失。按照攻击的物理位置,对移动通信系统的安全威胁可以分为无线链路的威胁、对服务网络的威胁和对移动终端的威胁。主要威胁方式有以下几种: (1)窃听,即在无线链路或服务网内窃听用户数据、信令数据及控制数据; (2)伪装,即伪装成网络单元截取用户数据、信令数据及控制数据,伪终端欺骗网络获取服务; (3)流量分析,即主动或被动流量分析以获取信息的时间、速率、长度、来源及目的地; (4)破坏数据的完整性,即修改、插入、重放、删除用户数据或信令数据以破坏数据的完整性; (5)拒绝服务,即在物理上或协议上干扰用户数据、信令数据及控制数据在无线链路上的正确传输,以实现拒绝服务攻击; (6)否认,即用户否认业务费用、业务数据来源及发送或接收到的其他用户的数据,网络单元否认提供的网络服务;

中国移动通信市场现状分析

中国移动通信市场现状分析 移动通信已经成为通信领域中最活跃的力量,它的增长速度已远远超过固定通信。截止到1999年底,全球移动电话用户已超过4.5亿。我国作为世界最大的潜在移动通信国家,当年用户规模为4324万,仅次于美国和日本,位居全球第三。新世纪,我国移动通信将持续高速发展,到2000年6月,我国移动用户已达6000万,今年有望成为全球第二大移动通信国家。我国移动通信乃至整个通信事业的发展,得益于通信产业适度超前于国民经济的宏观决策,也得益于我国经济持续、稳定、高速地发展,还得益于信息产业政策的扶持和引导。移动通信运营业和制造业的协同发展,使我国移动通信产业呈现出勃勃生机的局面。 一、我国移动通信运营市场现状分析 1发展状况 近十年来,我国移动通信网络规模和用户规模得到高速发展。截止到2000年6月,GSM网规模达到8297万门,移动电话用户接近6000万,移动电话普及率超过4.6%,移动通信网将在本年内发展成为全球第二大网。 2市场竞争格局 我国移动通信运营市场竞争日益激烈,随着中国移动通信集团公司的挂牌成立,该运营市场形成了以中国移动通信集团公司和中国联通为主体的竞争新格局。 (1)中国移动和中国联通的竞争 自1994年成立以来,中国联通得到了政府和信息产业部的大力扶持和政策倾斜,其竞争实力逐步提高,作为我国目前唯—一家综合业务提供商,中国联通的业务发展重点仍是移动通信,并获得了CDMA经营许可证。 中国移动已退出与长城电信网的合作,长城电信网独立运作。据预测,长城CDMA网也将并入中国联通,这样中国联通的综合实力将得到进一步增强。中国联通已构成对中国移动的强劲竞争。 两者的实力差距将进一步缩小,截止到2000年6月。 (2)移动电话和固定电话之间的相互渗透和相互竞争 自从两年前起,中国电信移动通信公司开拓了模拟网的“本地通”,随后又开拓了数字网的“本地通”业务,将竞争领域扩展到固定电话市场。并且收费低廉,入网费仅二三百元,月话费减半,几乎接近安装一部固定电话的水平。当时的移动通信公司还是中国电信旗下的一员。然而1999年电信重组,移动独立之后,便逐步演变成中国电信新的竞争对手和合作伙伴。 近年来,固定电话大力开拓“移动市话”业务,并在许多城市兴起,南到肇庆、深圳,东到余杭、杭州,西到昆明、西安,几十个城市掀起了一股移动市话的热潮, 而且都大手笔地投资移动市话建设,并着力开拓这项业务。无线市话的推出不仅可以缓解固定电话趋于饱和、市场疲软和热装冷用的矛盾,更能刺激电话业务量的增长,提高网络的接通率,提高全网的业务量和业务收入,减小由初装费降低资本的负面影响。 (3)增设移动运营商,促进移动通信运营市场健康快速发展 中国移动通信市场是全球最具有增长潜力的市场,世界各大电信运营商都看好这一庞大的潜在市场。随着“入世”的来临,新的移动业务经营者将可能出现在我国移动通信市场。目前,我国只有中国移动集团和中国联通两大移动业务经营商,而世界通信大国一般都有三家或三家以上,因此有必要增设第三家(或更多)移动通信运营商经营移动业务。 最有可能获取移动业务经营许可证的是中国电信集团,原因如下: ·中国电信拥有世界第二、我国第一的网络规模,共有超过1.2亿个固定电信用户; ·它有丰富的电信网络(包括移动网络)经营维护经验; ·我国的部分城市已经开通移动市话业务;

移动通信频段划分以及介绍范文

移动通信频段划分 GSM通信频段:分为:GSM900 DCS1800 PCS1900(目前中国只用到GSM900和DCS1800两个频段) GSM900: 双工频率间隔:45MHZ 880~890(EGSM),890~915M(PGSM)移动台(手机)发送. 基站接收 925~935(EGSM),935~960M(PGSM)基站发送. 移动台(手机)接收 GSM900频段中我国政府批准使用的上行频率为885~915 MHz ,下行频率为935~960 MHz 移动GSM900频段为885~890(上行)/930~935(下行)(此频段属于EGSM),890~909(上行)/935~954(下行) (此频段属于PGSM),共24M 联通GSM900频段为909~915 (上行)/954~960(下行),共6M DCS1800: 双工频率间隔:90MHZ 1710~1785M 移动台(手机)发送. 基站接收 1805~1880M 基站发送. 移动台(手机)接收 GSM1800频段中我国政府批准使用的上行频率为1710~1755 MHz ,下行频率为 1805~1850 MHz,但未大量使用,特别是小城市 移动GSM1800频段为1710~1720(上行)/1805~1815(下行),共10M 联通GSM1800频段为1745~1755(上行)/1840~1850(下行) ,共10M TD-SCDMA(TDD): 核心频段: A频段:2010~2025MHz(原B频段),建设最好的,最早使用的,广泛室外使用的频段 F频段:1880~1920MHz(原A频段),考虑与小灵通干扰,应从低开始使用 E频率:2320~2370MHz(原C频段),主要室内使用,不室外使用,室内防止与WLAN 冲突,建议从低开始使用。 现在LTE实验网频段为:2320-2370MHz。 WCDMA(FDD)2100M频段:(具有TDD模式,但是没有商用)(标准4种850/900/1900/2100MHz)核心频段:1920~1980MHz,2110~2170MHz(分别用于上行和下行) 中国联通WCDMA分配的频率是1940~1955MHz(上行)/2130~2145MHz(下行),共 15MHz; CDMA2000(FDD)800M频段: 核心频段:815~849MHz,860~894MHz(分别用于上行和下行) 中国电信800M的频段:825-835 MHz(上行)/870-880 MHz(下行),共10MHz; 中国电信cdma2000分配的频率是1920~1935MHz(上行)/2110~2125MHz(下行),共15MHz; 1.EDGE的带宽与基站接入有关,以及与终端使用几个时隙有关,EDGE总8个时隙,但是为了防止干扰一般都没有用完8个时隙,最多分组数据4个时隙。 2.频段变化主要原因:900M满了会自动提升到1800M 或者:900M是语音,1800M是分组数据 3.EDGE各个区域的分布是不一致的,可能有的布局好有的布局不好。 4.GPRS的每个时隙速度大约20Kbps。

智能天线工作原理及其在现代通信系统中的应用

天线与电波结课论文 题目:智能天线工作原理及其在 现代通信系统中的应用 院系:电气信息工程学院 专业班级:电信12-01 学号:541201030121 姓名:李松霖

智能天线工作原理及其在现代通信系统中的应用论文摘要:介绍了智能天线的基本原理、实现方法及其在现代通信中的应用。 最初的智能天线技术主要用于军事抗干扰通信和定位等。近年来,随着现代通信的发展及对移动通信电波传播、组网技术、天线理论等方面的研究逐渐深入,智能天线开始用于具有复杂电波传播环境的移动通信。此外,随着移动用户数迅速增长和人们对通话质量要求的不断提高,要求移动通信网在大容量下仍具有较高的话音质量。经研究发现,在不增加系统复杂度的情况下,使用智能天线可满足服务质量和网络扩容的需要。 1 智能天线的基本原理 智能天线包括多波束天线阵列和自适应天线阵列,后者是智能天线的主要形式。智能天线技术主要基于自适应天线阵列原理,天线阵收到信号后,通过由处理器和权值调整算法组成的反馈控制系统,根据一定的算法分析该信号,判断信号及干扰到达的方位角度,将计算分析所得的信号作为天线阵元的激励信号,调整天线阵列单元的辐射方向图、频率响应及其它参数。利用天线阵列的波束合成和指向,产生多个独立的波束,自适应地调整其方向图,跟踪信号变化,对干扰方向调零,减弱甚至抵消干扰,从而提高接收信号的载干比,改善无线网基站覆盖质量,增加系统容量。 基站使用智能天线,可为用户提供窄定向波束,在一定的方向区域内收发信号。这样既充分利用信号发射功率,又可降低发射信号带

来的电磁干扰。智能天线引入空分多址(SDMA)方式,根据信号的空间传播方向不同,区分用户。 2 智能天线的实现 智能天线阵系统主要包括天线阵列、自适应处理器和波束形成网络。天线阵列是收发射频信号的辐射单元。自适应处理器把有一定规律的激励信号转换成与各波束相对应的幅度和相位,提供给各辐射单元,用来确定波束形成网络各部分方向图的增益。波束形成网络利用天线阵元产生的方向图,实现智能天线的各种应用。 自适应处理器产生的各支路幅度和相位调整系数,是波束形成网络工作的重要依据。自适应处理器包括信号处理器和自适应算法器。信号处理器根据所需进行的信号处理,自适应算法器根据均方误差、信噪比、输出噪声功率等性能量度,用适当的算法调整方向图,形成网络的加权系数,使智能天线阵系统性能达到最优化。 最初的智能天线采用复杂的模拟电路,如今采用数字波束形成(DBF)方式,用软件完成算法更新,也可采用数模相结合的处理方法,既保证处理精度,又保证处理速度及灵活性。此外,为了使智能天线具有良好性能,应根据具体的电波传播环境,选择相应的智能算法。采用软件无线电技术使系统具有良好的改善能力,提高系统性能。为了尽量减少对现有系统的改动,也可使用多波束智能天线。多波束天线利用多个指向固定的波束覆盖全方向,虽然不能实现信号最佳接收,但结构简单,便于实现,且无需判定所接收信号的方向。 3 智能天线在通信中的用途

--当前移动通信的安全隐患和解决方法

当前移动通信的安全隐患和解决方法 在过去的20年中,中国的移动无线通信产业在历次的技术变革中,都准确把握了技术方向,在适当的时机引入了适当的技术,保证了整个产业的良性发展。在未来的20年里,移动/无线技术还将向何处发展,我们面临哪些机遇呢?我们又面临哪些挑战性的问题呢? 当前,随着移动通信和互联网的迅猛发展,以及固定和移动宽带化的发展趋势,通信网络和业务正发生着根本性的变化。体现在两大方面:一是提供的业务将从以传统的话音业务为主向提供综合信息服务的方向发展;二是通信的主体将从人与人之间的通信扩展到人与物、物与物之间的通信,渗透到人们日常生活的方方面面。安全性问题是移动无线通信难解的心结。关于移动无线通信安全问题,在平时的日常生活中我们都有切身体会,比如说手机病毒、流氓软件、间谍软件、手机隐私保护、垃圾信息、电话骚扰等等,这些问题越发引起人们的注意,特别是引起了生产商与运营商的强烈关注。 移动通信设备 移动通信设备和服务通常被认为是比较安全的领域,与电脑遭受的威胁相比,移动通信设备面临的安全威胁可谓小巫见大巫。然而,最近几年,针对移动通信设备的恶意软件的发展速度已大大超过了以非移动设备为攻击目标的恶意软件。恶意软件可通过邮件和信息附件、下载应用程序以及蓝牙等方式传播。与此同时,网络钓鱼诈骗垃圾邮件和移动间谍软件也开始将魔掌伸向移动通信设备。而黑客们也在通过一种新型社交网络,采用一些狡猾的伎俩诱使用户安装这类恶意软件。 如今,越来越多的员工带着某种智能电话或者个人数字助理(PDA)去上班,无论黑莓、iPhone还是其他的智能移动终端开始涌入工作场所:从智能电话、VoIP系统、闪存棒到虚拟网络世界,不一而足。作为公司,他们不愿意将公司的机密和信息让员工带着外出和泄密,作为员工,个人也不愿意将个人的隐私数

智能天线在移动通信中的应用概要

智能天线在移动通信中的应用 摘要:介绍了移动通信中关键技术之一的智能天线技术,并就它的结构、算法以及在第三代移动通信中的应用进行了较全面的阐述。 关键词:移动通信;智能天线;天线阵列;自适应算法 Abstract:Smartantennaisoneofthekeytechnologiesofmobilecommunications.Itdescribesthetechnologyandfocusonitsarchitecture,algorithmandapplicationto 3Gmobilecommunication. Keywords:MobilecommunicationsSmartantennaArraySelf-adaptingalgorithm 0 前言 随着移动通信的发展,人们不仅从时域和频域的角度来探讨提高移动通信系统数量和质量的各种手段,而且进一步研究信号在空域的处理方法。智能天线技术就是典型的代表。 智能天线技术起源于20世纪40年代的自适应天线组合技术,在当时采用了锁相环技术进行天线的跟踪。1965年,Howells提出了自适应陷波的旁瓣对消器技术用于阵列信号处理,之后,又陆续出现了等一系列技术,后来,Gabriel将自适应波束形成技术上升到“智能阵列”概念。早在1978年,智能天线就在军事通信中得到了应用,进入20世纪90年代后,才在民用移动通信系统中开始研究应用。该项技术主要应用于以下方面:a)信号源定位,确定天线阵列到信号源的方位角; b)信号源分离,确定各个信号源发射信号的波形; c)信道估计,确定信号源与天线阵列间传输信道的参数。 1 智能天线的组成 智能天线技术是利用信号传输的空间特性,达到抑制干扰,提取信号的目的。它主要包括天线阵列部分、模数转换、波束形成网络以及自适应信号处理,其结构框图如图1所示。

1G,2G,3G移动通信网络安全的演进

1G,2G,3G移动通信系统安全的演进 Abstract 移动通信一直是大家很关注的话题,从最初的1G系统发展到现在的3G系统,从中我们能够很清楚看到系统的完善和技术的进步。随着网络业务的不断增多,网络上传输的数据越来越敏感,以及使用移动通信网络人数的不断增多,移动通信的安全性也越来越受到人们的重视。本文就将重点放在1G系统到3G安全性能的演进上面,观察系统是从哪些方面一步一步地提高移动通信系统的安全性,从而得出未来移动通信的发展方向。 1.引言 移动通信的发展历史可以追溯到19世纪。1864年麦克斯韦从理论上证明了电磁波的存在;1876年赫兹用实验证实了电磁波的存在;1900年马可尼等人利用电磁波进行远距离无线电通信取得了成功,从此世界进入了无线电通信的新时代。有了这样一个平台之后,各种各样的无线通信技术发展起来,尤其是为了更有效的利用有限的频谱资源,没有贝尔实验室提出的在移动通信发展史上具有里程碑意义的小区制、蜂窝组网的理论,它为移动通信系统在全球的广泛应用开辟了道路。 而本文所研究的正是基于贝尔实验室提出的小区制、蜂窝组网理论所实现的系统的安全。这里所提出的系统一共分为三代,分别为第一代蜂窝移动通信系统(1G),第二代蜂窝移动通信系统(2G),以及现在很热门的3G。通过对一代一代通信系统安全的研究,可以看到移动通信系统过程的演进和技术的发展,也能够看到当前运用到2G、3G当中的安全技术,更为重要的是,通过对移动通信安全技术的总结,能够清楚的明白未来移动通信网络所面临安全上的新挑战和新发展。 第一代移动通信系统采用了蜂窝组网和频率复用等关键技术,有效地解决了当时常规移动通信系统所面临的频谱利用率低、容量小及业务服务差等问题,但是第一代移动通信系统仍然还是一个模拟系统,所以还存在着同频干扰和互调干扰、系统保密性差及提供的业务种类比较单一等局限。第一代移动通信系统的代表是美国的AMPS移动电话业务系统。 第二代移动通信系统的提出是为了解决第一代移动通信系统根本上的技术缺陷,所以在第二代中采用了数字调制技术,让系统从一个模拟系统转向了数字系统,这样的转变使得系统既能够支持语音业务,也可以支持低速数据业务。而2G系统主要采用TDMA或CDMA方式,其具有频谱利用率高、保密性和语音质量好的特点,不过,随着用户的数目的增多,其系统容量,频谱利用等各方面的局限性也体现出来。2G系统的代表有GSM和CDMA系统。 第三代移动通信系统前身是FPLMTS也就是国际电信联盟(ITU)提出的未来公共陆地移动通信系统的概念,其目的就是为了实现在任何人、任何时间、任何地点,能向任何人发送任何信息。3G业务的主要特征是可提供移动带宽多媒体业务,并保证高可靠服务质量,3G 业务包含了2G可提供的所有业务类型和移动多媒体业务。 接下来文章的结构如下:第2章列举出一些移动通信当中所面临的攻击,包含攻击的原理和造成的结果;第3章也是文章综述的重点那就是在第一代、第二代、第三代无线移动通信系统当中分别是采用什么样的安全对策来避免第2章中的移动通信网络的攻击;第4章中通过观察第3章中采取的安全对策,结合无线移动通信网络的发展,给出未来移动通信系统安全性方面的展望;最后,第5章对全文进行总结。

中国移动通信市场现状分析

中国移动通信市场现状分析 移动通信差不多成为通信领域中最活跃得力量,它得增长速度已远远超过固定通信.截止到1999年底,全球移动电话用户已超过45亿.我国作为世界最大得潜在移动通信国家,当年用户规模为4324万,仅次于美国和日本,位居全球第三.新世纪,我国移动通信将持续高速进展,到2000年6月,我国移动用户已达6000万,今年有望成为全球第二大移动通信国家.我国移动通信乃至整个通信事业得进展,得益于通信产业适度超前于国民经济得宏观决策,也得益于我国经济持续、稳定、高速地进展,还得益于信息产业政策得扶持和引导.移动通信运营业和制造业得协同进展,使我国移动通信产业呈现出勃勃生机得局面. 一、我国移动通信运营市场现状分析 1进展状况 近十年来,我国移动通信网络规模和用户规模得到高速进展.截止到2000年6月,gsm网规模达到8297万门,移动电话用户接近6000万,移动电话普及率超过46%,移动通信网将在本年内进展成为全球第二大网. 2市场竞争格局 我国移动通信运营市场竞争日益激烈,随着中国移动通信集团公司得挂牌成立,该运营市场形成了以中国移动通信集团公司和中国联通为主体得竞争新格局. (1)中国移动和中国联通得竞争 自1994年成立以来,中国联通得到了政府和信息产业部得大力扶持和政策倾歪,其竞争实力逐步提高,作为我国目前唯—一家综合业务提供商,中国联通得业务进展重点仍是移动通信,并获得了cdma经营许可证. 中国移动已退出与长城电信网得合作,长城电信网独立运作.据预测,长城cdma网也将并入中国联通,如此中国联通得综合实力将得到进一步增强.中国联通已构成对中国移动得强劲竞争.两者得实力差距将进一步缩小,截止到2000年6月. (2)移动电话和固定电话之间得相互渗透和相互竞争

移动通信基站天线

移动通信基站天线 移动通信基站天线 移动通信基站天线是手机用户用无线与基站设备连接的信息出(下行、发射)入(上行、接收)口,是载有各种信息的电磁波能量转换器。基站发射时,调制后的射频电流能量经基站天线转换为电磁波能量,并以一定的强度向预定区域(手机用户)辐射出去;手机用户信息经调制后的电磁波能量,由基站天线接收,有效地转换为射频电流能量,传输至主设备。基站天线是电磁波传输的第一道空中闸口,它性能的好坏,严重影响到移动通信的质量。 由于天线是开放的分布参数电路,属于“运动电磁场”范畴,而集中参数元件(电阻、电感、电容、导线等)构成的电路,属于“电路”范畴。电磁场看不见,摸不着,看似简单,但其理论计算及测试手段比电路复杂得多。天线专业的这一特点,以及移动通信的特定覆盖要求,使移动通信基站天线具有高技术特点。加之,基站天线的室外高空使用环境恶劣,对其可靠性又提出了更高的要求。高技术加上高可靠性要求,使进入基站天线制造业的门槛较高,没有强的技术实力和资金实力,是很难进入的。 通信天线的原理 通信天线作为无线通信不可缺少的重要部分,其基本功能是辅射和接收无线电波。发射时,把高频电流转换为电磁波:接收时,把电磁波转换为高频电流。 通信天线的种类 按用途可分为基地台天线(base station antenna)和移动天线(mobile and portable antennas);按工作频段可划分为超长波、长波、中波、短波、超短波和微波天线;按其方向性可划分为全向和定向天线;按其结构特性可划分为线天线和面天线。

怎样选择通信天线 天线作为通信系统的重要组成部分,其性能的好坏直接影响通信的质量,用户在选择天线时必须首先注重其性能。具体说有两个方面,第一选择天线类型;第二选择天线的电气性能。选择天线类型的意义是:所选天线的方向图是否符合系统设计中电波覆盖的要求;选择天线电气性能的意义是:选择使用天线的频率、带宽、增益、额定功率等电气指标是否符合系统设计要求。因此,用户在选择天线时最好向厂家联系咨询。 通信天线基本的性能指标 天线的增益 增益是天线的主要指标之一,它是方向系数与效率乘积,是天线辐射或接收电波大小的表现。增益大小的选择取决于系统设计对电波覆盖区域的要求,简单地说,在同等条件下,增益越高,电波传播的距离就越远。一般基地台天线采用高增益天线,移动台天线采用低增益天线。 天线的电压驻波比 天线输入阻抗与馈线的特性阻抗不一致时,产生的反射波和入射波在馈线上叠加形成驻波,其相邻电压最大值和最小值之比就是电压驻波比。它是检验馈线传输效率的依据。电压驻波比与功率关系如下表。本公司产品符合国家标准,在工作频段的电压驻波比小于1.5,在工作频点电压驻波比小于1.2。电压驻波比过大,将缩短通信距离,而且反射功率将返回发射机功放部分,容易烧坏功放管,影响通信系统正常工作。 电压驻波比 1.0 1.1 1.2 1.5 2.0 3.0 反射功率% 0.0 0.2 0.8 4.0 11.1 25.0 传输功率% 100 99.8 99.2 96 88.9 75 天线的方向性

智能天线在未来5G移动通信中的应用

Communications Technology ? 通信技术Electronic Technology & Software Engineering 电子技术与软件工程? 31【关键词】智能天线 未来 5G 移动通信 应用 智能天线所使用的技术是空分复用,也 就是SDMA 但信号传播技术,它在信号传播 方向方面的差别和频率的应用非常细致,能够 将同时间间隙的信号严格的区分开,成倍的进 行扩展信息容量的应用。和其他复用技术相结 合,最大限度的利用有限的频谱资源,就可以 排除一些复杂地形和建筑物的干扰,排除大量 用户之间相互影响的干扰,并且会解决同信道 干扰、信息质量严重减缓的问题。 1 智能天线的基本概述和优点 智能天线技术成为目前移动通讯中非常 具有吸引力的技术,在空分多址技术和信号与 传输方向方面产生极大差别的同事,同频率或 者同时间间隙的信号被严格区分开,它可以最 小的利用有限的信道资源,对于没有方向性的 天线进行比较,因此降低了发射功率的电平, 提高了信噪比,克服信道传输衰落对于信号的 影响。 所谓的智能天线,它的本质是利用多个 天线的单元空间正交性,采用SDMA 功能和 技术来实现系统的容量,提升了频率的利用率, 从而使系统性能达到最佳的优化性,在天线距 阵产生定向波束的时候,能够智能地指向客户, 自动的调整系数,实现对于所在空间的滤波。 智能天线的优点是可以实现移动台的定 位,也就是说,可以获取接收信号的空间特征 矩阵,对于两个基站,可以将用户终端定位到 一个较小的区域之内,尤其是针对传统的蜂窝 移动通讯系统,只能确定移动蜂窝通信系统智 能确定所处移动小区的弊端非常具有优越性。 2 智能天线在移动通信中的应用内容智能天线在未来5G 移动通信中的应用 文/张宏宇 杨永忠 2.1 其应用范围的界定智能天线在未来的应用主要是在5G 网络基站端的收发,是大范围的复杂性信号频率收发的基础。而小规模的移动台,尤其是手机,受到体积和电源等方面限制,因此并不适用智能化的移动天线。2.2 智能天线的上行收技术智能天线的上行,受技术研究起步非常早,能够实现较为容易和成熟的应用,在理论上,由于智能天线是多波束的提醒,因此接受信号的时候,可以将接受的多径信号进行最大比例的优化,这种优化实际上就是一种智能化的计算,可以得到比标准的现象更少的干扰。为了改善上行干扰的目的,与下行干扰改善不同的是,应用时可能更多应用天线到小区范围,而上行干扰的改善,主要是针对应用智能天线的小区。2.3 智能天线的下行束技术智能天线将下行信号强行的集中在有话务的区域,会降低对其它小区的干扰,下行干扰的改善,可以针对整个区域的小区,在实际应用中通过,对于智能天线引入之后的下行信号强度调整,就可以评估整个的下行干扰。这两天先主要是通过减少下行场强度来逐渐降低对于其它小区的干扰。3 智能天线在未来5G移动通信的应用 3.1 智能天线在MIMO系统中的应用智能天线在MIMO 广泛的应用在链路两端,就可以提供多副天线,形成一种典型的时空,处理技术,他可以达成波束成形,空时编码空间复用,在智能天线的关键性技术中,能够对准期望客户提高性价比,抗干扰。尤其是可以最大化的提升数据率,因此空时编码方案能够成倍的提高分集增益。慢慢还将出现更加趋于信道之间正交的MassiveMIMO 技术耗费一定的时耗号资源,基于导频的信道估计,就可以达到更好的连接效果。3.2 智能天线在TD中的成功应用智能天线技术在TD-SCDMA 系统中的成功应用成为未来移动通信技术和模式的亮点,在常规的智能天线采取多径传播的情况之下,具有更强的抗衰落能力,在未来宽带无线移动技术和通讯普及之后,智能天线可以搭乘强大 的网络和资源的互通有无。3.3 智能天线的多天线技术智能天线的多天线技术,经历了从无缘到有缘的阶段,慢慢的由高阶多输入和多输出到大规模阵列的输出和发展。采用智能天线的发展技术,可以支持多用户的波束智能赋型,减少用户之间的干扰,加上毫米波和技术性的优势,可以进一步的改善无线信号的覆盖性能,在针对大规模的无线信道测量和建模之后,可以提升其反馈机制和基础性的研究问题,实现绿色节能和环保的总体覆盖能力显著提升。4 结论综上所诉,可以发现,智能通信技术的发展离不开器件的发展,智能天线技术是其中一个非常重要的方面,智能天线被应用到5G 网络连接应用之后,就可以把通信技术的,频率和效率成倍提升,移动通信技术得到了有效的应用,完善了整个移动体系,避免了移动通信技术的应用出现各种各样潜在的问题。参考文献[1]张龙.MIMO 系统中智能天线阵列研究[D].华中科技大学,2012.[2]京移通信设计有限公司 晁文杰.智能天线在未来移动通信中的应用[N].人民邮电,2005-01-16.[3]曹恺,裘正定.智能天线技术在未来移动通信系统中的应用[J].电子工程师,2001(01):32-34.[4]裴小燕,胡健栋.智能天线在未来移动通信系统中的应用[J].通讯世界,2000(11):21-22.[3]潘红娜,蔡振兴.智能天线在移动通信中的应用[J].无线互联科技,2013(02):50.作者简介张宏宇(1980-),男,吉林省长春市人。大学本科学历。就职于吉林吉大通信设计院股份有限公司。工程师。主要研究方向为无线通信。杨永忠(1971-),男,吉林省长春市人。研究生学历。就职于吉林吉大通信设计院股份有限公司。高级工程师。主要研究方向为光通信。作者单位吉林吉大通信设计院股份有限公司 吉林省长春市 130012

中国移动4G网络介绍

中国移动4G网络介绍 一、概述 4G即第四代移动通信技术。4G集3G与WLAN于一体,并能够传输高质量视频图像,它的图像传输质量与高清晰度电视不相上下。4G系统能够以100Mbps 的速度下载,比目前的拨号上网快2000倍,上传的速度也能达到20Mbps,并能够满足几乎所有用户对于无线服务的要求。此外,4G可以在DSL和有线电视调制解调器没有覆盖的地方部署,然后再扩展到整个地区。很明显,4G有着不可比拟的优越性。国家工信部于2013年12月4日正式向中国移动、中国电信、中国联通颁发4G牌照,意味着4G正式开始商用,我国进入4G时代。 二、优势 1、通信速度快 从移动通信系统数据传输速率作比较,第一代模拟式仅提供语音服务;第二代数位式移动通信系统传输速率也只有9.6Kbps,最高可达32Kbps,如PHS;第三代移动通信系统数据传输速率可达到2Mbps;而第四代移动通信系统传输速率可达到20Mbps,甚至最高可以达到高达100Mbps,这种速度会相当于2009年最新手机的传输速度的1万倍左右,第三代手机传输速度的50倍。 图一:各代通信技术速率对比图 2、网络频谱宽 要想使4G通信达到100Mbps的传输,通信营运商必须在3G通信网络的基础上,进行大幅度的改造和研究,以便使4G网络在通信带宽上比3G网络的蜂窝系统的带宽高出许多。据研究4G通信的AT&T的执行官们说,估计每个4G信道会占有100MHz的频谱,相当于W-CDMA3G网络的20倍。 3、通信灵活 从严格意义上说,4G手机的功能,已不能简单划归“电话机”的范畴,毕

竟语音资料的传输只是4G移动电话的功能之一而已,因此未来4G手机更应该算得上是一只小型电脑了,而且4G手机从外观和式样上,会有更惊人的突破,人们可以想象的是,眼镜、手表、化妆盒、旅游鞋,以方便和个性为前提,任何一件能看到的物品都有可能成为4G终端,只是人们还不知应该怎么称呼它。 未来的4G通信使人们不仅可以随时随地通信,更可以双向下载传递资料、图画、影像,当然更可以和从未谋面的陌生人网上联线对打游戏。也许有被网上定位系统永远锁定无处遁形的苦恼,但是与它据此提供的地图带来的便利和安全相比,这简直可以忽略不计。 4、智能性能高 第四代移动通信的智能性更高,不仅表现于4G通信的终端设备的设计和操作具有智能化,例如对菜单和滚动操作的依赖程度会大大降低,更重要的4G手机可以实现许多难以想象的功能。 5、兼容性好 未来的第四代移动通信系统应当具备全球漫游,接口开放,能跟多种网络互联,终端多样化以及能从第二代平稳过渡等特点。 6、提供增值服务 4G通信并不是从3G通信的基础上经过简单的升级而演变过来的,它们的核心建设技术根本就是不同的,3G移动通信系统主要是以CDMA为核心技术,而4G 移动通信系统技术则以正交多任务分频技术(OFDM)最受瞩目,利用这种技术人们可以实现例如无线区域环路(WLL)、数字音讯广播(DAB)等方面的无线通信增殖服务;不过考虑到与3G通信的过渡性,第四代移动通信系统不会在未来仅仅只采用OFDM一种技术,CDMA技术会在第四代移动通信系统中,与OFDM技术相互配合以便发挥出更大的作用,甚至未来的第四代移动通信系统也会有新的整合技术如OFDM/CDMA产生,前文所提到的数字音讯广播,其实它真正运用的技术是OFDM/FDMA的整合技术,同样是利用两种技术的结合。 因此未来以OFDM为核心技术的第四代移动通信系统,也会结合两项技术的优点,一部分会是以CDMA的延伸技术。 7、高质量通信 尽管第三代移动通信系统也能实现各种多媒体通信,为此未来的第四代移动

相关文档
最新文档