地震作用下结构弹塑性位移反应规律的研究_尹保江

地震作用下结构弹塑性位移反应规律的研究_尹保江
地震作用下结构弹塑性位移反应规律的研究_尹保江

第21卷第5期重庆建筑大学学报Vol.21No.5 1999年10月Journal of Chon gq in g J ianzhu Universit y Oct.1999文章编号:1006-7329(1999)05-0010-06

地震作用下结构弹塑性位移反应规律的研究

尹保江1黄宗明2白绍良2

(1.中国建筑科学研究院抗震所100013;2.重庆建筑大学建筑工程学院400045)

摘要通过对单自由度体系在不同类型地面运动作用下的弹塑性位移反应特性的研究,总结了结构在地震作用下的位移反应规律,为考虑塑性累积疲劳损伤的结构地震破坏准则的研究提供依据。

关键词结构弹塑性地震反应;弹塑性位移反应规律;低周疲劳破坏准则

中图法分类号TU313文献标识码A

1问题的提出

结构地震破坏准则的研究,一直是工程结构抗震领域一个十分重要的课题。目前,人们已普遍认为结构在地震作用下的破坏是由于位移的首次超越和塑性累积疲劳损伤共同作用的结果。大量的试验研究表明〔1〕,结构在往复荷载作用下的疲劳损伤破坏,不但和塑性耗能总量有关,而且还和位移幅值的大小、偏移量、不同幅值位移的发生顺序及其组合方式等密切相关,是一个非常复杂的问题。因此,要想考虑不同位移组合的情况,通过较为完备的试验系列来建立一个比较客观的能够反映以上各种因素的具有普遍意义的通用低周疲劳破坏准则,是相当困难的。

本文认为,地震地面运动虽然复杂,但其分类特征是明显的,结构在不同类型地震作用下的位移反应也一定会遵循某种规律。既然如此,就可以考虑放弃建立具有普遍意义的通用低周疲劳破坏准则的研究方法,而主要针对适用于地震作用的结构低周疲劳破坏准则进行研究,使问题得到简化,同时使提出的破坏准则更具有针对性。基于这种思想,本文研究了单自由度体系在不同类型地震地面运动作用下的弹塑性位移反应规律,以期作为今后研究结构地震破坏准则的参考。

2结构位移反应规律的研究方法

根据文献〔2〕的研究成果,将地震地面运动分为5类:S型为短持时脉冲型地面运动;L-1型和M-1型分别为长持时和中等持时有较明显卓越周期的地面运动;L-2型和M-2型分别为长持时和中等持时不规则的地面运动。本文选择了79条峰值加速度在0.2g以上的典型地震地面运动记录作为输入,计算了单自由度体系在这些地面运动作用下的位移反应时程。各类地震输入的分布见表1。

表1本文采用地震动输入的类型分布

地面运动类型S型L-1型M-1型L-2型M-2型

数量(条)191719816

对于每一条地震记录输入,所计算结构的基本周期T0分别取为0.5s、1.0s和2.0s、结构的目标延性系数分别取为2.0、4.0和6.0,共九种情况;阻尼比ζ统一取为0.05,选用武田模型作为恢

收稿日期:1999-09-06

基金项目:国家自然科学基金资助项目

作者简介:尹保江(1972-),男,中国建筑科学研究院工程师。

第5期尹保江等:地震作用下结构弹塑性位移反应规律的研究11

复力模型。

为了能够比较清晰地反映结构位移反应时程曲线的偏移特性和峰值统计规律,对每一位移反应时程曲线作出其峰值频数图,具体步骤如下:

①滤去位移反应时程曲线上的高频点;

②去掉时程曲线上t0.7y以前的部分和t0.3y以后的部分,只保留对结构的疲劳损伤有较大贡献的t0.7y至t0.3y部分进行分析,这里t0.7y为结构首次达到0.7倍屈服位移(相对于初始平衡位置)的时间,t0.3y为结构最后一次达到0.3倍屈服位移(相对于最后平衡位置)的时间;

③将位移反应时程曲线作规一化处理,并将规一化后的位移轴从+1到-1分成若干区间,统计位移峰值位于各区间的频数;

④以规一化的位移为横轴,每一区间上位移峰值出现的频数为纵轴,绘出位移峰值频数图。

根据其作法,位移峰值频数图有两个主要特点:

第一,如果该图的形状尖锐,则说明尖峰点所对应的位移峰值出现的频数居多,结构以该位移幅值振动的次数最多,其它幅值的振动较少;该图的形状平缓,则说明结构按大中小幅值振动的次数比较接近;

第二,如果该图关于频数轴基本对称,则说明结构基本上是作对称振动;如果该图的尖峰明显偏于频数轴一侧,则说明结构是作明显的偏位振动。

为了定量地描述结构位移反应的偏移程度,本文还计算了每一位移时程的正反向最大位移之比X max/X min、规一化的位移平均值X*(即相对偏移量)和位移峰值频数叠加图的峰态系数〔3〕μ4。μ4反映了位移峰值频数图的相对集中程度,μ4越大,图形越集中。

位移反应大小幅值发生顺序的规律性只能通过位移反应时程曲线的形状加以归纳总结。

3结构位移反应的规律性分析

规定位移反应绝对值最大的方向为正方向,也就是说在每个位移峰值频数图中,横坐标为1的频数至少为1。然后将每一结构、每一延性水平在同类型地面运动的不同记录作用下的位移峰值频数叠加起来,得到该结构在该延性水平下的位移峰值频数叠加图。位移峰值频数叠加图在一定程度上反映了某类地震地面运动对结构位移反应的统计影响。

3.1S型地面运动作用下结构的位移反应规律

根据上述方法,本文对三种延性水平、三种周期的结构在19条S型地面运动作用下的171条位移时程曲线和9个位移峰值频数叠加图进行了分析,图1和图2分别是其中的某一典型位移反应时程曲线和位移峰值频数叠加图。从图中不难看出,结构的位移反应是明显不对称的,位移峰值频数图的尖峰偏向正向最大位移一侧,这说明结构大部分时间是在作偏位振动,而且是偏向最大位移一侧;大中小幅值的振动次数差异明显,大幅值的振动仅为20次左右(注意这是19条记录作用之和),平均每条记录对应着约1次大幅值振动,中等幅值的振动次数更少,而小幅值的振动次数高达几百次,平均每条记录对应着约10次小幅值振动。

描述结构偏位振动的定量指标见表2。从表中可以看出:在脉冲型地面运动作用下,结构位移反应的相对偏移量一般在0.1~0.23之间,正反向最大位移之比在2~4之间。μ4较大,表明大部分时间结构是小幅值振动、大幅值位移次数很少,即结构位移反应也是脉冲型;结构的周期和反应延性对位移偏移有明显的影响,较柔的结构或较大的延性反应会引起较大的位移偏移。

为了考察S型地面运动作用下结构位移反应大小幅值发生顺序的特性,本文逐一分析了经过前述处理的171条位移反应时程曲线的强震段。在脉冲型地面运动作用下,结构位移反应一般在第一个循环即达到最大值,此后只有少数几次中偏大幅值的振动使结构产生累积损伤,然后振动很快衰减,类似于有阻尼体系的自由振动情况。统计分析表明,结构首次出现大幅值振动的情况占82%,

12重庆建筑大学学报第21卷随后是中等幅值的振动,中等幅值与大幅值之比一般在0.41~0.62之间,平均为0.52;中等幅值出现的次数一般在0~5次,平均为2次。另外18%的情况为,结构先有1~4次较大幅值的振动,然后才是大幅值的振动,较大幅值与大幅值之比一般在0.6~0.9之间变化,大幅值之后的中等幅值振动与第一种情况相似。

图1S型地面运动作用下典型的图2S型地面运动作用下典型的结构

结构位移反应时程曲线位移反应峰值频数叠加图

表2S型地面运动作用下结构位移反应的偏移量

3.2L-1型地面运动作用下结构位移反应规律

图3和图4分别为L-1型地面运动作用下结构的典型位移反应时程曲线和位移峰值频数叠加图。描述结构偏位振动的定量指标见表3。

图3L-1型地面运动作用下图4L-1型地面运动作用下典型的

典型的结构位移反应时程曲线结构位移反应峰值频数叠加图

第5期尹保江等:地震作用下结构弹塑性位移反应规律的研究

13

与S 型地面运动相比,在L -1型地面运动作用下,结构的位移峰值频数图要平缓得多,且基本对称于零平衡位置。在表3中,峰态系数一般在5~11之间,正反向最大位移之比一般在1.2~

1.6之间,相对偏移量小于0.1,这些描述结构位移偏移的指标明显小于表2中S 型地面运动作用的情况。从表3中还可以看到,在本文所讨论的范围内,结构的自振周期和延性反应对位移偏移的影响不大。从位移反应时程曲线也可以看出,不同延性水平下,结构位移反应时程曲线形状十分相似,围绕零平衡位置作对称振动,位移时程包络线沿时间轴基本呈单峰状或双峰状分布。双峰状分布仅发生在输入地震动是双峰状分布的情况。

以上分析表明,在L -1型地面运动作用下,结构位移反应具有较好的对称性,偏移很小,且振动中位移幅值的分布比较均匀,位移时程包络线沿时间轴呈由小到大、然后逐步衰减的平缓曲线。

3.3M -1型地面运动作用下结构位移反应规律

结构在M -1型地面运动作用下的典型位移反应时程曲线和位移峰值频数叠加图分别如图5和图6所示;描述结构偏位振动的定量指标见表4。

图5M -1型地面运动作用下图6M -1型地面运动作用下典型的

典型的结构位移反应时程曲线

结构位移反应峰值频数叠加图在M -1型地面运动作用下结构位移反应曲线包络基本呈单峰状分布;位移峰值频数图的μ4值介于S 型和L -1型之间,位移峰值频数图的峰值所对应的位移在0附近,即小位移幅值的振动次数占较大比重,这部分振动对结构影响不大。相对来说,中等或大幅值的振动次数较少。正反向峰值位移之比在1.2~1.6之间,相对偏移量一般在0.04~0.1之间,和L -1型相近,远小于S 型的偏移指标,说明在M -1型地面运动作用下,正反向位移关于初始平衡位置接近于对称分布,但也表现出一定的偏移性。结构的周期对位移偏移有一定影响,较长周期的结构产生较大的位移偏移;在所讨论的延性反应范围内,延性对位移偏移的影响不大。

表3L -1型地面运动作用下结构位移反应的偏

移量

14

重庆建筑大学学报第21

图7L -2型地面运动作用下的

典型位移反应时程曲线

表4M -1型地面运动作用下结构位移反应的偏移量3.4L -2型和M -2型地面运动作用下结构的位移反应特性

本文分别计算了8条L -2型和16条M -

2型地面运动作用下结构的位移反应,典型的位

移时程曲线如图7所示。

由于这两类地面运动的不规则性,使得结构

反应呈现出异常复杂的特性,这主要表现在以下

几个方面:

第一,结构位移反应的偏移无规律。在所计

算的216条位移反应时程曲线中,22%的位移反

应有较大的偏移量,78%的位移反应偏移量较

小,结构位移反应偏移量不仅与结构本身特性有

关,而且与地面运动特性有关,且二者相互影响,情况复杂。

第二,有些结构的位移反应前后阶段基本是按同一频率振动的,但是也有一些结构前后则是以不同的频率振动,如先以较高频率振动,然后以较低频率振动,出现这种情况除了有结构自身频率变化的原因外,更主要的是因为L -2型和M -2型地面运动的频谱成分比较复杂,导致结构位移反应频率特性的多样性。

第三,结构大小位移幅值发生顺序无规律。少部分结构的位移反应包络曲线呈单峰状分布,而多数的位移反应幅值发生顺序表现出异常复杂的特性,无规律可循,其包络曲线杂乱无章。

总之,由于L -2型和M -2型地面运动自身特性的复杂性和随机性,使得结构反应的偏移特性、频率特性和大小幅值发生顺序等呈现出异常复杂的情形,难以总结出一般的规律。

4结构位移反应规律的试验验证

本文作者之一在研究结构的阻尼耗能问题时〔4〕,曾设计了3个小型单层钢框架结构作为试验

模型,在上海同济大学土木工程防灾国家重点实验室振动台室的模拟地震振动台上进行了动力试验。台面输入采用加速度控制。为了考虑不同类型地震地面运动输入对结构反应的影响,分别选取了修正后的Imperial V alley 地震(1940年5月18日)Elcentro S00E 记录代表中长持时的不规则地面运动(L -2型)、修正后的Bear Valley 地震(1972年9月4日)M elendy Ranch N29W 记录代表近场大脉冲型的地面运动(S 型)、以及具有不同频率的正弦波代表有明显卓越周期的中长持时地面运动作为台面输入,进行了动力试验。试验所记录的20多条具有不同延性反应的位移时程曲线结果,与前述分析结论一致。事实上,正是这些试验结果,启发了我们进行不同类型地面运动作

第5期尹保江等:地震作用下结构弹塑性位移反应规律的研究15用下结构位移反应规律的研究。

5结语

为配合地震作用下结构破坏准则的研究,本文采用计算机模拟分析方法,对结构在不同类型的地震地面运动作用下的弹塑性位移反应规律进行了探索,得出了如下结果:

(1)在短持时脉冲型(S型)地面运动作用下,结构的位移反应也是脉冲型。位移反应的非对称性明显,相对偏移量一般在0.12~0.23之间,正反向最大位移之比在2~4之间,结构周期越长,位移延性反应越大,偏振越显著;大小位移幅值发生的顺序,多数情况为第一个有破坏力的位移循环即达到最大位移,之后只有为数不多的几次中等幅值的振动,然后很快衰减;少数情况为先有一两次有破坏力的较大幅值的位移循环之后才达到最大位移,此后的振动规律与前一种情况一样。

(2)在长持时有明显卓越周期(L-1型)地面运动作用下,在本文所讨论的周期和延性范围内,结构的位移反应具有较好的对称性,相对偏移量一般均小于0.1,正反向最大位移之比在1.2~1.6之间,大小幅值发生顺序为由小到大再逐渐衰减,位移反应包络线呈单峰状或双峰状分布。

(3)在中等持时有明显卓越周期(M-1型)地面运动作用下,结构的位移反应与L-1型地面运动作用时相近,只是振动的相对偏移量比L-1型的略大,位移反应包络线呈单峰状分布。

(4)在长持时(L-2型)和中等持时(M-2型)无明显卓越周期地面运动作用下,结构的位移反应比较复杂,目前尚无法总结出其规律性。

需要指出的是,本文结论主要根据单自由度体系的分析得出,仅进行过少量多自由度系统层间位移反应的验证,其结论是否普遍适用于多自由度系统,还有待于进一步的分析和验证。

参考文献

[1]刘伯权.钢筋混凝土抗震结构的破坏准则及可靠性分析[D].重庆:重庆建筑大学建筑工程学院,1995

[2]尹保江,黄宗明,白绍良.地震地面运动的分类[J].工程抗震,1999(已录用待发表)。

[3]尹保江.不同类型地震作用下结构弹塑性位移反应规律的研究[D].重庆:重庆建筑大学建筑工程学院,1997

[4]黄宗明.结构地震反应时程分析中的阻尼问题研究[D].重庆:重庆建筑大学建筑工程学院,1995

A Stud y on Characteristics of Elasto_Plastic Dis p lacement

Res p onse of Structures Under Seismic Action

Y IN Bao_jiang1HU AN G Zong_ming2B AI Shaoliang2

(1.Institute of Earthquake Engineering,China Academy of Building Research,Beijing100013,C hina;

2.Faculty of Civil Engineering,Chongqing Jianzhu University,400045,China)

Abstract The characteristics o f elasto-plastic displaceme nt response of structures subjected to diffe rent t y p es of g round m otions are studied and g ene ralized in this p a p er.

Ke y Words elasto_p lastic ear th q uake res p onse;characteristics of dis p lacement res p onse; ear thquake dam age criteria

【结构设计】弹塑性地震反应分析中的滞回曲线解析

弹塑性地震反应分析中的滞回曲线解析我们在进行弹塑性地震反应分析时,经常要用到结构的滞回曲线,今天为大家详细介绍一下这个神秘的东东. 滞回曲线,也叫恢复力曲线,是在循环力的往复作用下,得到结构的荷载-变形曲线.它反映结构在反复受力过程中的变形特征、刚度退化及能量消耗. 为啥要研究在反复受力过程中各种特性呢?因为地震力就是反复循环作用的.我们弹性设计只是拟静力法,不能体现反复力的作用. 大多材料都是具有弹塑性性质的,当荷载大于一定程度后,在卸荷时产生残余变形,即荷载为零而变形不回到零,称之为“滞后”现象,这样经过一个荷载循环,荷载位移曲线就形成了一个环,将此环线叫做滞回环,多个滞回环就组成了滞回曲线! 滞回曲线有哪几种呢? 1、梭形 梭形说明滞回曲线的形状非常饱满,反映出整个结构或构件的塑性变形能力很强,具有很好的抗震性能和耗能能力.例如受弯、偏压、压弯以及不发生剪切破坏的弯剪构件,具有良好塑性变形能力的钢框架结构或构件的P一△滞回曲线即呈梭形.

2、弓形 弓形具有“捏缩”效应,显示出滞回曲线受到了一定的滑移影响.滞回曲线的形状比较饱满,但饱满程度比梭形要低,反映出整个结构或构件的塑性变形能力比较强,节点低周反复荷载试验研究性能较好,.能较好地吸收地震能量.例如剪跨比较大,剪力较小并配有一定箍筋的弯剪构件和压弯剪构件,一般的钢筋混凝土结构,其滞回曲线均属此 类.

3、反S形 反S形反映了更多的滑移影响,滞回曲线的形状不饱满,说明该结构或构件延性和吸收地震能量的能力较差.例如一般框架、梁柱节点和剪力墙等的滞回曲线均属此类. 4、Z形 Z形反映出滞回曲线受到了大量的滑移影响,具有滑移性质.例如小剪跨而斜裂缝又可以充分发展的构件以及锚固钢筋有较大滑移的构件等,其滞回曲线均属此类.

5平地震作用下框架结构的位移和内力计算

第五章 横向地震作用下框架结构的位移和内力 5.1横向框架自振周期的计算 结构自震周期采用经验公式: 552.08.159.22035.022.0035.022.03 1=?+=?+=B H T s 5.2水平地震作用及楼层地震剪力的计算. 本办公楼楼的高度不超过40m ,质量和刚度沿高度分布比较均匀,变形以剪切变形为主,故可采用底部剪力法计算用。 结构等效总重力荷载为: kN 39485) 8259482825066(85.085.0eq =+?+?==∑i G G 兰州市,抗震设防烈度8度,设计基本地震加速度0.10g ,多遇地震下 08.0max =α。设计地震分组第一组,二类场地,场地特征周期为0.35s 053 .008 .01)55 .0035( )( 9 .0max 2g 1=??==αηαγT T 结构总水平地震作用标准值: kN 213839485 053.0eq 1Ek =?==G F α 因为:s 53.01=T >s 49.035.04.14.1g =?=T ,所以应考虑顶部附加水平地震作用。又因为:s 35.0g =T ≤0.35s ,故顶部附加地震作用系数为: 1142.007 .055.008.007.008.016=+?=+=T δ 顶部附加水平地震作用为: kN 24221381142.0Ek 66=?==?F F δ 各质点横向水平地震作用按下式计算:

()6Ek 6 1 1δ-= ∑=F H G H G F j j j i i i (=i 1,2, (6) 地震作用下各楼层水平地震层间剪力为: ∑==n i j j i F V (i =1,2, (6) 各质点的横向水平地震作用及楼层地震剪力计算见表12。 表5—1 楼层地震剪力计算表 图5-1水平地震作用分布图 图5-2楼层地震剪力剪力分布图

地下结构地震破坏形式与抗震分析方法综述

地下结构地震破坏形式与抗震分析方法综述 摘要:随着人口的在激增以及经济的发展,人们的需求也开始狂飙式的增长。然而,城市的空间有限,地面空间已经被充分利用,人们的视线开始转为地下,地下结构的开发缓解了城市的地面压力。然而,由于地下结构的抗震技术的发展还并不成熟,在地震后,往往会造成地下结构的损坏甚至直接丧失继续工作的能力,给人们的财产安全带来威胁,影响人们的正常生活。因此在此文中对地下结构的震害形式以及近年来地下结构抗震分析的研究成果进行展示。以加深对地下结构震害的了解,并引起人们对地下结构抗震减震的重视。 关键词:地下结构抗震,震害形式,抗震分析,抗震减震 0 引言 地震是自然界自然界一种常见的自然灾害,地球上每年约发生500多万次地震,即每天要发生上万次地震。其中绝大多数太小或太远以至于人们感觉不到。真正能对人类造成严重危害的地震大约有一二十次,能造成特别严重灾害的地震大约有一两次。然而,这种地震不仅仅会给损害人们的财产安全,更有甚者会威胁到生命安全。 以往的抗震研究主要集中在地上建筑。认为地下结构受到的外界环境较少,各方向约束较多,刚度较大,且高度较小,加之过去地下结构的建设规模相对较少,地下结构受地震作用引起的结构的严重破坏的相关资料也较少,因此地下结构的工程抗震研究及设计长期未得到足够的重视。 1923年日本关东大地震(M8.2),震区内116座铁路隧道,有82座受到破坏;1952 年美国加州克恩郡地震(M7.6),造成南太平洋铁路的四座隧道损坏严重;1976年唐山地震(M7.8),唐山市给水系统完全瘫痪,秦京输油管道发生五处破坏;1978年日本伊豆尾岛地震(M7.0)震后出现了横贯隧道的断裂,隧道衬砌出现了一系列的破坏;特别是1995年日本阪神大地震(M7.2)中,神户市及阪神地区几座城市的供水系统和污水排放系统受到严重破坏,其中神户市供系统完全破坏,并基本丧失功能。神户市部分地铁车站和区间隧道受到不同程度的破坏,其中大开站最为严重,一半以上的中柱完全倒塌,导致顶板坍塌和上覆土层大量沉降,最大沉降量达2.5m。 地震对地下结构造成大规模破坏的同时,地震对地下结构的安全性构成的威胁也开始引起了人们的重视,地下结构工程抗震从业者在震后获取了大量的地震动作用在地下结构上产生的动力特性及影响结构动 力响应的影响因素等宝贵资料,对地下结构工程抗震减震领域的发展具有极大的推动作用。 近年来,关于地下结构的工程抗震分析方法的文献大量涌现。学者从不同角度对地下结构抗震进行阐述,并且有不少理论转化为工程技术,在工程实践中得到了论证。笔者试图综合前人的研究成果,在本文中简要介绍地下结构在地震作用下的破坏形式以及地下结构抗震分析方法,以便加深对地下结构工程抗震的了解,也可增加人们对地下结构工程抗震的重视程度。 1 地下结构震害 由于所处环境、约束情况等的差异,地下结构的破坏形式与结构破坏的影响因素与地上结构有很多不同之处。 1.1 地下结构震害形式 以下以日本阪神地震为主要对象,结合其他地震造成的震害,总结了地铁车站、地下管道、地下隧道的主要震害形式。

隔震结构的基本原理及动力分析

隔震结构的基本原理及动力分析 摘要:本文根据现行的《建筑抗震设计规范》,介绍了隔震结构的基本原理、实用范围和设计与分析方法,并通过一隔震结构的设计实例说明隔着结构的优越性。 关键词:基础隔震;地震响应;时程分析法; 引言 目前,我国和世界各国普遍采用的传统抗震方法是将建筑物设计为“延性结构”,通过适当控制调整结构物的自身刚度和强度,使结构构件(如梁、柱、墙、节点等)在强烈地震时进入非弹性状态后具有较大的延性,从而通过塑性变形消耗地震能量,减轻建筑物的地震反应,使整个结构“裂而不倒”,这就是“延性结构体系”[1~3]。它的设防目标是“小震不坏”、“中震可修”、“大震不倒”。实践证明,这种方法对减轻地震灾害起到了积极作用,但是这种传统的结构抗震方法有其明显的不足,随着我国经济的高速发展,对建筑功能要求越来越高,结构的形式越来越多样化、复杂化,很多重要的建筑(电力、通讯中心、核电站、纪念性的建筑、海洋平台等)结构及内部设备的破化将造成巨大的经济损失。对这类建筑的抗震性能提出更高的要求——结构不允许进入塑性工作阶段,因此采用传统抗震方法很难满足此类建筑抗震要求。面对新的社会要求,各国地震工程专家一直寻求新的结构抗震设计途径,以隔震为代表的“结构振动控制技术”便是这种努力的结果[4~6]。 1、隔震结构的基本原理 结构隔震体系是指在建筑物上部结构的底部与基础面之间设置某种隔震装置,使之与固结于地基中的基础地面分离开来的一种结构体系[6]。隔震结构的基本原理可以用图1进一步阐明。图中三条曲线表示不同的阻尼大小,为普通中低层建筑的自振周期,为隔震层建筑的自振周期。 (a)加速度反应谱(b)位移反应谱 图1隔震原理 从图中可以看出,结构自振周期延长,结构的地震加速度反应减小,地震位移反应增大;结构阻尼增大,结构的地震加速度反应和位移反应均减小。隔震系统的水平刚度远远低于上部结构的抗侧刚度,因此,结构的自振周期大大延长,

大型地下结构三维地震响应特点研究

第43卷第3期2003年5月 大连理工大学学报 Jour nal of Dalian University of Technology Vol .43,No .3May 2003 文章编号:1000-8608(2003)03-0344-05 收稿日期:2002-04-01; 修回日期:2003-03-25. 基金项目:国家自然科学基金资助项目(50209002);辽宁省自然科学基金资助项目(20022130). 作者简介:陈健云*(1968-),男,副教授;林 皋(1929-),男,教授,博士生导师,中国科学院院士. 大型地下结构三维地震响应特点研究 陈健云*, 胡志强, 林 皋 (大连理工大学土木水利学院,辽宁大连 116024) 摘要:采用阻尼影响抽取法分析了地下结构无限围岩介质的动刚度特性,建立了岩石地下 结构抗震分析的实用相互作用分析时域模型,比较研究了地下结构-围岩动力相互作用分析中地震动输入机制、无限围岩动刚度及结构特性等各种主要因素对地下结构地震响应的影响程度.指出几种常用地下结构地震响应近似分析方法只在一定条件下适用,无限介质的阻尼特性对结构响应起着重要的作用. 关键词:地下洞室;地震反应分析;动刚度;优化;阻尼影响抽取法中图分类号:T U 35;TU 9;TV3 文献标识码:A 0 引 言 随着国民经济的发展,地下空间得到了越来越广泛的使用.然而近几年世界范围内发生了一 系列大地震,造成了巨大的灾难,不少地下结构遭受破坏.由于与围岩的相互作用,地下结构的动力特性十分复杂,其响应特点与地面结构有明显的差别.研究表明[1] ,对地下结构采用施加惯性力的地震响应分析,即使采用几倍于结构尺寸的地基离散模型,施加不同的边界条件对地震位移响应的影响可达10倍,应力差别达5~6倍. 目前各种实际地下结构的动力响应分析仍以各种近似方法为主.包括各种拟静力方法,如位 移响应法[2、3] ,地基影响参数通常根据简化假定采 用经验参数.动力近似分析通常将结构简化为二维问题处理[4],对于地下管线等结构形式具有一定的适用性.对于处于比较复杂地质、地形条件下的地下结构,或者形式较复杂的大型地下空间结构,要合理地反映地下结构的地震响应,则必须进行三维动力响应分析. 当前常用的地下结构三维地震分析方法,主要有在模型外边界施加各种人工透射边界解决能量向无限远处辐射[5]的波动分析方法;以地下结构为主体,围岩的作用通过相互作用力来求解的相互作用分析方法[6] ,通常采用有限元、边界元、 解析法或半解析法等耦合求解;以及在外边界施 加粘性阻尼器的惯性力方法.前两种方法属于较精确的数值方法,后一种方法则为近似方法. 由于围岩介质对结构的动力影响在时间与空 间都是耦合的,较精确的地下结构地震响应分析具有一定难度,时域求解复杂且求解代价很大. 本文采用相互作用分析方法,结合溪洛渡超 大型地下洞室群的地震响应分析,研究动力相互 作用运动方程中各主要因素对地下结构地震响应的影响程度,为地下结构的简化分析提供依据. 1 地下结构地震响应的相互作用分 析方法 地下结构的相互作用分析主要采用各种耦合 方法,如有限元与边界元的耦合分析.本文则采 用阻尼影响抽取法得到地基刚度与有限元进行耦合分析. 1.1 阻尼影响抽取法的基本概念 [7] 将无限地基截取有限区域,其刚度阵为S t (X )=K -X 2 M (1) 式中:K 和M 分别为有限域的刚度阵与质量阵. 引入量纲一的频率a 0=X ?r 0/c s 及刚度阵K 与质量阵M ,则式(1)可表达为  S t (X )=Gr s -2 0(K -a 20M )=Gr s -2 0S (a 0) (2)

建筑结构抗震设计课后习题答案

武汉理工大学《建筑结构抗震设计》复试 第1章绪论 1、震级和烈度有什么区别和联系? 震级是表示地震大小的一种度量,只跟地震释放能量的多少有关,而烈度则表示某一区域的地表和建筑物受一次地震影响的平均强烈的程度。烈度不仅跟震级有关,同时还跟震源深度、距离震中的远近以及地震波通过的介质条件等多种因素有关。一次地震只有一个震级,但不同的地点有不同的烈度。 2.如何考虑不同类型建筑的抗震设防? 规范将建筑物按其用途分为四类: 甲类(特殊设防类)、乙类(重点设防类)、丙类(标准设防类)、丁类(适度设防类)。 1 )标准设防类,应按本地区抗震设防烈度确定其抗震措施和地震作用,达到在遭遇高于当地抗震设防烈度的预估罕遇地震影响时不致倒塌或发生危及生命安全的严重破坏的抗震设防目标。 2 )重点设防类,应按高于本地区抗震设防烈度一度的要求加强其抗震措施;但抗震设防烈度为9度时应按比9度更高的要求采取抗震措施;地基基础的抗震措施,应符合有关规定。同时,应按本地区抗震设防烈度确定其地震作用。 3 )特殊设防类,应按高于本地区抗震设防烈度提高一度的要求加强其抗震措施;但抗震设防烈度为9度时应按比9度更高的要求采取抗震措施。同时,应按批准的地震安全性评价的结果且高于本地区抗震设防烈度的要求确定其地震作用。 4 )适度设防类,允许比本地区抗震设防烈度的要求适当降低其抗震措施,但抗震设防烈度为6度时不应降低。一般情况下,仍应按本地区抗震设防烈度确定其地震作用。 3.怎样理解小震、中震与大震? 小震就是发生机会较多的地震,50年年限,被超越概率为63.2%; 中震,10%;大震是罕遇的地震,2%。 4、概念设计、抗震计算、构造措施三者之间的关系? 建筑抗震设计包括三个层次:概念设计、抗震计算、构造措施。概念设计在总体上把握抗震设计的基本原则;抗震计算为建筑抗震设计提供定量手段;构造措施则可以在保证结构整体性、加强局部薄弱环节等意义上保证抗震计算结果的有效性。他们是一个不可割裂的整体。 5.试讨论结构延性与结构抗震的内在联系。 延性设计:通过适当控制结构物的刚度与强度,使结构构件在强烈地震时进入非弹性状态后仍具有较大的延性,从而可以通过塑性变形吸收更多地震输入能量,使结构物至少保证至少“坏而不倒”。延性越好,抗震越好.在设计中,可以通过构造措施和耗能手段来增强结构与构件的延性,提高抗震性能。 第2章场地与地基 1、场地土的固有周期和地震动的卓越周期有何区别和联系? 由于地震动的周期成分很多,而仅与场地固有周期T接近的周期成分被较大的放大,因此场地固有周期T也将是地面运动的主要周期,称之为地震动的卓越周期。 2、为什么地基的抗震承载力大于静承载力? 地震作用下只考虑地基土的弹性变形而不考虑永久变形。地震作用仅是附加于原有静荷载上

地震作用与结构周期之间联系思考

地震作用与结构周期之间联系思考 从地震影响系数与结构周期的关系及底部剪力法来看,结构周期越长,在结构产生的地震作用就越小;但从振型分解法可只取前面数个振型来计算地震作用及振型是按结构周期从大到小排列来看,似乎给人的感觉又是结构周期越长,在结构产生的地震作用就越大.你如何看待? 重申一下反应谱意义,反应谱是具有不同动力特性的结构对一个地震动过程的动力最大反应的结果,反应谱曲线不反映具体的结构特性,只反映地震动特性(地震动过程不同成分频率含量的相对关系),是地震动特性与结构动力反应的“桥梁”. 由地震加速度反应谱可计算单自由度体系水平地震作用:F=mSa(T),然而实际地震动无法预知,可谓千奇百怪,为了便于设计规范给出了加速度设计反应谱,该谱为地震系数(地震烈度与地面地震动加速度关系)与动力放大系数(结构最大加速度与地面最大加速度之比,正规化的反应谱)的乘积值,在特定的结构阻尼比下,依据场地、震中距将地震动分类,计算动力放大系数取平均后平滑处理即得设计反应谱. 底部剪力法是简化算法,针对地震反应可用第一振型(呈线性倒三角形)表征的结构,即地震影响系数与振型参与系数(其中的水平相对位移可用质点高度代替)假定只有一个,可对应于振型分解反应谱法中的第一振型.当两结构的基本周期不一致时,在“总质量一致”的条件下,周期大者地震影响系

数有减小的趋势(不一定减小,取决于基本周期大小),总水平地震剪力有减少的趋势,而各层处的水平地震作用不一定减小,除非结构满足“层高一致、质量分布一致”的条件.综上,底部剪力法是一种近似计算方法,两结构在总质量一致的条件下,周期大者总地震作用近似有减小的趋势(不一定减小,取决于基本周期范围),严格来讲未必,实际上规范的0.85与层质量、层高有关系. 相对于底部剪力法,振型分解反应谱法计算地震反应精度较高,将多自由度体系解耦为广义单自由度体系,实质上是按结构的振型将地震作用进行分解,求解分解地震作用下单位质量的反应,然后再依据振型规则将反应叠加为结构总反应.每一振型对应于一个振型周期,由于低振型>高振型,前振型周期所对应的地震影响系数(反应谱值)有减小的趋势,但每一振型下的各层的地震作用还与振型参与系数(反映了本振型在单位质量地震作用中所占的分量)、各层对应的振型向量值(取决于结构质量与刚度的分布)并不是所有层均是第一振型下值大)及本层质量有关.结构的总地震反应(注意是所有质点地震反应的代数和)以低阶振型反应为主,高阶振型反应对结构总地震反应的贡献较小,这一点毋庸置疑,振型各层地震作用具有方向性,总地震反应代数相加,低阶振型与0线交点要少于高阶振型,即同一结构下低阶总地震反应要大于高阶,即使反应谱值小,而各层地震作用则不一定,取决于质量与刚度的分布.

并联复合隔震结构的地震响应和滞回特性分析

IndustrialConstructionVol畅44,No畅1,2014 工业建筑 2014年第44卷第1期 并联复合隔震结构的地震响应和滞回特性分析 倡 袁 颖1  周爱红1  杨树标2  何国峰 1 (1.石家庄经济学院勘查技术与工程学院,石家庄 050031;2.河北工程大学土木工程学院,河北邯郸 056038) 摘 要:在建立并联复合隔震结构运动微分方程的基础上,通过数值模拟,计算并研究了不同加速度峰值下,给定摩擦承压比的多自由度并联复合隔震结构的自振周期、最大基底剪力、最大基底剪力系数、最大层间位移、层间速度、层间加速度等地震响应以及隔震层的滞回特性,并与普通抗震结构、夹层橡胶垫隔震结构、摩擦滑移结构进行了全面对比分析和讨论。结果表明:并联复合隔震结构由于充分利用了复合隔震支座的优点,能够显著降低结构的地震响应,并且具有优良的滞回耗能特性。 关键词:并联复合隔震;摩擦滑移隔震;夹层橡胶垫隔震;地震响应;滞回特性 DOI:10.13204/j.gyjz201401007 SEISMICRESPONSEANDHYSTERETICPERFORMANCEANALYSISOFPARALLEL COMPOSITEISOLATEDSTRUCTURE YuanYing1  ZhouAihong1  YangShubiao2  HeGuofeng 1 (1.SchoolofProspectingTechnologyandEngineering,ShijiazhuangUniversityofEconomics,Shijiazhuang050031,China; 2.SchoolofCivilEngineering,HebeiUniversityofEngineering,Handan056038,China) Abstract:Thedifferentialequationofmotionforparallelcompositeisolationstructurewasformulatedfirstly.Then,takingthemulti-degreeoffreedomsparallelisolatedstructurewithagivenfrictionbearingratioforanillustrativeexample,theseismicresponsesunderdifferentaccelerationpeakvalues,suchasnaturalperiodofvibration,themaximumbaseshear,themaximumbaseshearcoefficient,themaximumdisplacement,velocityandacceleration, andthehystereticperformancewerecalculatedandstudiedbynumericalsimulationmethod.Andthecalculationresultswerecomparedwiththoseofordinaryaseismicstructure,isolatedstructurewithlaminatedrubberbearingsandisolatedstructurewithfrictionslidingbearingscomprehensivelyanddiscussedindetail.Finally,someconclusionsweremadethattheisolationeffectofparallelcompositeisolatedstructurecouldreducetheseismicresponsedramaticallyduetothefulluseofthemeritsofcompositeisolatedbearings,andthehystereticenergydissipationperformancewasalsoexcellent. Keywords:parallelcompositeisolation;isolationwithfrictionslidingbearing;isolationwithlaminatedrubberbearing;seismicresponse;hystereticperformance 倡国家自然科学基金项目(41204075);国家大坝工程技术研究中心开放基金资助项目(NDSKFJJ1201)。 第一作者:袁颖,男,1976年出生,博士,副教授,硕士生导师。电子信箱:yuanyingson@163.com收稿日期:2013-05-15 近十几年来,在世界范围内,地震频发,比如 2001年印度7畅9级地震,2004年的印尼9畅0级地震,2005年巴基斯坦7畅8级地震,2007年秘鲁7畅5级地震,2008年中国汶川8畅0级地震,2011年日本9畅0级地震等,造成了巨大的人员伤亡和经济损失。在目前水平下,对地震进行准确预报很困难,因此,对建筑物进行结构抗震设计和设防以保证建筑物和人民生命财产安全是十分必要的。 隔震技术是工程抗震领域中的研究热点,在结构底部安装隔震支座是一种行之有效的减震方法。从20世纪60年代末起,国外学者开展了相关的研 究工作,并取得了很多研究成果[1-5] 。世界上许多国家都修建了隔震建筑,日本和美国等国家的有些 隔震建筑还经受过强震考验,隔震效果明显,并取得 了巨大的经济效益和社会效益[6-7] 。我国自2001年将隔震消能技术写进了GB50011—2001枟建筑抗震设计规范枠以来,隔震理论和应用的研究也得到 了迅速发展[8-9] 。 本文在以往工作基础上[10-12] ,对并联复合隔震体系进行了理论分析,建立了并联复合隔震的力学

工程结构抗震题目及答案

填空题(每空1分,共20分) 1、地震波包括在地球内部传播的体波和只限于在地球表面传播的面波,其中体波包括纵波(P)波和横(S)波,而面波分为瑞雷波和洛夫波,对建筑物和地表的破坏主要以面波为主。 2、场地类别根据等效剪切波波速和场地覆土层厚度共划分为IV类。3.我国采用按建筑物重要性分类和三水准设防、二阶段设计的基本思想,指导抗震设计规范的确定。其中三水准设防的目标是小震不坏,中震可修和大震不倒4、在用底部剪力法计算多层结构的水平地震作用时,对于T1>1.4T g时,在结构顶部附加ΔF n,其目的是考虑高振型的影响。 5、钢筋混凝土房屋应根据烈度、建筑物的类型和高度采用不同的 抗震等级,并应符合相应的计算和构造措施要求。 6、地震系数k表示地面运动的最大加速度与重力加速度之比;动力系数 是单质点最大绝对加速度与地面最大加速度的比值。 7、在振型分解反应谱法中,根据统计和地震资料分析,对于各振型所产生的地震作用效应,可近似地采用平方和开平方的组合方法来确定。 名词解释(每小题3分,共15分) 1、地震烈度: 指某一地区的地面和各类建筑物遭受一次地震影响的强弱程度。 2、抗震设防烈度: 一个地区作为抗震设防依据的地震烈度,应按国家规定权限审批或颁发的文件(图件)执行。 3、反应谱: 地震动反应谱是指单自由度弹性体系在一定的地震动作用和阻尼比下,最大地震反应与结构自振周期的关系曲线。 4、重力荷载代表值: 结构抗震设计时的基本代表值,是结构自重(永久荷载)和有关可变荷载的组合值之和。 5 强柱弱梁: 结构设计时希望梁先于柱发生破坏,塑性铰先发生在梁端,而不是在柱端。 三简答题(每小题6分,共30分) 1.简述地基液化的概念及其影响因素。 地震时饱和粉土和砂土颗粒在振动结构趋于压密,颗粒间孔隙水压力急剧增加,当其上升至与土颗粒所受正压应力接近或相等时,土颗粒间因摩擦产生的抗剪能力消失,土颗粒像液体一样处于悬浮状态,形成液化现象。其影响因素主要包括土质的地质年代、土的密实度和黏粒含量、土层埋深和地下水位深度、地震烈度和持续时间 2.简述两阶段抗震设计方法。?

地震工程学心得体会

精心整理《地震工程学》课程总结? 1.对所学内容的综述? 1.1结构地震反应分析的方法? 结构地震反应分析的方法很多,下面主要介绍反应谱理论和时程反应分析法? 绍。 也并不是一次地震动作用下的反应谱,而是不同地震反应的包线。 1.1.2?? 时程分析法? 时程分析法又称作动态分析法。它是将地震波段按时段进行数值化后,输入结构体系的振动微分方程,采用逐步积分法进行结构弹塑性动力反应分析,计算出结构在整个强震时域中的振动状态过程,给出各个时刻各杆件的内力和变形以及各杆

件出现塑性铰的顺序。? 时程分析法计算地震反应需要输入地震动参数,该参数具有概率含义的加速度时程曲线、结构和构件的动力模型考虑了结构的非线性恢复力特性,更接近实际情况,因而时程分析方法具有很多优点。它全面地考虑了强震三要素;比较确切地、具体地和细致地给出了结构弹塑性地震反应。? 1.1.3地震信号频域分析? ???? X(f), 1.2? 1.2.1 (1) ??(2 (3 ?(4 性和有效性;? ?? (5)验证抗震理论、结构地震反应分析方法、结构振动控制算法等的可靠性和适用性。? 1.2.2? 结构抗震试验的实施程序? ??

(1)确定研究目标和试验方法,含试验目的、试验设备和试件的采用、需要测量的物理量等;? ?? (2)荷载施加,含与试验设备相关的荷载施加方式和加载规则等;? ?(3)测点布置和数据采集,含各类传感器和数采设备的采用、测点数量的选择;? ??(4)数据分析,含测试数据的常规处理和特殊分析。? (1 ? (2 ????旨在 (3 ?? 入下结构或构件的地震反应,研究和验证结构地震破坏机理、破坏特征、抗震能力和抗震薄弱环节。 ?(4)振动台试验? ?????振动台试验是利用振动台装置进行的结构强迫振动试验,是地震工程研究中最重要的实验手段之一。?

地震工程中的静力弹塑性_pushover_分析法

第32卷 第2期 贵州工业大学学报(自然科学版) Vol.32No.2 2003年 4月 JOURNAL OF GUIZHOU UNIVERSI TY OF TEC HNOLOGY April.2003 (Natural Science Edition) 文章编号:1009-0193(2003)02-0089-03 地震工程中的静力弹塑性(pushover)分析法 冯峻辉,闫贵平,钟铁毅 (北方交通大学土建学院,北京100044) 摘 要:静力弹塑性(pushover)分析法在抗震结构的设计和评估中,尤其是基于性能/位移的抗 震设计中,具有很大的潜力。根据其发展背景和近况,评述了它在运用中的一些关键论点用于 性能评估的缺陷。为了预测地震反应,提出了一些可能的发展方向。 关键词:抗震设计;静力弹塑性分析;推倒分析 中图分类号:TU311.3 文献标识码:A 0 引 言 基于性能的抗震结构设计概念,包括了工程的设计,评估和施工等,要求在未来不同强度水平的地震作用下结构达到预期的性能目标[1]。为此需在工程实践中完成一个近似且简易的性能评估方法,通常所指的是静力弹塑性分析法(简称为推倒法)。由于推倒法的优点突出:考虑了结构的弹塑性特性,可用图形方式直观表达结构的能力与需求,通常比同一模型的动力分析更快且易于运行,可提供一个较可靠的结构性能预测等特点,正逐渐受到重视和推广。目前国内外许多组织把其纳入抗震规范,如美国的ATC-40,FE MA274等。我国也把其引入 建筑抗震设计规范 (GB50011-2001)。 1 推倒(Pushover)分析方法的原理,用途和实施过程 1.1 Pushover的原理和用途 推倒法是一个用于预测地震引起的力和变形需求的方法。其基本原理是:在结构分析模型上施加按某种方式(如均匀荷载,倒三角形荷载等)模拟地震水平惯性力的侧向力,并逐级单调加大,直到结构达到预定的状态(位移超限或达到目标位移),然后评估结构的性能。 推倒法可用于建筑物的抗震鉴定和加固,以及对新建结构的抗震设计和性能评估。它可以对所设计的地震运动作用在结构体系和它的组件上的抗震需求提供充足的信息,如对潜在脆性单元的真实力的需求,估计单元非弹性变形需求,个别单元强度退化时对结构体系行为作用的影响,对层间移位的估计(考虑了强度和高度不连续),对加载路径的证实等,其中一些是不能从弹性静力或动力分析中获得的。 1.2 Pushover的实施过程 推倒分析法的实施步骤为: 1.准备结构数据。包括建立结构模型,构件的物理常数和恢复力模型等; 2.计算结构在竖向荷载作用下的内力(将其与水平力作用下的内力叠加,作为某一级水平力作用下构件的内力,以判断构件是否开裂或屈服); 3.在结构每一层的质心处,施加沿高度分布的某种水平荷载。施加水平力的大小按以下原则确定:水平力产生的内力与2步所计算的内力叠加后,使一个或一批构件开裂或屈服; 4.对于开裂或屈服的构件,对其刚度进行修改后,再施加一级荷载,使得又一个或一批构件开裂或屈服; 5.不断重复3,4步,直至结构顶点位移足够大或塑性铰足够多,或达到预定的破坏极限状态。 6.绘制基础剪力 顶部位移关系曲线,即推倒分析曲线。 收稿日期:2002-10-25

(整理)地震作用下框架内力和侧移计算.

6 地震作用下框架内力和侧移计算 6.1刚度比计算 刚度比是指结构竖向不同楼层的侧向刚度的比值。为限制结构竖向布置的不规则性,避免结构刚度沿竖向突变,形成薄弱层。根据《建筑抗震设计规范》(GB50011-2010)第3.4.2条规定:抗侧力构件的平面布置宜规则对称、侧向刚度沿竖向宜均匀变化、竖向抗侧力构件的截面尺寸和材料强度宜自下而上逐渐减小、避免侧向刚度和承载力突变。 根据《高层建筑混凝土结构技术规程》(JGJ3-2010)第3.5.2条规定:对框架结构,楼层与其相邻上层的侧向刚度比计的比值不宜小于0.7,且与相邻上部三层刚度平均值的比值不宜小于0.8。计算刚度比时,要假设楼板在平面内刚度无限大,即刚性楼板假定。 7.0939.0/1136076/10669082 11 >== = ∑∑mm N mm N D D γ,满足规范要求; ()8.0939.0/113607611360761136076/1066908334 321 2>=++?=++=∑∑∑∑mm N mm N D D D D γ,满 足规范要求。 依据上述计算结果可知:刚度比满足要求,所以无竖向突变,无薄弱层,结构竖向规则,故可不考虑竖向地震作用。将上述不同情况下同层框架柱侧移刚度相加,框架各层层间侧移刚度∑i D ,见表6-4。 表5-4框架各层层间侧移刚度 楼层 1层 2层 3层 4层 5层 6层 突出屋面层 ∑i D 1066908 1136076 1136076 1136076 1136076 1136076 258396 6.2水平地震作用下的侧移计算 根据《高层建筑混凝土结构技术规程》(JGJ3-2010)附录C 中第C.0.2条可知:对于质量和刚度沿高度分布比较均匀的框架结构、框架剪力墙结构和剪力墙结构,其基本周期可按公式6-1计算。 T T T μψ7.11= (6-1) 式中:1T ——框架的基本自振周期; T μ——计算结构基本自振周期的结构顶点假想位移,单位为m ; T ψ——基本自振周期考虑非承重砖墙影响的折减系数。

结构抗震课后习题答案

结构抗震课后习题答案

《建筑结构抗震设计》课后习题解答建筑结构抗震设计》第 1 章绪论 1、震级和烈度有什么区别和联系?震级是表示地震大小的一种度量,只跟地震释放能量的多少有关,而烈度则表示某一区域的地表和建筑物受一次地震影响的平均强烈的程度。烈度不仅跟震级有关,同时还跟震源深度、距离震中的远近以及地震波通过的介质条件等多种因素有关。一次地震只有一个震级,但不同的地点有不同的烈度。 2.如何考虑不同类型建筑的抗震设防?规范将建筑物按其用途分为四类:甲类(特殊设防类)、乙类(重点设防类)、丙类(标准设防类)、丁类(适度设防类)。 1 )标准设防类,应按本地区抗震设防烈度确定其抗震措施和地震作用,达到在遭遇高于当地抗震设防烈度的预估罕遇地震影响时不致倒塌或发生危及生命安全的严重破坏的抗震设防目标。 2 )重点设防类,应按高于本地区抗震设防烈度一度的要求加强其抗震措施;但抗震设防烈度为9 度时应按比9 度更高的要求采取抗震措施;地基基础的抗震措施,应符合有关规定。同时,应按本地区抗震设防烈度确定其地震作用。 3 )特殊设防类,应按高于本地区抗震设防烈度提高一度的要求加强其抗震措施;但抗震设防烈度为9 度时应按比9 度更高的要求采取抗震措施。同时,应按批准的地震安全性评价的结果且高于本地区抗震设防烈度的要求确定其地震作用。 4 )适度设防类,允许比本地区抗震设防烈度的要求适当降低其抗震措施,但抗震设防烈度为 6 度时不应降低。一般情况下,仍应按本地区抗震设防烈度确定其地震作用。 3.怎样理解小震、中震与大震? 小震就是发生机会较多的地震,50 年年限,被超越概率为63.2%;中震,10%;大震是罕遇的地震,2%。 4、概念设计、抗震计算、构造措施三者之间的关系? 建筑抗震设计包括三个层次:概念设计、抗震计算、构造措施。概念设计在总体上把握抗震设计的基本原则;抗震计算为建筑抗震设计提供定量手段;构造措施则可以在保证结构整体性、加强局部薄弱环节等意义上保证抗震计算结果的有效性。他们是一个不可割裂的整体。

地震作用下结构弹塑性位移反应规律的研究_尹保江

第21卷第5期重庆建筑大学学报Vol.21No.5 1999年10月Journal of Chon gq in g J ianzhu Universit y Oct.1999文章编号:1006-7329(1999)05-0010-06 地震作用下结构弹塑性位移反应规律的研究 尹保江1黄宗明2白绍良2 (1.中国建筑科学研究院抗震所100013;2.重庆建筑大学建筑工程学院400045) 摘要通过对单自由度体系在不同类型地面运动作用下的弹塑性位移反应特性的研究,总结了结构在地震作用下的位移反应规律,为考虑塑性累积疲劳损伤的结构地震破坏准则的研究提供依据。 关键词结构弹塑性地震反应;弹塑性位移反应规律;低周疲劳破坏准则 中图法分类号TU313文献标识码A 1问题的提出 结构地震破坏准则的研究,一直是工程结构抗震领域一个十分重要的课题。目前,人们已普遍认为结构在地震作用下的破坏是由于位移的首次超越和塑性累积疲劳损伤共同作用的结果。大量的试验研究表明〔1〕,结构在往复荷载作用下的疲劳损伤破坏,不但和塑性耗能总量有关,而且还和位移幅值的大小、偏移量、不同幅值位移的发生顺序及其组合方式等密切相关,是一个非常复杂的问题。因此,要想考虑不同位移组合的情况,通过较为完备的试验系列来建立一个比较客观的能够反映以上各种因素的具有普遍意义的通用低周疲劳破坏准则,是相当困难的。 本文认为,地震地面运动虽然复杂,但其分类特征是明显的,结构在不同类型地震作用下的位移反应也一定会遵循某种规律。既然如此,就可以考虑放弃建立具有普遍意义的通用低周疲劳破坏准则的研究方法,而主要针对适用于地震作用的结构低周疲劳破坏准则进行研究,使问题得到简化,同时使提出的破坏准则更具有针对性。基于这种思想,本文研究了单自由度体系在不同类型地震地面运动作用下的弹塑性位移反应规律,以期作为今后研究结构地震破坏准则的参考。 2结构位移反应规律的研究方法 根据文献〔2〕的研究成果,将地震地面运动分为5类:S型为短持时脉冲型地面运动;L-1型和M-1型分别为长持时和中等持时有较明显卓越周期的地面运动;L-2型和M-2型分别为长持时和中等持时不规则的地面运动。本文选择了79条峰值加速度在0.2g以上的典型地震地面运动记录作为输入,计算了单自由度体系在这些地面运动作用下的位移反应时程。各类地震输入的分布见表1。 表1本文采用地震动输入的类型分布 地面运动类型S型L-1型M-1型L-2型M-2型 数量(条)191719816 对于每一条地震记录输入,所计算结构的基本周期T0分别取为0.5s、1.0s和2.0s、结构的目标延性系数分别取为2.0、4.0和6.0,共九种情况;阻尼比ζ统一取为0.05,选用武田模型作为恢 收稿日期:1999-09-06 基金项目:国家自然科学基金资助项目 作者简介:尹保江(1972-),男,中国建筑科学研究院工程师。

地震作用下结构相应自学报告

地震作用下结构相应自学报告运动方程 反应量 反应时程 反应谱 位移,伪速度与伪加速度反应谱 联合反应谱 反应谱应用-确定结构峰值反应 反应谱与设计反应谱

1.运动方程 图1 地面运动时结构响应示意 如图单自由度结构,在地面运动时质点处于动平衡状态,根据达朗贝尔原理,质点动平衡方程可以表示为: f I+f D+f S=0(1-1) 其中,f I为惯性力,f D为阻尼力,f S为结构给质点的弹性回复力。 在平衡关系的三项中,惯性力取决于质点的绝对加速度,而弹性回复力和阻尼力则分别取决于结构变形和变形速度,即相对变形和相对速度。因此,式(1-1)可表达为: mu t+cu+ku=0(1-2) 其中,上标t的量为绝对坐标系下的量,无上标的量为地面参考系下的量。对于加速度而言,由于地面参考系与绝对加速度没有相对转动,因此有 u t=u+u g(1-3) 其中u g为地面运动的加速度。将式(1-3)代入(1-2)并进行整理,得到一般单自由度线弹性结构在地震激励下的运动方程: u+2ζωn u+ωn2u=?u g(1-4) 2.反应量 对于工程结构在地震中的响应,我们一般关心结构在地震中的内力和变形,而对于一些振动敏感的仪器设备,还会关注该处的绝对加速度。对于给定结构,结构内力和变形取决于相对位移,同时相对速度对结构的阻尼力也起到了绝对作用。因此地震中我们应关注结构的相对量u,u和u以及绝对量u t,u t和u t。

3.反应时程 反应时程是指在一次地震中某个结构的特定物理量随时间变化的情况。在单自由度体系中,由结构的质量、刚度性质和地震动的具体输入,可以通过动力学方法计算出位移随时间的变化规律。另一方面,为了简化计算过程并且不失真实的表达结构的振动情况,使用等效静力法来计算结构的内力,这里引入了伪加速度A的概念,其量纲与加速度u相同,数值上为ωn2u,作用在质点上以为静外力对结构内力进行计算。 A=ωn2u(3-1) 4.反应谱 对于一给定地震动,我们在考察结构在该地震动下的响应时,最关心结构的最大响应,包括最大位移、最大速度和最大加速度,此时结构的最大响应只与结构的固有周期和结构的阻尼比有关。将同一阻尼比的不同周期的结构在该地震动作用下的最大位移、速度和加速度分别画在图表中,即得到该地震动的位移、速度和加速度的反应谱。反应谱的横轴为结构的固有周期,纵轴为地震动引起的结构的最大响应,即最大位移、最大速度或最大加速度,对于一特定阻尼比,一个地震动对应一组反应谱,因此,反应谱反映的是地震动的固有特性。图2直观的表现出了反应谱的含义。 图2 反应谱的直观含义 5.位移,伪速度和伪加速度反应谱

关于抗拔对于基础隔震结构对地震响应的效果研究

关于抗拔对于基础隔震结构对地震响应的效果研究 Panayiotis C. Roussis, M.ASCE1 摘要:不利的拉力或上拔力会对隔震系统和上部结构带来不利的影响,而隔震 支座在一定条件下会出现这种不利的的拉力或上拔力。本研究报告是根据XY 摩擦摆(FP)滑移隔震系统做出的关于抗拔对于隔震结构对地震响应的影响的 研究。作为新一代隔震硬件,抗拔的FP隔震装置——XY- FP能够凭借它具有 承受拉力的特性对上部结构提供抗拔力。为了更好的理解隔震装置的拉拔或拉 力现象以及他们对结构性能和隔震系统的影响,进行了对隔震的实际建筑受双 向水平地震激励的非线性时程分析。分析采用了增强版的3D-BASIS- ME(有 限元)程序,这个程序曾做过改进,新增了能够模拟XY- FP隔震装置拉力特性 的单元。结果表明:通过增加隔震系统摩擦力,XY-FP隔震装置中的拉力,不 管是对整个隔震系统响应还是上部结构响应没有任何显著的影响。 DOI: 10.1061/ASCEST.1943-541X.0000070 CE数据库主题词:基础隔震;抗拔力;拉力;非线性分析 前言 隔震设备硬件显著的发展以及与之平行的分析模型和实验验证技术领域的研究 的发展已经促进了隔震装置被越来越多的认可。最根本的隔震的基本原则包括 通过提供额外的灵活性和耗能能力来防止去耦结构对水平地面的破坏,从而在 地震事故(1999年的naeim和kelly)中减轻结构振动和破坏的严重性。然而,在一定的条件下(例如:有较大高宽比的细长的上部结构和在支撑柱和挡墙下 有合并支座的结构),隔离支座能承受不良的拉力或拔力,以防它们的发生可 能会对隔离系统和上部结构产生有害的影响。尤其是,拔力的出现(在滑动支 座和合梢固定橡胶支座中)可能导致上部结构的倾覆或隔离支座的毁坏(由于

结构抗震课后习题答案解析

《建筑结构抗震设计》课后习题解答建筑结构抗震设计》第 1 章绪论 1、震级和烈度有什么区别和联系?震级是表示地震大小的一种度量,只跟地震释放能量的多少有关,而烈度则表示某一区域的地表和建筑物受一次地震影响的平均强烈的程度。烈度不仅跟震级有关,同时还跟震源深度、距离震中的远近以及地震波通过的介质条件等多种因素有关。一次地震只有一个震级,但不同的地点有不同的烈度。 2.如何考虑不同类型建筑的抗震设防?规范将建筑物按其用途分为四类:甲类(特殊设防类)、乙类(重点设防类)、丙类(标准设防类)、丁类(适度设防类)。 1 )标准设防类,应按本地区抗震设防烈度确定其抗震措施和地震作用,达到在遭遇高于当地抗震设防烈度的预估罕遇地震影响时不致倒塌或发生危及生命安全的严重破坏的抗震设防目标。 2 )重点设防类,应按高于本地区抗震设防烈度一度的要求加强其抗震措施;但抗震设防烈度为 9 度时应按比 9 度更高的要求采取抗震措施;地基基础的抗震措施,应符合有关规定。同时,应按本地区抗震设防烈度确定其地震作用。 3 )特殊设防类,应按高于本地区抗震设防烈度提高一度的要求加强其抗震措施;但抗震设防烈度为 9 度时应按比 9 度更高的要求采取抗震措施。同时,应按批准的地震安全性评价的结果且高于本地区抗震设防烈度的要求确定其地震作用。 4 )适度设防类,允许比本地区抗震设防烈度的要求适当降低其抗震措施,但抗震设防烈度为 6 度时不应降低。一般情况下,仍应按本地区抗震设防烈度确定其地震作用。 3.怎样理解小震、中震与大震? 小震就是发生机会较多的地震,50 年年限,被超越概率为63.2%;中震,10%;大震是罕遇的地震,2%。 4、概念设计、抗震计算、构造措施三者之间的关系? 建筑抗震设计包括三个层次:概念设计、抗震计算、构造措施。概念设计在总体上把握抗震设计的基本原则;抗震计算为建筑抗震设计提供定量手段;构造措施则可以在保证结构整体性、加强局部薄弱环节等意义上保证抗震计算结果的有效性。他们是一个不可割裂的整体。

相关文档
最新文档