手持GPS全参数设置及全国各地坐标转换全参数

手持GPS全参数设置及全国各地坐标转换全参数
手持GPS全参数设置及全国各地坐标转换全参数

如何设置手持GPS相关参数及全国各地坐标转换参数一、如何设置手持GPS相关参数

(一)手持GPS的主要功能

手持GPS,指全球移动定位系统,是以移动互联网为支撑、以GPS 智能手机为终端的GIS系统,是继桌面Gis、WebGis之后又一新的技术热点。目前功能最强的手持GPS,其集成GPRS通讯、蓝牙技术、数码相机、麦克风、海量数据存储、USB/RS232端口于一身,能全面满足您的使用需求。

主要功能:移动GIS数据采集、野外制图、航点存储坐标、计算长度、面积角度(测量经纬度,海拔高度)等各种野外数据测量;有些具有双坐标系一键转换功能;有些置全国交通详图,配各地区地理详图,详细至乡镇村落,可升级细化。

(二)手持GPS的技术参数

因为GPS卫星星历是以WGS84坐标系为根据建立的,手持GPS 单点定位的坐标属于WGS84坐标系。WGS84坐标系所采用的椭球基本常数为:地球长半轴a=6378137m;扁率F=1/298.257223563。

常用的54、80及国家2000公里网坐标系,属于平面高斯投影坐标系统。54坐标系,采用的参考椭球是克拉索夫斯基椭球,该椭球的参数为:地球长半轴a=6378245m;扁率F=1/298.2。80坐标系,其椭球的参数为:地球长半轴a=6378140m;扁率F=1/

298.257。国家2000坐标系,其椭球的参数为:地球长半轴

a=6378137m;扁率F=1/298.298.257222101。

(三)手持GPS的参数设置

要想测量点位的54、80及国家2000公里网高精度坐标数据,必须学习坐标转换的基础知识,并分别科学设置手持GPS的各项参数。

首先,在手持式GPS接收机应用的区域(该区域不宜过大),从当地测绘部门收集1至两个已知点的54、80或国家2000坐标系统的坐标值;然后在对应的点位上读取WGS84坐标系的坐标值;之后采用《万能坐标转换》软件,可计算出DX、DY、DZ的值。

将计算出的DX、DY、DZ三个参数与DA、DF、中央经线、投影比例、东西偏差、南北偏差等六个常数值输入GPS接收机。将GPS 接收机的网格转换为“UserGrid”格式,实际测量已知点的公里网纵、横坐标值,并与对应的公里网纵、横坐标已知值进行比较,二者相差较大时要重新计算或查找出现问题的原因。详细过程可查看《万能坐标转换》软件的【手持GPS参数设置】界面。

(四)自定义坐标系统(User)投影参数的确定

1、自己观测计算

新机拿到手之后,供应商都给提供一个投影参数,这对于要求不高的一般用户来说基本可以满足工作需要,而对于一些专业

用户来说,就要自己来测算参数。一般型号的导航型手持GPS自定义坐标系统(User)投影参数设置界面都提供了五个变量(△X、△Y、△Z、△A、△F)需要设置,而实际工作中,后两个参数(△A、△F)针对某一坐标系统来说为固定参数(54坐标系△A=-108、△F=0.0000005),无需改动,需要自己测算的参数主要为前三个(△X、△Y、△Z),一般称为三参数。

2、经验坐标

三参数对于非专业人员大多采用经验坐标,可别人的成果。

已知坐标点校正GPS的误差

(1)用GPS去测量已知坐标点得到坐标XGPS和YGPS;

(2)计算两者的差值:△X=XGPS-X已知△Y=YGPS-Y已知

(3)计算FALSE′E′(东西偏差)和FALSE′N′(南北偏差)

东西偏差=500000-△X南北偏差=0-△Y

(4)更改GPS参数中的FALSE′E′(东西偏差)和FAL

坐标表示方法:

坐标有两种:坐标(经纬度坐标)、平面坐标(直角坐标)坐标表示方法(纬度,经度,高程)符号为(B,L,H)

平面坐标(X,Y,h)――设计书上的(X,Y,)和CAD平面图上的x,y颠倒。

备注:注意的是在CAD平面图上,x为平面坐标中的Y;y为平面坐标中的X,

平面坐标X为7位数;Y为8位数,前两位为带号。但在手持GPS 上,Y前两

位即带号不要,变为X为7位数;Y为6位数。

例:

手持GPS中的DA和DF是在自定义坐标的时候输入的值:54输入DA(该数值为-108),DF(该数值0.0000005),80输入DA(该数值为-3),DF(该数值0)我们是“天脉导航信息”,如果还有什么问题,你可以随时咨询!

二、全国各地坐标转换参数

(一)

(二)

(三)

(四)

(五)

(六)

中央经线:

(各地市中心经度:114度;117度;114度;江门114度; 111度;111度;111度;114度;117度;114;114;111:111;揭阳117)

投影比例:+1.0000000

东西偏差:+500000.0

南北偏差:0.0

WGS-84转54坐标参数:

手持GPS参数设置及全国各地坐标转换参数复习过程

如何设置手持GPS相关参数及全国各地坐标转换参数一、如何设置手持GPS相关参数 (一)手持GPS的主要功能 手持GPS,指全球移动定位系统,是以移动互联网为支撑、以GPS 智能手机为终端的GIS系统,是继桌面Gis、WebGis之后又一新的技术热点。目前功能最强的手持GPS,其集成GPRS通讯、蓝牙技术、数码相机、麦克风、海量数据存储、USB/RS232端口于一身,能全面满足您的使用需求。 主要功能:移动GIS数据采集、野外制图、航点存储坐标、计算长度、面积角度(测量经纬度,海拔高度)等各种野外数据测量;有些具有双坐标系一键转换功能;有些内置全国交通详图,配各地区地理详图,详细至乡镇村落,可升级细化。 (二)手持GPS的技术参数 因为GPS卫星星历是以WGS84大地坐标系为根据建立的,手持GPS单点定位的坐标属于WGS84大地坐标系。WGS84坐标系所采用的椭球基本常数为:地球长半轴a=6378137m;扁率F=1/298.257223563。 常用的北京54、西安80及国家2000公里网坐标系,属于平面高斯投影坐标系统。北京54坐标系,采用的参考椭球是克拉索夫斯基椭球,该椭球的参数为:地球长半轴a=6378245m;扁率F=1

/298.2。西安80坐标系,其椭球的参数为:地球长半轴 a=6378140m;扁率F=1/298.257。国家2000坐标系,其椭球的参数为:地球长半轴a=6378137m;扁率F=1/298.298.257222101。 (三)手持GPS的参数设置 要想测量点位的北京54、西安80及国家2000公里网高精度坐标数据,必须学习坐标转换的基础知识,并分别科学设置手持GPS的各项参数。 首先,在手持式GPS接收机应用的区域内(该区域不宜过大),从当地测绘部门收集1至两个已知点的北京54、西安80或国家2000坐标系统的坐标值;然后在对应的点位上读取WGS84坐标系的坐标值;之后采用《万能坐标转换》软件,可计算出DX、DY、DZ的值。 将计算出的DX、DY、DZ三个参数与DA、DF、中央经线、投影比例、东西偏差、南北偏差等六个常数值输入GPS接收机。将GPS接收机的网格转换为“UserGrid”格式,实际测量已知点的公里网纵、横坐标值,并与对应的公里网纵、横坐标已知值进行比较,二者相差较大时要重新计算或查找出现问题的原因。详细过程可查看《万能坐标转换》软件的【手持GPS参数设置】界面。 (四)自定义坐标系统(User)投影参数的确定

GPS安装说明

GPS安装调试说明 1、GPS概述 1.1概述 本系统用于表面位移监测采用GPS全自动监测方式,所采用的设备为广州南方测绘仪器有限公司生产的GPS接收机及其配套设施(GPS天线、软件等)。 通过采用多台高精度型GPS接收机及其配套设施(GPS天线、软件等),来采集观测点坐标数据,通过多点GPS高精度解算技术来解算GPS观测点的坐标,从而达到实时监测坝体表面位移(如位移方向、位移速率、累计位移等)的目的。 1.2设备参数 : NETS2型GPS接收机实物图

正面 背面 技术参数: 设备名称NETS2 监测精度平面:±2.5mm,高程:±5.0mm 初始化时间初始化时间<10秒;初始化可靠性>99.9%工作电压外接直流电,宽输入范围12 ~15V 尺寸:20.5cm长×13cm宽×5.3cm高 重量:1.1kg 电压:外接直流电,宽输入范围12 ~ 15V 主机功耗:3.0W

防震:坚固铝合金外壳加塑胶圈,抗1米自然跌落 防水:用水冲洗无任何伤害 防尘:完全防止粉尘进入 等级:IP67 接口:一个电源接口,两个RS232接口,一个10/100M以太网接口,一个ANT接口,支持网络远程控制 工作环境:工作温度:-45℃~ +65℃存储温度:-65℃~ +85℃1.3标准配置 其他:供电、通讯、防雷等根据现场情况进行配置。 2、安装说明 2.1硬件设备 GPS主机及适配器、GPS天线、GPS天线电缆及天线罩、串口线 供电:220VAC(市电)或12VDC(太阳能供电) 通讯:百兆收发器及适配器(或GPRS通讯模块或无线网桥) 防雷:电源防雷器、天馈浪涌保护器、信号浪涌保护器 2.2工具及辅材 工具:钳子、剪刀、螺丝刀等

手持GPS全参数设置及全国各地坐标转换全参数.docx

实用标准文档 如何设置手持 GPS 相关参数及全国各地坐标转换参数 一、如何设置手持GPS 相关参数 (一)手持 GPS的主要功能 手持 GPS,指全球移动定位系统,是以移动互联网为支撑、以GPS智能手机为终端的GIS系统,是继桌面 Gis、WebGis 之后又一新的技术热点。目前功能最强的手持GPS,其集成 GPRS通讯、蓝牙技术、数码相机、麦克风、海量数据存储、 USB/RS232 端口于一身,能全面满足您的使用需求。 主要功能:移动 GIS数据采集、野外制图、航点存储坐标、计算长度、面积角度(测 量经纬度,海拔高度)等各种野外数据测量;有些具有双坐标系一键转换功能;有些内置 全国交通详图,配各地区地理详图,详细至乡镇村落,可升级细化。 (二)手持 GPS的技术参数 因为 GPS卫星星历是以 WGS84 大地坐标系为根据建立的,手持 GPS单点定位 的坐标属于 WGS84 大地坐标系。 WGS84 坐标系所采用的椭球基本常数为:地球长半轴a=6378137m ;扁率 F=1 /298.257223563 。 常用的北京 54 、西安 80 及国家 2000 公里网坐标系,属于平面高斯投影坐标系统。北京 54 坐标系,采用的参考椭球是克拉索夫斯基椭球,该椭球的参数为:地球长半 轴a=6378245m;扁率F=1/298.2。西安80坐标系,其椭球的参数为:地球长半 轴a=6378140m;扁率F=1/298.257。国家2000坐标系,其椭球的参数为:地球长半轴 a=6378137m;扁率F=1/298. 257222101。 (三)手持 GPS的参数设置

要想测量点位的北京 54 、西安 80 及国家 2000 公里网高精度坐标数据,必须学 习坐标转换的基础知识,并分别科学设置手持 GPS的各项参数。 首先,在手持式 GPS接收机应用的区域内 (该区域不宜过大 ),从当地测绘部门收 集 1至两个已知点的北京 54 、西安 80 或国家 2000 坐标系统的坐标值;然后在对应的 点位上读取WGS84 坐标系的坐标值;之后采用《万能坐标转换》软件,可计算出DX 、DY、 DZ 的值。 将计算出的 DX 、 DY、 DZ 三个参数与 DA 、DF、中央经线、投影比例、东西偏差、南北偏差等六个常数值输入GPS接收机。将 GPS接收机的网格转换为 “UserGrid ”格式,实际测量已知点的公里网纵、横坐标值,并与对应的公里网纵、横坐标已知值进行比较,二者相差较大时要重新计算或查找出现问题的原因。详细 过程可查看《万能坐标转换》软件的【手持GPS参数设置】界面。 (四)自定义坐标系统(User )投影参数的确定 1、自己观测计算 新机拿到手之后,供应商都给提供一个投影参数,这对于要求不高的一般用户 来说基本可以满足工作需要,而对于一些专业用户来说,就要自己来测算参数。一 般型号的导航型手持GPS自定义坐标系统( User )投影参数设置界面都提供了五个 变量(△X、△Y、△Z、△A 、△F)需要设置,而实际工作中,后两个参数(△A 、△F)针对某一坐标系统来说为固定参数(北京 54 坐标系△A=-108 、△F=0.0000005 ),无需改动,需要自己测算的参数主要为前三个(△ X、△Y、△Z),一般称为三参数。 2、经验坐标

手持GPS参数设置及全国各地坐标转换参数

如何设置手持GPS相关参数及全国各地坐标转换参数 一、如何设置手持GPS相关参数 (一)手持GPS的主要功能 手持GPS,指全球移动定位系统,是以移动互联网为支撑、以GPS智能手机为终端的GIS 系统,是继桌面Gis、WebGis之后又一新的技术热点。目前功能最强的手持GPS,其集成GPRS通讯、蓝牙技术、数码相机、麦克风、海量数据存储、USB/RS232端口于一身,能全面满足您的使用需求。 主要功能:移动GIS数据采集、野外制图、航点存储坐标、计算长度、面积角度(测量经纬度,海拔高度)等各种野外数据测量;有些具有双坐标系一键转换功能;有些置全国交通详图,配各地区地理详图,详细至乡镇村落,可升级细化。 (二)手持GPS的技术参数 因为GPS卫星星历是以WGS84坐标系为根据建立的,手持GPS单点定位的坐标属于WGS84坐标系。WGS84坐标系所采用的椭球基本常数为:地球长半轴a=6378137m;扁率F=1/298.257223563。 常用的54、80及国家2000公里网坐标系,属于平面高斯投影坐标系统。54坐标系,采用的参考椭球是克拉索夫斯基椭球,该椭球的参数为:地球长半轴 a=6378245m;扁率F=1/298.2。80坐标系,其椭球的参数为:地球长半轴a=6378140m;扁率F=1/298.257。国家2000坐标系,其椭球的参数为:地球长半轴a=6378137m;扁率F=1/298. 257222101。 (三)手持GPS的参数设置

要想测量点位的54、80及国家2000公里网高精度坐标数据,必须学习坐标转换的基础知识,并分别科学设置手持GPS的各项参数。 首先,在手持式GPS接收机应用的区域(该区域不宜过大),从当地测绘部门收集1至两个已知点的54、80或国家2000坐标系统的坐标值;然后在对应的点位上读取WGS84坐标系的坐标值;之后采用《万能坐标转换》软件,可计算出DX、DY、DZ 的值。 将计算出的DX、DY、DZ三个参数与DA、DF、中央经线、投影比例、东西偏差、南北偏差等六个常数值输入GPS接收机。将GPS接收机的网格转换为“UserGrid”格式,实际测量已知点的公里网纵、横坐标值,并与对应的公里网纵、横坐标已知值进行比较,二者相差较大时要重新计算或查找出现问题的原因。详细过程可查看《万能坐标转换》软件的【手持GPS参数设置】界面。 (四)自定义坐标系统(User)投影参数的确定 1、自己观测计算 新机拿到手之后,供应商都给提供一个投影参数,这对于要求不高的一般用户来说基本可以满足工作需要,而对于一些专业用户来说,就要自己来测算参数。一般型号的导航型手持GPS自定义坐标系统(User)投影参数设置界面都提供了五个变量(△X、△Y、△Z、△A、△F)需要设置,而实际工作中,后两个参数(△A、△F)针对某一坐标系统来说为固定参数(54坐标系△A=-108、△F=0.0000005),无需改动,需要自己测算的参数主要为前三个(△X、△Y、△Z),一般称为三参数。

参考系坐标系及转换汇总

1 天球坐标系、地球坐标系和卫星测量中常用的坐标系的建立方法。天球直角坐标系 天球坐标系 天球球面坐标系 坐标系 地球直角坐标系 地球坐标系 地球大地坐标系 常用的天球坐标系:天球赤道坐标系、天球地平坐标系和天文坐标系。在天球坐标系中,天体的空间位置可用天球空间直角坐标系或天球球面坐标系两种方式来描述。 1 天球空间直角坐标系的定义 地球质心O为坐标原点,Z轴指向天球北极,X轴指向春分点,Y轴垂直于XOZ平面,与X轴和Z轴构成右手坐标系。则在此坐标系下,空间点的位置由坐标(X,Y,Z)来描述。 春分点:当太阳在地球的黄道上由天球南半球进入北半球,黄道与赤道的交 点).

2 天球球面坐标系的定义 地球质心O为坐标原点,春分点轴与天轴(天轴:地球自转的轴)所在平面为天球经度(赤经)测量基准——基准子午面,赤道为天球纬度测量基准而建立球面坐标。空间点的位置在天球坐标系下的表述为(r,α,δ)。

表示:2-1天球空间直角坐标系与天球球面坐标系的关系可用图

岁差和章动的影响 岁差:地球实际上不是一个理想的球体,地球自转轴方向不再保持不变,这 使春分点在黄道上产生缓慢的西移,这种现象在天文学中称为岁差。章动:在日月引力等因素的影响下,瞬时北天极将绕瞬时平北天极旋转,大致呈椭圆,这种现象称为章动。 极移:地球自转轴相对地球体的位置并不是固定的,因而,地极点在地球表面上的位置,是随时间而变化的,这种现象称为极移。地球的自转轴不仅受日、月引力作用而使其在空间变化,而且还受地球内部质量不均匀影响在地球内部运动。前者导致岁差和章动,后者导致极移。 协议天球坐标系:为了建立一个与惯性坐标系统相接近的坐标系,人们通常选择某一时刻,作为标准历元,并将此刻地球的瞬时自转轴(指向北极)和地心至瞬时春分点的方向,经过瞬时的岁差和章动改正后,分别作为X轴和Z轴的指向,。协议天球坐标系由此建立的坐标系称为 3 地球坐标系

手持GPS参数设置方法

摘要:GPS所使用的坐标系统是WGS-84坐标系统,而我们使用的地图资源大部分都属于1954年北京坐标系或1980年西安坐标系。不同的坐标系统给我们的使用带来了困难,于是就出现了如何把WGS-84坐标转换到1954北京坐标系或1980西安坐标系上来的问题。从理论上讲,不同坐标系之间存在着平移和旋转的关系,要使手持GPS所测量的数据转换为自己需要的坐标,必须求出两个坐标系(WGS-84和北京54坐标系或西安80坐标系)之间的转换参数。由于求算转换参数专业性较强,因此,多数初用者不知如何进行GPS的参数的求得和设置。其实关键要解决两个问题,其一是自定义坐标格式(User UTM Grid)的确定;其二是自定义坐标系统(User)投影参数的确定。 关键词:GPS;坐标格式;坐标系统;投影分带;转换参数。 GPS(Global Positioning System)即全球卫星定位系统,是由美国建立的一个卫星导航定位系统,利用该系统,用户可以在全球范围内实现全天候、连续、实时地进行三维导航定位和测速。随着GPS定位技术的发展,从最初的军用已发展到民用领域,并已得到广泛的应用和普及。 在GPS定位技术的应用和发展过程中,根据不同的市场需求,由厂家生产出了各种不同型号和用途的接收机,其中,市场销量最大、使用人数最多、使用者大多专业性不强的导航型手持GPS在使用过程中存在的问题较多,最主要的问题是手持GPS所使用的坐标系统是WGS-84坐标系统,而我们使用的地图资源大部分都属于1954年北京坐标系或1980年西安坐标系。不同的坐标系统给我们的使用带来了困难,于是就出现了如何把WGS-84坐标转换到1954北京坐标系或1980西安坐标系上来的问题。从理论上讲,不同坐标系之间存在着平移和旋转的关系,要使手持GPS所测量的数据转换为自己需要的坐标,必须求出两个坐标系(WGS-84和北京54坐标系或西安80坐标系)之间的转换参数。由于求算转换参数专业性较强,因此,多数初用者不知如何进行GPS的参数的求得和设置。下面针对这部分使用人员就一些关键问题介绍如下。 一、自定义坐标格式(User UTM Grid)的确定 当我们使用一部新的GPS或到一个新的工区工作时,首先要做的是对手中的GPS进行参数设置,而参数设置第一步就是确定工区自定义坐标格式(User UTM Grid)。确定自定义坐标格式中最重要的一项是工作区中央子午线经度的确定,这是因为在使用国家或地方坐标系统时,这是一个经常需要变更的参数。那么如何方便快捷的完成这一设置呢?一般来说当我们计划完成一项新的工作或进行一项工程施工时,都事前划定一个行进路线或工作区域,同时配合使用地形图或设计图,这就为我们确定工作区中央子午线经度提供了最基本条件。 在研究如何利用地形图或给定坐标来确定工作区中央子午线经度之前我们有必要大致了解一下地形图的投影分带问题。 地球总体上是以大地体表示的,为了能进行各种运算,又以参考椭球体来代替大地体。要将椭球面上的图形描绘在平面上,需要采用地图投影的方法。我国在建立统一的平面直角坐标系统时,规定在大地控制测量和地形测量中采用高斯投影。为了使投影误差不致影响测图精度,规定以经差6°或3°为准来限定高斯投影范围,每一投影范围就叫做一个投影带。如图1所示从起始子午线开始,自西向东以经差6°化为一带,将整个地球划分成60个投影带并顺序编号,叫做高斯6°投影带(简称6°带)。6°带各带的中央子午线,其经度分别为3°、9°……123°、129°……357°。每一投影带两侧的子午线叫做分带子午线,6°带的分带子午线的精度为0°、6°……120°、126°、132°……。

参考系坐标系及转换

1天球坐标系、地球坐标系和卫星测量中常用的坐标系的建立方法。 L天球直角坐标系 厂天球坐标系 天球球面坐标系 地球直角坐标系地球大地坐标系 常用的天球坐标系:天球赤道坐标系、天球地平坐标系和天文坐标系。 在天球坐标系中,天体的空间位置可用天球空间直角坐标系或天球球面坐标系两种方式来描述。 1天球空间直角坐标系的定义 地球质心0为坐标原点,Z轴指向天球北极,X轴指向春分点,丫轴垂直于XOZ 平面,与X轴和Z轴构成右手坐标系。则在此坐标系下,空间点的位置由坐标(X,丫Z)来描述。 春分点:当太阳在地球的黄道上由天球南半球进入北半球,黄道与赤道的交点)

A <空闵直笥坐瑟厂K V : z 丿的楚辽” 2天球球面坐标系的定义 地球质心0为坐标原点,春分点轴与天轴(天轴:地球自转的轴)所在平面为天 球经度(赤经)测量基准一一基准子午面,赤道为天球纬度测量基准而建立球面 坐标。空间点的位置在天球坐标系下的表述为(r ,a,S )。 天欢申诗与地球质?M 重合T 赤礙刊为舍天黏 和感分点的天球子牛面 与过天体$的天球子牛面 之间的夾角,未纬 S 为 原点Mi 天体£的连規与 天球击道面之间的夹角, 旬題丫为展点Mi 天体S 球球】?坐抚1就,S 1 r )的C 义: 天球空间直角坐标系与天球球面坐标系的关系可用图 2-1表示: 感鼻—地I 球质心M 一孑塾一指向天球北奴Pn 、 ¥菇'一垂直于XMZ 平面, 与X 抽和Z 抽枸成右 手坐 标系统。 Pn A Z y X 1 \y X 奋 My\5 Ps / /

对同一空间点,直角坐标糸与其著效的球面坐标糸参教间有如下转换关务: C X - /cos a cos S < Y= / sin cos -Z = ysin 5 Y V a = arctan —— L Xz d -arctail . 岁差和章动的影响 岁差:地球实际上不是一个理想的球体,地球自转轴方向不再保持不变,这使春分点在黄道上产生缓慢的西移,这种现象在天文学中称为岁差。 章动:在日月引力等因素的影响下,瞬时北天极将绕瞬时平北天极旋转,大致呈椭圆,这种现象称为章动。 极移:地球自转轴相对地球体的位置并不是固定的,因而,地极点在地球表面上的位置,是随时间而变化的,这种现象称为极移。地球的自转轴不仅受日、月引力作用而使其在空间变化,而且还受地球内部质量不均匀影响在地球内部运动。 前者导致岁差和章动,后者导致极移。 协议天球坐标系:为了建立一个与惯性坐标系统相接近的坐标系,人们通常选择某一时刻,作为标准历元,并将此刻地球的瞬时自转轴(指向北极)和地心至瞬 时春分点的方向,经过瞬时的岁差和章动改正后,分别作为 X轴和Z轴的指向, 由此建立的坐标系称为协议天球坐标系。天味奋 5 y X X Ps

手持GPS参数设置及全国各地坐标转换参数17597

如何设置手持GPS相关参数及全国各地坐标转换参数、如何设置手持GPS相关参数 (一)手持GPS的主要功能 手持GPS,指全球移动定位系统,是以移动互联网为支撑、以GPS 智能手机为终端的GIS系统,是继桌面Gis、WebGis之后又一新的技术热点。目前功能最强的手持GPS,其集成GPRS通讯、蓝牙技术、数码相机、麦克风、海量数据存储、USB/RS232端口于一身,能全面满足您的使用需求。 主要功能:移动GIS数据采集、野外制图、航点存储坐标、计算长度、面积角度(测量经纬度,海拔高度)等各种野外数据测量;有些具有双坐标系一键转换功能;有些内置全国交通详图,配各地区地理详图,详细至乡镇村落,可升级细化。 (二)手持GPS的技术参数因为GPS卫星星历是以WGS84大地坐标系为根据建立的,手 持GPS单点定位的坐标属于WGS84大地坐标系。WGS84坐标系 所采用的椭球基本常数为:地球长半轴a=6378137m;扁率F=1 / 298.257223563。 常用的北京54、西安80及国家2000公里网坐标系,属于平面 高斯投影坐标系统。北京54坐标系,采用的参考椭球是克拉索夫 斯基椭球,该椭球的参数为:地球长半轴a=6378245m;扁率F=1

/298.2。西安 80坐标系,其椭球的参数为:地球长半轴 a=6378140m ;扁率F=1 /298.257。国家2000坐标系,其椭球的参 数为:地球长半轴 a=6378137m ;扁率 F=1 /298.298.257222101。 (三)手持GPS 的参数设置 要想测量点位的北京 54、西安80及国家2000公里网高精度坐 标数据,必须学习坐标转换的基础知识,并分别科学设置手持 GPS 的各项参数。 首先,在手持式GPS 接收机应用的区域内(该区域不宜过大), 从当地测绘部门收集 1至两个已知点的北京 54、西安80或国家 2000坐标系统的坐标值;然后在对应的点位上读取 WGS84坐标 系的坐标值;之后采用《万能坐标转换》软件,可计算出 DY 、DZ 的值。 将计算出的DX 、DY 、DZ 三个参数与DA 、DF 、中 投影比例、东西偏差、南北偏差等六个常数值输入 GPS 接收机。 将GPS 接收机的网格转换为“ UserGrid ”格式,实际测量已知点 的公里网纵、横坐标值,并与对应的公里网纵、横坐标已知值进 行比较, 二者相差较大时要重新计算或查找出现问题的原因。 细过程可查看《万能坐标转换》软件的【手持 GPS 参数设置】界 面。 (四)自定义坐标系统(User )投影参数的确定 DX 、 央经线、

手持GPS设置方法

手持GPS设置方法 一、投影带带号和中央子午线的计算 1、投影带带号确定 1)在地形图底边(顶边)的左右两个端点查看横坐标,小字体的前两位就是。2)计算: 6度带带号N6等于所在位置经度除以6取整数再加1,若没有余数则商数就是带号,例如所在位置经度为126°07′,则商数为21,余数为07′,带号N6=21+1=22 3度带带号N3等于所处位置经度除以3四舍五入取整数。 2、中央子午线经度计算 6度带中央子午线经度L6=N6×6°-3° 3度带中央子午线经度L3=N3×3° 二、国产GPS 国产GPS中内置北京54坐标系和西安80坐标系,使用前先看地形图是用的哪个坐标系,找出所在投影带的带号并计算出中央子午线经度,将GPS坐标系统选择为相应的坐标系统,设置好中央子午线经度即可使用。 三、台湾、进口GPS 台湾及国外产GPS中没有大陆坐标系统,机器默认的是WGS84坐标系统。需要校正到与地形图相匹配的坐标系统。具体操作步骤如下: 第一步:测区范围内,在均匀分布的不少于三个已知三角点上(此时选择的三角点应尽量分布在工作区的四周),先将GPS接收机内部的参数全部设为“0”,即DX=0、DY=0、DZ=0、DA=0、DF=0,其中DX、DY、DZ为同一点两种坐标系统三维坐标差值,DA为两种坐标系统长半轴差值,DF为两种坐标系统扁率的差值。上述操作完成后,用GPS接收机分别观测已知三角点的坐标,根据观测结果与已知坐标值求出各自的差值,并取其平均值作为DX、DY、DZ的改正值(因GARMIN 公司所产系列手持定位仪目前市面上除桂冠、展望两种型号具有气压测高功能外,其余几种型号均为GPS测高、其精度较低,无法利用,因此可将DZ设为0,也可将DZ设为其改正数,改正与否对其它参数设置均没有影响),此时上述改正数只作为参考。 第二步:在已进行观测的三角点上将接收机的参数DX、DY、DZ设为已经取得的改正数,将DA、DF设为相应的差值,即a(84)-a(54)=DA=-108、α(84)-α(54)=DF=0.0000005,或a(84)—a(80)=-3、α(84)-α(80)=0.00000003。再在相同的三角点上观测已知点坐标,根据观测结果对DX、DY、DZ加入第二次新的改正数。此时,再用GPS接收机第二次观测所有已知点的坐标进行第二次改正,直到GPS接收机观测的坐标值接近已知点坐标,其差值一般小于5米时,取其各点的观测值与已知坐标的差值的平均值作为DX、DY、DZ的最终改正数,上述操作一般循环到第二次即可得到理想的改正数。

GPS数据处理参数设置及基本手段

GPS数据处理参数设置及基本手段 1.在GPS处理栏里对天线高有误的测站点击属性,更改天线高。 2.GPS处理栏目中右键点击“处理参数”,在“概要”中勾选“显示 高级参数”;在“附加输出”中勾选“残差”;在“自动处理”中勾选“Re-Compute already computed baselines”,即选取“重新计算已经计算的基线”选项,以保证每次都计算处理基线。见下图 2、在平差栏中右键点击“配置-一般参数”项,对标准差中“计算使用”项选取“仅对GPS观测值应用缺省设置”。见下图

3、在“GPS处理栏”中全部选择,进行处理,在“结果”栏中得到每一条基线处理结果,在模糊度状态为是的情况下进行存储,然后逐个对基线点右键进行“分析”,得到如下图所示残差结果,注意在“类型”中选“双差”、在“相位”中选“L2”或“L1”,观察标准差值,一般为2~5cm为正常,否则应在卫星窗口中对标准差大的卫星的时间段适当进行剔除修改。修改完毕还应重新处理比对残差结果。 4、一般来说GPS成果如果一次性通过平差,F检验较小或是较为理想,则没有太多必要对卫星进行修改,毕竟在基线较多时,修改工作量较大,但效果并不十分明显。理论上F检验值越小平差结果越可靠,但同时网和环平差结果中的指标才是规范中规定的硬指标。 注:网平差结果中的GPS基线向量残差数据中的“残差PPM”为:残差/边长*1000000。 如何解决工程测量中大面积GPS控制网

因椭球因素造成精度损失的问题 1、在84坐标系统下进行基线解算、平差、得到84经纬度坐标; 2、新建投影,采用高斯投影,中央子午线应选用离隧道中间最近的, 不一定要正好是3度带或1.5度带的整带度数,带宽可有1.5或1度,东方向加上500公里。 3、新建坐标系,坐标系投影采用第2步新建的投影,椭球采用北京 54椭球; 4、新建项目,将第3步新建的坐标系赋予该项目。在新建项目中新 建控制点,采用地方坐标中的大地坐标,选用“经度、纬度、高程”格式,高程采用正常高,即实际标高。输入距离控制网中心最近的控制点或自定的坐标起算点(最好在控制网中央区域选点)在平差后的84坐标系统中的经纬度坐标(可用手工在第1步中抄下来); 5、采用经典三维法进行投影匹配,在匹配时,注意在配置选项中的 经典三参数标签中选择3个平移选项。得到最终成果(即为投影到北京54椭球大地水准面上的坐标系统,也可进行坐标转换,整体转换为地方格网坐标。如果没有出现所要的数据项,则在点选项卡中点右键,在视图中勾上所要的数据即可。) 6、ASCII文件,假设为 beijing54_BLH.txt。 7、新建椭球、更改长半轴a值(目的是将控制网投影到施工面上,

GPS四参数设置

GPS四参数设置 。 南方RTK使用中参数的求取及分类 一、控制点坐标库的应用 GPS 接收机输出的数据是WGS-84经纬度坐标,需要转化到施工测量坐标,这就需要软件进行坐标转换参数的计算和设置,控制点坐标库就是完成这一工作的主要工具。 控制点坐标库是计算四参数和高程拟合参数的工具,可以方便直观的编辑、查看、调用参与计算四参数和高程拟合参数的校正控制点。在进行四参数的计算时,至少需要两个控制点的两套坐标系坐标参与计算才能最低限度的满足控制要求。高程拟合时,使用三个点的高程进行计算时,控制点坐标库进行加权平均的高程拟合;使用4到6个点的高程时,控制点坐标库进行平面高程拟合;使用7个以上的点的高程时,控制点坐标库进行曲面拟合。控制点的选用和平面、高程拟合都有着密切而直接的关系,这些内容涉及到大量的布设经典测量控制网的知识,在这里没有办法多做介绍,建议用户查阅相关测量资料。 利用控制点坐标库的做法大致是这样的:假设我们利用A、B 这两个已知点来求取参数,那么首先要有A、B 两点的GPS 原始记录坐标和测量施工坐标。 A、B 两点的GPS原始记录坐标的获取有两种方式:一种是布设静态控制网,采用静态控制网布设时后处理软件的GPS 原始记录坐标;另一种是GPS 移动站在没有任何校正参数起作用的Fixed(固定解)状态下记录的GPS 原始坐标。其次在操作时,先在控制点坐标库中输入A 点的已知坐标,之后软件会提示输入A 点的原始坐标,然后再输入B 点的已知坐标和B 点的原始坐标,录入完毕并保存后(保存文件为*.cot文件)控制点坐标库会自动计算出四参数和高程拟合参数。 1.1、校正参数

参考坐标与动坐标系之间的旋转变换

坐标系之间的坐标变换 取一参考坐标系Z Y X O '''',该坐标系为船舶平衡位置上,不随船舶摇荡。 取一动坐标系OXYZ ,该坐标系与船体固结,随船舶一起做摇荡运动,OX 轴位于纵中剖面内,并指向船首,OY 垂直向上,OZ 轴指向船舶右舷。 再取一坐标系Z Y X O ???,它与参考坐标系平行,原点与动坐标系重合,且仅随船体作振荡运动。这三个坐标系之间的相对位置如图所示: 角位移用欧拉角来定义。我们假设动坐标系OXYZ 的原始位置为Z Y X O ???,经三次转动转到目前的位置。 首先将坐标系Z Y X O ???绕X O ?轴转动α角,使其转到OZ 和X O ?所确定的平面,然后绕Y O ?轴旋转β角使Z O ?与OZ 重合,此时平面Y X O ''??和平面OXY 重合,最后将得到的Z Y X O ''??绕OZ 轴转动γ角,这样,坐标系OXYZ 和坐标系Z Y X O ???就完全重合。 第一次旋转可以写为: ααααcos ?sin ??sin ?cos ????Z Y Z Z Y Y X X '+'='-'== 写为矩阵形式为 ????? ? ??''????? ??-=?????? ??Z Y X Z Y X ???cos sin 0sin cos 000 1???αα αα

同理,第二次旋转得 ?????? ??''????? ??-=?????? ??''Z Y X Z Y X ??cos 0sin 010sin 0cos ???ββ ββ 第三次旋转得, ???? ? ??????? ??-=?????? ??''Z Y X Z Y X 10 0cos sin 0sin cos ??γγγ γ 综合上面三式,得 ???? ? ????? ? ? ??++--+-+-=?????? ??Z Y X Z Y X βαγ αγβαγ αγβαβαγαγβαγαγβαβγ βγβcos cos cos sin sin sin cos sin sin cos sin cos cos sin cos cos sin sin sin sin cos cos sin sin sin sin cos cos cos ???则 [][][]X r X O '+='

手持GPS参数设置

其一是自定义坐标格式(User UTM Grid)的确定 其二是自定义坐标系统(User)投影参数的确定。 一、自定义坐标格式(User UTM Grid)的确定: 工作区中央子午线经度的确定 1、根据投影带号确定工作区中央子午线经度 如果我们用L0代表中央子午线经度;以N3、N6分别代表3°带和6°带带号,根据上述投影分带关系可以得出两个这样的计算公式: (1)、L0=N3×3° (2)、L0=N6×6°-3° 2、根据大地坐标值(L)来确定工作区中央子午线经度 6°带带号算法是用L值整数位除以6 ,取整数商加1,例如,已知目标点经度L为127°18′35″,根据计算得知其分带号是22(127÷6+1=22);3°带带号算法是将L值换算成度除以3按四舍五入取整数值即为带号,例如,已知目标点经度L为127°18′35″,根据计算得知其分带号是42(127.31÷3=42.437, 四舍五入取整数值即为42) 3、其他相关参数设置为:在我国境内中央子午线经度应设置为东经E,投影 比例参数为1,东西偏差为500000,南北偏差为0,并设单位为米。一般情况下,这些参数保持默认设置。 二、自定义坐标系统(User)投影参数的确定。 1、自己观测计算 新机拿到手之后,供应商都给提供一个投影参数,这对于要求不高的一般用户来说基本可以满足工作需要,而对于一些专业用户来说,就要自己来测算参数。一般型号的导航型手持GPS自定义坐标系统(User)投影参数设置界面都提供了五个变量(△X、△Y、△Z、△A、△F)需要设置,而实际工作中,后两个参数(△A、△F)针对某一坐标系统来说为固定参数(北京54坐标系△A=-108、△F=0.0000005; 北京54坐标系△A=-30、△F=0.0000000),无需改动,需要自己测算的参数主要为前三个(△X、△Y、△Z),一般称为三参数。 三参数对于非专业人员大多采用经验坐标,手机别人的成果。 已知坐标点校正GPS的误差 1、用GPS去测量已知坐标点得到坐标XGPS和YGPS; 2、计算两者的差值:△X=XGPS-X已知△Y=YGPS-Y已知 3、计算FALSE′E′(东西偏差)和FALSE′N′(南北偏差) 东西偏差=500000-△X南北偏差=0-△Y 4、更改GPS参数中的FALSE′E′(东西偏差)和FAL

坐标系、坐标参照系、坐标变换、投影变换

坐标系、坐标参照系、坐标变换、投影变换 在《地图投影为什么》一文,我大略说了下为什么需要地图投影,投影坐标系需要哪些参数,这些参数(如椭球体、基准等)是做什么的。这篇就深入的谈些地图投影相关的一些概念,各种定义参考OGC标准《Spatial Reference by Coordinates》。进一步的话会介绍下开源投影库和商业软件投影相关的知识。 坐标系(coordinate system、CS):由两个、三个甚至更多个坐标轴,单位标度等组成,使得可利用数学法则计算距离、角度或其他几何元素。如坐标轴相互垂直的笛卡尔(Cartesian)坐标系;坐标轴不必相互垂直的仿射(affine)坐标系;用经纬度、高程来确定点位置的椭球面(ellipsoidal)坐标系等。 坐标参照系(coordinate reference system、CRS):通过基准面(datum)与真实世界或者说地球相关联的坐标系即坐标参照系。基准面是椭球体用来逼近某地区用的,因此各个国家都有各自的基准面。我们常用的基准面有:BEIJING1954,XIAN1980,WGS1984等。尽管两者有所不同,但由于人懒,在GIS中提及坐标系一般也指坐标参照系。坐标参照系有许多主要子类和辅助类,例如地理坐标系、投影坐标系、地心坐标系、时间坐标系等。 地心坐标系(geocentric cs、GEOCCS):以地球中心为原点,直接用X、Y、Z 来进行位置的描述,无需模拟地球球面,常用在GPS中。 地理坐标系(geographic cs、GEOGCS):带Datum的椭球面坐标系,单位经度、纬度,高程用作第三维。参数:椭球体、基准面。 投影坐标系(projected cs、PROJCS):平面坐标系,单位米、英尺等,它用 X(Easting)、Y(Northing)来描述地球上某个点的位置。它对应于某个地理坐标系,在UML中表示属于1对多的关系,1个地理坐标系经过不同的投影方式可产生多个投影坐标系。参数:地理坐标系、投影方式。 坐标操作(coordinate operation):从一个坐标参照系到另一个一对一的坐标改变(change)。包含坐标转换(coordinate conversion)和坐标变换(coordinate

高中物理质点、参考系和坐标系的知识点

高中物理质点、参考系和坐标系的知识点 1质点 1.定义:用来代替物体的有质量的点,是一个理想化的模型。 2.原则:物体的大小和形状对研究问题没有影响或影响很小能够 忽略不计。 3.内容: (1)没有形状、大小,而具有质量的点。 (2)质点是一个理想化的物理模型,实际并不存有。 (3)一个物体能否看成质点,并不取决于这个物体的大小,而是 看在所研究的问题中物体的形状、大小和物体上各部分运动情况的差 异是否为能够忽略的次要因素,要具体问题具体分析。 1参考系、坐标系 1、参考系定义:为了研究物体的运动而假定不动的物体。 2、注意点:运动的描述是相对的,因参考系的选择的不同而不同。参考系的选择以研究问题的方便为原则。 3、坐标系:为了定量描述物体的位置及位置的变化而建立的参 考系。 (1)物体相对于其他物体的位置变化,叫做机械运动,简称运动。 (2)在描述一个物体运动时,选来作为标准的(即假定为不动的) 另外的物体,叫做参考系。 对参考系应明确以下几点: ①对同一运动物体,选择不同的物体作参考系时,对物体的观察 结果往往不同的。

②在研究实际问题时,选择参考系的基本原则是能对研究对象的 运动情况的描述得到尽量的简化,能够使解题显得简捷。 ③因为今后我们主要讨论地面上的物体的运动,所以通常取地面 作为参照系? 1坐标系 为了定量地描述物体的位置及位置的变化,需要在参考系上建立 适当的坐标系。坐标系是在参考系的基础上抽象出来的概念,是抽象 化的参考系。 (1)坐标系即参考系的具体化,是在参考系上建立的,坐标系相 对参考系是静止的。 具体有: ①一维坐标:描述物体在一条直线上运动,即物体做一维运动时,能够以这条直线为x轴,在直线上规定原点、正方向和单位长度,建 立直线坐标系。如图1—1—1所示,若某一物体运动到A点,此时它 的位置坐标XA=3m,若它运动到B点,则此时它的坐标XB=-2m(“-” 表示沿X轴负方向)。 ②二维坐标:平面直角坐标,描述物体在一平面内运动,即二维 运动时,需采用两个坐标确定它的位置③三维坐标:立体坐标系,描 述物体在空间的运动。 (2)GPS定位仪——确定地球物体的具体方位,提供准确时间。 要注意以下几点: (a)坐标系相对参考系是静止的。 (b)坐标的三要素:原点、正方向、标度单位。 (c)用坐标表示质点的位置。

中海达GPS设置步骤

1.架设基站,量出仪器高度。 需注意的事项:架设完基站与电瓶连接的时候要注意红接“+”,黑接“—”,先接黑线后接红线(即先黑后红)切勿接错。 2.打开手薄,选择Hi-RTK道路版,然后双击。出现主菜单后,点击GPS。点击接收机信息,连接GPS,会出现GPS连接设置页面:(手薄:Q series/GIS+ 连接:Q系列/GIS+蓝牙端口:3 波特率:19200 GPS 类型:V8)。然后点击连接,选中接收机型号(接收机型号位于接收机下部)连接。连接完成后,点击接收机信息,选择基准站设置。单击打开后,输入点名,天线高(即仪器高度)。输入完成后,点击平滑,平滑时接收机会提示卫星锁定,平滑结果的时间为10s,平滑的误差应保证≤。平滑完成后,点击数据链,数据链为外部数据链,点击运用。然后点击其他,(差分模式:RTK 电文格式:CMR 高度截止角:5—15),最后点击确定,即基站设置完成。设置完成后电台与接收机将正常发射信号。 3.设置完基站后,点击接收机信息,断开GPS。然后连接移动站,连接移动站的步骤和连接基站的步骤基本上一样。即,点击接收机信息,连接GPS,会出现GPS连接设置页面,(手薄:Q series/GIS+ 连接:Q系列/GIS+蓝牙端口:3 波特率:19200 GPS 类型:V8)。然后点击连接,选中移动接收机型号。连接完成后,点击测量,看手薄是否显示为固定解。若固定,则下步为踩点。 4.踩点步骤:在Hi-RTK道路版主菜单点击测量,在碎部测量中点击Σ∕n,平滑出控制点的坐标,然后打√,会弹出记录点信息,输入已

知控制点的点名,天线高为,然后打√。踩点的时候应注意,踩的点应≥3个以上,在架设基站位置的大里程踩两个点,小里程也同样踩两个点,点与点的间距可以适当选择,500m—1000m。或者大里程踩两公里小里程踩两公里,适情况而定。踩完点之后,退回到主菜单,点击参数,在坐标系统中,输入文件名,将平面转换和高程拟合调成无,点击保存。然后点击坐标系统选中参数计算,弹出界面为:(计算类型:四参数+高程拟合)。然后点击添加,源点即所踩的控制点可以从文件中调取,目标即控制点的已知坐标需要将已知点的坐标输进去。然后点击保存,依次将踩的点添加保存。添加保存完成后点击解算,解算完不要急着点击运用,看平面残差和高程残差是否≤。若符合误差要求的话点击运用。点击运用后会弹回到坐标系统,然后编辑文件名,点击保存。 5. 加载文件:在Hi-RTK道路版主菜单中点击道路,在道路放样中点击左下角的文件,弹出的界面为道路设计文件,然后点击平面,选择所需的交点文件,格式为PHI。

(完整版)惯导与GPS坐标转换问题

坐标系问题 一、 常用坐标系 1. 惯性坐标系(i 系) 对牛顿运动定律适用的参考系;研究物体时,选取静止或作匀速直线运动的参考系,牛顿定律才能成立。常用惯性坐标系:日心惯性坐标系、地心惯性坐标系等。 2. 地球坐标系(e 系) 即固连在地球上的坐标系,该坐标系随地球一起转动。地球坐标系原点在地球中心,轴沿地球自转轴方向,x 轴在赤道平面与本初子午线相交;y 轴也位于赤道平面内,与x 、z 轴构成右手直角坐标系。 导航中可用地球坐标系的直角坐标表示也可用经纬度表示。(常见GPS 坐标WGS-84) 3. 地理坐标系(t 系) 地理坐标系也称当地垂线坐标系,原点位于运载体所在点,原点位于运载体所在点,x 轴沿当地纬线切线方向,y 轴沿当地经线切线方向,z 轴沿当地地理垂线方向并与x 、y 轴构成右手直角坐标系。根据坐标轴方向的不同,地理坐标系的方向可选为“东北天”、“北东地”、“北西天”等。 4. 载体坐标系(b 系) 机体坐标系、船体坐标系和弹体坐标系等的统称。原点与载体的质心重合;x 轴沿载体横轴向右,y 轴沿载体纵轴向前,z 轴沿载体竖轴并与x 、y 轴构成右手直角坐标系。 载体的俯仰(纵摇)角,横滚(横摇)角,航向(偏航)角统称为姿态角。载体的姿态角是根据载体坐标系相对地理坐标系来确定的。 二、 坐标系转换(姿态角) 1.方向余弦法 设空间直角坐标系111OX Y Z ,其三轴单位向量分别为111i j k 、、。任一向量R 可均可表示 为: 111111=x y z R R i R j R k ++

绕Y 1旋转k y 绕Z 2旋转k z 这里的分量111x y z R R R 、、为向量R 在三个轴上的投影: 11 111 1cos cos cos R x x R y y R z z R R R R R R θθθ?=?=??=? 式中,111R R R x y z θθθ、、分别为R 与坐标系111OX Y Z 三轴的夹角,将111cos cos cos R R R x y z θθθ、、称为 向量R 在坐标系111OX Y Z 中的方向余弦。 设另一坐标系222OX Y Z ,2X 轴对于111OX Y Z 坐标系的方向余弦为222111cos cos cos x x x x y z θθθ、、; 2Y 轴对于111OX Y Z 坐标系的方向余弦为222111cos cos cos y y y x y z θθθ、、;2Z 轴对于111OX Y Z 坐标 系的方向余弦为222111cos cos cos z z z x y z θθθ、、。那么有: 2 2211122 22111122 2111cos cos cos cos cos cos cos cos cos x x x x y z y y y x y z z z z x y z C θθθθθθθθθ?? ? ? =????? ? 2211R C R = 1R 、2R 为R 在111OX Y Z 、222OX Y Z 中的坐标列向量。 矩阵2 1C 中的九个元素均为两坐标系坐标轴之间的方向余弦,反映了两坐标之间的角位置关系,称2 1C 为从坐标系111OX Y Z 到222OX Y Z 的方向余弦。 2.欧拉角法 两三维直角坐标系之间的方向余弦矩阵有九个元素,由于有六个约束条件,只有三个元素是独立的,这说明任意两个三维直角坐标系之间的角度关系完全可以由三个角度来描述。假定从坐标系000OX Y Z 经由三次旋转可以得到坐标系OXYZ 。 000OX Y Z 111OX Y Z 222OX Y Z OXYZ 变化z x y K K K 、、横滚(横摇)角,俯仰(纵摇)角,, 航向(偏航)角三个角度,可以形成原点与000OX Y Z 相 同的任意三维直角坐标系。即任意一个三维直角坐标系 OXYZ 均可以从000OX Y Z 经过上述三次旋转得到。称三 11 1 122 2 2 T T x y z x y z R R R R R R R R ????==???? 绕X 0旋转k x

相关文档
最新文档