第七章 扩散与固相反应

第七章  扩散与固相反应
第七章  扩散与固相反应

第七章 扩散与固相反应

例 题

7-1 试分析碳原子在面心立方和体心立方铁八面体空隙间跳跃情况,并以D =γr 2Γ形式写出其扩散系数(设点阵常数为a )。(式中r 为跃迁自由程;γ为几何因子;Γ为跃迁频率。)

解:在面心立方晶体中,八面体空隙中心在晶胞体心及棱边中心。相邻空隙连线均为[110]晶向,空隙

间距为。因而碳原子通过在平行的[110]晶面之间跳动完成扩散。若取[110]为X 轴、]101[为Y 轴、

[001]为Z 轴,则碳原子沿这三个轴正反方向跳动的机会相等。因此碳原子在平行[110]晶面之间跳动的几率即几何因子γ=1/6。

在体心立方晶体中,八面体空隙中心在晶胞面心及核边中心,相邻空隙间距为a /2。其连线为[110]晶向,可以认为碳原子通过在平行的[200]晶面之间来完成扩散,取[100]、[010]、[001]为X 、Y 、Z 轴。碳原子沿这三个轴正反方向跳动机会均等,因而碳原子在平行的[200]晶面间跳动的几率γ=1/6。

在面心立方铁中2261=

=r γ

代入2

D r γ=Γ

12)2(6122ΓΓa a

D =??=面心

在体心立方铁中16γ=2r a =

24)2(6122ΓΓa a D =??=体心

7-2 设有一种由等直径的A 、B 原子组成的置换型固溶体。该固溶体具有简单立方的晶体结构,点阵常数a =0.3nm ,且A 原子在固溶体中分布成直线变化,在0.12mm 距离内原子百分数由0.15增至0.63。又设A 原子跃迁频率Γ=10-6s -1,试求每秒内通过单位截面的A 原子数?

解:已知1

6s 101--?=Γ,16γ=;nm 30.==a r ;求扩散通量J 。

s cm 105110)1030(612226372---?=???==..r D Γγ

每cm 3固溶体内所含原子数为

322

371073)1030(1个?=?-..

2224

2224212015063

3710148100012

1510148102210s cm ........dc dx J D dc dx ----=

??=-?=-=???=?

7-3 制造晶体管的方法之一是将杂质原子扩散进入半导体材料如硅中。假如硅片厚度是0.1cm ,在其中每107个硅原子中含有一个磷原子,而在表面上是涂有每107个硅原子中有400个磷原子,计算浓度梯度(a )每cm 上原子百分数,(b )每cm 上单位体积的原子百分数。硅晶格常数为0.5431nm 。

解:由菲克第一定律计算在内部和表面上的原子的百分组成,C i 和C s 分别为内部和表面磷浓度。

%

0399010104101%

10410010400%101001013

53757..-=?-?=?=?==?=----x C C C s i ??

硅晶体单位晶胞体积

3

2237cm 1061)1054310(--?=?=..V

硅晶体是立方金刚石结构,单位晶胞有8个Si 原子,107个Si 占体积为:

3

16227

cm 102)1061(810--?=??=.V

每cm 3中原子含量:

3

18

16

cm 10005.01021

个?=?=-i C

4

1918

183

1816

cm 10995110102100050cm

102102400个个?-=?-?=?=?=

-...x C C s ??

7-4 已知MgO 多晶材料中Mg 2+离子本征扩散系数(D in )和非本征扩散系数(D ex )由下式给出

252486000

0249exp() cm 254500

1210exp() cm ..in ex D RT

D RT -=-

=?- (a ) 分别求出25℃和1000℃时,Mg 2+的(D in )和(D ex )。

(b ) 试求在Mg 2+的ln D ~1/T 图中,由非本征扩散转变为本征扩散的转折点温度? 解:(a )

8625502486000

25 0249exp()16010 cm s

8314298

254500

1210exp()29410 cm s

8314298486000

1000 0249exp()284183141273

.........---=-

=??=?-=??=-=??℃℃in ex in D D D 2125160 cm 254500

1210exp()43310s

83141273...---=?-=??2 cm ex D (b )非本征扩散与本征扩散转折点温度即为D in =D ex 时的温度

55

486000254500

0249exp()1210exp()4860002545001210 ln 9944

0249486000254500

2800K

99448314.......RT RT

RT RT T ---

=?-?--==--==? 计算中假设MgO 是纯净的多晶体,若有微量杂质引入,转折点温度将高于2800K (2527℃)。

7-5 从7-4题所给出的D in 和D ex 式中求MgO 晶体的肖特基缺陷形成焓。若欲使Mg 2+在MgO 中的扩散直至MgO 熔点2800℃时仍是非本征扩散,试求三价杂质离子应有什么样的浓度?

解:从7-4题D in 和D ex 式中可知,发生本征扩散激活能Q 1=486kJ/mol ,发生非本征扩散激活能Q 2

=254.50kJ/mol 。

从激活能含义:

1Q 2

f m

H H ?=

+?

2Q m H ?=

△H f 为Schottky 缺陷形成焓;△H m 是Mg 2+离子迁移焓。

△H f /2+254.50=486.00

△H f =(486.00-254.50)×2=463.00kJ/mol

Mg 2+离子在MgO 晶体中以空位机构扩散。在MgO 中若掺有M 3+,则[]Mg

V ''来自两个方面。

肖杂][][][Mg Mg Mg

V V V ''+''=''

即由掺杂M 3+引起的

杂][Mg

V ''和由本征热缺陷—肖特基缺陷引起的

Mg

[]V ''肖。 Mg 2+通过前一种空位的扩

散为非本征扩散,通过后一种空位的扩散为本征扩散。

掺杂M 3+引起Mg

V ''的缺陷反应如下:

MgO

?23Mg Mg

O M O 2M 3O V ''???→++

由上述反应产生的

Mg

V ''即为

杂][Mg

V ''。

当MgO 在熔点时,晶体内Schottky 缺陷浓度为:

4Mg

10161)

3073

31482463000

exp()

2exp(][-?=??-=-=''..RT

H V f

?肖

在(7-14)方程中

杂]2[]M [Mg Mg V ''=?

,所以欲使MgO 晶体中直至3073K 仍为非本征扩散。 M 3+浓度为

肖杂][][2]M []M [Mg Mg Mg 3V V ''>''==?+

3+44[M ]21161023210..-->??=?

由此可见,在MgO 晶体中只需混入万分之一杂质,在熔点时发生的是非本征扩散而不是本征扩散。这也是Al 2O 3、MgO 、CaO 等高熔点氧化物不易测到本征扩散的原因。

7-6 若认为晶界的扩散通道宽度一般为0.5nm ,试证明原子通过晶界扩散和晶格扩散的质量之比为

9

10()()gb v D d D -。其中d 为晶粒平均直径;D gb 、D v 分别为晶界扩散系数和晶格扩散系数。

解:设晶粒是直径为d 的圆球,每个晶粒周围的晶界扩散通道面积为0.5×10-9πd (m 2),其中只有一半属于该晶体本身,其余一半属于周围的晶粒,因而一个晶粒的晶界通道截面积为:

91

05102.gb A d

π-=??

晶粒横截面积

2

1

4A d π=

设M gb 、M v 分别代表扩散原子通过晶界扩散及晶粒内扩散的数量,则:

921d 05102d 1d 4d .gb gb gb gb

v v v v

c

M A J dD x c

M A J d D x ππ-==-??==-

所以

9

921d 0510102d ()()

1d 4d .gb gb gb v v v c dD M D x c M d D d D x ππ---??==-

7-7 设体积扩散与晶界扩散活化能间关系为12gb v

Q Q =(Qg b 、Q v 分别为晶界扩散与体积扩散激活能),

试画出ln D ~1/T 曲线,并分析在哪个温度范围内,晶界扩散超过体积扩散?

解:

RT Q D D RT Q D D -=-=00ln ln )ex p(或

晶界扩散有 0

ln ln gb gb gb D D Q RT =-

体积扩散有 0ln ln v v v D D Q RT =-

欲使

gb v

D D >

00ln ln gb gb v v D Q RT D Q RT ->-

12gb v D D =

00ln

02gb

v

v D Q D RT +

>

移项得:

)

ln()

ln(200

00

gb

v gb gb

v v

D D R Q T D D R Q T <

<

)

ln(200

0gb v v D D R Q T =

则当T D v ;当T >T 0时以体积扩散为主,即D v > D gb 。 如图7-1所示。

图7-1 例题7-7附图

7-8 在一种柯肯达尔扩散中,假定(a )晶体为简单立方结构;(b )单位体积内原子数为一常数1023;(c ) A 原子的跃迁频率为1010s -1,B 原子跃迁频率为109s -1;(d )点阵常数a =0.25nm ;(e )浓度梯度为10个/cm ;(f )截面面积为0.25cm 2。试求A 、B 原子通过标志界面的扩散通量以及标志界面移动速度。

解:

272106

21

(0.2510)10 1.0410c m s

6A D r γ--=Γ=???=?

27297

22324

1

(02510)1010410c m s

6

d 101010..B D r c x γΓ--==???=?=?=

62417·10410100252610A J A -=???=?...s 个

72416

·10410100252610...B J A -=???=?s 个

令界面移动速度为V ,n 为单位体积中原子数

17167

23n 11

(1010) 1.049.3610cm s

n 10

A B

A B V J J V J J -=-=-=-?=?g ()

7-9 纯固相反应在热力学上有何特点?为什么固相反应有气体或液体参加时,范特荷夫规则就不适用了?

解:一切实际可以进行的纯固相反应,其反应几乎总是放热的,这一规律性的现象称为范特荷夫规则。此规则的热力学基础是因为对固相反应而言,反应的熵变△S 往往很小以致趋于零。所以反应自由焓变化

H G ??≈。而纯固相反应发生的热力学必要条件是△G <0,这样△H <0(即放热)的反应才能发生。

对于有液相或气相参与的固相反应,△S 可以变得很大,因此范特荷夫规则不再适用。

7-10 假定从氧化铝和二氧化硅粉料形成莫来石为扩散控制过程,如何证明这一点?又假如激活能为210kJ/mol ,并在1400℃下1h (小时)内反应过程完成10%,问在1500℃下1h 内反应会进行到什么程度?在1500℃下4h 又会如何?

解:如果用Jander 方程描述氧化铝和二氧化硅反应生成莫来石,经计算得到合理的结果,可以认为此反应是扩散控制的反应过程。

Jander 方程

Kt G =--2

31

])1(1[

当G 较小时

Kt G ∝

式中反应速率常数

)ex p( · RT Q A K -=

当t 不变时,则有)2ex p(RT Q G -∝

]2)

(ex p[211212T RT T T Q G G -=

已知:Q =210kJ/mol

12330424212114001673K 15001773K 1h,10%

1h ?4h

?

21010(17731673)

exp[] 1.52928.31417731673

1.529 1.52910%15.29%

.T G

G G G G e G G G ===?-===???==?=℃()℃()

同理

323153058%..G G G G =

=

7-11 在SiC 上形成一层非晶态SiO 2薄膜,限制了进一步氧化。完成氧化的分数是用测定增重的方法确定的,并发现是遵守抛物线氧化规律。对特定颗粒尺寸的SiC 和纯氧O 2,得到如下表所示实验数据,试确定表现激活能并说明这是一个扩散控制的反应。

解:取下列数据拟合

706501007441212..*===t t G G 出于

由Jander 方程可得

T R Q B G 1 · 2])1(1ln[3

1

-

=--

作线性回归得:(相关系数为0.9961)

4

424425104425102831473579

k J mol ....Q R Q =?=???= 7-12 为观察尖晶石的形成,用过量的MgO 粉包围1μm 的Al 2O 3球形颗粒,在固定温度实验中的第1h

内有20%的Al 2O 3反应形成尖晶石。试根据(a )无需球形几何修正时,(b )用Jander 方程作球形几何修正,计算完全反应的时间?

解:(a )不作球形几何修正用Jander 方程描述:

1

23

123

[1(1)][1(1)]/G Kt K G t --==--

代入题中反应时间1h ,反应程度20%

12

33[1(102)]1513810h ./.K -=--=?

故完全反应所需时间(G =1)

3113181019462

h ..t K -==?=

(b )作球形几何校正时用金斯特林格方程描述:

2

32

3

2

3

32113

2[11]/3

2 [10.210.2]/1

3

4.89310G G Kt K G G t

----==---=-?--=?()()()

完全反应所需时间,用G =1代入公式得

2

33

21

[1(1)]33116812h

33489310..G G Kt

t K ----=====??

习 题

7-13 名词解释

(a ) 自扩散和互扩散 (b ) 本征扩散和非本征扩散 (c ) 稳定扩散和非稳定扩散 (d ) 几何因子 (e ) 加成反应

7-14 图7-2中圆圈代表铝原子,带星号的圆圈代表它的同位素原子。(a )表示原子的原始分布状态,(b )表示经过第一轮跳动后原子的分布情况。试画出第二轮跳动后原子的可能分布情况和示意画出三个阶段同位素原子的浓度分布曲线(c 浓度~x 距离图)。

7-2 题7-14附图

7-15 已知α-Cr 2O 3多晶材料中Cr 3+

和O 2-的自扩散系数为

2Cr 2O 3+2-

256000

0137exp()cm s 423000

159exp()cm s

..D RT D RT =-

=-

试求1000℃和1500℃时,Cr 3+和O 2+的自扩散系数为多少? (1000℃ D Cr 3+ 4.29×10–12cm 2/s

D O 2– 6.98×10–17 1500℃

D Cr 3+ 3.0×10–9

D O 2- 5.48×10–12)

7-16 在掺杂少量CaO 的ZrO 2多晶材料中,已知Zr 4+

、Ca 2+

和O 2-自扩散系数为:

2Zr 2Cr 2O 4+2+2-387000

0035exp()cm 420000

0444exp()cm 131000

0018exp()cm ...D RT D RT D RT =-

=-=- 试求1200℃时三种离子的自扩散系数,计算结果说明什么?(D Zr 4+=6.61×10–16cm 2/s D CA 2+=5.66×10–16 D O 2–=4.07×10–7)

7-17 碳原子体心立方铁中的扩散系数为D =2.0×10-6exp (-84×105/RT ),求当振动频率为1013s -1,迁移自由程0143nm .r =时的(△S /R )。(2.686)

7-18 氢在金属中容易扩散,当温度较高和压强较大时,用金属容器储存氢气极易渗漏。试讨论稳定扩散状态下金属容器中氢通过器壁扩散渗漏的情况并提出减少氢扩散逸失的措施?

7-19 (a )已知银的自扩散系数D V =7.2×10-5m 2/s ,Q v =190×103J/mol ;晶界扩散系数D gb =1.4×10-5m 2/s ,Q gb =90×103J/mol 。试求银在927℃及727℃时D gb 和D V 的比值。

(b )若实验误差为5%,试用例题7–6的结果,说明当晶体平均直径d =10-4m 时,在927℃和727℃下能否察觉到纯银的晶界扩散效应?

( (a )(D gb /D V )927=4.25×103 (D gb /D V )727=3.10×104 (b )(M gb /M V )927=0.0425 (M gb /M V )727

=0.310 )

7-20 试从D -T 图中查出(a )CaO 在1145℃和1393℃时的扩散系数。(b )Al 2O 3在1396℃和1716℃时的扩散系数。并计算CaO 和Al 2O 3中Ca 2+和Al 3+的扩散激活能Q 和系数D 0?((a ) 2.03×10–13 1.92×10–12 252kJ/mol 4.06×10–4cm 2/s (b )2.42×10–11 7.02×10–12 597kJ/mol 1.12×105cm 2/s )

7-21 Fe 2+离子在氧化铁(FeO )中的扩散系数,在600℃时为5×1010cm 2/s ,在900℃时是1.5×10-8cm 2/s ,

求活化能Q和2+

Fe在FeO中的扩散常数D

。(Q=96.54 kJ/mol D0=3.0×10–4cm/s)

7-22一个0.05cm厚的硅晶体,在一个表面上每107个Si原子中含有2个镓(Ga)原子,而在其它表面上处理成镓的高浓度面,如果要产生一个-2×1018Ga原子/cm4的浓度梯度,在这个表面上必须在107个Si原子中有多少个镓原子?(硅的晶格常数是0.5407nm)。

(0.11×1018Ga原子数/cm3·cm)7-23硅表面沉积了一层硼薄膜持,经短时间扩散后硼的浓度分布情况如图7-3所示。试考虑若硅表面硼浓度达到饱和并恒定不变时即C s=3×1026cm-3,试求于1200℃下扩散深度8μm处硼浓度为1024m-3时所需扩散时间为多少?已知1200℃时B(硼)的扩散系数为4×10-13m2/s。(分别用计算法和图解法求之)(25.68h)

图7-3 题7-23附图

7-24在两根金晶体圆棒的端点涂上示踪原子Au#,并把两棒端部如图7-4(a)所示方式连接。在920℃加热100h,Au#示踪原子扩散分布如图(B)所示,并满足下列关系:

2

1

2

exp()

4

2()

M x

C

Dt

Dt

π

=-

式中C是浓度;M为实验中示踪原子总量。求此时金的自扩散系数?(2.33×10–7mm2/s)

图7-4 在920℃加热100h后Au*的扩散分布曲线

7-25在一定温度下,若扩散退火时间增加一倍,那么扩散物质的平均渗透深度将增加几倍?(2)

7-26 试讨论从室温于熔融温度范围内,氧化锌添加剂10-4%(摩尔)对NaCl单晶中所有离子(Zn、

Na 、Cl )的扩散能力的影响?

7-27 利用电导与温度依赖关系求得扩散系数和用示踪原子等方法直接测得的值常常不一致,试分析原因?

7-28 根据ZnS 烧结的数据测定了扩散系数。在563℃时,测得扩散系数为3×10-4cm 2/s ;在450℃时则为1.0×10-4cm 2/s ,(1)试确定活化能Q 和系数D 0;(2)根据ZnS 结构,请从缺陷产生和运动的观点来

推断活化能的含义;(3)根据六方ZnS 和ZnO 相互类似,预测D 随硫分压改变而改变的关系? ( 0.339cm 2/s 48.86kJ/mol 6

1

S P D ∝)

7-29 钠钙硅酸盐玻璃中阳离子的扩散系数如图7-5所示,试问: (1)为什么Na +比Ca 2+和Si 4+扩散得快?

(2)Na +扩散曲线的非线性部分产生的原因是什么? (3)将玻璃淬火,其曲线将如何变化? (4)Na +熔体中扩散活化能约为多少?

图7-5 题7-29附图

7-30 (a )试推测在贫铁的Fe 3O 4中铁离子扩散系数与氧分压的关系?(b )推测在铁过剩的Fe 3O 4中氧分压与氧扩散的关系?

7-31 碳、氮和氢在体心立方铁中的活化能分别为84、75和13kJ/mol ,试对此差异进行分析。 7-32 Co 2+在CoO 中Fe 2+在FeO 中扩散活化能异常低(见下表),试分析其原因?

扩散离子 激活能(kJ/mol )

扩 散 离 子 激活能(kJ/mol )

Fe 在FeO 中 96 Mg 在MgO 中 348 O 在UO 2中 151 Ca 在CAO 中 322 U 在UO 2中 318 Al 在Al 2O 3中 477 Co 在CoO 中 105 Be 在BeO 中 276 Fe 在Fe 3O 4中 201 Ti 在TiO 2中 251 Cr 在NiCr 2O 4中 318 Zr 在ZrO 2中 310 Ni 在NiCr 2O 4中 272 O 在ZrO 2中

188 O 在NiCr 2O 4中

226

)

1016ex p(10001)108ex p(100024449

RT D RT D v gb

?-?=?-?=---..和,试求出在什么温度范围内晶界扩

散与体积扩散各占优势?

7-34 在氧化物MO 中掺入微量R 2O 后,M 2+的扩散增强,试问M 2+通过何种缺陷发生扩散?要抑止M 2+的扩散应采取什么措施,为什么?

7-35 实验测得Zn -Fe 2O 3的互扩散系数如下:

s cm 101020~

s cm 1095.1~

21021013701100--?=?=℃℃D D

试求出互扩散的活化能?

7-36 由MgO 和Fe 2O 3制取MgFe 2O 4时,预先在界面上埋入标志物,然后让其进行反应。(a )若反应是由Mg 2+和Fe 3+互扩散进行的,标志物的位置将如何改变?(b )当只有Fe 3+和O 2-共同向MgO 中扩散时,情况又如何? (c )在存在氧化还原反应的情况下,Fe 2+

和Mg 2+互扩散时,标志物又将如何移动?(提示:查Fe 3+、Mg 2+的自扩散系数,根据扩散速率,标志物将向扩散快的一端移动)。

7-37 在柯肯达尔扩散实验中,取得如下数据:(a )扩散时间t =200h ;(b )标志界面移动量

cm 01440.=l ?;(c )互扩散系数s cm 10~2

7-=D ;(d )成分–距离曲线在标志界面处的斜率120cm .A N x -??=;(e )A 组元的原子百分比浓度N A =0.4。试求A 、B 二组元的自扩散系数?

(提示:先求出标志物移动速度U 。A B U D D N x =-??)

7-38 曾发现使用压力(不一定是静压力)可以影响一些被认为是扩散控制的过程,试对(a )空位扩散及(b )间隙扩散给出几种压力能影响自扩散系数的方法。并预计压力增加,D 的变化方向。

7-39 一位学生决定研究Ca 2+在NaCl 中的扩散。已知Ca 2+通过空位机制在Na 的亚晶格内扩散,并知

在整个试验范围内][]Ca [Na Na V '=?。试证明D Na 是Na [Ca ]?的函数:因而22

c t D c x ??≠??。

7-40 铜片要在500℃时不氧化,氧气分压应控制到什么程度较为合适?1000℃时又应如何控制? 7-41 镍(Ni )在0.01MPa 的氧气中氧化测得其质量增加(mg/cm 2)如下表所示。 (a )导出合适的反应速度方程; (b )计算反应活化能。

△G 0变化,推论这两个还原剂有何不同?

7-43 制备纯Ti 时,使用盛器应该选择硅石制品还是矾土制品,选择的根据是什么?

7-44 MoCO 3和CaCO 3反应时,反应机理受到CaCO 3颗粒大小的影响。当

33MoO CaCO 3

3

MoO CaCO 1 1r 0036mm r 013mm

,.,.===::时,反应是扩散控制的,当

33CaCO 3

CaCO MoO 15 1r 003mm

=<::,.时,反应由升华控制,试解释这种现象。

7-45 试比较杨德尔方程、金斯特林格方程的优缺点及适用条件。

7-46 如果要合成镁铝尖晶石(MgAl 2O 4),可提供选择的原料为MgCO 3、Mg (OH )2、

MgO 、Al 2O 3·3H 2O 、

γ-Al 2O 3、α-Al 2O 3。从提高反应速率的角度出发,选择什么原料较好,为什么?

7-47 由MgO 和Al 2O 3固相反应生成MgAl 2O 4,试问:(a )反应时是什么离子首先移动的?请写出界面反应方程。(b )当用MgO :MgO =1 :n 进行反应时,在1415℃时测得尖晶石厚度为340μm ,分离比为3.4,试求n 值。(c )已知1415℃和1595℃时,生成MgAl 2O 4的反应速率常数分别为1.4×10-9cm 2/s 和1.4×10-9cm 2/s ,试求反应活化能?

7-48 已知下列反应的活化能数据如下:

活化能Q (kJ/mol )

2324232324

3342

1 CaO Al O CaAl O 18130

2 CaO SiO CaSiO 226093. ZnO+Al O ZnAl O

41031

4. CaCO MoO CaMoO CO 13147......+→+→→+→+

试求当反应温度为1000℃和1300℃时,参与反应的活化分子数各是多少?(假定反应活化能不随温度而变化)?

7-49 实验测得石英粉末颗粒半径与晶型转变速率的关系如下表所示:

(a )试用作图法求出不同粒径石英颗粒晶型转变速率与温度的函数关系

1

[ln ()]

K f T =,说明石英粒度对晶型转变速率的影响。

(b )用各级粒度在1473K 和1573K 的反应速率常数分别求出不同粒度石英晶型转化活化能,所得的数值说明什么?

7-50 当测量氧化铝水化物的分解速率时,一个学生发现在等温实验期间,质量损失随时间线性增加到50%左右,超出50%时质量损失的速率就小于线性规律。线性等温速率随温度指数增加,温度从451℃增加到493℃时速率增大10倍,试计算激活能。这是扩散控制的反应,还是一级反应或是界面控制的反应?

7-51 当通过产物层由扩散控制速率时,试考虑从NiO 和Cr 2O 3的球形颗粒形成NiCr 2O 4的问题。(a )给出假定的几何形状示意图,然后推导出过程中早期的形成速率关系。(b )在颗粒上形成产物层,是什么控制着产物层增长?(c )在1300℃NiCr 2O 4中D Cr >D Ni >D O , 哪一个控制着NiCr 2O 4的形成速率?为什么?

7-52 固体内的同质多晶转变导致小尺寸(细晶粒)或大尺寸(粗晶粒)的多晶材料的晶粒大小取决于成核率与晶体生长速率。(a )试问这些速率如何变化才能产生细晶粒或粗晶粒产品?(b )试对每个晶粒给出时间与尺寸的曲线来说明晶粒长大与粗晶粒长大的对比。在时间坐标轴上以转变的时刻为时间起点。

7-53 平均粒径为1μm 的MgO 粉料与Al 2O 3粉料以1 :1摩尔比配料并均匀混合。将原料在1300℃恒温3600h 后,有0.3mol 的粉料发生反应而形成MgAl 2O 4,该固相反应为扩散控制反应。试求在300h 后,反应完成的摩尔分数以及反应全部完成所需要的时间。

7-54 根据阿伯尔等人的资料【J · Am · Ceram · Soc 45 (6) 263–66 (1962)】,Al 2O 3溶解在MgO

内的程度在1700℃为3%,在1800℃为7%,在1900℃为12%,而在1500℃则为0%,并观察到慢冷时从固溶体区域中可结晶出尖晶石晶体,而快冷可使固溶体在室温下保持单相,脱溶的尖晶石均匀地出现而与方镁石晶体内的晶界无关,但出现在特定平面上。(a)试问方镁石晶粒内尖晶石的成核是均匀的还是非均匀的?(b)试说明尖晶石晶体沿方镁石晶体特定平面出现的原因,并推测在0~1850℃的温度范围内,含5% Al2O3的已成核的方镁石固溶体中结晶速率与温度关系曲线的形状?

7-55如上题所述,假若一个从事碱性耐火材料的工人使用了被5%~7%Al2O3污染的MgO,则慢冷和快冷的工艺条件将引起材料什么样的显微组织的差异?能否预言在这种材料里通过自扩散晶粒长大,和阳离子扩散的烧结会与在纯MgO内有何不同?为什么?

扩散与固相反应

扩散与固相反应 7-1试分析碳原子在面心立方和体心立方铁八面体空隙间跳跃情况, 并以D = Y 2 r 形式 写出其扩散系数(设点阵常数为a )。(式中r 为跃迁自由程;丫为几何因子;r 为跃迁频率。) 7-2设有一种由等直径的 A 、B 原子组成的置换型固溶体。该固溶体具有简单立方的晶 体结构, 点阵常数 A = 0.3nm ,且A 原子在固溶体中分布成直线变化,在 0.12mm 距离内原 子百分数由0.15增至0.63。又设A 原子跃迁频率 r= 10-6s 1 ,试求每秒内通过单位截面的 A 原子数? 7-3制造晶体管的方法之一是将杂质原子扩散进入半导体材料如硅中。 假如硅片厚度是 0.1cm ,在其中每107 个硅原子中含有一个磷原子,而在表面上是涂有每 107 个硅原子中有 400个磷原子,计算浓度梯度(a )每cm 上原子百分数,(b )每cm 上单位体积的原子百分 数。硅 晶格常数为 0.5431 nm 。 7-4已知MgO 多晶材料中Mg 2+ 离子本征扩散系数(DQ 和非本征扩散系数(D ex )由 下式给出 486000 2 D in = 0.249exp ( ) cm ; s RT 5 254500、 2 ■■ D ex =1.2 10 exp ( ) cm . s RT (a ) 分别求出 25C 和 1000C 时,Mg 2+ 的(D in )和(D ex )。 (b ) 试求在Mg 2+ 的InD ?1/T 图中,由非本征扩散转变为本征扩散的转折点温度? 7-5从7-4题所给出的D in 和D ex 式中求MgO 晶体的肖特基缺陷形成焓。若欲使 Mg 2+ 在MgO 中的 扩散直至 MgO 熔点2800 C 时仍是非本征扩散,试求三价杂质离子应有什么样 的浓度? 7-6若认为晶界的扩散通道宽度一般为 0.5nm ,试证明原子通过晶界扩散和晶格扩散的 扩散系数。 Q gb = _ Q v 7-7设体积扩散与晶界扩散活化能间关系为 2 (Qg b 、Q v 分别为晶界扩散与体 积扩散激活能),试画出lnD ?1/T 曲线,并分析在哪个温度范围内, 晶界扩散超过体积扩散 ? 7-8在一种柯肯达尔扩散中,假定(a )晶体为简单立方结构;(b )单位体积内原子数 为一常数1023 ; (c ) A 原子的跃迁频率为1010s -1 , B 原子跃迁频率为109s -1 ; (d )点阵常数 a = 0.25nm ; (e )浓度梯度为10个/cm ; (f )截面面积为0.25cm 。试求A 、B 原子通过标志 界面的扩散通量以 及标志界面移动速度。 7-9纯固相反应在热力学上有何特点?为什么固相反应有气体或液体参加时, 范特荷夫 规则就不适用了? 7-10假定从氧化铝和二氧化硅粉料形成莫来石为扩散控制过程,如何证明这一点?又 假如激活 能为210kJ/mol ,并在1400 C 下1h (小时)内反应过程完成 10%,问在1500 C 下 质量之比为 10-9 (〒) 自。其中 d 为晶粒平均直径; D gb 、D v 分别为晶界扩散系数和晶格

第七章 固相反应

第七章 固相反应 固相反应在固体材料的高温过程中是一个普遍的物理化学现象,广义地讲,凡是有固相参与的化学反应都可称为固相反应。例如固体的热分解、氧化以及固体与固体、固体与液体之间的化学反应等都属于固相反应范畴之内。但从狭义上,固相反应常指固体与固体间发生化学反应生成新的固体产物的过程。 Tammann 等很早就研究了CaO 、MgO 、PbO 、CuO 和WO 3的反应,他们分别让两种氧化物的晶面彼此接触并加热,发现在接触面上生成着色的钨酸盐化合物,其厚度x 与反应时间t 的关系为 C t K x +=ln ,确认了固态物质间可以直接进行反应。因此Tammann 等提出: (1) 固态物质间的反应是直接进行的,气相或液相没有或不起重要作用; (2)固相反应开始温度远低于反应物的熔融温度或系统的低共熔温度,通常相当于一种反应物开始呈现显著扩散作用的温度,这个温度称为泰曼温度或烧结温度。对于不同物质的泰曼温度与其熔点(m T )间存在一定的关系。例如,对于金属为0.3~0.4m T ;盐类和硅酸盐则分别为0.57m T 和0.8~0.9m T 。 (3)当反应物之一存在有多晶转变时,则此转变温度也往往是反应开始变得显著的温度,这一规律称为海德华定律。 Tammann 等人的观点长期为化学界所接受,但随着生产和科学实验的发展,发现许多固相反应的实际速度比Tammann 理论计算的结果快得多,而且有些反应(例如MoO 3和CaCO 3的反应)即使反应物不直接接触也仍能较强烈地进行。因此,金斯特林格等人提出,在固相反应中,反应物可转为气相或液相,然后通过颗粒外部扩散到另一固相的非接触表面上进行反应,表明气相或液相也可能对固相反应过程起重要作用。显然这种作用取决于反应物的挥发性和体系的低共熔温度。 图7-1描述了物质A 和B 进行化学反应生成C 的一种反应历程:反应一开始是反应物颗粒之间的混合接触,并在表面发生化学反应形成细薄且含大量结构缺陷的新相,随后发生产物新相的结构调整和晶体生长。当在两反应颗粒间所形成的产物层达到一定厚度后,进一步的反应将依赖于一种或几种反应物通过产物层的扩散而得以进行,这种物质的输运过程可能通过晶体晶格内部、表面、晶界、位错或晶体裂缝进行。当然对于广义的固相反应,由于反应体系存在气相或液相,故而,进一步反应所需要的传质过程往往可在气 相或液相中进行。此时,气相或液相的存在可能对固相反应起到重要作用。 综上所述,可以认为固相反应是固体直接参与化学作用并起化学变化,同时至少在固体内部或外部的某一过程起着控制作用的反应。此时控制反应速度的不仅限于化学反应本身,反应新相晶格缺陷调整速率、晶粒生长速率以及反应体系中物质和能量的输送速率都将影响着反应速度。 固相反应的实际研究常将固相反应依参加反应物质聚集状态、反应的性质或反应进行的机理进行分类。依据反应的性质划分,固相反应可分成如表7-1所示的不同类型。而依反应机理划分,可分成化学反应速度控制过程、晶体长大控制过程、扩散控制过程等等。显然分类的研究方法往 图7-1 固相物质A 、B 化学 反应过程的模型

第七章扩散与固相反应

第七章扩散与固相反应 一、名词解释 1.扩散;2.扩散系数与扩散通量;3.本征扩散与非本征扩散; 4.自扩散与互扩散;5.无序扩散与晶格扩散;6.稳定扩散与不稳定扩散: 7.反常扩散(逆扩散);8.固相反应 二、填空与选择 1.晶体中质点的扩散迁移方式有、、、和。2.当扩散系数的热力学因子为时,称为逆扩散。此类扩散的特征为,其扩散结果为使或。3.扩散推动力是。晶体中原子或离子的迁移机构主要分为两种:和。4.恒定源条件下,820℃时钢经1小时的渗碳,可得到一定厚度的表面碳层,同样条件下,要得到两倍厚度的渗碳层需小时. 5.本征扩散是由而引起的质点迁移,本征扩散的活化能由和 两部分组成,扩散系数与温度的关系式为。 6.菲克第一定律适用于,其数学表达式为;菲克第二定律适用于,其数学表达式为。 7.在离子型材料中,影响扩散的缺陷来自两个方面:(1)肖特基缺陷和弗仑克尔缺陷(热缺陷),(2)掺杂点缺陷。由热缺陷所引起的扩散称,而掺杂点缺陷引起的扩散称为。(自扩散、互扩散、无序扩散、非本征扩散) 8.在通过玻璃转变区域时,急冷的玻璃中网络变体的扩散系数,一般相同组成但充分退火的玻璃中的扩散系数。(高于、低于、等于) 9.在UO2晶体中,O2-的扩散是按机制进行的。(空位、间隙、掺杂点缺陷)10.杨德尔方程是基于模型的固相方程,金斯特林格方程是基于模型的固相方程。 三、浓度差会引起扩散,扩散是否总是从高浓度处向低浓度处进行?为什么? 四、试分析离子晶体中,阴离子扩散系数-般都小于阳离子扩散系数的原因。 五、试从结构和能量的观点解释为什么D表面>D晶面>D晶内。 六、碳、氮氢在体心立方铁中扩散的激活能分别为84、75和13kJ/mol,试对此差异进行分析和解释。 七、欲使Ca2+在CaO中的扩散直至CaO的熔点(2600℃)都是非本征扩散,要求三价杂质离子有什么样的浓度?试对你在计算中所作的各种特性值的估计作充分说明(已知CaO 肖特基缺陷形成能为6eV)。 八、已知氢和镍在面心立方铁中的扩散系数为:

扩散与固相反应

扩散与固相反应 7-1 试分析碳原子在面心立方和体心立方铁八面体空隙间跳跃情况,并以D =γr 2Γ形式写出其扩散系数(设点阵常数为a )。(式中r 为跃迁自由程;γ为几何因子;Γ为跃迁频率。) 7-2 设有一种由等直径的A 、B 原子组成的置换型固溶体。该固溶体具有简单立方的晶体结构,点阵常数A =0.3nm ,且A 原子在固溶体中分布成直线变化,在0.12mm 距离内原子百分数由0.15增至0.63。又设A 原子跃迁频率Γ=10-6s -1,试求每秒内通过单位截面的A 原子数? 7-3 制造晶体管的方法之一是将杂质原子扩散进入半导体材料如硅中。假如硅片厚度是0.1cm ,在其中每107个硅原子中含有一个磷原子,而在表面上是涂有每107个硅原子中有400个磷原子,计算浓度梯度(a )每cm 上原子百分数,(b )每cm 上单位体积的原子百分数。硅晶格常数为0.5431nm 。 7-4 已知MgO 多晶材料中Mg 2+离子本征扩散系数(D in )和非本征扩散系数(D ex )由下式给出 252486000 0249exp() cm 254500 1210exp() cm ..in ex D RT D RT -=- =?- (a ) 分别求出25℃和1000℃时,Mg 2+的(D in )和(D ex )。 (b ) 试求在Mg 2+的ln D ~1/T 图中,由非本征扩散转变为本征扩散的转折点温度? 7-5 从7-4题所给出的D in 和D ex 式中求MgO 晶体的肖特基缺陷形成焓。若欲使Mg 2+ 在MgO 中的扩散直至MgO 熔点2800℃时仍是非本征扩散,试求三价杂质离子应有什么样的浓度? 7-6 若认为晶界的扩散通道宽度一般为0.5nm ,试证明原子通过晶界扩散和晶格扩散的 质量之比为 9 10()()gb v D d D -。其中d 为晶粒平均直径;D gb 、D v 分别为晶界扩散系数和晶格扩散系数。 7-7 设体积扩散与晶界扩散活化能间关系为 1 2gb v Q Q = (Qg b 、Q v 分别为晶界扩散与体 积扩散激活能),试画出ln D ~1/T 曲线,并分析在哪个温度范围内,晶界扩散超过体积扩散? 7-8 在一种柯肯达尔扩散中,假定(a )晶体为简单立方结构;(b )单位体积内原子数为一常数1023;(c ) A 原子的跃迁频率为1010s -1,B 原子跃迁频率为109s -1;(d )点阵常数a =0.25nm ;(e )浓度梯度为10个/cm ;(f )截面面积为0.25cm 2。试求A 、B 原子通过标志界面的扩散通量以及标志界面移动速度。 7-9 纯固相反应在热力学上有何特点?为什么固相反应有气体或液体参加时,范特荷夫规则就不适用了? 7-10 假定从氧化铝和二氧化硅粉料形成莫来石为扩散控制过程,如何证明这一点?又假如激活能为210kJ/mol ,并在1400℃下1h (小时)内反应过程完成10%,问在1500℃下

固相反应

固相反应 1.若由MgO和Al 2O 3 球形颗粒之间的反应生成MgAl 2 O 4 是通过产物层的扩散进行 的: (1) 画出其反应的几何图形并推导出反应初期的速度方程。 (2) 若1300℃时D Al3+>D Mg2+ -2 :基本不动,那么哪一种离子的扩散控制着 MgAl 2O 4 的生成?为什么? 2.镍(Ni)在0.1大气压的氧气中氧化,测得其重量增量(μg/cm2)如下表: 3.由Al 2O 3 和SiO 2 粉末反应生成莫来石,过程由扩散控制,扩散活化能为 50千卡/摩尔,1400℃下,一小时完成10%,求1500℃下,一小时和四小时各完成多少?(应用扬德方程计算) 4.粒径为1μ球状Al 2O 3 由过量的MgO微粒包围,观察尖晶石的形成,在 恒定温度下,第一个小时有20%的Al 2O 3 起了反应,计算完全反应的时间。 (1) 用扬德方程计算 (2) 用金斯特林格方程计算 (3) 比较扬德方程、金斯特林格方程优缺点及适用条件。 5.当测量氧化铝-水化物的分解速率时,发现在等温反应期间,重量损失随时间线性增加到50%左右,超过50%时重量损失的速率就小于线性规律。速率随温度指数增加,这是一个由扩散控制的反应还是由界面一级控制的反应?当温度从451℃增至493℃时,速率增大到10倍,计算此过程的活化能(利用表9-1及图22进行分析) 6.由Al 2O 3 和SiO 2 粉末形成莫来石反应,由扩散控制并符合扬德方程,实 验在温度保持不变的条件下,当反应进行1小时的时候,测知已有15%的反应物起反应而作用掉了。 (1) 将在多少时间内全部反应物都生成产物? (2) 为了加速莫来石的生产应采取什么有效措施? 7.试分析影响固相反应的主要因素。 8.如果要合成镁铝尖晶石,可供选择的原料为MgCO 3、Mg(OH) 2 、MgO、 Al 2O 3 3H 2 O、γ-Al 2 O 3 、α-Al 2 O 3 。从提高反应速率的角度出发,选择什么原料较好? 请说明原因。

第六章 扩散与固相反应应

第六章 扩散与固相反应应 固体中质点(原子或质子)的扩散特点:固体质点之间作用力强,开始扩散温度较低,但低于其熔点;晶体中质点以一定方式堆积,质点迁移必须越过势垒,扩散速率较低迁移自由程约为晶格常数大小;晶体中质点扩散有各向异性。 菲克第一定律:在扩散过程中,单位时间内通过单位横截面积的质点数目(或 称扩散流量密度)J 正比于扩散质点的浓度梯度? C : ???? ? ???+??+??-=?-=z c k y c j x c i D c D J (6-1) 式中D 为扩散系数(m 2/s 或cm 2/s );负号表示粒子从浓度高处向浓度低处扩散,即逆浓度梯度的方向扩散。 菲克第一定律是质点扩散定量描述的基本方程,它可直接用于求解扩散质点浓度分布不随时间变化的稳定扩散问题。 菲克第二定律:适用于求解扩散质点浓度分布随时间变化的不稳定扩散问题。 ???? ????+??+??=??222222z c y c x c D t c (6-2) ??? ? ???=Dt x erfc c t x c 2),(0 (6-3) (6-3)式为第二定律的数学解,erfc(x/2Dt )是余误差函数。在处理实际问题时,若实验中测得c(x,t),即可求得扩散深度x 与时间的近似关系。 Dt K Dt c t x c erfc x =???? ??=-01 ),( (6-4) 式(6-4)表明,x 与t 2 1成正比,在一定浓度c 时,增加1倍扩散深度则需延长4倍扩散时间。 扩散系数:从质点的无序迁移推导出扩散系数的表达式,阐述物理意义;从热力学理论导出一般热力学关系式: D i =RTB i (1+?㏑i γ/?㏑i N ) (6-5) D i 为i 质点本征扩散系数;B i 为I 质点平均速率或淌度;为i 质点活度系数;N i 为i 质点浓度。式中(1+?㏑i γ/?㏑i N )称为扩散系数的热力学因子。 当体系为理想混合时i γ=1,此时D i=D i #=RTB i 。D i #为自扩散系数。 当体系为非理想混合时,有两种情况: (1)当(1+?㏑i γ/?㏑i N )>0,D i >0为正扩散。在这种情况下物质流将由高浓度

陆佩文无机材料科学基础习题测验

第七章 扩散与固相反应 1、名词解释: 非稳定扩散:扩散过程中任一点浓度随时间变化; 稳定扩散:扩散质点浓度分布不随时间变化。 无序扩散:无化学位梯度、浓度梯度、无外场推动力,由热起伏引起的扩散。 质点的扩散是无序的、随机的。 本征扩散:主要出现了肖特基和弗兰克尔点缺陷,由此点缺陷引起的扩散为 本征扩散(空位来源于晶体结构中本征热缺陷而引起的质点迁 移); 非本征扩散:空位来源于掺杂而引起的质点迁移。 正扩散和逆扩散: 正扩散:当热力学因子时,物质由高浓度处流向低浓度处,扩散结果使溶质 趋于均匀化,D i >0。 逆扩散:当热力学因子 时,物质由低浓度处流向高浓度处,扩散结果使溶质 偏聚或分相,D i <0。 2、简述固体内粒子的迁移方式有几种? 答 易位,环转位,空位扩散,间隙扩散,推填式。 3、说明影响扩散的因素? 化学键:共价键方向性限制不利间隙扩散,空位扩散为主。金属键离子键以 空位扩散为主,间隙离子较小时以间隙扩散为主。 缺陷:缺陷部位会成为质点扩散的快速通道,有利扩散。 温度:D=D 0exp (-Q/RT )Q 不变,温度升高扩散系数增大有利扩散。Q 越大 温度变化对扩散系数越敏感。 杂质:杂质与介质形成化合物降低扩散速度;杂质与空位缔合有利扩散;杂 质含量大本征扩散和非本征扩散的温度转折点升高。 扩散物质的性质:扩散质点和介质的性质差异大利于扩散; 扩散介质的结构:结构紧密不利扩散。 4、在KCl 晶体中掺入10-5mo1%CaCl 2,低温时KCl 中的K +离子扩散以非本征 扩散为主,试回答在多高温度以上,K +离子扩散以热缺陷控制的本征扩散为主?(KCl 的肖特基缺陷形成能ΔH s =251kJ/mol ,R=8.314J/mo1·K ) 解:在KCl 晶体中掺入10-5mo1%CaCl 2,缺陷方程为: 2' 22KCl K K cl CaCl Ca V Cl ? ? ???→++ 则掺杂引起的空位浓度为'710K V -??=??

扩散与固相反应word版

第十章扩散与固相反应 扩散的基本概念 当物质内有浓度梯度、应力梯度、化学梯度和其它梯度存在的条件下,由于热运动而导致原子(分子)的定向迁移,从宏观上表现出物质的定向输送,这个输送过程称为扩散。扩散是一种传质过程。 从不同的角度对扩散进行分类 1、按浓度均匀程度分: 有浓度差的空间扩散叫互扩散;没有浓度差的扩散叫自扩散 2、按扩散方向分: 由高浓度区向低浓度区的扩散叫顺扩散,又称下坡扩散; 由低浓度区向高浓度区的扩散叫逆扩散,又称上坡扩散。 3、按原子的扩散方向分: 在晶粒内部进行的扩散称为体扩散;在表面进行的扩散称为表面扩散;沿晶界进行的扩散称为晶界扩散。表面扩散和晶界扩散的扩散速度比体扩散要快得多,一般称前两种情况为短路扩散。此外还有沿位错线的扩散,沿层错面的扩散等。扩散的基本特点: 1、气体和液体传质特点

主要传质是通过对流来实现,而在固体中,扩散是主要传质过程;两者的本质都是粒子不规则的布朗运动(热运动)。 2、固体扩散的特点: A.固体质点之间作用力较强,开始扩散温度较高,远低于熔点; B.固体是凝聚体,质点以一定方式堆积,质点迁移必须越过势垒,扩散速率较低,迁移自由程约为晶格常数大小;晶体中质点扩散有各向异性。 扩散的意义 无机非金属材料制备工艺中很多重要的物理化学过程都与扩散有关系。例如,固溶体的形成、离子晶体的导电性、材料的热处理、相变过程、氧化、固相反应、烧结、金属陶瓷材料的封接、金属材料的涂搪与耐火材料的侵蚀。因此研究固体中扩散的基本规律的认识材料的性质、制备和生产具有一定性能的固体材料均有十分重大的意义。 第一节宏观动力学方程 一、稳定扩散和不稳定扩散 稳定扩散:扩散物质在扩散层内各处的浓度不随时间而变化,即dc/dt=0

扩散与固相反应

第十章扩散与固相反应 1.描述在金属固体中发生扩散时,原子是如何运动的。指出扩散的条件。 2.有一球壳,内半径为r1,外半径为r2。在T温度保温,有物质从球壳内 向球壳外扩散,当扩散达到平衡后,球壳内表面扩散物质的浓度为C1,外表面的浓度为C2,并测得在单位时间内从球壳内向球壳外扩散的物质总量为Q。设扩散系数为常数。求: A,扩散系数。 B,r=(r1+r2)/2处的浓度。 3.指出第一定律、第二定律中的不同适用的场合。 4.钢可以在870℃渗碳也可以在930℃渗碳,问:A)计算钢在870℃和930℃ 渗碳时,碳在钢(奥氏体)中的扩散系数。已知D0=2.0×10-5m2s-1,Q=144×103J/mol。B)在870℃渗碳要用多长时间才能获得930℃渗碳10小时的渗层深度?(渗层深度:在浓度-距离曲线中,某一浓度所对应的离表面的距离。) 5.简述置换原子和间隙原子的扩散机制。 6.何谓柯肯达尔效应,简述柯肯达尔效应的意义。 7.简述晶体结构对扩散的影响。 8.若由MgO和Al2O3球形颗粒之间的反应生成MgAl2O4是通过产物层的 扩散进行的: 9.(1) 画出其反应的几何图形并推导出反应初期的速度方程。

10.(2) 若1300℃时DAl3+>DMg2+,O2-基本不动,那么哪一种离子的扩散 控制着MgAl2O4的生成?为什么? 11.镍(Ni)在0.1大气压的氧气中氧化,测得其重量增量(μg/cm2)如 下表: (1)导出合适的反应速度方程;(2) 计算其活化能。 12.由Al2O3和SiO2粉末反应生成莫来石,过程由扩散控制,扩散活化能为 50千卡/摩尔,1400℃下,一小时完成10%,求1500℃下,一小时和四小时各完成多少?(应用扬德方程计算) 13.粒径为1μ球状Al2O3由过量的MgO微粒包围,观察尖晶石的形成,在 恒定温度下,第一个小时有20%的Al2O3起了反应,计算完全反应的时间。 (1) 用扬德方程计算 (2) 用金斯特林格方程计算 (3) 比较扬德方程、金斯特林格方程优缺点及适用条件。 14.当测量氧化铝-水化物的分解速率时,发现在等温反应期间,重量损失随 时间线性增加到50%左右,超过50%时重量损失的速率就小于线性规

第七章 扩散与固相反应

第七章 扩散与固相反应 例 题 7-1 试分析碳原子在面心立方和体心立方铁八面体空隙间跳跃情况,并以D =γr 2Γ形式写出其扩散系数(设点阵常数为a )。(式中r 为跃迁自由程;γ为几何因子;Γ为跃迁频率。) 解:在面心立方晶体中,八面体空隙中心在晶胞体心及棱边中心。相邻空隙连线均为[110]晶向,空隙 间距为。因而碳原子通过在平行的[110]晶面之间跳动完成扩散。若取[110]为X 轴、]101[为Y 轴、[001] 为Z 轴,则碳原子沿这三个轴正反方向跳动的机会相等。因此碳原子在平行[110]晶面之间跳动的几率即几何因子γ=1/6。 在体心立方晶体中,八面体空隙中心在晶胞面心及核边中心,相邻空隙间距为a /2。其连线为[110]晶向,可以认为碳原子通过在平行的[200]晶面之间来完成扩散,取[100]、[010]、[001]为X 、Y 、Z 轴。碳原子沿这三个轴正反方向跳动机会均等,因而碳原子在平行的[200]晶面间跳动的几率γ=1/6。 在面心立方铁中2261= =r γ 代入 2 D r γ=Γ 12)2(6122ΓΓa a D =??=面心 在体心立方铁中16γ=2r a = 24)2(6122ΓΓa a D =??=体心 7-2 设有一种由等直径的A 、B 原子组成的置换型固溶体。该固溶体具有简单立方的晶体结构,点阵常数a =0.3nm ,且A 原子在固溶体中分布成直线变化,在0.12mm 距离内原子百分数由0.15增至0.63。又设A 原子跃迁频率Γ=10-6s -1,试求每秒内通过单位截面的A 原子数? 解:已知1 6s 101--?=Γ,16γ=;nm 30.==a r ;求扩散通量J 。 s cm 105110)1030(612226372---?=???==..r D Γγ 每cm 3固溶体内所含原子数为 322 3 7cm 1073)10 30(1个?=?-.. 2224 2224212015063 3710148100012 1510148102210s cm ........dc dx J D dc dx ----= ??=-?=-=???=? 7-3 制造晶体管的方法之一是将杂质原子扩散进入半导体材料如硅中。假如硅片厚度是0.1cm ,在其中每107个硅原子中含有一个磷原子,而在表面上是涂有每107个硅原子中有400个磷原子,计算浓度梯度(a )每cm 上原子百分数,(b )每cm 上单位体积的原子百分数。硅晶格常数为0.5431nm 。 解:由菲克第一定律计算在内部和表面上的原子的百分组成,C i 和C s 分别为内部和表面磷浓度。

第6章气体在固体中的溶解与扩散

气体在固体中的溶解和扩散

气体在固体中的溶解和扩散 ?气体分子的溶解与渗透 ?溶解 由两种或两种以上物质所组成的均匀体系叫做“溶体”。溶体中含量较多的成分称为“溶剂”,其余称为“溶质”。溶剂可以是液体,也可以是气体、固体;溶质可以是固体,也可以是气体、液体。 ?渗透和渗透率 由于在真空容器器壁两侧的气体总是存在压力差,即使固体壁面材料上存在的微孔小到足以阻止正常气体通过,但任何固体材料总是或多或少地渗透一些气体。气体从密度大的一侧向密度小的一侧渗入、扩散、通过、和逸出固体阻挡层的过程成为渗透。这种情况下气体的稳态流率称为渗透率。 ?气体溶质溶解于固体溶剂中的情况 从微观的角度来看,气体溶解于固体的过程可分为五个步骤: ①吸附 在高压侧,气体分子吸附在固体表面上; ②离解 吸附的气体分子有时在固体表面上离解为原子态; ③溶解 气体在固体表层达到与环境气压相对应的溶解浓度; ④扩散 由于表层浓度比较高,在浓度梯度的作用下气体分子

(或原子)向固体深部扩散,直到浓度均匀为止; ⑤脱附 溶质气体扩散到器壁的另一面重新结合成分子后释放(或气体扩散到器壁的另一面后解吸和释出;

气体在固体中的溶解和扩散 ?扩散速度与溶解度 溶解和渗透速度一般由扩散速度所决定,而最终固体材料可溶解的气体量则取决于溶解度。 ?扩散速度——研究溶解(或解溶)的动力学参量 表示溶解(或解溶)没有达到平衡时的进行速度,研究扩散可以知道固体材料吸收或放出气体 的速度。与渗透气体及壁面材料的种类和性质有密切关系; ?溶解度——研究溶解的静力学参量 在一定温度、一定气压下,固体能溶解气体的饱和浓度,称为该温度及气压下的“溶解度”。溶 解度表示材料内溶解达到动态平衡时所溶解的气体量,研究溶解度可以知道各种固体材料在一 定条件下能溶解多少气体; ?影响溶解度的因素 从宏观来看,溶解度与气体一固体组合的性质、气体压强、温度有关。 ?气体在固体中的溶解度——近似有理想溶体的性质 ①如果溶解时各物质成分能以任何比例互溶,体积有可加性,没有热效应发生,则形 成的溶体称为“理想溶体” ②当溶质浓度很小时,许多实际溶体表现得很像理想溶体。气体在固体中的溶解度一般

扩散与固相反应

扩散与固相反应 7-1 试分析碳原子在面心立方和体心立方铁八面体空隙间跳跃情况, 并以 D = γ2rΓ形式 写出其扩散系数 (设点阵常数为 a )。(式中 r 为跃迁自由程; γ为几何因子; Γ为跃迁频率。 ) 7-2 设有一种由等直径的 A 、B 原子组成的置换型固溶体。该固溶体具有简单立方的晶 体结构,点阵常数 A = 0.3nm ,且 A 原子在固溶体中分布成直线变化,在 0.12mm 距离内原 子百分数由 0.15 增至 0.63。又设 A 原子跃迁频率 Γ=10-6 s -1 ,试求每秒内通过单位截面的 A 原子数? 7-3 制造晶体管的方法之一是将杂质原子扩散进入半导体材料如硅中。 假如硅片厚度是 0.1cm ,在其中每 107 个硅原子中含有一个磷原子,而在表面上是涂有每 107 个硅原子中有 400个磷原子,计算浓度梯度( a )每cm 上原子百分数, (b )每 cm 上单位体积的原子百分 数。硅晶格常数为 0.5431nm 。 7-4 已知 MgO 多晶材料中 Mg 2+离子本征扩散系数( D in )和非本征扩散系数( D ex )由 下式给出 486000 2 D in 0.249exp ( ) cm 2 s in RT 5 254500 2 D ex 1.2 10 5exp ( ) cm 2 s RT (a ) 分别求出 25℃和 1000℃时,Mg 2+的(D in )和( D ex )。 (b ) 试求在 Mg 2+ 的 lnD ~1/T 图中,由非本征扩散转变为本征扩散的转折点温度? 7-5 从 7-4 题所给出的 D in 和 D ex 式中求 MgO 晶体的肖特基缺陷形成焓。若欲使 Mg 2+ 在 MgO 中的扩散直至 MgO 熔点 2800℃时仍是非本征扩散,试求三价杂质离子应有什么样 的浓度? 7-6 若认为晶界的扩散通道宽度一般为 0.5nm ,试证明原子通过晶界扩散和晶格扩散的 扩散系数。 Q gb Q v 7-7 设体积扩散与晶界扩散活化能间关系为 2 (Qg b 、Q v 分别为晶界扩散与体 积 扩散激活能) ,试画出 lnD ~1/T 曲线,并分析在哪个温度范围内, 晶界扩散超过体积扩散 ? 质量之比为 10 9 (10 d ) (D D g v b )。其中 d 为晶粒平均直径; D gb 、D v 分别为晶界扩散系数和晶格

实验27__扩散与固相反应实验(张)

实验28 热重分析技术在固相反应研究中的应用 一、实验目的 固相反应是材料制备中一个重要的高温动力学过程,固体之间能否进行反应、反应完成的程度、反应过程的控制等直接影响材料的显微结构,并最终决定材料的性质,因此,研究固体之间反应的机理及动力学规律,对传统和新型无机非金属材料的生产有重要的意义。 本实验的目的: 1.掌握TG法的原理,熟悉采用TG法研究固相反应的方法。 2.通过CaCO3-SiO2系统的反应验证固相反应的动力学规律─杨德方程。 3.通过作图计算出反应的速度常数和反应的表观活化能。 二、实验原理 许多固体材料在在高温下加热时,因其中的某些组分分解逸出或固体与周围介质中的某些物质作用使固体物系的重量发生变化,如盐类的分解、含水矿物的脱水、有机质的燃烧等会使物系重量减轻,高温氧化、反应烧结等则会使物系重量增加。热重分析法(Thermogravimetric Analysis.简称TG) 及微商热重法(derivative thermogravimetry,简称DTG 法)是在程序控制温度下,测量物质质量与温度关系的一种技术。微商热重法所记录的是TG曲线对温度或时间的一阶导数,所得的曲线称为DTG曲线。现在的热重分析仪常与微分装置联用,可同时得到TG- DTG曲线。通过测量物系质量随温度或时间的变化可以间接地揭示固体物系反应的机理和/或反应动力学规律。 2.1 TG的基本原理与仪器 进行热重分析的基本仪器为热天平。热天平一般包括天平、炉子、程序控温系统、记录系统等部分。此外还配有通入气氛或真空装置。典型的热天平示意图如图1。 图1 热天平原理图 热重分析法通常可分为两大类:静态法和动态法。静态法是等压质量变化的测定,是指一物质的挥发性产物在恒定分压下,物质平衡与温度T的函数关系。以失重为纵坐标,温

固体中的扩散

第七章固体中的扩散 内容提要 扩散是物质内质点运动的基本方式,当温度高于绝对零度时,任何物系内的质点都在作热运动。当物质内有梯度(化学位、浓度、应力梯度等)存在时,由于热运动而导致质点定向迁移即所谓的扩散。因此,扩散是一种传质过程,宏观上表现出物质的定向迁移。在气体和液体中,物质的传递方式除扩散外还可以通过对流等方式进行;在固体中,扩散往往是物质传递的唯一方式。扩散的本质是质点的无规则运动。晶体中缺陷的产生与复合就是一种宏观上无质点定向迁移的无序扩散。晶体结构的主要特征是其原子或离子的规则排列。然而实际晶体中原子或离子的排列总是或多或少地偏离了严格的周期性。在热起伏的过程中,晶体的某些原子或离子由于振动剧烈而脱离格点进入晶格中的间隙位置或晶体表面,同时在晶体内部留下空位。显然,这些处于间隙位置上的原子或原格点上留下来的空位并不会永久固定下来,它们将可以从热涨落的过程中重新获取能量,在晶体结构中不断地改变位置而出现由一处向另一处的无规则迁移运动。在日常生活和生产过程中遇到的大气污染、液体渗漏、氧气罐泄漏等现象,则是有梯度存在情况下,气体在气体介质、液体在固体介质中以及气体在固体介质中的定向迁移即扩散过程。由此可见,扩散现象是普遍存在的。 晶体中原子或离子的扩散是固态传质和反应的基础。无机材料制备和使用中很多重要的物理化学过程,如半导体的掺杂、固溶体的形成、金属材料的涂搪或与陶瓷和玻璃材料的封接、耐火材料的侵蚀等都与扩散密切相关,受到扩散过程的控制。通过扩散的研究可以对这些过程进行定量或半定量的计算以及理论分析。无机材料的高温动力学过程——相变、固相反应、烧结等进行的速度与进程亦取决于扩散进行的快慢。并且,无机材料的很多性质,如导电性、导热性等亦直接取决于微观带电粒子或载流子在外场——电场或温度场作用下的迁移行为。因此,研究扩散现象及扩散动力学规律,不仅可以从理论上了解和分析固体的结构、原子的结合状态以及固态相变的机理;而且可以对无机材料制备、加工及应用中的许多动力学过程进行有效控制,具有重要的理论及实际意义。 本章主要介绍固态扩散的宏观规律及其动力学、扩散的微观机构及扩散系数,通过宏观-微观-宏观的渐进循环,认识扩散现象及本质,总结出影响扩散

第7章扩散与固相应用.

第七章扩散与固相反应 §7-1 晶体中扩散的基本特点与宏观动力学方程 一、基本特点 1、固体中明显的质点扩散常开始于较高的温度,但实际上又往往低于固体的熔点; 2、晶体中质点扩散往往具有各向异性,扩散速率远低于流体中的情况。 二、扩散动力学方程 1、稳定扩散和不稳定扩散 在晶体A中如果存在一组分B的浓度差,则该组分将沿着浓度减少的方向扩散,晶体A作为扩散介质存在,而组分B则为扩散物质。 如图,图中dx为扩散介质中垂直于扩散方向x的一薄层,在dx两侧,扩散物质的浓度分别为c1和c2,且c1>c2,扩散物质在扩散介质中浓度分布位置是x 的函数,扩散物质将在浓度梯度的推动下沿x方向扩散。 的浓度分布不随时间变的扩散过程 稳定扩散:若扩散物质在扩散层dx内各处的浓度不随时间而变化,即dc/dt=0。这种扩散称稳定扩散。 不稳定扩散:扩散物质在扩散层dx内的浓度随时间而变化,即dc/dt≠0。这种扩散称为不稳定扩散。 2、菲克定律 (1)菲克第一定律 在扩散体系中,参与扩散质点的浓度因位置而异,且随时间而变化,即浓度是坐标x、y、z和时间t函数,在扩散过程中,单位时间内通过单位横截面积的质点数目(或称扩散流量密度)j之比于扩散质点的浓度梯度△c →→?c?c?cJ=-D?C=-D(i+j+k) ?x?y?z D:扩散系数;其量纲为L2T-1,单位m2/s。 负号表示粒子从浓度高处向浓度低处扩散,即逆浓度梯度的方向扩散,对于一般非立方对称结构晶体,扩散系数D为二阶张量,上式可写为: ?c?c?c-Dxy-Dzz?x?y?z ?c?c?cJy=-Dyx-Dyy-Dyz?x?y?z ?c?c?cJz=-Dzx-Dzy- Dzz?x?y?zJx=-Dxx 对于大部分的玻璃或各向同性的多晶陶瓷材料,可认为扩散系数D将与扩散方向无关而为一标量。 dc Jx=-Ddx Jx----沿x方向的扩散流量密度 dcJdydcJdzyzy---沿Y方向的扩散流量密度 z---沿Z方向的扩散流量密度 适用于:稳定扩散。

扩散与固相反应-电子教案

第七章扩散与固相反应 1.晶体中扩散的基本特点与宏观动力学方程 1.1 扩散的基本概念 当物质内有浓度梯度、应力梯度、化学梯度和其它梯度存在的条件下,由于热运动而导致原子(分子)的定向迁移,从宏观上表现出物质的定向输送,这个输送过程称为扩散。扩散是一种传质过程。 1.2 扩散的基本特点: 1.2.1 气体和液体传质特点 主要传质是通过对流来实现,而在固体中,扩散是主要传质过程;两者的本质都是粒子不规则的布朗运动(热动动)。 1.2.2 固体扩散的特点: A.固体质点之间作用力较强,开始扩散温度较高,远低于熔点; B.固体是凝聚体,质点以一定方式堆积,质点迁移必须越过势垒, 扩散速率较低,迁移自由程约为晶格常数大小;晶体中质点扩散有各向异性。(图7-1)

图7-1 扩散势场示意图 1.2.3 扩散的意义 无机非金属材料制备工艺中很多重要的物理化学过程都与扩散有关系。例如,固溶体的形成、离子晶体的导电性、材料的热处理、相变过程、氧化、固相反应、烧结、金属陶瓷材料的封接、金属材料的涂搪与耐火材料的侵蚀。因此研究固体中扩散的基本规律的认识材料的性质、制备和生产具有一定性能的固体材料均有十分重大的意义。2.扩散的动力学方程 2.1 菲克第一定律(Fick’s First Law) 2.1.1 菲克第一定律的一维推导 若有一根均匀的合金长棒,沿其长度方向存在着某溶质的浓度梯度在棒中取垂直x方向的厚度为△x的薄层,其两侧浓度分别为C2、C1并C2>C1,则薄层中浓度梯度为:

x dx dc C C ?-=1 2 此浓度梯度推动下,溶质原子沿x 方向通过薄层自左向右扩散迁移,溶质浓度C 随位置而变化,在一维情况下可记作c=f(x)。扩散在无限长时间后,整个试棒内溶质浓度为C 。这说明单个原子运动是无规则的,但从宏观统计的角度看,介质中质点的扩散行为都遵循相同的统计规律。于是就提出了菲克第一定律:在扩散体系中,参与扩散质点的浓度因位置而异、且可随时间而变化。公式为: dsdt dx dc D dG -= 式中 dc/dx ——扩散层浓度梯度。C 是溶质单位容积浓度,以g/cm3、l/cm 3、原子数/cm 3。X 是扩散方向上的距离(cm ). D ——比例常数,又称扩散系数。一般固体当温度在20~1500℃范围内,D 值约波动在10-20~10-4cm 2/s 范围内。方程前面的负号表示原子流动方向与浓度梯度方向相反。 J ——扩散通量。即单位时间单位面积上溶质扩散的量。 菲克第一定律的另一种叙述:原子的扩散通量与浓度梯度成正比(J=-Ddc/dx ) 由于扩散有方向性,故J 为矢量, 对于三维有如下公式: )(z c k y c j x c i D J ??+??+??-= 菲克第一定律是质点扩散定量描述的基本方程。它适于稳定扩散(浓度分布不随时间变化),同时又是不稳定扩散(质点浓度分布随时间变化)动力学方程建立的基础。

扩散与固相反应

扩散与固相反应

————————————————————————————————作者: ————————————————————————————————日期: ?

扩散与固相反应 7-1?试分析碳原子在面心立方和体心立方铁八面体空隙间跳跃情况,并以D=γr2Γ形式写出其扩散系数(设点阵常数为a)。(式中r为跃迁自由程;γ为几何因子;Γ为跃迁频率。)7-2?设有一种由等直径的A、B原子组成的置换型固溶体。该固溶体具有简单立方的晶体结构,点阵常数A=0.3nm,且A原子在固溶体中分布成直线变化,在0.12mm距离内原子百分数由0.15增至0.63。又设A原子跃迁频率Γ=10-6s-1,试求每秒内通过单位截面的A 原子数? 7-3 ?制造晶体管的方法之一是将杂质原子扩散进入半导体材料如硅中。假如硅片厚度是0.1cm,在其中每107个硅原子中含有一个磷原子,而在表面上是涂有每107个硅原子中有400个磷原子,计算浓度梯度(a)每cm上原子百分数,(b)每cm上单位体积的原子百分数。硅晶格常数为0.5431nm。 7-4?已知MgO多晶材料中Mg2+离子本征扩散系数(D in)和非本征扩散系数(Dex)由下式给出 ?? 2 52 486000 0249exp() cm s 254500 1210exp() cm s . . in ex D RT D RT - =- =?- (a) 分别求出25℃和1000℃时,Mg2+的(Din)和(Dex)。 (b)试求在Mg2+的lnD~1/T图中,由非本征扩散转变为本征扩散的转折点温度? 7-5 ?从7-4题所给出的Din和D ex式中求MgO晶体的肖特基缺陷形成焓。若欲使Mg2+在MgO中的扩散直至MgO熔点2800℃时仍是非本征扩散,试求三价杂质离子应有什么样的浓度? 7-6?若认为晶界的扩散通道宽度一般为0.5nm,试证明原子通过晶界扩散和晶格扩 散的质量之比为 9 10 ()() gb v D d D - 。其中d为晶粒平均直径;D gb、Dv分别为晶界扩散系数和 晶格扩散系数。 7-7设体积扩散与晶界扩散活化能间关系为 1 2 gb v Q Q = (Qgb、Qv分别为晶界扩散与体 积扩散激活能),试画出lnD~1/T曲线,并分析在哪个温度范围内,晶界扩散超过体积扩散? 7-8在一种柯肯达尔扩散中,假定(a)晶体为简单立方结构;(b)单位体积内原子数为一常数1023;(c)A原子的跃迁频率为1010s-1,B原子跃迁频率为109s-1;(d)点阵常数a=0.25nm;(e)浓度梯度为10个/cm;(f)截面面积为0.25cm2。试求A、B原子通过标志界面的扩散通量以及标志界面移动速度。 7-9 纯固相反应在热力学上有何特点?为什么固相反应有气体或液体参加时,范特荷夫规则就不适用了? 7-10假定从氧化铝和二氧化硅粉料形成莫来石为扩散控制过程,如何证明这一点?又假如激活能为210kJ/mol,并在1400℃下1h(小时)内反应过程完成10%,问在1500℃下

第七章扩散与固相反应

第七章 扩散与固相反应 内容提要:晶体中原子(离子)的扩散是固态传质和反应等过程的基础。本章讨论了扩散的两个问题。一是扩散现象的宏观规律——菲克第一、第二定律,描述扩散物质的浓度分布与距离、时间的关系。二是扩散微观机制,即扩散过程中原子迁移的方式。在了解原子移动规律的基础上讨论了固相反应的扩散动力学方程。杨德尔与金斯特林格方程的推导及其适用的范围。简要介绍了影响固相反应的因素。 固体中质点(原子或离子)的扩散特点:固体质点之间作用力较强,开始扩散温度较高,但低于其熔点;晶体中质点以一定方式堆积,质点迁移必须越过势垒,扩散速率较低,迁移自由程约为晶格常数大小;晶体中质点扩散有各向异性。 菲克第一定律:在扩散过程中,单位时间内通过单位截面的质点数目(或称扩散流量密度)J 正比于扩散质点的浓度梯度c : )(z c k y c j x c i D D ??+??+??-=?-= 式中D 为扩散系数s m 2或s cm 2;负号表示粒子从浓度高处向浓度低处扩散,即逆浓度梯度的方向扩散。 菲克第一定律是质点扩散定量描述的基本方程,它可直接用于求解扩散质点浓度分布不随时间变化的稳定扩散问题。 菲克第二定律适用于求解扩散质点浓度分布随时间和距离而变化的不稳定扩散问题。 )(222222z c y c x c D t c ??+??+??=?? 扩散过程推动力是化学位梯度。物质从高化学位流向低化学位是一普遍规律。扩散系数的一般热力学关系式: )ln ln 1(i i i i N RTB D ??+=γ

式中i D 为i 质点本征扩散系数;i B 为i 质点平均速率或称淌度;i γ为i 质点活度系数;i N 为i 质点浓度。)ln ln 1(i i N ??+γ称为扩散系数的热力学因子。 当体系为理想混合时1=i γ,此时i i i RTB D D ==*。*i D 为自扩散系数。 当体系为非理想混合时,有两种情况: (1)当0)ln ln 1(>??+i i N γ,0>i D 为正扩散。在这种情况下物质流将由高浓度处流向低浓度处,扩散结果使溶质趋于均匀化。 (2)当0)ln ln 1(

相关文档
最新文档