扩散与固相反应

扩散与固相反应
扩散与固相反应

扩散与固相反应

————————————————————————————————作者: ————————————————————————————————日期:

?

扩散与固相反应

7-1?试分析碳原子在面心立方和体心立方铁八面体空隙间跳跃情况,并以D=γr2Γ形式写出其扩散系数(设点阵常数为a)。(式中r为跃迁自由程;γ为几何因子;Γ为跃迁频率。)7-2?设有一种由等直径的A、B原子组成的置换型固溶体。该固溶体具有简单立方的晶体结构,点阵常数A=0.3nm,且A原子在固溶体中分布成直线变化,在0.12mm距离内原子百分数由0.15增至0.63。又设A原子跃迁频率Γ=10-6s-1,试求每秒内通过单位截面的A 原子数?

7-3 ?制造晶体管的方法之一是将杂质原子扩散进入半导体材料如硅中。假如硅片厚度是0.1cm,在其中每107个硅原子中含有一个磷原子,而在表面上是涂有每107个硅原子中有400个磷原子,计算浓度梯度(a)每cm上原子百分数,(b)每cm上单位体积的原子百分数。硅晶格常数为0.5431nm。

7-4?已知MgO多晶材料中Mg2+离子本征扩散系数(D in)和非本征扩散系数(Dex)由下式给出

??

2

52

486000

0249exp() cm s

254500

1210exp() cm s

.

.

in

ex

D

RT

D

RT

-

=-

=?-

(a) 分别求出25℃和1000℃时,Mg2+的(Din)和(Dex)。

(b)试求在Mg2+的lnD~1/T图中,由非本征扩散转变为本征扩散的转折点温度?

7-5 ?从7-4题所给出的Din和D ex式中求MgO晶体的肖特基缺陷形成焓。若欲使Mg2+在MgO中的扩散直至MgO熔点2800℃时仍是非本征扩散,试求三价杂质离子应有什么样的浓度?

7-6?若认为晶界的扩散通道宽度一般为0.5nm,试证明原子通过晶界扩散和晶格扩

散的质量之比为

9

10

()()

gb

v

D

d D

-

。其中d为晶粒平均直径;D gb、Dv分别为晶界扩散系数和

晶格扩散系数。

7-7设体积扩散与晶界扩散活化能间关系为

1

2

gb v

Q Q

=

(Qgb、Qv分别为晶界扩散与体

积扩散激活能),试画出lnD~1/T曲线,并分析在哪个温度范围内,晶界扩散超过体积扩散?

7-8在一种柯肯达尔扩散中,假定(a)晶体为简单立方结构;(b)单位体积内原子数为一常数1023;(c)A原子的跃迁频率为1010s-1,B原子跃迁频率为109s-1;(d)点阵常数a=0.25nm;(e)浓度梯度为10个/cm;(f)截面面积为0.25cm2。试求A、B原子通过标志界面的扩散通量以及标志界面移动速度。

7-9 纯固相反应在热力学上有何特点?为什么固相反应有气体或液体参加时,范特荷夫规则就不适用了?

7-10假定从氧化铝和二氧化硅粉料形成莫来石为扩散控制过程,如何证明这一点?又假如激活能为210kJ/mol,并在1400℃下1h(小时)内反应过程完成10%,问在1500℃下

1h内反应会进行到什么程度?在1500℃下4h又会如何?

7-11?在SiC上形成一层非晶态SiO2薄膜,限制了进一步氧化。完成氧化的分数是用测定增重的方法确定的,并发现是遵守抛物线氧化规律。对特定颗粒尺寸的SiC和纯氧O2,得到如下表所示实验数据,试确定表现激活能并说明这是一个扩散控制的反应。

7-12为观察尖晶石的形成,用过量的MgO粉包围1μm的Al2O3球形颗粒,在固定温度实验中的第1h内有20%的Al2O3反应形成尖晶石。试根据(a)无需球形几何修正时,(b)用Jander方程作球形几何修正,计算完全反应的时间?

7-13?名词解释

(a)自扩散和互扩散

(b)本征扩散和非本征扩散

(c)稳定扩散和非稳定扩散

(d)几何因子

(e)加成反应

7-14?图7-2中圆圈代表铝原子,带星号的圆圈代表它的同位素原子。(a)表示原子的原始分布状态,(b)表示经过第一轮跳动后原子的分布情况。试画出第二轮跳动后原子的可能分布情况和示意画出三个阶段同位素原子的浓度分布曲线(c浓度~x距离图)。

7-2 题7-14附图

7-15已知α-Cr2O3多晶材料中Cr3+和O2-的自扩散系数为

?

2

Cr

2

O

3+

2-

256000

0137exp()cm s

423000

159exp()cm s

.

.

D

RT

D

RT

=-

=-

试求1000℃和1500℃时,Cr3+和O2+的自扩散系数为多少?(1000℃?DCr3+

4.29×10–12cm2/s?DO2–6.98×10–171500℃?DCr3+ 3.0×10–9D O2-

5.48×10–12)

7-16在掺杂少量CaO的ZrO2多晶材料中,已知Zr4+、Ca2+和O2-自扩散系数为:

2Zr 2Cr 2O 4+2+2-387000

0035exp()cm s 420000

0444exp()cm s

131000

0018exp()cm s

...D RT D RT D RT =-

=-=- 试求1200℃时三种离子的自扩散系数,计算结果说明什么?(DZr 4+=6.61×10–16

cm 2

/s D CA2

+=5.66×10–1

6 D O2

–=4.07×10–7)

7-17 碳原子体心立方铁中的扩散系数为D=2.0×10-

6exp (-84×105/RT ),求当振动频率为1013s -1,迁移自由程0143nm .r =时的(△S /R )。(2.686)

7-18 氢在金属中容易扩散,当温度较高和压强较大时,用金属容器储存氢气极易渗漏。试讨论稳定扩散状态下金属容器中氢通过器壁扩散渗漏的情况并提出减少氢扩散逸失的措施?

7-19?(a)已知银的自扩散系数D V =7.2×10-5

m 2/s ,Qv =190×103J/mol;晶界扩散系数Dgb =1.4×10-

5m 2/s,Q gb =90×103J/mo l。试求银在927℃及727℃时D gb 和D V的比值。

(b)若实验误差为5%,试用例题7–6的结果,说明当晶体平均直径d =10-4m时,在927℃和727℃下能否察觉到纯银的晶界扩散效应?

( (a)(D g b/D V )927=4.25×103

?(D g b/D V )727=3.10×104 (b )(M gb /M V )927=0.0425?(M gb /M V )727=0.310 )

7-20 试从D -T 图中查出(a )Ca O在1145℃和1393℃时的扩散系数。(b )Al 2O

3在

1396℃和1716℃时的扩散系数。并计算CaO 和Al 2O 3中Ca2+和Al 3

+的扩散激活能

Q和系数D0?((a) 2.03×10–13 1.92×10–12 252k J/mol 4.06×10–4cm 2

/s (b)

2.42×10–11 7.02×10–12 597kJ/mol 1.12×105c m2/s )

7-21 Fe 2+离子在氧化铁(Fe O)中的扩散系数,在600℃时为5×1010cm 2/s ,在900℃时是1.5×10-8c m2/s,求活化能Q 和2+

Fe 在FeO 中的扩散常数D 0。(Q =96.54 kJ /m ol D 0=3.0×10–4cm/s)

7-22 一个0.05cm 厚的硅晶体,在一个表面上每107个Si 原子中含有2个镓(G a)原子,而在其它表面上处理成镓的高浓度面,如果要产生一个-2×1018Ga 原子/cm 4的浓度梯度,在这个表面上必须在107个S i原子中有多少个镓原子?(硅的晶格常数是0.5407nm )。

(0.11×1018Ga 原子数/cm 3·cm)

7-23 硅表面沉积了一层硼薄膜持,经短时间扩散后硼的浓度分布情况如图7-3所示。试考虑若硅表面硼浓度达到饱和并恒定不变时即C s =3×1026cm -3,试求于1200℃下扩散深度8μm 处硼浓度为1024m-3

时所需扩散时间为多少?已知1200℃时B(硼)的扩散系数为4×10-13

m 2/s。(分别用计算法和图解法求之)(25.68h )

图7-3 题7-23附图

7-24 在两根金晶体圆棒的端点涂上示踪原子Au#,并把两棒端部如图7-4(a )所示方式连接。在920℃加热100h ,Au #示踪原子扩散分布如图(B )所示,并满足下列关系:

2

12

exp()

42()M

x C Dt

Dt π=

-

式中C 是浓度;M为实验中示踪原子总量。求此时金的自扩散系数?(2.33×10–7mm 2/s )

图7-4 在920℃加热100h 后Au *的扩散分布曲线

7-25 在一定温度下,若扩散退火时间增加一倍,那么扩散物质的平均渗透深度将增加几倍

?

(2)

7-26 试讨论从室温于熔融温度范围内,氧化锌添加剂10-4%(摩尔)对NaCl 单晶中所有离子(Zn 、Na 、C l)的扩散能力的影响?

7-27 利用电导与温度依赖关系求得扩散系数和用示踪原子等方法直接测得的值常常不一致,试分析原因?

7-28 根据ZnS 烧结的数据测定了扩散系数。在563℃时,测得扩散系数为3×10-4cm 2/s;在450℃时则为1.0×10-4cm 2/s,(1)试确定活化能Q 和系数D 0;(2)根据ZnS 结构,请从缺陷产生和运动的观点来推断活化能的含义;(3)根据六方ZnS 和Z nO 相互类似,预测D 随硫分压改变而改变的关系? ( 0.339cm 2/s 48.86k J/mol

6

1S P D ∝)

7-29 钠钙硅酸盐玻璃中阳离子的扩散系数如图7-5所示,试问: (1)为什么Na +

比Ca 2+和Si 4

+扩散得快?

(2)N a+

扩散曲线的非线性部分产生的原因是什么? (3)将玻璃淬火,其曲线将如何变化? (4)Na +熔体中扩散活化能约为多少?

图7-5 题7-29附图

7-30 (a)试推测在贫铁的Fe 3O 4中铁离子扩散系数与氧分压的关系?(b)推测在铁过剩的Fe 3O 4中氧分压与氧扩散的关系?

7-31 碳、氮和氢在体心立方铁中的活化能分别为84、75和13kJ/mol ,试对此差异进行分析。

7-32?Co 2+在CoO 中F e2+在FeO 中扩散活化能异常低(见下表),试分析其原因?

扩散离子 激活能(kJ /mol )

扩 散 离 子 激活能(kJ/mo l)

F e在FeO 中 96 Mg 在MgO 中 348 O 在UO 2中 151 Ca在CAO 中 322 U 在U O2中 318 Al 在Al 2O 3中 477 Co 在Co O中 105 Be在BeO 中 276 Fe 在F e3O4中 201 Ti 在TiO 2中 251 Cr 在NiCr 2O 4中 318 Zr 在ZrO2中 310 N i在Ni Cr 2O 4中 272 O 在ZrO 2中

188 O 在NiCr 2O 4中

226

7-33 在某种材料中,离子的晶界扩散系数和体积扩散系数分别为

)

1016ex p(10001)108ex p(100024449

RT D RT D v gb

?-?=?-?=---..和,试求出在什么温度

范围内晶界扩散与体积扩散各占优势?

7-34 在氧化物MO 中掺入微量R 2O 后,M 2+的扩散增强,试问M 2+通过何种缺陷发生扩散?要抑止M 2+的扩散应采取什么措施,为什么?

7-35 实验测得Zn-Fe2O 3的互扩散系数如下:

?s cm 10

1020~s cm 1095.1~

21021013701100--?=?=℃℃D D 试求出互扩散的活化能?

7-36 由MgO 和Fe 2O 3制取MgF e2O 4时,预先在界面上埋入标志物,然后让其进行反应。(a)若反应是由M g2+和Fe 3

+互扩散进行的,标志物的位置将如何改变?(b )当只有Fe

+和

O

2-

共同向MgO 中扩散时,情况又如何? (c)在存在氧化还原反应的情况下,Fe 2+和Mg 2+

互扩散时,标志物又将如何移动?(提示:查Fe 3+、Mg 2+的自扩散系数,根据扩散速率,标志物将向扩散快的一端移动)。

7-37 在柯肯达尔扩散实验中,取得如下数据:(a)扩散时间t=200h;(b )标志界面移动

量cm 01440.=l ?;(c )互扩散系数s cm 10~2

7-=D ;(d)成分–距离曲线在标志界面处的

斜率1

20cm .A N x -??=;(e)A 组元的原子百分比浓度N A =0.4。试求A、B 二组元的自扩

散系数?

(提示:先求出标志物移动速度U。A B U D D N x =-??)

7-38 曾发现使用压力(不一定是静压力)可以影响一些被认为是扩散控制的过程,试对(a )空位扩散及(b )间隙扩散给出几种压力能影响自扩散系数的方法。并预计压力增加,D的变化方向。

7-39

一位学生决定研究Ca 2+在NaCl 中的扩散。已知Ca 2+通过空位机制在Na 的亚

晶格内扩散,并知在整个试验范围内][]Ca [Na Na V '=?。试证明DNa 是

Na [Ca ]?

的函数:因而22c t D c x ??≠??。

7-40 铜片要在500℃时不氧化,氧气分压应控制到什么程度较为合适?1000℃时又应如何控制?

7-41 镍(Ni )在0.01MPa 的氧气中氧化测得其质量增加(m g/cm 2)如下表所示。 (a)导出合适的反应速度方程; (b )计算反应活化能。

温度(℃) 时 间 (h)

1 2 3 4 550

9 13 15 10 600 17 23 29 36 650 29

41

50

65

7-42 氧化物的还原最常用的是氢和碳,由氧化物标准生成自由焓图中所列出的氢、碳被氧化的自由焓△G0

变化,推论这两个还原剂有何不同?

7-43 制备纯T i时,使用盛器应该选择硅石制品还是矾土制品,选择的根据是什么? 7-44 MoCO 3和Ca CO 3反应时,反应机理受到CaCO 3颗粒大小的影响。当

33MoO CaCO 3

3

MoO CaCO 1 1r 0036mm r 013mm

,.,.===::时,反应是扩散控制的,当

33CaCO 3

CaCO MoO 15 1r 003mm

=<::,.时,反应由升华控制,试解释这种现象。

7-45 试比较杨德尔方程、金斯特林格方程的优缺点及适用条件。

7-46 如果要合成镁铝尖晶石(M gAl 2O 4),可提供选择的原料为MgC O3、Mg(OH)2、MgO 、Al 2O 3·3H 2O、γ-Al 2O3、α-Al 2O 3。从提高反应速率的角度出发,选择什么原料较好,为什么?

7-47 由Mg O和Al 2O3固相反应生成MgAl 2O4,试问:(a)反应时是什么离子首先移动的?请写出界面反应方程。(b)当用Mg O:MgO=1 :n 进行反应时,在1415℃时测得尖晶石厚度为340μm ,分离比为3.4,试求n 值。(c)已知1415℃和1595℃时,生成MgAl 2O4的反应速率常数分别为1.4×10-9cm 2/s 和1.4×10

-9

cm 2

/s ,试求反应活化能?

7-48 已知下列反应的活化能数据如下:

?反 ?应

?? 活化能Q (kJ/mol )

2324232324

3342

1 CaO Al O CaAl O 18130

2 CaO SiO CaSiO 226093. ZnO+Al O ZnAl O

41031

4. CaCO MoO CaMoO CO 13147......+→+→→+→+

试求当反应温度为1000℃和1300℃时,参与反应的活化分子数各是多少?(假定反应活化能不随温度而变化)?

7-49 实验测得石英粉末颗粒半径与晶型转变速率的关系如下表所示:

温 度 (K) 反应速率常数 0.39mm 0.25mm 0.14m m 1473 3.4×10-5

5.2×10

-5

1.1×10

-4 1573 1.2×10-4 1.7×10-4 3.2×10-

4 1673 6.0×10-4 9.0×10-4 1.3×10-2 1773

1.5×10-2

2.3×10-2

4.3×10-2

(a )试用作图法求出不同粒径石英颗粒晶型转变速率与温度的函数关系

1

[ln ()]

K f T =,说明石英粒度对晶型转变速率的影响。

(b)用各级粒度在1473K和1573K 的反应速率常数分别求出不同粒度石英晶型转化活化能,所得的数值说明什么?

7-50 当测量氧化铝水化物的分解速率时,一个学生发现在等温实验期间,质量损失随时间线性增加到50%左右,超出50%时质量损失的速率就小于线性规律。线性等温速率随温度指数增加,温度从451℃增加到493℃时速率增大10倍,试计算激活能。这是扩散控制的反应,还是一级反应或是界面控制的反应?

7-51 当通过产物层由扩散控制速率时,试考虑从Ni O和C r2O 3的球形颗粒形成NiCr 2O 4的问题。(a)给出假定的几何形状示意图,然后推导出过程中早期的形成速率关系。(b )在颗粒上形成产物层,是什么控制着产物层增长?(c)在1300℃N iCr 2O 4中

D Cr >D Ni >D O , 哪一个控制着NiC r2O4的形成速率?为什么?

7-52 固体内的同质多晶转变导致小尺寸(细晶粒)或大尺寸(粗晶粒)的多晶材料的晶粒大小取决于成核率与晶体生长速率。(a)试问这些速率如何变化才能产生细晶粒或粗晶粒产品?(b )试对每个晶粒给出时间与尺寸的曲线来说明晶粒长大与粗晶粒长大的对比。在时间坐标轴上以转变的时刻为时间起点。

7-53平均粒径为1μm的MgO粉料与Al2O3粉料以1 :1摩尔比配料并均匀混合。将原料在1300℃恒温3600h后,有0.3mol的粉料发生反应而形成MgAl2O4,该固相反应为扩散控制反应。试求在300h后,反应完成的摩尔分数以及反应全部完成所需要的时间。

7-54根据阿伯尔等人的资料【J·Am· Ceram ·Soc45(6)263–66 (1962)】,Al2O3溶解在MgO内的程度在1700℃为3%,在1800℃为7%,在1900℃为12%,而在1500℃则为0%,并观察到慢冷时从固溶体区域中可结晶出尖晶石晶体,而快冷可使固溶体在室温下保持单相,脱溶的尖晶石均匀地出现而与方镁石晶体内的晶界无关,但出现在特定平面上。(a)试问方镁石晶粒内尖晶石的成核是均匀的还是非均匀的?(b)试说明尖晶石晶体沿方镁石晶体特定平面出现的原因,并推测在0~1850℃的温度范围内,含5% Al2O3的已成核的方镁石固溶体中结晶速率与温度关系曲线的形状?

7-55如上题所述,假若一个从事碱性耐火材料的工人使用了被5%~7%Al2O3污染的MgO,则慢冷和快冷的工艺条件将引起材料什么样的显微组织的差异?能否预言在这种材料里通过自扩散晶粒长大,和阳离子扩散的烧结会与在纯MgO内有何不同?为什么?

扩散与固相反应

扩散与固相反应 7-1试分析碳原子在面心立方和体心立方铁八面体空隙间跳跃情况, 并以D = Y 2 r 形式 写出其扩散系数(设点阵常数为a )。(式中r 为跃迁自由程;丫为几何因子;r 为跃迁频率。) 7-2设有一种由等直径的 A 、B 原子组成的置换型固溶体。该固溶体具有简单立方的晶 体结构, 点阵常数 A = 0.3nm ,且A 原子在固溶体中分布成直线变化,在 0.12mm 距离内原 子百分数由0.15增至0.63。又设A 原子跃迁频率 r= 10-6s 1 ,试求每秒内通过单位截面的 A 原子数? 7-3制造晶体管的方法之一是将杂质原子扩散进入半导体材料如硅中。 假如硅片厚度是 0.1cm ,在其中每107 个硅原子中含有一个磷原子,而在表面上是涂有每 107 个硅原子中有 400个磷原子,计算浓度梯度(a )每cm 上原子百分数,(b )每cm 上单位体积的原子百分 数。硅 晶格常数为 0.5431 nm 。 7-4已知MgO 多晶材料中Mg 2+ 离子本征扩散系数(DQ 和非本征扩散系数(D ex )由 下式给出 486000 2 D in = 0.249exp ( ) cm ; s RT 5 254500、 2 ■■ D ex =1.2 10 exp ( ) cm . s RT (a ) 分别求出 25C 和 1000C 时,Mg 2+ 的(D in )和(D ex )。 (b ) 试求在Mg 2+ 的InD ?1/T 图中,由非本征扩散转变为本征扩散的转折点温度? 7-5从7-4题所给出的D in 和D ex 式中求MgO 晶体的肖特基缺陷形成焓。若欲使 Mg 2+ 在MgO 中的 扩散直至 MgO 熔点2800 C 时仍是非本征扩散,试求三价杂质离子应有什么样 的浓度? 7-6若认为晶界的扩散通道宽度一般为 0.5nm ,试证明原子通过晶界扩散和晶格扩散的 扩散系数。 Q gb = _ Q v 7-7设体积扩散与晶界扩散活化能间关系为 2 (Qg b 、Q v 分别为晶界扩散与体 积扩散激活能),试画出lnD ?1/T 曲线,并分析在哪个温度范围内, 晶界扩散超过体积扩散 ? 7-8在一种柯肯达尔扩散中,假定(a )晶体为简单立方结构;(b )单位体积内原子数 为一常数1023 ; (c ) A 原子的跃迁频率为1010s -1 , B 原子跃迁频率为109s -1 ; (d )点阵常数 a = 0.25nm ; (e )浓度梯度为10个/cm ; (f )截面面积为0.25cm 。试求A 、B 原子通过标志 界面的扩散通量以 及标志界面移动速度。 7-9纯固相反应在热力学上有何特点?为什么固相反应有气体或液体参加时, 范特荷夫 规则就不适用了? 7-10假定从氧化铝和二氧化硅粉料形成莫来石为扩散控制过程,如何证明这一点?又 假如激活 能为210kJ/mol ,并在1400 C 下1h (小时)内反应过程完成 10%,问在1500 C 下 质量之比为 10-9 (〒) 自。其中 d 为晶粒平均直径; D gb 、D v 分别为晶界扩散系数和晶格

固相反应

一、固相反应法的特点固相法是通过从固相到固相的变化来制造粉体,其特征是不像气相法和液相法伴随有气相→固相、液相→固相那样的状态(相)变化。对于气相或液相,分子(原子)有很大的易动度,所以集合状态是均匀的,对外界条件的反应很敏感。另一方面,对于固相,分子(原子)的扩散很迟缓,集合状态是多样的。固相法其原料本身是固体,这较之于液体和气体都有很大的差异。固相法所得的固相粉体和最初固相原料可以使同一物质,也可以不是同一物质。[1] 二、物质粉末化机理一类是将大块物质极细地分割,称作尺寸降低过程,其特点是物质无变化,常用的方法是机械粉碎(用普通球磨、振磨、搅拌磨、高能球磨、喷射磨等进行粉碎),化学处理(溶出法)等。另一类是将最小单位(分子或原子)组合,称作构筑过程,其特征是物质发生了变化,常用的方法有热分解法(大多数是盐的分解),固相反应法(大多数是化合物,包括化合反应和氧化还原反应),火花放电法(常用金属铝产生氢氧化铝)等。三、固相反应的具体方法1、机械粉碎法主要应用是球磨法,机械球磨法工艺的主要目的包括离子尺寸的减小、固态合金化、混合或融合以及改变离子的形状。目前已形成各种方法,如滚转磨、振动磨和平面磨。采用球磨方法,控制适合的条件可以得到纯元素、合金或者是复合材料的纳米粒子。其特点是操作简单、成本低,但产品容易被污染,因此纯度低,颗粒分布不均匀[2]。2、热分解法热分解反应不仅仅限于固相,气体和液体也可引发热分解反应,在此只讨论固相的分解反应,固相热分解生成新的固相系统,常用如下式子表示(S代表固相、G代表气相):121 1212 SSGSSGG 第一个式子是最普通的,第二个式子是第一个式子的特殊情况。热分解反应基本是第一式的情况。3、固相反应法由固相热分解可获得单一的金属氧化物,但氧化物以外的物质,如碳化物、硅化物、氮化物等以及含两种金属元素以上的氧化物制成的化合物,仅仅用热分解就很难制备,通常是按最终合成所需组成的原料化合,再用高温使其反应的方法,其一般工序如左图所示。首先是按照规定的组成称量,通常用水等做分散剂,在玛瑙球的球磨内混合,然后通过压滤机脱水后再用电炉焙烧,通常焙烧温度比烧成温度低。在固相反应中粉体间的反应相当的复杂,反应从固体间的接触部分通过离子扩散来进行,但接触状态和各种原料颗粒的分布情况显著地收到颗粒的性质(粒径、颗粒形状和表面状态等)和粉体处理的方法(团聚状态和填充状态等等)的影响。 另外,当即热上述粉体时,固相反应以外的现象也同时进行。一个烧结,另一个是颗粒的生长,这两种现象均在同种原料间和反应生成物间出现。对于固相反应生成的化合物,原料的烧结和颗粒生长均使原料的反应性降低,并且导致扩散距离增加和接触点密度的减少,所以应尽量抑制烧结和颗粒生长。4、点火花放电法把金属电极插入到气体或者液体等绝缘体中,不断地增高电压,如果首先提高电压可观察到电流增加,在某一点产生电晕放电,之后即使不增加电压电流也会自然增加,向瞬时稳定的放电状态即电弧放电移动。从电晕放电到电弧放电过程中的过度放电称为火花放电,火花放电持续的时间很短,但是电压梯度很高,电流密度很大,也就是说火花放电在短时间内能释放出很大的电能。因此在放电的瞬间产生高温,同时产生很强的机械能。在煤油之类的液体中利用,利用电极和被加工物之间的火花放电来进行放电加工是电加工中广泛使用的一种方法。在放电加工中,电极、被加工物会生成工屑,如果我们积极地控制工屑的生成就有可能制造出微粉,也就是电火花放电法制造微粉。图2 电火花发制备粉体装置示意图[3] 原料 称量称量溶剂混合脱水干燥煅烧粉碎造粒、整粒原料烧结用粉体图1 固相反应法制备粉体工艺流程 四、总结除了上述制备方法之外还有溶出法等,固相法来制备陶瓷粉体方法很多,

第七章扩散与固相反应

第七章扩散与固相反应 一、名词解释 1.扩散;2.扩散系数与扩散通量;3.本征扩散与非本征扩散; 4.自扩散与互扩散;5.无序扩散与晶格扩散;6.稳定扩散与不稳定扩散: 7.反常扩散(逆扩散);8.固相反应 二、填空与选择 1.晶体中质点的扩散迁移方式有、、、和。2.当扩散系数的热力学因子为时,称为逆扩散。此类扩散的特征为,其扩散结果为使或。3.扩散推动力是。晶体中原子或离子的迁移机构主要分为两种:和。4.恒定源条件下,820℃时钢经1小时的渗碳,可得到一定厚度的表面碳层,同样条件下,要得到两倍厚度的渗碳层需小时. 5.本征扩散是由而引起的质点迁移,本征扩散的活化能由和 两部分组成,扩散系数与温度的关系式为。 6.菲克第一定律适用于,其数学表达式为;菲克第二定律适用于,其数学表达式为。 7.在离子型材料中,影响扩散的缺陷来自两个方面:(1)肖特基缺陷和弗仑克尔缺陷(热缺陷),(2)掺杂点缺陷。由热缺陷所引起的扩散称,而掺杂点缺陷引起的扩散称为。(自扩散、互扩散、无序扩散、非本征扩散) 8.在通过玻璃转变区域时,急冷的玻璃中网络变体的扩散系数,一般相同组成但充分退火的玻璃中的扩散系数。(高于、低于、等于) 9.在UO2晶体中,O2-的扩散是按机制进行的。(空位、间隙、掺杂点缺陷)10.杨德尔方程是基于模型的固相方程,金斯特林格方程是基于模型的固相方程。 三、浓度差会引起扩散,扩散是否总是从高浓度处向低浓度处进行?为什么? 四、试分析离子晶体中,阴离子扩散系数-般都小于阳离子扩散系数的原因。 五、试从结构和能量的观点解释为什么D表面>D晶面>D晶内。 六、碳、氮氢在体心立方铁中扩散的激活能分别为84、75和13kJ/mol,试对此差异进行分析和解释。 七、欲使Ca2+在CaO中的扩散直至CaO的熔点(2600℃)都是非本征扩散,要求三价杂质离子有什么样的浓度?试对你在计算中所作的各种特性值的估计作充分说明(已知CaO 肖特基缺陷形成能为6eV)。 八、已知氢和镍在面心立方铁中的扩散系数为:

实验报告—固相反应

南昌大学实验报告 (样本) 学生姓名:×××学号: 5702106*** 专业班级:无机材料062班 实验类型:■演示□验证□综合□设计□创新实验日期:2008-11-20实验成绩: 实验五固相反应 一.实验目的与内容 固相反应是材料制备中一个重要的高温动力学过程,固体之间能否进行反应、反应完成的程度、反应过程的控制等直接影响材料的显微结构,并最终决定材料的性质,因此,研究固体之间反应的机理及动力学规律,对传统和新型无机非金属材料的生产有重要的意义。 1.本实验的目的: 掌握TG法的原理,采用TG法研究固相反应的方法。通过Na2CO3-SiO2系统的反应验证固相反应的动力学规律—金斯特林格方程。通过作图计算出反应的速度常数和反应的表观活化能。 2.实验原理 固体材料在高温下加热时,因其中的某些组分分解逸出或固体与周围介质中的某些物质作用使固体物系的重量发生变化,如盐类的分解、含水矿物的脱水、有机质的燃烧等会使物系重量减轻,高温氧化、反应烧结等则会使物系重量增加。 现代热重分析仪常与微分装置联用,可同时得到TG-DTG曲线。通过测量物系质量随温度或时间的变化来揭示或间接揭示固体物系反应的机理或反应动力学规律。 固体物质中的质点,在高于绝对零度的温度下总是在其平衡位置附近作谐振动。温度升高时,振幅增大。当温度足够高时,晶格中的质点就会脱离晶格平衡位置,与周围其它质点产生换位作用,在单元系统中表现为烧结,在二元或多元系统则可能有新的化合物出现。这种没有液相或气相参与,由固体物质之间直接作用所发生的反应称为纯固相反应。实际生产过程中所发生的固相反应,往往有液相或气相参与,这就是所谓的广义固相反应,即由固体反应物出发,在高温下经过一系列物理化学变化而生成固体产物的过程。 固相反应属于非均相反应,描述其动力学规律的方程,通常采用转化率G(已反应的反应物量与反应物原始重量的比值)与反应时间t之间的积分或微分关系来表示。 测量固相反应速率,可以通过TG法(适应于反应中有重量变化的系统)、量气法(适应于有气

扩散系数计算

7.2.2扩散系数 费克定律中的扩散系数D代表单位浓度梯度下的扩散通量,它表达某个组分在介质中扩散的快慢,是物质的一种传递性质。 一、气体中的扩散系数 气体中的扩散系数与系统、温度和压力有关,其量级为52 10/m s -。通常对于二元 气体精品文档,你值得期待 A、B 的相互扩散,A在B 中的扩散系数和B 在A 中的扩散系数相等,因此可略去下标而用同一符号D表示,即AB BA D D D ==。 表7-1给出了某些二元气体在常压下(5 1.01310Pa ?)的扩散系数。 对于二元气体扩散系数的估算,通常用较简单的由富勒(Fuller )等提出的公式: 1/31/32 [()()]A B D P v v = +∑∑ (7-19) 式中,D -A、B 二元气体的扩散系数,2 /m s ; P -气体的总压,Pa ; T -气体的温度,K; A M 、 B M -组分A、B 的摩尔质量,/kg kmol ; A v ∑、B v ∑-组分A、B 分子扩散体积,3 /cm mol 。 一般有机化合物可按分子式由表7-2查相应的原子扩散体积加和得到,某些简单物质则在表7-2种直接列出。 5 1.01310Pa ?

式7-19的相对误差一般小于10%。 二、液体中的扩散系数 由于液体中的分子要比气体中的分子密集得多,因此也体的扩散系数要比气体的小得多,其量级为9 2 10/m s -。表7-3给出了某些溶质在液体溶剂中的扩散系数。 对于很稀的非电解质溶液(溶质A+溶剂B),其扩散系数常用Wilke-Chang 公式估算: 15 0.6()7.410 T B AB A M T D V -φ=?μ 2/m s (7-21) 式中,AB D -溶质A在溶剂B中的扩散系数(也称无限稀释扩散系数),2 /m s ; T -溶液的温度,K; μ-溶剂B的粘度,.Pa s ; B M -溶剂B的摩尔质量,/kg kmol ; φ-溶剂的缔合参数,具体值为:水2.6;甲醇1.9;乙醇1.5;苯、乙醚等不缔合的溶剂 为1.0; A V -溶质A 在正常沸点下的分子体积,3/cm mol ,由正常沸点下的液体密度来计

固相反应

固相反应 1.若由MgO和Al 2O 3 球形颗粒之间的反应生成MgAl 2 O 4 是通过产物层的扩散进行 的: (1) 画出其反应的几何图形并推导出反应初期的速度方程。 (2) 若1300℃时D Al3+>D Mg2+ -2 :基本不动,那么哪一种离子的扩散控制着 MgAl 2O 4 的生成?为什么? 2.镍(Ni)在0.1大气压的氧气中氧化,测得其重量增量(μg/cm2)如下表: 3.由Al 2O 3 和SiO 2 粉末反应生成莫来石,过程由扩散控制,扩散活化能为 50千卡/摩尔,1400℃下,一小时完成10%,求1500℃下,一小时和四小时各完成多少?(应用扬德方程计算) 4.粒径为1μ球状Al 2O 3 由过量的MgO微粒包围,观察尖晶石的形成,在 恒定温度下,第一个小时有20%的Al 2O 3 起了反应,计算完全反应的时间。 (1) 用扬德方程计算 (2) 用金斯特林格方程计算 (3) 比较扬德方程、金斯特林格方程优缺点及适用条件。 5.当测量氧化铝-水化物的分解速率时,发现在等温反应期间,重量损失随时间线性增加到50%左右,超过50%时重量损失的速率就小于线性规律。速率随温度指数增加,这是一个由扩散控制的反应还是由界面一级控制的反应?当温度从451℃增至493℃时,速率增大到10倍,计算此过程的活化能(利用表9-1及图22进行分析) 6.由Al 2O 3 和SiO 2 粉末形成莫来石反应,由扩散控制并符合扬德方程,实 验在温度保持不变的条件下,当反应进行1小时的时候,测知已有15%的反应物起反应而作用掉了。 (1) 将在多少时间内全部反应物都生成产物? (2) 为了加速莫来石的生产应采取什么有效措施? 7.试分析影响固相反应的主要因素。 8.如果要合成镁铝尖晶石,可供选择的原料为MgCO 3、Mg(OH) 2 、MgO、 Al 2O 3 3H 2 O、γ-Al 2 O 3 、α-Al 2 O 3 。从提高反应速率的角度出发,选择什么原料较好? 请说明原因。

扩散与固相反应

扩散与固相反应 7-1 试分析碳原子在面心立方和体心立方铁八面体空隙间跳跃情况,并以D =γr 2Γ形式写出其扩散系数(设点阵常数为a )。(式中r 为跃迁自由程;γ为几何因子;Γ为跃迁频率。) 7-2 设有一种由等直径的A 、B 原子组成的置换型固溶体。该固溶体具有简单立方的晶体结构,点阵常数A =0.3nm ,且A 原子在固溶体中分布成直线变化,在0.12mm 距离内原子百分数由0.15增至0.63。又设A 原子跃迁频率Γ=10-6s -1,试求每秒内通过单位截面的A 原子数? 7-3 制造晶体管的方法之一是将杂质原子扩散进入半导体材料如硅中。假如硅片厚度是0.1cm ,在其中每107个硅原子中含有一个磷原子,而在表面上是涂有每107个硅原子中有400个磷原子,计算浓度梯度(a )每cm 上原子百分数,(b )每cm 上单位体积的原子百分数。硅晶格常数为0.5431nm 。 7-4 已知MgO 多晶材料中Mg 2+离子本征扩散系数(D in )和非本征扩散系数(D ex )由下式给出 252486000 0249exp() cm 254500 1210exp() cm ..in ex D RT D RT -=- =?- (a ) 分别求出25℃和1000℃时,Mg 2+的(D in )和(D ex )。 (b ) 试求在Mg 2+的ln D ~1/T 图中,由非本征扩散转变为本征扩散的转折点温度? 7-5 从7-4题所给出的D in 和D ex 式中求MgO 晶体的肖特基缺陷形成焓。若欲使Mg 2+ 在MgO 中的扩散直至MgO 熔点2800℃时仍是非本征扩散,试求三价杂质离子应有什么样的浓度? 7-6 若认为晶界的扩散通道宽度一般为0.5nm ,试证明原子通过晶界扩散和晶格扩散的 质量之比为 9 10()()gb v D d D -。其中d 为晶粒平均直径;D gb 、D v 分别为晶界扩散系数和晶格扩散系数。 7-7 设体积扩散与晶界扩散活化能间关系为 1 2gb v Q Q = (Qg b 、Q v 分别为晶界扩散与体 积扩散激活能),试画出ln D ~1/T 曲线,并分析在哪个温度范围内,晶界扩散超过体积扩散? 7-8 在一种柯肯达尔扩散中,假定(a )晶体为简单立方结构;(b )单位体积内原子数为一常数1023;(c ) A 原子的跃迁频率为1010s -1,B 原子跃迁频率为109s -1;(d )点阵常数a =0.25nm ;(e )浓度梯度为10个/cm ;(f )截面面积为0.25cm 2。试求A 、B 原子通过标志界面的扩散通量以及标志界面移动速度。 7-9 纯固相反应在热力学上有何特点?为什么固相反应有气体或液体参加时,范特荷夫规则就不适用了? 7-10 假定从氧化铝和二氧化硅粉料形成莫来石为扩散控制过程,如何证明这一点?又假如激活能为210kJ/mol ,并在1400℃下1h (小时)内反应过程完成10%,问在1500℃下

固相反应动力学.

实验四 固相反应动力学 一、目的: 1.探讨Na 2CO 3-SiO 2系统的固相反应动力学; 2.熟悉运用失重法进行固相反应的研究。 二、原理: 固态物质中的质点,在温度升高时,振动相应增大,而达到一定温度时,其中若干原子或离子具有一定的活度,以至可以跳离原来位置,与周围的其它离子产生换位作用。在一元系统中表现为烧结的开始,如果是二元或多元系统则表现为表面相接触的物质间有新化合物的产生,亦即固相反应的存在。这时的反应是在没有气相和液相参加的情况下进行的,反应发生的温度低于液相出现的温度。 测定固相反应速度的问题,实际上就是测定反应过程中各反应阶段的反应量的问题,因此有许多方法,对于反应中有气体产生的反应可以用重量法或量体积法即测量反应过程中生成的气体的量,进而计算出物质的反应量。 本实验是测定Na 2CO 3-SiO 2系统的固相反应速度,采用的方法是重量法,该反应式可以表示为: Na 2CO 3+SiO 2=Na 2O ·SiO 2+CO 2↑ 在反应进行的过程中,在某一温度下随时间的增长,Na 2SiO 2量增多,生成的CO 2气量也越多,若测得系统各时间下失去的CO 2的重量,则可按杨德公式的要求先算出各时间下对应的G 值,再根据杨德尔公式(1-31G -)2=K τ可求出(1-31G -)2~τ的关系曲线。若此曲线是一直线,则表示杨德尔公式具有正确性,说明K 是常数。 二、仪器装置: 1.WZK-1可控硅温度控制器; 2.1/万光电天平; 3.管式电阻炉; 4.温控热电偶 三、操作步骤: 1.用差重法准确称取按分子量比1:1配制成的Na 2CO 3+SiO 2混合物0.3-0.4克,置于小铂金皿中(注意:不可装得太满)。 2.打开WZK 温度控制器电源开关,将黑色定温指针定于700℃,将控制开关拨到 “手 图4-1 固相反应原理图 图4-2 固相反应装置

固相反应动力学

实验20 固相反应动力学 一、实验目的 验证固相反应理论,通过本实验达到进一步了解固相反应机理。通过测定BaCO3-SiO2系统中给定组成的固相反应速度常数,熟悉测定固相反应速度的仪器及方法。 二、实验内容 1.原理 固态物质中的质点(分子、原子或离子)是不断振动的(除绝对零度外),随着温度升高,振幅增大,当达到一定温度时(各种物质不同),由于存在热起伏,使某些质点具有了一定的能量,以至于可以跳离其原来的位置,而产生质点的迁移。这一过程对于单元系统来说就是烧结的开始。这一过程在无气相和液相时也能进行,这就是狭义的固相反应。从广义上讲,所谓固相反应就是有固体物质参加的反应。 固相反应全部过程可分为扩散过程、反应过程及晶核形成过程这三个部分。其中进行得最慢的一个过程控制着整个过程的进行。许多固相反应是由扩散过程控制的,在这种情况下,等温固相反应动力学有三种可能性: 1. 1.新形成的反应产物层阻碍扩散作用:此时反应速度与产物层的厚度y成反比: dy/dt=K/y (1) 2. 2.新形成的反应产物层与扩散作用无关: dy/dt=K (2) 3..新形成的反应产物层能促进扩散作用: dy/dt=Ky (3) 实际上大部分固相反应属于第一种类型.由(1)式积分得: y2=Kt (4) 由于实际测量反应产物层厚度比较困难,因此,通常用反应产物百分数x来表示反应程度.设颗粒为球形且反应物与产物的比重相等,则可推得如下方程: [1-3 100 100x ]2=Kt 对于BaCO3-SiO2系统,可以用测量反应时放出得气体体积或系统重量损失(重量法)来计算反应产物百分数。但因重量法灵敏度差,故常采用量气法。 量气法一般都在负压下(-40mmHg)进行,这样实验结果准确度高。本实验为便于控制和操作,在常压下进行。 2. 实验装置 实验装置如图20-1所示。 3. 实验步骤 (1) 在分析天平上称0.4~0.5克样品于白金小筒内,塌实,接上悬丝,然后置于炉内反应管中,挂于小钩上。 (2) 检查仪器密封情况,不漏气方可进行实验。采用提高(或降低)水准瓶,使之产生一个水位差(压力差)的方法来检查漏气情况。 (3) 检查线路后,接通电源,按10℃/min的升温速度升温至800℃,并保温10分钟,旋三通开关使反应管与量气筒接通(到指定温度前,反应管放空),记下量气筒的起始读数。(4) 作好准备工作后,将悬丝脱开,使白金小量筒落到反应管中,同时按动秒表记录时间。第一分钟内每20秒记录一次量气管上的读数。注意读数时应将水准瓶与量气管中的液面保持在同一水平上(为什么?),一分钟以后,每分钟读一次,10分钟后二分钟读一次,20分钟后每5分钟读一次,至60分钟实验结束。 注意整个实验中应严格控制温度,波动范围为<5℃。

扩散系数计算

扩散系数计算 WTD standardization office [WTD 5AB- WTDK 08- WTD 2C]

费克定律中的扩散系数D代表单位浓度梯度下的扩散通量,它表达某个组分在介质中扩散的快慢,是物质的一种传递性质。 一、气体中的扩散系数 气体中的扩散系数与系统、温度和压力有关,其量级为lOFX/s。通常对于二元气体A、B的相互扩散,A在B中的扩散系数和B在A中的扩散系数相等,因此可略去下标而用同一符号D表示,即D\严D^D。 表7 - 1给出了某些二元气体在常压下(l.O13xia s P6/)的扩散系数。 对于二元气体扩散系数的估算,通常用较简单的由富勒(Fuller)等提出的公式: 0.010 IT175 I丄+ 丄 (7-19) 式中,D-A、B二元气体的扩散系数?; P-气体的总压,Pa;了-气体的温度,K ; Mg 组分A、B的摩尔质量,kg/kmol; -组分A、B分子扩散体积, cm3/mol o 般有机化合物可按分子式由表7 - 2查相应的原子扩散体积加和得到,某些简单物质则在表7-2种直接列出。 表7 - 1某些二元气体在常压下(1.013x10,P“)的扩散系数

注:已列出分子扩散体积的,以后者为准。 式7- 1 9的相对i 吴差一般小于1 0%。 二、液体中的扩散系数 由于液体中的分子要比气体中的分子密集得多,因此也体的扩散系数要比气体的 小得多,其量级为1O3X/S 。表7 - 3给出了某些溶质在液体溶剂中的扩散系数。 表7 - 3溶质在液体溶剂中的扩散系数(溶质浓度很低) 对于很稀的非电解质溶液(溶质A+溶剂B ),其扩散系数常用Wilke-Chang 公 式估算: 式中,0^-溶质A 在溶剂B 中的扩散系数(也称无限稀释扩散系数),,沪“; 丁-溶液 的温度,K ; 卩-溶剂B 的粘度,Pa s ; D AB = 7.4x10小 (删“片 ^7^ m 2 / s (7 — 2 1)

第八章固相反应复习习题及提纲

习题 1.若由MgO和Al2O3球形颗粒之间的反应生成MgAl2O4是通过产物层的扩散进行的: (1) 画出其反应的几何图形并推导出反应初期的速度方程。 (2) 若1300℃时D Al3+>D Mg2+,O2-基本不动,那么哪一种离子的扩散控制着MgAl2O4的 生成?为什么? 2.镍(Ni)在0.1大气压的氧气中氧化,测得其重量增量(μg/cm2)如下表: (1) 导出合适的反应速度方程;(2) 计算其活化能。 3.由Al2O3和SiO2粉末反应生成莫来石,过程由扩散控制,扩散活化能为50千卡/摩尔,1400℃下,一小时完成10%,求1500℃下,一小时和四小时各完成多少?(应用扬德方程计算) 4.粒径为1μ球状Al2O3由过量的MgO微粒包围,观察尖晶石的形成,在恒定温度下,第一个小时有20%的Al2O3起了反应,计算完全反应的时间。 (1) 用扬德方程计算 (2) 用金斯特林格方程计算 (3) 比较扬德方程、金斯特林格方程优缺点及适用条件。 5.当测量氧化铝-水化物的分解速率时,发现在等温反应期间,重量损失随时间线性增加到50%左右,超过50%时重量损失的速率就小于线性规律。速率随温度指数增加,这是一个由扩散控制的反应还是由界面一级控制的反应?当温度从451℃增至493℃时,速率增大到10倍,计算此过程的活化能(利用表9-1及图22进行分析) 6.由Al2O3和SiO2粉末形成莫来石反应,由扩散控制并符合扬德方程,实验在温度保持不变的条件下,当反应进行1小时的时候,测知已有15%的反应物起反应而作用掉了。 (1) 将在多少时间内全部反应物都生成产物? (2) 为了加速莫来石的生产应采取什么有效措施? 7.试分析影响固相反应的主要因素。 8.如果要合成镁铝尖晶石,可供选择的原料为MgCO3、Mg(OH)2、MgO、Al2O3·3H2O、γ-Al2O3、α-Al2O3。从提高反应速率的角度出发,选择什么原料较好?请说明原因。 复习提纲 1.广义固相反应的共同特点;固相反应机理;固相界面上的化学反应的三个过程。 2.固相反应的一般动力学关系及其意义;解释化学动力学范围;解释扩散动力学范围的特点,扩散动力学范围的三个动力学方程的表达式、各自所采用的模型极其适用 范围、有何优缺点。 分析影响固相反应的因素。

扩散系数计算

扩散系数 费克定律中的扩散系数D代表单位浓度梯度下的扩散通量,它表达某个组分在介质中扩散的快慢,是物质的一种传递性质。 一、气体中的扩散系数 气体中的扩散系数与系统、温度和压力有关,其量级为5 2 10/m s -。通常对于二元气体A、B 的相互扩散,A在B 中的扩散系数和B 在A 中的扩散系数相等,因此可略去下标而用同一符号D表示,即AB BA D D D ==。 表7-1给出了某些二元气体在常压下(5 1.01310Pa ?)的扩散系数。 对于二元气体扩散系数的估算,通常用较简单的由富勒(Fuller )等提出的公式: 1/31/32 [()()]A B D P v v = +∑∑ (7-19) 式中,D -A、B 二元气体的扩散系数,2 /m s ; P -气体的总压,Pa ; T -气体的温度,K; A M 、 B M -组分A、B 的摩尔质量,/kg kmol ; A v ∑、B v ∑-组分A、B 分子扩散体积,3 /cm mol 。 一般有机化合物可按分子式由表7-2查相应的原子扩散体积加和得到,某些简单物质则在表7-2种直接列出。 5 1.01310Pa ?

式7-19的相对误差一般小于10%。 二、液体中的扩散系数 由于液体中的分子要比气体中的分子密集得多,因此也体的扩散系数要比气体的小得多,其量级为9 2 10/m s -。表7-3给出了某些溶质在液体溶剂中的扩散系数。 对于很稀的非电解质溶液(溶质A+溶剂B),其扩散系数常用Wilke-Chang 公式估算: 15 0.6()7.410 T B AB A M T D V -φ=?μ 2/m s (7-21) 式中,AB D -溶质A在溶剂B中的扩散系数(也称无限稀释扩散系数),2 /m s ; T -溶液的温度,K; μ-溶剂B的粘度,.Pa s ; B M -溶剂B的摩尔质量,/kg kmol ; φ-溶剂的缔合参数,具体值为:水;甲醇;乙醇;苯、乙醚等不缔合的溶剂为; A V -溶质A 在正常沸点下的分子体积,3/cm mol ,由正常沸点下的液体密度来计算。 若缺乏此密度数据,则可采用Tyn-Calus 方法估算: 1.048 0.285c V V =,其中c V 为物质的临界

扩散与固相反应

第十章扩散与固相反应 1.描述在金属固体中发生扩散时,原子是如何运动的。指出扩散的条件。 2.有一球壳,内半径为r1,外半径为r2。在T温度保温,有物质从球壳内 向球壳外扩散,当扩散达到平衡后,球壳内表面扩散物质的浓度为C1,外表面的浓度为C2,并测得在单位时间内从球壳内向球壳外扩散的物质总量为Q。设扩散系数为常数。求: A,扩散系数。 B,r=(r1+r2)/2处的浓度。 3.指出第一定律、第二定律中的不同适用的场合。 4.钢可以在870℃渗碳也可以在930℃渗碳,问:A)计算钢在870℃和930℃ 渗碳时,碳在钢(奥氏体)中的扩散系数。已知D0=2.0×10-5m2s-1,Q=144×103J/mol。B)在870℃渗碳要用多长时间才能获得930℃渗碳10小时的渗层深度?(渗层深度:在浓度-距离曲线中,某一浓度所对应的离表面的距离。) 5.简述置换原子和间隙原子的扩散机制。 6.何谓柯肯达尔效应,简述柯肯达尔效应的意义。 7.简述晶体结构对扩散的影响。 8.若由MgO和Al2O3球形颗粒之间的反应生成MgAl2O4是通过产物层的 扩散进行的: 9.(1) 画出其反应的几何图形并推导出反应初期的速度方程。

10.(2) 若1300℃时DAl3+>DMg2+,O2-基本不动,那么哪一种离子的扩散 控制着MgAl2O4的生成?为什么? 11.镍(Ni)在0.1大气压的氧气中氧化,测得其重量增量(μg/cm2)如 下表: (1)导出合适的反应速度方程;(2) 计算其活化能。 12.由Al2O3和SiO2粉末反应生成莫来石,过程由扩散控制,扩散活化能为 50千卡/摩尔,1400℃下,一小时完成10%,求1500℃下,一小时和四小时各完成多少?(应用扬德方程计算) 13.粒径为1μ球状Al2O3由过量的MgO微粒包围,观察尖晶石的形成,在 恒定温度下,第一个小时有20%的Al2O3起了反应,计算完全反应的时间。 (1) 用扬德方程计算 (2) 用金斯特林格方程计算 (3) 比较扬德方程、金斯特林格方程优缺点及适用条件。 14.当测量氧化铝-水化物的分解速率时,发现在等温反应期间,重量损失随 时间线性增加到50%左右,超过50%时重量损失的速率就小于线性规

扩散系数计算

. 7.2.2扩散系数 费克定律中的扩散系数D代表单位浓度梯度下的扩散通量,它表达某个组分在介质中扩散的快慢,是物质的一种传递性质。 一、气体中的扩散系数 ?52s10m/。通常对于二元气体气体中的扩散系数与系统、温度和压力有关,其量级为中的扩散系数相等,因此可略去下标而B在AA、B的相互扩散,A在B中的扩散系数和D?D?D。用同一符号D表示,即BAAB5Pa?101.013)的扩散系数。表7-1给出了某些二元气体在常压下(Fuller)等提出的公式:对于二元气体扩散系数的估算,通常用较简单的由富勒 ??1/321/3]vv))?(P[(BA(7-19)(111.75?0.0101TMM BA?D 2m/sD;二元气体的扩散系数,式中,-A、B PaP;-气体的总压,T-气体的温度,K;MMkg/kmol;的摩尔质量,、-组分A、B BA??vv BA3molcm/、-组分A、B分子扩散体积,。某些简单物质一般有机化合物可按分子式由表7-2查相应的原子扩散体积加和得到,则在表5 表7-2原子扩散体积和分子扩散体积 1 / 4 .

注:已列出分子扩散体积的,以后者为准。 式7-19的相对误差一般小于10%。二、液体中的扩散系数由于液体中的分子要比气体中的分子密集得多,因此也体的扩散系数要比气体的小得2?9s10m/。表7-3给出了某些溶质在液体溶剂中的扩散系数。多,其量级为表7-3溶质在液体溶剂中的扩散系数(溶质浓度很低) Wilke-Chang公式估算:(溶质A+溶剂B),其扩散系数常用对于很稀的非电解质溶液 T T?M)(15?B10?7.4D?AB0.6V?2sm/(7-21)A D2sm/-溶质A在溶剂B中的扩散系数(也称无限稀释扩散系数);,式中,AB T-溶液的温度,K; ?sPa.-溶剂B的粘度,;Mkmol/kg;-溶剂B的摩尔质量,B?;苯、乙醚等不缔合的溶剂;乙醇1.91.5-溶剂的缔合参数,具体值为:水2.6;甲醇 1.0;为V3molcm/,由正常沸点下的液体密度来计-溶质A在正常沸点下的分子体积,A1.048VV0.285V?为物质的方法估算:则可采用算。若缺乏此密度数据,Tyn-Calus,其中cc2 / 4 . 3C

第七章 扩散与固相反应

第七章 扩散与固相反应 例 题 7-1 试分析碳原子在面心立方和体心立方铁八面体空隙间跳跃情况,并以D =γr 2Γ形式写出其扩散系数(设点阵常数为a )。(式中r 为跃迁自由程;γ为几何因子;Γ为跃迁频率。) 解:在面心立方晶体中,八面体空隙中心在晶胞体心及棱边中心。相邻空隙连线均为[110]晶向,空隙 间距为。因而碳原子通过在平行的[110]晶面之间跳动完成扩散。若取[110]为X 轴、]101[为Y 轴、[001] 为Z 轴,则碳原子沿这三个轴正反方向跳动的机会相等。因此碳原子在平行[110]晶面之间跳动的几率即几何因子γ=1/6。 在体心立方晶体中,八面体空隙中心在晶胞面心及核边中心,相邻空隙间距为a /2。其连线为[110]晶向,可以认为碳原子通过在平行的[200]晶面之间来完成扩散,取[100]、[010]、[001]为X 、Y 、Z 轴。碳原子沿这三个轴正反方向跳动机会均等,因而碳原子在平行的[200]晶面间跳动的几率γ=1/6。 在面心立方铁中2261= =r γ 代入 2 D r γ=Γ 12)2(6122ΓΓa a D =??=面心 在体心立方铁中16γ=2r a = 24)2(6122ΓΓa a D =??=体心 7-2 设有一种由等直径的A 、B 原子组成的置换型固溶体。该固溶体具有简单立方的晶体结构,点阵常数a =0.3nm ,且A 原子在固溶体中分布成直线变化,在0.12mm 距离内原子百分数由0.15增至0.63。又设A 原子跃迁频率Γ=10-6s -1,试求每秒内通过单位截面的A 原子数? 解:已知1 6s 101--?=Γ,16γ=;nm 30.==a r ;求扩散通量J 。 s cm 105110)1030(612226372---?=???==..r D Γγ 每cm 3固溶体内所含原子数为 322 3 7cm 1073)10 30(1个?=?-.. 2224 2224212015063 3710148100012 1510148102210s cm ........dc dx J D dc dx ----= ??=-?=-=???=? 7-3 制造晶体管的方法之一是将杂质原子扩散进入半导体材料如硅中。假如硅片厚度是0.1cm ,在其中每107个硅原子中含有一个磷原子,而在表面上是涂有每107个硅原子中有400个磷原子,计算浓度梯度(a )每cm 上原子百分数,(b )每cm 上单位体积的原子百分数。硅晶格常数为0.5431nm 。 解:由菲克第一定律计算在内部和表面上的原子的百分组成,C i 和C s 分别为内部和表面磷浓度。

第6章气体在固体中的溶解与扩散

气体在固体中的溶解和扩散

气体在固体中的溶解和扩散 ?气体分子的溶解与渗透 ?溶解 由两种或两种以上物质所组成的均匀体系叫做“溶体”。溶体中含量较多的成分称为“溶剂”,其余称为“溶质”。溶剂可以是液体,也可以是气体、固体;溶质可以是固体,也可以是气体、液体。 ?渗透和渗透率 由于在真空容器器壁两侧的气体总是存在压力差,即使固体壁面材料上存在的微孔小到足以阻止正常气体通过,但任何固体材料总是或多或少地渗透一些气体。气体从密度大的一侧向密度小的一侧渗入、扩散、通过、和逸出固体阻挡层的过程成为渗透。这种情况下气体的稳态流率称为渗透率。 ?气体溶质溶解于固体溶剂中的情况 从微观的角度来看,气体溶解于固体的过程可分为五个步骤: ①吸附 在高压侧,气体分子吸附在固体表面上; ②离解 吸附的气体分子有时在固体表面上离解为原子态; ③溶解 气体在固体表层达到与环境气压相对应的溶解浓度; ④扩散 由于表层浓度比较高,在浓度梯度的作用下气体分子

(或原子)向固体深部扩散,直到浓度均匀为止; ⑤脱附 溶质气体扩散到器壁的另一面重新结合成分子后释放(或气体扩散到器壁的另一面后解吸和释出;

气体在固体中的溶解和扩散 ?扩散速度与溶解度 溶解和渗透速度一般由扩散速度所决定,而最终固体材料可溶解的气体量则取决于溶解度。 ?扩散速度——研究溶解(或解溶)的动力学参量 表示溶解(或解溶)没有达到平衡时的进行速度,研究扩散可以知道固体材料吸收或放出气体 的速度。与渗透气体及壁面材料的种类和性质有密切关系; ?溶解度——研究溶解的静力学参量 在一定温度、一定气压下,固体能溶解气体的饱和浓度,称为该温度及气压下的“溶解度”。溶 解度表示材料内溶解达到动态平衡时所溶解的气体量,研究溶解度可以知道各种固体材料在一 定条件下能溶解多少气体; ?影响溶解度的因素 从宏观来看,溶解度与气体一固体组合的性质、气体压强、温度有关。 ?气体在固体中的溶解度——近似有理想溶体的性质 ①如果溶解时各物质成分能以任何比例互溶,体积有可加性,没有热效应发生,则形 成的溶体称为“理想溶体” ②当溶质浓度很小时,许多实际溶体表现得很像理想溶体。气体在固体中的溶解度一般

扩散与固相反应

扩散与固相反应 7-1 试分析碳原子在面心立方和体心立方铁八面体空隙间跳跃情况, 并以 D = γ2rΓ形式 写出其扩散系数 (设点阵常数为 a )。(式中 r 为跃迁自由程; γ为几何因子; Γ为跃迁频率。 ) 7-2 设有一种由等直径的 A 、B 原子组成的置换型固溶体。该固溶体具有简单立方的晶 体结构,点阵常数 A = 0.3nm ,且 A 原子在固溶体中分布成直线变化,在 0.12mm 距离内原 子百分数由 0.15 增至 0.63。又设 A 原子跃迁频率 Γ=10-6 s -1 ,试求每秒内通过单位截面的 A 原子数? 7-3 制造晶体管的方法之一是将杂质原子扩散进入半导体材料如硅中。 假如硅片厚度是 0.1cm ,在其中每 107 个硅原子中含有一个磷原子,而在表面上是涂有每 107 个硅原子中有 400个磷原子,计算浓度梯度( a )每cm 上原子百分数, (b )每 cm 上单位体积的原子百分 数。硅晶格常数为 0.5431nm 。 7-4 已知 MgO 多晶材料中 Mg 2+离子本征扩散系数( D in )和非本征扩散系数( D ex )由 下式给出 486000 2 D in 0.249exp ( ) cm 2 s in RT 5 254500 2 D ex 1.2 10 5exp ( ) cm 2 s RT (a ) 分别求出 25℃和 1000℃时,Mg 2+的(D in )和( D ex )。 (b ) 试求在 Mg 2+ 的 lnD ~1/T 图中,由非本征扩散转变为本征扩散的转折点温度? 7-5 从 7-4 题所给出的 D in 和 D ex 式中求 MgO 晶体的肖特基缺陷形成焓。若欲使 Mg 2+ 在 MgO 中的扩散直至 MgO 熔点 2800℃时仍是非本征扩散,试求三价杂质离子应有什么样 的浓度? 7-6 若认为晶界的扩散通道宽度一般为 0.5nm ,试证明原子通过晶界扩散和晶格扩散的 扩散系数。 Q gb Q v 7-7 设体积扩散与晶界扩散活化能间关系为 2 (Qg b 、Q v 分别为晶界扩散与体 积 扩散激活能) ,试画出 lnD ~1/T 曲线,并分析在哪个温度范围内, 晶界扩散超过体积扩散 ? 质量之比为 10 9 (10 d ) (D D g v b )。其中 d 为晶粒平均直径; D gb 、D v 分别为晶界扩散系数和晶格

实验五 固相反应动力学

实验五 DTA、DSC、TG 一、实验目的 1. 掌握TG法的原理,采用TG法研究固相反应的方法。 二、实验原理 固体材料在高温下加热时,因其中的某些组分分解逸出或固体与周围介质中的某些物质作用使固体物系的重量发生变化,如盐类的分解、含水矿物的脱水、有机质的燃烧等会使物系重量减轻,高温氧化、反应烧结等则会使物系重量增加。 现代热重分析仪常与微分装置联用,可同时得到TG-DTG曲线。通过测量物系质量随温度或时间的变化来揭示或间接揭示固体物系反应的机理或反应动力学规律。 固体物质中的质点,在高于绝对零度的温度下总是在其平衡位置附近作谐振动。温度升高时,振幅增大。当温度足够高时,晶格中的质点就会脱离晶格平衡位置,与周围其它质点产生换位作用,在单元系统中表现为烧结,在二元或多元系统则可能有新的化合物出现。这种没有液相或气相参与,由固体物质之间直接作用所发生的反应称为纯固相反应。实际生产过程中所发生的固相反应,往往有液相或气相参与,这就是所谓的广义固相反应,即由固体反应物出发,在高温下经过一系列物理化学变化而生成固体产物的过程。 固相反应属于非均相反应,描述其动力学规律的方程,通常采用转化率G(已反应的反应物量与反应物原始重量的比值)与反应时间t之间的积分或微分关系来表示。 测量固相反应速率,可以通过TG法(适应于反应中有重量变化的系统)、量气法(适应于有气体产物逸出的系统)等方法来实现。 三、图形分析

红色的线代表TG曲线,即失重,第一个失重阶段是失去吸附水,接着是脱羟基,然后蛇纹石分解为镁橄榄石和顽火辉石。 蓝色曲线代表DTA曲线,在425.9℃和658.5℃有吸热峰,分别代表失水和蛇纹石的分解阶段。在826.3℃时有个放热峰,代表晶型转变,顽火辉石的结晶和镁橄榄石的重结晶。 绿色的线是 DTG曲线,在135.3℃有个峰,表示自由水的丢失,418.9℃的峰表示失去羟基,650.4℃的峰表示蛇纹石分解。

相关文档
最新文档