可靠性数据分析的计算方法

可靠性数据分析的计算方法
可靠性数据分析的计算方法

可靠性数据分析的计算方法

PROCEEDINGS,Annual RELIABILITY and MAINTAINABILITY Symposium(1996)

可靠性数据分析的计算方法

Gordon Johnston, SAS Institute Inc., Cary 关键词:寿命数据分析加速试验修复数据分析软件工具

摘要&结论

许多从事组件和系统可靠度研究的专业人员并没有意识到,通过廉价的台式电脑的普及使用,很多用于可靠度分析的功能强大的统计工具已经用于实践中。软件的计算功能还可以将复杂的计算统计和图形技术应用于可靠度分析问题。这大大的便利了工业统计学家和可靠性工程师,他们可以将这些灵活精确的方法应用于在可靠度分析时所遇到的许多不同类型的数据。

在本文中,我们在SAS@系统中将一些最有用的统计数据和图形技术应用到例子的当中,这些例子主要包涵了寿命数据,加速试验数据,以及可修复系统中的数据。随着越来越多的人意识到创新性软件在可靠性数据分析中解决问题的需要,毫无疑问,计算密集型技术在可靠性数据分析中的应用的趋势将会继续扩大。

1.介绍

本文探讨了人们在可靠性数据分析普遍遇到的三个方面:

寿命数据分析

试验加速数据分析

可修复系统数据的分析

在上述各领域,图形和分析的统计方法已被开发用于探索性数据分析,可靠性预测,并用于比较不同的设计系统,供应商等的可靠性性能。

为了体现将现代统计方法用于结合使用高分辨率图形的使用价值,在下面的章节中图形和统计方法将被应用于含有上述三个方面的可靠性数据的例子中。2.寿命数据分析

概率统计图的寿命数据分析中使用的最常见的图形工具之一。Weibull 图是最常见的使用可靠性的概率图的类型,但是当Weibull概率分布并不符合实际数据的时候,类似于对数正态分布和指数分布这一类的概率图在寿命数据分析中也能够起到帮助。

在许多情况下,可用的数据不仅包含故障时间,但也包含在分析时没有发生故障的单位的运行时间。在某些情况下,只能够知道两次故障发生之间的时间间隔。例如,在测试大量的电子元件时,如果记录每一个发生故障的元件的故障时间,那么这可能不经济。相反,在固定的时间间隔内

检查这些电子元件,并在每个时间间隔内记录下故障的数量。概率图,可以构建右删失,间隔删失这两种不完整数据的类型,在这两种类型中所有的元件都有相同的检测时间间隔。

通常,这些概率图都是通过计算绘制位置来构造,并且将它们绘制在专业的可靠度论文上。这是一项繁琐而耗时的过程。Hazard图含有类似的信息和更容易绘制,但手工绘制这些图仍然是耗时的。利用计算机程序绘制概率图可以更快速,更精准。而且它也更容易与不同的概率分布和模型,从而提高结果的准确性。

Nelson在下文给出了柴油发动机风扇装置出现故障的例子。在观测的70个风扇单元中,在进行数据分析时有12个发生了故障。其他的能够正常工作,分析的目的是为了预测在8000个小时的保修期内故障的发生率。图1显示了风扇数据的Weibull概率分布图。

上图所标示的点代表一个风扇的寿命数据的概率分布函数的估计值。由于图像是呈Weibull分布,所以当所标示的点大致呈直线分布的时候,那么Weibull概率分布就能与观测数据大致吻合。在这种情况下,Weibull 分布比较适用。顶端的点代表没有发生故障的风扇的检查时间和运行时间

在图中的位置。

图1发动机风扇数据的Weibull概率分布图

确定了Weibull概率分布与数据完全拟合之后,下一步就是进行分布参数的估计。许多统计学家和工程师更倾向于用最大似然法来估计参数。

最大似然法涉及数似然函数的最大化。

这是一个计算密集型程序,并且在没有计算机程序时难以执行,除非在某些特殊情况下。这个软件还可进行分布参数、可靠度函数以及分布百分比的最大似然估计。

最大似然方法有以下几个优点:

1.它提供了具有良好的统计特性的客观估计值(参考文献1)

2.它提供常见性的错误,这有利于评估参数估计和相关的概率分布百分比和可靠性函数估计的精确性。

3.它适用于任何数据类型的组合。

4.它适用于任何概率分布

对于发动机风扇的数据,最大似然Weibull的规模和形状参数估计如图1的插图所示。实直线代表拟合的Weibull分布,实曲线代表拟合的Weibull分布的95%置信区间。由于分析的目的是预测未来在8000小时的保修期内会失效的部件的概率,所以在8000小时的时间范围内绘制了一条参考线。这使得预测在8000小时内发生失效的概率更容易在Y轴上读取约25%。相同的信息可以用表格的形式表达,但是通过拟合线将用于报告或演示的所需的信息和结果表示在图上是显示数据的一种简便方法。

3.加速寿命试验模型

产品在设计的温度,荷载,电压,或其他应力的水平上操作时,可能有很长的寿命。加速试验主要是对产品进行过度加载,让产品快速产生故障,然后收集可靠度信息。统计模型已应用于许多类型的产品加速寿命试验分析,并用来显示产品可靠度和应力之间的关系。最大似然法通常用于拟合结合了加速试验的统计模型因为这类方法可用于多种模型和数据类型。除了分析方法,利用图形的方法也可用于显示数据,评估模型拟合程度,显示拟合的模型。这些都是计算密集型的程序,并且需要专业软件来完成它们。

在下面改编自Nelson的例子中,在电力变压器绝缘液体中做加速寿命试验来显示电压和时间之间的关系。在图2中并列的显示了两张图,用于显示加速寿命试验的数据和分析结果。

图2.绝缘液体数据的Weibull分布图和关系图

数据的Weibull概率图绘制在左侧,不同的电压等级对应不同的标准。每条对电压的拟合线代表拟合的统计模型。对于所有电压等级,模型都有相等的Weibull形状参数,在这种情况下,它是拟合的。这表现为在Weibull图上的平行拟合线。相同形状的模型的拟合度可以直观的从图2的绘图中进行评估。尽管没有显示出来,但结合利用计算机程序的最大似然拟合可以让你轻松的完成平行线假设的统计检验。

关于数据和拟合关系的曲线图绘制在图2右侧。在这种情况下,寿命与电源能量有关。当在日志记录表上绘制时,关系图是一条直线。例如,在中间的直线代表拟合关系的中位数(第五十百分位)。你可以利用这张图去推断在任何所需压力值下的寿命中点。为了保证关系图的完整性,还绘制了第10位和第90位的百分比。

其他的相关曲线可以很容易的绘制出来,例如Arrhenius这类寿命与绝对温度呈倒数的关系。像温度和电压这类模型,因为它们的寿命不仅仅只与某一个应力向量有关,所以这类模型也比较容易绘制。同时,上述这些模型也可以很容易与最大似然法拟合。

4.可修复系统

可修复系统就是在故障发生的状态下能还原和修复的系统。在可修复系统中,发生故障之间的时间不一定都具有相同的统计特性。例如,平均故障间隔时间可能会随时间变化。作为一个可修系统应用广泛的时代,它累计需要维修的次数和修理费用。修复数据分析不同于平常的数据分析,在修复数据分析中元件只能发生一次

故障。

Nelson(注释4)和Doganoksoy (注释5)提出了一个为维修或可修复系统的样本维修记录的维修成本估算平均累计函数(MCF)的方法。他们还给出了为平均累计函数计算置信区间的方法。MCF M(t)定义为t时每个维修系统的累积数的总体均值。MCF对系统样本的估计可以帮助可靠度工作者确定在某一时期的修复率,在预测数量或未来维修的成本和不同设计的两个系统的维修记录的比较、生产批次或供应商这些条件下修复率是否随时间增加或减少。

这类估计MCF和相关置信区间的方法是计算密集型的,需要特殊的软件。该方法在修复过程中并不假定任何基本结构。在参数化模型的修复过程中,需要进行大量复杂的工作,而这些工作需要进行更多的假设条件。例如,维修的过程有时是以非齐次泊松方程建模的。SAS软件的当前版本不包括这种类型的参数化建模,虽然它是为将来的发行版规划的。绘制MCF 图形可能会成为建立修复过程模型的第一步,但在许多情况下,它将会在没有进一步的分析的情况下提供所需的答案。Nelson给出了一个车队里41台柴油发动机的维修记录。这些发动机的阀座磨损的很严重,不得不进行更换。图3显示了估计的MCF和置信极限随着系统的运行天数的变化。维修记录的终点绘制在图中的最顶部。除了最后的几点,图像基本是一条直线,这表明它在不断的更换率。例如,图中显示,在第一个600天的运行期内,有大约1个元件需要进行维修。未来更换阀座的数量,可以通过这种情况下的直线预测。

图3.维修次数的平均累计函数

Doganaksoy和Nelson展示了如何将来自两个抽样样本的MCFs的差异用于比较这两个样本。他们举出了一个例子,这个例子所采用的两个样本是来自不同生产批次的机车制动系统。图4显示了制动电网数据的MCF 的差函数,以及差函数的置信界限。这两个样本有明显的不同,因为某些时刻置信界限不包括0。由于在大多数的寿命范围内MCF的差异是消极的,样本1的平均累计函数比样本2更小,这表明样本2有维修记录比样本1更差。可靠度工程师们就能够确定的维修记录更差的原因及解决问题的办法。

图4.机车制动网络数据的平均累计函数的差异参考文献

[1] Nelson,W.(1982),Applied Life Data Analysis,New York:John Wiley&Sons.

[2] Nelson,W.(1990),Accelerated Testing,New York:John Wiley&Sons. [3] Tobias,P.A.and Trindade,D.C.(1995),Applied Reliabilify,2nd ed. New York: Van Nostrand Reinhold.

[4] Nelson,W.(1995),Confidence Limits for Recurrence Data-Applied to Cost or Number of Product Repairs,Technometrics,Vol.37, No.2

[5] Nelson,W.and Doganaksoy,N.(1989),“A Computer Program for an Estimate and Confidence Limits for the Mean Cumulative Function for Cost or Number of Repairs of Repair able Products,”GE Research &Development Center TIS Report 89CRD239

[6] Doganaksoy,N.and Nelson,W.(1991),“A Method and Computer Program MCFDIFF to Compare Two Samples of Repair Data”GE Research & Development Center TIS Report 91CRD172

[7] Ascher,H.and Feingold,H.(1984),Repairable Systems Reliabilify,Marcel Dekker,Inc.New York 147-157.

传记

Gordon Johnston是SAS研究所的线性模型和统计质量提高R&D组的研究员。他的专业领域包括广义线性模型,可靠性和生存分析。Gordon获得了North Carolina 大学的统计学博士学位,并获得Aubum大学的电气工程的硕士学位。他已经在SAS软件研发方面工作了五年。

(完整版)√MOS器件及其集成电路的可靠性与失效分析

MOS 器件及其集成电路的可靠性与失效分析(提要) 作者:Xie M. X. (UESTC ,成都市) 影响MOS 器件及其集成电路可靠性的因素很多,有设计方面的,如材料、器件和工艺等的选取;有工艺方面的,如物理、化学等工艺的不稳定性;也有使用方面的,如电、热、机械等的应力和水汽等的侵入等。 从器件和工艺方面来考虑,影响MOS 集成电路可靠性的主要因素有三个:一是栅极氧化层性能退化;二是热电子效应;三是电极布线的退化。 由于器件和电路存在有一定失效的可能性,所以为了保证器件和电路能够正常工作一定的年限(例如,对于集成电路一般要求在10年以上),在出厂前就需要进行所谓可靠性评估,即事先预测出器件或者IC 的寿命或者失效率。 (1)可靠性评估: 对于各种元器件进行可靠性评估,实际上也就是根据检测到的元器件失效的数据来估算出元器件的有效使用寿命——能够正常工作的平均时间(MTTF ,mean time to failure )的一种处理过程。 因为对于元器件通过可靠性试验而获得的失效数据,往往遵从某种规律的分布,因此根据这些数据,由一定的分布规律出发,即可估算出MTTF 和失效率。 比较符合实际情况、使用最广泛的分布规律有两种,即对数正态分布和Weibull 分布。 ①对数正态分布: 若一个随机变量x 的对数服从正态分布,则该随机变量x 就服从对数正态分布;对数正态分布的概率密度函数为 222/)(ln 21)(σμπσ--?=x e x x f 该分布函数的形式如图1所示。 对数正态分布是对数为正态分布的任 意随机变量的概率分布;如果x 是正态分布 的随机变量,则exp(x)为对数分布;同样, 如果y 是对数正态分布,则log(y)为正态分 布。 ②Weibull 分布: 由于Weibull 分布是根据最弱环节模型 或串联模型得到的,能充分反映材料缺陷和 应力集中源对材料疲劳寿命的影响,而且具 有递增的失效率,所以,将它作为材料或零件的寿命分布模型或给定寿命下的疲劳强 度模型是合适的;而且尤其适用于机电类产品的磨损累计失效的分布形式。由于它可以根据失效概率密度来容易地推断出其分布参数,故被广泛地应用于各种寿命试验的数据处理。与对数正态分布相比,Weibull 分布具有更大的适用性。 Weibull 分布的失效概率密度函数为 m t m t m e t m t f )/()(ηη--?= 图1 对数正态分布

常用形体体积面积计算公式大全

图形 常用形体的体积、表面积计算公式 尺寸符号 a-棱於-对角 线S-表両积 K-侧表面积 讥h-边长 0-底面对角线的交点 a上川-边畏 力-高 F-JK S积 0 ■底両中线的交点 y-一个组合三角老的両积 左-组合三角形的个数 0-锻底答对角线交点 此凤-两平行底面的面积 力■底面间更离 。-一个组合梯形的面积 和-组合梯形数 卫-外半径一內 半径 £-柱壁厚度 P-平均半径勺= 内外侧面积 仿积(卩)底面积 (F)表面积(小侧表 面积(仓) /= Q?決h S = 2(c? ? E +a ? % +E ? %)

百度文库?让每个人平等地捉升口我 夙一球半径 ①巳-底面半径 /腰高 兔-球心o 至帝底圆心q 的距 离 对于抛物线形桶体 y = ^-(2D 2+Dd + -d 2) 15 4 对于回形桶仿 7略(仃+八) a,b,c ■半轴 交 叉 柱 体 卩=加(屮一些 心3-下底边长 上底边长 h_上、下底边距离(高) V = -[(2a +勺加+(2甸诃如 6 =—[ab+(a +(?})(& 十劣十 ? 如 6 、 常用图形求面积公式 图形 尺寸符号 而积(F )表而积(S ) Q ■中间断面直径 H -底直径 I-桶高 ¥ r U :

可靠性评估方法(可靠性预计、审查准则、工程计算)

电子产品可靠性评估方法培训 课程介绍: 作为快速发展的制造企业,产品可靠性的量化评估是一个难题,尤其是机械、电子、软件一体化的产品。针对此需求,本公司开发了《电子产品可靠性评估方法》课程,以期在以基于应力计数法的可靠性预计和分配、基于寿命鉴定的试验评估法两个方面提供对电子产品的评价数据。并在日常管理实践中,通过质量评价的方式,通过设计规范审查、FMEA分析发现评估中的关键问题点,以便更好地改进。 课程收益: 通过本课程的学习,可以了解电子产品的可靠性评估方法以及导致产品可靠性问题的问题点,为后期的质量管理统计和技术部门的解决问题提供工作依据。 课程时间:1天 【主办单位】中国电子标准协会培训中心 【协办单位】深圳市威硕企业管理咨询有限公司 【培训对象】本课程适于质量工程师、质量管理、测试工程师、技术工程师、测试部门等岗位。 课程特点: 讲师是可靠性技术+可靠性管理、军工科研+民品开发管理的综合背景; 课程包括开展可靠性评估工作的技术措施、管理手段,内容和授课方法着重于企业实践技术和学员的消化吸收效果。 课程本着“从实践中来,到实践中去,用实践所检验”的思想,可靠性设计培训面向设计生产实际,针对具体问题,充分结合同类公司现状,提炼出经过验证的军工和民用产品的可靠性

设计实用方法,帮助客户实现低成本地系统可靠性的开展和提升。 课程大纲: 一、可靠性评估基础 可靠性串并联模型 软件、机械、硬件的失效率曲线 可靠性计算 二、基于应力计数法的可靠性预计与分配 依据的标准 基于用户需求的设计输入应力条件 可靠性分配的计算方法和过程 基于应力计数法的可靠性预计 三、寿命鉴定试验评估方法 试验依据标准要求 试验过程 判定方式 四、产品质量与可靠性审查准则 基于失效机理的可靠性预防措施 系统设计准则(热设计、系统电磁兼容设计、接口设计准则) 机械可靠性设计准则 电路可靠性设计准则(降额、电子工艺、电路板电磁兼容、器件选型方法)嵌入式软件可靠性设计准则(接口设计、代码设计、软件架构、变量定义)五、DFMEA与PFMEA过程的潜在缺陷模式及影响分析方法

封装失效分析1

第二单元 集成电路芯片封装可靠性知识—郭小伟 (60学时) 第一章、可靠性试验 1.可靠性试验常用术语 试验名称 英文简称 常用试验条件 备注 温度循环 TCT (T/C ) -65℃~150℃, dwell15min, 100cycles 试验设备采用气冷的方式,此温度设置为设备的极限温度 高压蒸煮 PCT 121℃,100RH., 2ATM,96hrs 此试验也称为高压蒸汽,英文也称为autoclave 热冲击 TST (T/S ) -65℃~150℃, dwell15min, 50cycles 此试验原理与温度循环相同,但温度转换速率更快,所以比温度循环更严酷。 稳态湿热 THT 85℃,85%RH., 168hrs 此试验有时是需要加偏置电压的,一般为Vcb=0.7~0.8BVcbo,此时试验为THBT 。 易焊性 solderability 235℃,2±0.5s 此试验为槽焊法,试验后为10~40倍的显微镜下看管脚的 上锡面积。 耐焊接热 SHT 260℃,10±1s 模拟焊接过程对产品的影响。 电耐久 Burn in Vce=0.7Bvceo, Ic=P/Vce,168hrs 模拟产品的使用。(条件主要针 对三极管) 高温反偏 HTRB 125℃, Vcb=0.7~0.8BVcbo, 168hrs 主要对产品的PN 结进行考核。回流焊 IR reflow Peak temp.240℃ (225℃) 只针对SMD 产品进行考核,且 最多只能做三次。 高温贮存 HTSL 150℃,168hrs 产品的高温寿命考核。 超声波检测 SAT CSCAN,BSCAN,TSCAN 检测产品的内部离层、气泡、裂缝。但产品表面一定要平整。

可靠性计算公式大全

常运行的概率,用R(t)表示. 所谓失效率是指单位时间内失效的元件数与元件总数的比例,以λ表示,当λ为常数时,可靠性与 失效率的关系为: R(λ)=e-λu(λu为次方) 两次故障之间系统能够正常工作的时间的平均值称为平均为故障时间(MTBF) 如:同一型号的1000台计算机,在规定的条件下工作1000小时,其中有10台出现故障 ,计算机失效率:λ=10/(1000*1000)=1*10-5(5为次方) 千小时的可靠性:R(t)=e-λt=e(-10-5*10^3(3次方)=0.99 平均故障间隔时间MTBF=1/λ=1/10-5=10-5小时. 1)表决系统可靠性 表决系统可靠性:表决系统是组成系统的n个单元中,不失效的单元不少于k(k介于1和n之间),系统就不会失效的系统,又称为k/n系统。图12.8-1为表决系统的可靠性框图。通常n个单元的可靠度相同,均为R,则可靠性数学模形为: 这是一个更一般的可靠性模型,如果k=1,即为n个相同单元的并联系统,如果k=n,即为n个相同单元的串联系统。 2)冷储备系统可靠性 冷储备系统可靠性(相同部件情况):n个完全相同部件的冷贮备系统,(待机贮备系统),转换开关s 为理想开关Rs=1,只要一个部件正常,则系统正常。所以系统的可靠度: 图12.8.2 待机贮备系统

3)串联系统可靠性 串联系统可靠性:串联系统是组成系统的所有单元中任一单元失效就会导致整流器个系统失效的系统。下图为串联系统的可靠性框图。假定各单元是统计独立的,则其可靠性数学模型为 式中,Ra——系统可靠度;Ri——第i单元可靠度 多数机械系统都是串联系统。串联系统的可靠度随着单元可靠度的减小及单元数的增多而迅速下降。图12.8.4表示各单元可靠度相同时Ri和nRs的关系。显然,Rs≤min(Ri),因此为提高串联系统的可靠性,单元数宜少,而且应重视串联系统的可靠性,单元数宜少,而且应重视改善最薄弱的单元的可靠性。 4)并联系统可靠性 并联系统可靠性:并联系统是组成系统的所有单元都失效时才失效的失效的系统。图12.8.5为并联轴系统的可靠性框图。假定各单元是统计独立的,则其可靠性数学模型为 式中 Ra——系统可靠度 Fi——第i单元不可靠度

常用面积体积计算公式大全

电如_边長 馬-高 F-底面积 0-底両申銭的交点 卩=FJ — (c -+i H - c) * b+2F 禺="+6+c)*ft ,-一个粗合三箱我的両积 71 -组合三角形的惱 O-锥底备对角護交点 年店-两平行底面的面积 力L 底面间歴畫 "-一个爼舍梯戒的面积 R-组合梯形数 多面体的体积和表面积 体积(茁)庭百积(F ) 表面瞅门侧恚面积(鬲) 图形 尺寸符号 d-刘角爲 表 面积 覇-侧表面积 长 方 扩=Q S=6a 2 CS 血为-边拴 0-底面对角线的交点 V = a*h* h S = 2(a ? b 4-(j ? h +i * ft) £l-2Ma+&) 圆 柱 和 空 心 圆 柱 A 管 去-外宰径 —内半径 £-柱壁區度 p -平均半径 心=内外側面祝 B&- $=2滋?/! +2JC £^ E\ = 2/rR ? h 空心言圆柱: F =凤疋7勺=2叭伤 S=X?4F )JU2/I (用-沔 场=2品第卄) 5=n?/ + F

h -盘小高度 怒-毘大高度F-属面举径 尸-廐面半径巾-高卜母爼长 E工-虧面半径巾-高 ”母緩g ■制血+吩2*卩+—!_:cos a 禺F偽十吗) & = + F — ttri y-^^2+ ^+^) 禺■忒迎肝) 卩十押 十试疋■!■/) 球扇r-*e 4宜径 尸■兰直玉■輕:?口」 石6沪 3 6 S =血2 -

夙-球半径 ①巳-底面半径 S ■ 4nJ -2J &, ■ £戊■矽一4了*彷 V a,b,c-半轴 交 叉 圆 柱 体 球 缺 椭 球 体 A 胎 D-中间斷面苴狂 说 -廐直径 『-桶高 = 2冲丘= ST ⑷-Q 护=佩乃 -町 十山2 y~—(3R^3^+h^ $■2鈕 g= 2fviih 十牙叶 4-^) 卫-風总儒平旳半径 0-同环体平均半径 川-凰环体截面言径 r-回环体茁両半径 .—— 圆 环 体 为-球鎂的高 r- 瑋岐半栓 日-平切厨言径 业=曲面"5^ 球破表面积 用于抛物线我桶徘 卩=竺口“+戊4丄护) 15 4 对于园飛确体 卩皤用十吗

可靠性计算公式大全

计算机系统的可靠性是制从它开始运行(t=0)到某时刻t这段时间内能正常运行的概率,用R(t)表示. 所谓失效率是指单位时间内失效的元件数与元件总数的比例,以λ表示,当λ为常数时,可靠性与 失效率的关系为: R(λ)=e-λu(λu为次方) 两次故障之间系统能够正常工作的时间的平均值称为平均为故障时间(MTBF) 如:同一型号的1000台计算机,在规定的条件下工作1000小时,其中有10台出现故障 ,计算机失效率:λ=10/(1000*1000)=1*10-5(5为次方) 千小时的可靠性:R(t)=e-λt=e(-10-5*10^3(3次方)=0.99 平均故障间隔时间MTBF=1/λ=1/10-5=10-5小时. 1)表决系统可靠性 表决系统可靠性:表决系统是组成系统的n个单元中,不失效的单元不少于k(k介于1和n之间),系统就不会失效的系统,又称为k/n系统。图12.8-1为表决系统的可靠性框图。通常n个单元的可靠度相同,均为R,则可靠性数学模形为: 这是一个更一般的可靠性模型,如果k=1,即为n个相同单元的并联系统,如果k=n,即为n个相同单元的串联系统。 2)冷储备系统可靠性 冷储备系统可靠性(相同部件情况):n个完全相同部件的冷贮备系统,(待机贮备系统),转换开关s为理想开关Rs=1,只要一个部件正常,则系统正常。所以系统的可靠度: 图12.8.2 待机贮备系统

3)串联系统可靠性 串联系统可靠性:串联系统是组成系统的所有单元中任一单元失效就会导致整流器个系统失效的系统。下图为串联系统的可靠性框图。假定各单元是统计独立的,则其可靠性数学模型为 式中,Ra——系统可靠度;Ri——第i单元可靠度 多数机械系统都是串联系统。串联系统的可靠度随着单元可靠度的减小及单元数的增多而迅速下降。图12.8.4表示各单元可靠度相同时Ri和nRs的关系。显然,Rs≤min(Ri),因此为提高串联系统的可靠性,单元数宜少,而且应重视串联系统的可靠性,单元数宜少,而且应重视改善最薄弱的单元的可靠性。 4)并联系统可靠性 并联系统可靠性:并联系统是组成系统的所有单元都失效时才失效的失效的系统。图12.8.5为并联轴系统的可靠性框图。假定各单元是统计独立的,则其可靠性数学模型为 式中 Ra——系统可靠度 Fi——第i单元不可靠度

多种可靠度计算方法学位论文

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包括任何其他个人或集体已经发表或撰写的成果作品。本人完全意识到本声明的法律后果由本人承担。 作者签名: 年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保障、使用学位论文的规定,同意学校保留并向有关学位论文管理部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权省级优秀学士论文评选机构将本学位论文的全部或部分内容编入有关数据进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 本学位论文属于1、保密囗,在年解密后适用本授权书 2、不保密囗。 作者签名:年月日 导师签名:年月日

摘要 压力容器作为一种重要设备广泛应用于工程领域,其安全性和可靠性是现在研究的重要课题。压力容器在生产和使用过程中存在各种不确定性因素,如构件、缺陷尺寸参数的不确定性,工况载荷的随机波动,材料机械性能的随机性。本文将这些不确定性参数当作随机变量,考虑其概率分布形式,采用应力强度-干涉模型,利用一次二阶矩法,蒙特卡洛法和随机有限元法等可靠度计算方法对容器结构进行了可靠性分析,并讨论了各随机变量对可靠度结果的灵敏度。 本文对无缺陷压力容器的安全评定采用弹性失效判据,利用四种不同的方法计算了圆筒形和球形压力容器的可靠度,分析比较了各方法的优缺点。对于含凹坑缺陷的压力容器,文中采用基于塑性极限的塑性失效准则,其中极限荷载采用弹塑性增量法得到,通过ANSYS 软件批处理操作模拟蒙特卡洛法实现可靠性分析,并对GB/T 19624-2004《含缺陷压力容器安全评定》规范中的极限载荷安全系数进行了评估。本文最后对 GB/T 19624-2004《含缺陷压力容器安全评定》规范中给出的含凹坑缺陷压力容器安全评定方法做出了改进,提出了基于分项安全系数的含凹坑缺陷压力容器的安全评定方法。 关键字:压力容器;可靠性;应力强度-干涉模型;分项安全系数

人机系统可靠性计算示范文本

文件编号:RHD-QB-K8474 (安全管理范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 人机系统可靠性计算示 范文本

人机系统可靠性计算示范文本 操作指导:该安全管理文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 (一)、系统中人的可靠度计算 由于人机系统中人的可靠性的因素众多且随机变化,因此人的可靠性是不稳定的。人的可靠度计算(定量计算)、也是很困难的。 1.人的基本可靠度 系统不因人体差错发生功能降低和故障时人的成功概率,称为人的基本可靠度,用r表示。人在进行作业操作时的基本可靠度可用下式表示: r=a1a2a3 (4—13)、 式中a1——输入可靠度,考虑感知信号及其意义,时有失误;

a2——判断可靠度,考虑进行判断时失误; a3——输出可靠度,考虑输出信息时运动器官执行失误,如按错开关。 上式是外部环境在理想状态下的可靠度值。 a1,a2,a3,各值如表4—5所示。 人的作业方式可分为两种情况,一种是在工作时间内连续性作业,另一种是间歇性作业。下面分别说明这两种作业人的可靠度的确定方法。 (1)、连续作业。在作业时间内连续进行监视和操纵的作业称为连续作业,例如控制人员连续观察仪表并连续调节流量;汽车司机连续观察线路并连续操纵方向盘等。连续操作的人的基本可靠度可以用时间函数表示如下: 式中r(t)、——连续性操作人的基本可靠度; t——连续工作时间;

l(t)、——t时间内人的差错率。 (2)、间歇性作业。在作业时间内不连续地观察和作业,称为间歇性作业,例如,汽车司机观察汽车上的仪表,换挡、制动等。对间歇性作业一般采用失败动作的次数来描述可靠度,其计算公式为:r=l一p(n/N)、(4—15)、式中N 失败动作次数; n——失败动作次数; p——概率符号。 2.人的作业可靠度 考虑了外部环境因素的人的可靠度RH为: RH=1-bl·b2·b3·b4·bs(1—r)、(4一16)、 式中b1——作业时间系数; b2——作业操作频率系数; b3——作业危险度系数;

图形各面积、体积计算公式大全

长方形的周长=(长+ 宽)×2 正方形的周长=边长×4 长方形的面积=长×宽 正方形的面积=边长×边长 三角形的面积=底×高÷2 平行四边形的面积=底×高 梯形的面积=(上底+ 下底)×高÷2 直径=半径×2 半径=直径÷2 圆的周长=圆周率×直径 圆的周长=圆周率×半径×2 圆的面积=圆周率×半径×半径 长方体的表面积= (长×宽长×高+宽×高)×2 长方体的体积 =长×宽×高 正方体的表面积=棱长×棱长×6 正方体的体积=棱长×棱长×棱长 圆柱的侧面积=底面圆的周长×高 圆柱的表面积=上下底面面积侧面积 圆柱的体积=底面积×高 圆锥的体积=底面积×高÷3 长方体(正方体、圆柱体)的体积=底面积×高

平面图形 名称符号周长C和面积S 正方形 a—边长 C=4a S=a2 长方形 a和b-边长 C=2(a b) S=ab 三角形 a,b,c-三边长 h-a边上的高 s-周长的一半 A,B,C-内角 其中s=(a b c)/2 S=ah/2 =ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA) 四边形 d,D-对角线长 α-对角线夹角 S=dD/2·sinα平行四边形 a,b-边长 h-a边的高 α-两边夹角 S=ah =absinα 菱形 a-边长

α-夹角 D-长对角线长 d-短对角线长 S=Dd/2 =a2sinα 梯形 a和b-上、下底长 h-高 m-中位线长 S=(a b)h/2 =mh 圆 r-半径 d-直径 C=πd=2πr S=πr2 =πd2/4 扇形 r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 弓形 l-弧长 b-弦长 h-矢高 r-半径 α-圆心角的度数 S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2

计算公式大全

网络工程师软考常用计算公式 单位的换算 1字节(B)=8bit 1KB=1024字节1MB=1024KB 1GB=1024MB 1TB=1024GB 通信单位中K=千,M=百万 计算机单位中K=210,M=220 倍数刚好是1024的幂 ^为次方;/为除;*为乘;(X/X)为单位 计算总线数据传输速率 总线数据传输速率=时钟频率(Mhz)/每个总线包含的时钟周期数*每个总线周期传送的字节数(b) 计算系统速度 每秒指令数=时钟频率/每个总线包含时钟周期数/指令平均占用总线周期数 平均总线周期数=所有指令类别相加(平均总线周期数*使用频度) 控制程序所包含的总线周期数=(指令数*总线周期数/指令) 指令数=指令条数*使用频度/总指令使用频度 每秒总线周期数=主频/时钟周期 FSB带宽=FSB频率*FSB位宽/8

计算机执行程序所需时间 P=I*CPI*T 执行程序所需时间=编译后产生的机器指令数*指令所需平均周期数*每个机器周期时间指令码长 定长编码:码长>=log2 变长编码:将每个码长*频度,再累加其和 平均码长=每个码长*频度 流水线计算 流水线周期值等于最慢的那个指令周期 流水线执行时间=首条指令的执行时间+(指令总数-1)*流水线周期值 流水线吞吐率=任务数/完成时间 流水线加速比=不采用流水线的执行时间/采用流水线的执行时间 存储器计算 存储器带宽:每秒能访问的位数单位ns=10-9秒 存储器带宽=1秒/存储器周期(ns)*每周期可访问的字节数 (随机存取)传输率=1/存储器周期 (非随机存取)读写N位所需的平均时间=平均存取时间+N位/数据传输率

人机系统可靠性计算

人机系统可靠性计算 (一)系统中人的可靠度计算 由于人机系统中人的可靠性的因素众多且随机变化,因此人的可靠性是不稳定的。人的可靠度计算(定量计算)也是很困难的。 1.人的基本可靠度 系统不因人体差错发生功能降低和故障时人的成功概率,称为人的基本可靠度,用r表示。人在进行作业操作时的基本可靠度可用下式表示: r=a1a2a3 (1—26) 式中a1——输入可靠度,考虑感知信号及其意义,时有失误; a2——判断可靠度,考虑进行判断时失误; a3——输出可靠度,考虑输出信息时运动器官执行失误,如按错开关。 上式是外部环境在理想状态下的可靠度值。a1,a2,a3,各值如表1—11所示。 表1--11可靠度计算 作业类别内容a1~a3 a2 简单一般复杂变量在6个以下,已考虑人机工程学原则 变量在10个以下 变量在10个以上,考虑人机工程学不充分 0.9995~0.9999 0.9990~0.9995 0.990~0.999 0.999 0.995 0.990 人的作业方式可分为两种情况,一种是在工作时间内连续性作业,另一种是间歇性作业。下面分别说明这两种作业人的可靠度的确定方法。 (1)连续作业。在作业时间内连续进行监视和操纵的作业称为连续作业,例如控制人员连续观察仪表并连续调节流量;汽车司机连续观察线路并连续操纵方向盘等。 连续操作的人的基本可靠度可以用时间函数表示如下: r(t)=exp[∫0+∞l(t)dt] (1—27) 式中r(t)——连续性操作人的基本可靠度; t——连续工作时间; l(t)——t时间内人的差错率。 (2)间歇性作业。在作业时间内不连续地观察和作业,称为间歇性作业,例如,汽车司机观察汽车上的仪表,换挡、制动等。对间歇性作业一般采用失败动作的次数来描述可靠度,其计算公式为: r=l一p(n/N) (1—28) 式中N——总动作次数;

空间几何体表面积与体积公式大全

空间几何体的表面积与体积公式大全 一、全(表)面积(含侧面积) 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥: ②圆锥: 3、台体 ①棱台: ②圆台: 4、球体 ①球: ②球冠:略 ③球缺:略 二、体积 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥 ②圆锥

3、台体 ①棱台 ②圆台 4、球体 ①球: ②球冠:略 ③球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高计算;而圆锥、圆台的侧面积计算时使用母线计算。 三、拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的。

分析:圆柱体积: 圆柱侧面积: 因此:球体体积: 球体表面积: 通过上述分析,我们可以得到一个很重要的关系(如图) += 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式 公式: 证明:如图过台体的上下两底面中心连线的纵切面为梯形。 延长两侧棱相交于一点。 设台体上底面积为,下底面积为 高为。 易知:∽,设, 则 由相似三角形的性质得:

即:(相似比等于面积比的算术平方根) 整理得: 又因为台体的体积=大锥体体积—小锥体体积 ∴ 代入:得: 即: ∴ 4、球体体积公式推导 分析:将半球平行分成相同高度的若干层(),越大,每一层越近似于圆柱,时,每一层都可以看作是一个圆柱。这些圆柱的高为,则:每个圆柱的体积= 半球的体积等于这些圆柱的体积之和。 ……

可靠性数据分析的计算方法

可靠性数据分析的计算方法

PROCEEDINGS,Annual RELIABILITY and MAINTAINABILITY Symposium(1996) 可靠性数据分析的计算方法 Gordon Johnston, SAS Institute Inc., Cary 关键词:寿命数据分析加速试验修复数据分析软件工具 摘要&结论 许多从事组件和系统可靠度研究的专业人员并没有意识到,通过廉价的台式电脑的普及使用,很多用于可靠度分析的功能强大的统计工具已经用于实践中。软件的计算功能还可以将复杂的计算统计和图形技术应用于可靠度分析问题。这大大的便利了工业统计学家和可靠性工程师,他们可以将这些灵活精确的方法应用于在可靠度分析时所遇到的许多不同类型的数据。 在本文中,我们在SAS@系统中将一些最有用的统计数据和图形技术应用到例子的当中,这些例子主要包涵了寿命数据,加速试验数据,以及可修复系统中的数据。随着越来越多的人意识到创新性软件在可靠性数据分析中解决问题的需要,毫无疑问,计算密集型技术在可靠性数据分析中的应用的趋势将会继续扩大。 1.介绍 本文探讨了人们在可靠性数据分析普遍遇到的三个方面: 寿命数据分析 试验加速数据分析 可修复系统数据的分析 在上述各领域,图形和分析的统计方法已被开发用于探索性数据分析,可靠性预测,并用于比较不同的设计系统,供应商等的可靠性性能。 为了体现将现代统计方法用于结合使用高分辨率图形的使用价值,在下面的章节中图形和统计方法将被应用于含有上述三个方面的可靠性数据的例子中。2.寿命数据分析 概率统计图的寿命数据分析中使用的最常见的图形工具之一。Weibull 图是最常见的使用可靠性的概率图的类型,但是当Weibull概率分布并不符合实际数据的时候,类似于对数正态分布和指数分布这一类的概率图在寿命数据分析中也能够起到帮助。 在许多情况下,可用的数据不仅包含故障时间,但也包含在分析时没有发生故障的单位的运行时间。在某些情况下,只能够知道两次故障发生之间的时间间隔。例如,在测试大量的电子元件时,如果记录每一个发生故障的元件的故障时间,那么这可能不经济。相反,在固定的时间间隔内

可靠性计算

可靠性计算 一、概率与统计 1、概率;这里用道题来说明这个数学问题(用WORD把这些烦琐的公式打出来太麻烦了,因为公司不重视品质管理,所以部门连个文员MM都没有,最后我只好使用CORELDRAW做的公式粘贴过来,如果你的电脑系统比较慢,需要耐心等待一会公式才会显示来,不过别着急,好东西往往是最后才出来的嘛!)。 题一、从含有D个不良品的N个产品中随机取出n个产品(做不放回抽样),求取出d个不良品的概率是多少? 解:典型的超几何分布例题,计算公式如下(不要烦人的问我为什么是这样的公式计算,我虽然理解了一些,解释起来非常麻烦,别怪我不够意思,是你自己上学的时候只顾早恋,没有学习造成的,骂自己吧!): 超几何分布:(最基本的了): 最精确的计算,适用比较小的数据 其中:N ——产品批量D ——N中的不合格数 d ——n中的合格数n ——抽样数 另外的概率计算的常用算法还有: 二项分布:(最常用的了,是超几何分布的极限形式。用于具备计件值特征的质量分布研究): 只是估算,当N≥10n后才比较准确 其中:n ——样本大小 d ——n中的不合格数 ρ——产品不合格率 泊松分布:(电子产品的使用还没有使用过,只是在学习的时候玩过一些题目,我也使用没有经验) 具有计点计算特征的质量特性值其中:λ——n ρn ——样本的大小 ρ——单位不合格率(缺陷率) e = 2.718281 2、分布;各种随机情况,常见的分布有:二项分布、正态分布、泊松分布等,分位数的意义和用法也需要掌握;较典型的题目为: 题三、要求电阻器的值为80+/-4欧姆;从某次生产中随机抽样发现:电阻器的阻值服从正态分布,其均值80.8欧姆、标准差1.3欧姆,求此次生产中不合格品率。 公式好麻烦的,而且还要查表计算,555555555555,我懒得写了,反正我也没有做过电阻。 3、置信区间:我们根据取得样品的参数计算出产品相应的参数,这个“计算值”到底跟产品的“真实值”有什么关系?一般这样去描述这两个量:把“计算值”扩充成“计算区间”、然后描述“真实值有多大的可能会落在这个计算区间里”,从统计学上看,就是“估计参数”的“置信区间”;较典型的题目为: 题四、设某物理量服从正态分布,从中取出四个量,测量/计算后求得四个量的平均值为8.34,四个量的标准差为0.03;求平均值在95%的置信区间。 解:因为只知道此物理量服从正态分布,不知道这个正态分布对应的标准差,所以只能用样品的标准差来代替原物理量的标准差。这时,样品的平均值的分布就服从t分布。

系统可靠性和安全性区别和计算公式

2.1 概述 2.1.1 安全性和可靠性概念 [10] 安全性是指不发生事故的能力,是判断、评价系统性能的一个重要指标。它表明系 统在规定的条件下,在规定的时间内不发生事故的情况下,完成规定功能的性能。其中事故指的是使一项正常进行的活动中断,并造成人员伤亡、职业病、财产损失或损害环境的意外事件。 可靠性是指无故障工作的能力,也是判断、评价系统性能的一个重要指标。它表明 系统在规定的条件下,在规定的时间内完成规定功能的性能。系统或系统中的一部分不能完成预定功能的事件或状态称为故障或失效。系统的可靠性越高,发生故障的可能性越小,完成规定功能的可能性越大。当系统很容易发生故障时,则系统很不可靠。 2.1.2 安全性和可靠性的联系与区别 [10] 在许多情况下,系统不可靠会导致系统不安全。当系统发生故障时,不仅影响系统 功能的实现,而且有时会导致事故,造成人员伤亡或财产损失。例如,飞机的发动机发生故障时,不仅影响飞机正常飞行,而且可能使飞机失去动力而坠落,造成机毁人亡的后果。故障是可靠性和安全性的联结点,在防止故障发生这一点上,可靠性和安全性是一致的。因此,采取提高系统可靠性的措施,既可以保证实现系统的功能,又可以提高系统的安全性。 但是,可靠性还不完全等同于安全性。它们的着眼点不同:可靠性着眼于维持系统 功能的发挥,实现系统目标;安全性着眼于防止事故发生,避免人员伤亡和财产损失。可靠性研究故障发生以前直到故障发生为止的系统状态;安全性则侧重于故障发生后故障对系统的影响。 由于系统可靠性与系统安全性之间有着密切的关联,所以在系统安全性研究中广泛 利用、借鉴了可靠性研究中的一些理论和方法。系统安全性分析就是以系统可靠性分析为基础的。 2.1.3 系统安全性评估 系统安全性评估是一种从系统研制初期的论证阶段开始进行,并贯穿工程研制、生 产阶段的系统性检查、研究和分析危险的技术方法。它用于检查系统或设备在每种使用模式中的工作状态,确定潜在的危险,预计这些危险对人员伤害或对设备损坏的可能性,并确定消除或减少危险的方法,以便能够在事故发生之前消除或尽量减少事故发生的可能性或降低事故有害影响的程度 [11] 。 系统安全性评估主要是分析危险、识别危险,以便在寿命周期的所有阶段中能够消 除、控制或减少这些危险。它还可以提供用其它方法所不能获得的有关系统或设备的设计、使用和维修规程的信息,确定系统设计的不安全状态,以及纠正这些不安全状态的7方法。如果危险消除不了,系统安全性评估可以指出控制危险的最佳方法和减轻未能控制的危险所产生的有害影响的方法。此外,系统安全性评估还可以用来验证设计是否符合规范、标准或其他文件规定的要求,验证系统是否重复以前的系统中存在的缺陷,确定与危险有关的系统接口。 从广义上说,系统安全性评估解决下列问题: 1、什么功能出现错误? 2、它潜在的危害是什么?

长方体和正方体周长面积和体积计算公式大全

长方体和正方体的周长面积和体积计算公式大全 周长: 长方形周长公式=(长+宽)X2 正方形周长公式=边长X4 直径=半径×2 半径=直径÷2 圆的周长=圆周率×直径,或=圆周率×半径×2 面积: 长方形面积=长X宽 正方形面积公式=边长X边长 三角形的面积=底×高÷2 平行四边形面积=底×高 梯形的面积=(上底+下底)×高÷2 圆的面积=圆周率×半径×半径 容积:容器若能容纳的物体的体积: 表面积:长方体或正方体六个面的总面积。 正方体的表面积:S=6a×a(棱长×棱长×6) 正方体体积公式:V=a×a×a(棱长×棱长×棱长) 长方体的表面积:S=2×(ab+bc+ac)((长×宽+长×高+宽×高)×2) 长方体体积公式:长X宽X高 长方体棱长总和公式:(长+宽+高)X4 正方体体积:Va×b×c(长×宽×高) 正方体棱长总:棱长X12 圆柱体的侧面积=底面圆的周长×高 圆柱体表面积=上下底面面积+侧面积,[或S=2π*r*r+2π*r*h(2×π×半径×半径+2×π×半径×高)] 圆柱体的体积=底面积×高,[或V=π *r*r*h(π×半径×半径×高)] 圆锥体积:V=S底×h÷3(底面积×高÷3) 正方体体积公式:棱长X棱长X棱长 通用体积公式:底面积X高 截面积X长

表面积的变化要会人折。 长方体或正方体被锯开后,一次会增加两个面;反之,两个相同,体或长方体拼在一起,一次 会减少两个面。 长方体和正方体的特征,相同点和不同点要牢记。 平面图形 名称符号周长C和面积S 正方形 a—边长 C=4a S=a2 长方形 a和b-边长 C=2(a+b) S=ab 三角形 a,b,c-三边长 h-a边上的高 s-周长的一半 A,B,C-内角 其中s=(a+b+c)/2 S=ah/2 =ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA) 四边形 d,D-对角线长 α-对角线夹角 S=dD/2·sinα 平行四边形 a,b-边长 h-a边的高 α-两边夹角 S=ah =absinα 菱形 a-边长 α-夹角 D-长对角线长 d-短对角线长 S=Dd/2 =a2sinα 梯形 a和b-上、下底长 h-高 m-中位线长 S=(a+b)h/2

可靠性失效分析常见方法

可靠性失效分析常见思路 失效分析在生产建设中极其重要,失效分析的限期往往要求很短,分析结论要正确无误,改进措施要切实可行。 1 失效分析思路的内涵 失效分析思路是指导失效分析全过程的思维路线,是在思想中以机械失效的规律(即宏观表象特征和微观过程机理)为理论依据,把通过调查、观察和实验获得的失效信息(失效对象、失效现象、失效环境统称为失效信息)分别加以考察,然后有机结合起来作为一个统一整体综合考察,以获取的客观事实为证据,全面应用推理的方法,来判断失效事件的失效模式,并推断失效原因。因此,失效分析思路在整个失效分析过程中一脉相承、前后呼应,自成思考体系,把失效分析的指导思路、推理方法、程序、步骤、技巧有机地融为一体,从而达到失效分析的根本目的。 在科学的分析思路指导下,才能制定出正确的分析程序;机械的失效往往是多种原因造成的,即一果多因,常常需要正确的失效分析思路的指导;对于复杂的机械失效,涉及面广,任务艰巨,更需要正确的失效分析思路,以最小代价来获取较科学合理的分析结论。总之,掌握并运用正确的分析思路,才可能对失效事件有本质的认识,减少失效分析工作中的盲目性、片面性和主观随意性,大大提高工作的效率和质量。因此,失效分析思路不仅是失效分析学科的重要组成部分,而且是失效分析的灵魂。 失效分析是从结果求原因的逆向认识失效本质的过程,结果和原因具有双重性,因此,失效分析可以从原因入手,也可以从结果入手,也可以从失效的某个过程入手,如“顺藤摸瓜”,即以失效过程中间状态的现象为原因,推断过程进一步发展的结果,直至过程的终点结果“;顺藤找根”,即以失效过程中间状态的现象为结果,推断该过程退一步的原因,直至过程起始状态的直接原因“;顺瓜摸藤”,即从过程中的终点结果出发,不断由过程的结果推断其原因“顺;根摸藤”,即从过程起始状态的原因出发,不断由过程的原因推断其结果。再如“顺瓜摸藤+顺藤找根”、“顺根摸藤+顺藤摸瓜”、“顺藤摸瓜+顺藤找根”等。 2 失效分析的主要思路 常用的失效分析思路很多,笔者介绍几种主要思路。 “撒大网”逐个因素排除的思路 一桩失效事件不论是属于大事故还是小故障,其原因总是包括操作人员、机械设备系统、材料、制造工艺、环境和管理6个方面。根据失效现场的调查和对背景资料(规划、设计、制造说明书和蓝图)

空间几何体的表面积体积公式(大全)

空间几何体的表面积与体积公式大全 一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥:h c S ‘ 底棱锥侧2 1= ② 圆锥:l c S 底圆锥侧2 1 = 3、 台体 ① 棱台:h c c S ) (2 1 ‘下底上底棱台侧+= ② 圆台:l c c S )(2 1 下底上底棱台侧+= 4、 球体 ① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥 ② 圆锥

3、 ① 棱台 ② 圆台 4、 球体 ① 球: r V 33 4 π=球 ② 球冠:略 ③ 球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高h ' 计算;而圆锥、圆台的侧面积计算时使用母线l 计算。 三、 拓展提高 1、 祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、 阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是r 2 的圆柱形容器内装一个最大的 球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3 2 。

分析:圆柱体积:r r h S V r 3 222)(ππ=?==圆柱 圆柱侧面积:r h c S r r 2 42)2(ππ=?==圆柱侧 因此:球体体积:r r V 333 423 2ππ=?=球 球体表面积:r S 24π=球 通过上述分析,我们可以得到一个很重要的关系(如图) + = 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、 台体体积公式 公式: )(31 S S S S h V 下下 上 上 台++= 证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。 延长两侧棱相交于一点P 。 设台体上底面积为S 上,下底面积为S 下高为h 。 易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1 由相似三角形的性质得:PF PE AB CD =

建筑工程量计算公式及计算方法大全

建筑工程量计算公式及计算方法大全 一、平整场地:建筑物场地厚度在±30cm以的挖、填、运、找平。 1、平整场地计算规则 (1)清单规则:按设计图示尺寸以建筑物首层面积计算。 (2)定额规则:按设计图示尺寸以建筑物外墙外边线每边各加2米以平方米面积计算。2、平整场地计算公式 S=(A+4)×(B+4)=S底+2L外+16 式中:S———平整场地工程量;A———建筑物长度方向外墙外边线长度;B———建筑物宽度方向外墙外边线长度;S底———建筑物底层建筑面积;L外———建筑物外墙外边线周长。 该公式适用于任何由矩形组成的建筑物或构筑物的场地平整工程量计算。 二、基础土方开挖计算 开挖土方计算规则 (1)、清单规则:挖基础土方按设计图示尺寸以基础垫层底面积乘挖土深度计算。(2)、定额规则:人工或机械挖土方的体积应按槽底面积乘以挖土深度计算。槽底面积应以槽底的长乘以槽底的宽,槽底长和宽是指基础底宽外加工作面,当需要放坡时,应将放坡的土方量合并于总土方量中。 2、开挖土方计算公式: (1)、清单计算挖土方的体积:土方体积=挖土方的底面积×挖土深度。 (2)、定额规则:基槽开挖:V=(A+2C+K×H)H×L。式中:V———基槽土方量;A———槽底宽度;C———工作面宽度;H———基槽深度;L———基槽长度。. 其中外墙基槽长度以外墙中心线计算,墙基槽长度以墙净长计算,交接重合出不予扣除。基坑开挖:V=1/6H[A×B+a×b+(A+a)×(B+b)+a×b]。式中:V———基坑体积;A—基坑上口长度;B———基坑上口宽度;a———基坑底面长度;b———基坑底面宽度。 三、回填土工程量计算规则及公式 1、基槽、基坑回填土体积=基槽(坑)挖土体积-设计室外地坪以下建(构)筑物被埋置部分的体积。

相关文档
最新文档