测定低碳钢和铸铁

测定低碳钢和铸铁
测定低碳钢和铸铁

以低碳钢和铸铁为代表,了解塑性材料在简单拉伸时的机械性质。它是力学性能试验中

最基本最常用的一个。一般工厂及工程建设单位都广泛利用该实验结果来检验材料的机械性能。试验提供的 E ,R eL ,R m ,A 和Z 等指标,是评定材质和进行强度、刚度计算的重要依据。本试验具体要求为:

1.了解材料拉伸时力与变形的关系,观察试件破坏现象。 2.测定强度数据,如屈服点R eL ,抗拉强度R m 。

3.测定塑性材料的塑性指标:拉伸时的伸长率A ,截面收缩率Z 。 4.比较塑性材料与脆性材料在拉伸时的机械性质。

二、原理

进行拉伸试验时,外力必须通过试样轴线,以确保材料处于单向应力状态。一般试验机都设有自动绘图装置,用以记录试样的拉伸图即F-ΔL 曲线,形象地体现了材料变形特点以及各阶段受力和变形的关系。但是F-ΔL 曲线的定量关系不仅取决于材质而且受试样几何尺寸的影响。因此,拉伸图往往用名义应力、应变曲线(即R-ε曲线)来表示:

F

R S =

——试样的名义应力 0

L L

?=

ε——试样的名义应变 S 0和L 0分别代表初始条件下的面积和标距。R-ε曲线与F-ΔL 曲线相似,但消除了几何尺寸的影响。因此,能代表材料的属性。单向拉伸条件下的一些材料的机械性能指标就是在R-ε曲线上定义的。如果试验能提供一条精确的拉伸图,那么单向拉伸条件下的主要力学性能指标就可精确地测定。

不同性质的材料拉伸过程也不同,其R-ε曲线会存在很大差异。低碳钢和铸铁是性质截然不同的两种典型材料,它们的拉伸曲线在工程材料中十分典型,掌握它们的拉伸过程和破坏特点有助于正确、合理地认识和选用材料。

低碳钢具有良好的塑性,由R-ε曲线(图1-1)可以看出,低碳钢断裂前明显地分成四个阶段:

弹性阶段(OA):试件的变形是弹性的。在这个范围内卸载,试样仍恢复原来的尺寸,没有任何残余变形。习惯上认为材料在弹性范围内服从虎克定律,其应力、应变为正比关系,即

R E ε= (1-1)

比例系数E 代表直线OA 的斜率,称作材料的弹性模量。

屈服(流动)阶段(BC):R-ε曲线上出现明显的屈服点。这表明材料暂时丧失抵抗继续变形的能力。这时,应力基本上不变化,而变形快速增长。通常把下屈服点(B ˊ)作为材料屈服极限R eL 。R eL 是材料开始进入塑性的标志。结构、零件的应力一旦超过R eL ,材料就会屈服,零件就会因为过量变形而失效。因此强度设计时常以屈服极限R eL 作为确定许可应力的基础。从屈服阶段开始,材料的变形包含弹性和塑性两部分。如果试样表面光滑,材料杂质含量少,可以清楚地看到表面有45°方向的滑移线。

铸铁

△LeL

(a ) (b ) (c )

图1-1 试件拉伸图

强化阶段(CD):屈服阶段结束后,R-ε曲线又开始上升,材料恢复了对继续变形的抵抗能力,载荷就必须不断增长。如果在这一阶段卸载,弹性变形将随之消失,而塑性变形将永远保留下来。强化阶段的卸载路径与弹性阶段平行。卸载后若重新加载,加载线仍与弹性阶段平行,但重新加载后,材料的弹性阶段加长、屈服强度明显提高,而塑性却相应下降。这种现象称作为形变强化或冷作硬化。冷作硬化是金属材料极为宝贵的性质之一。塑性变形和形变强化二者联合,是强化金属材料的重要手段。例如喷丸,挤压,冷拨等工艺,就是利用材料的冷作硬化来提高材料强度的。强化阶段的塑性变形是沿轴向均匀分布的。随塑性变形的增长,试样表面的滑移线亦愈趋明显。D 点是R-ε曲线的最高点,定义为材料的强度极限又称作材料的抗拉强度记作R m 。对低碳钢来说R m 是材料均匀塑性变形的最大抗力,是材料进入颈缩阶段的标志。

颈缩阶段(DE):应力达到强度极限后,塑性变形开始在局部进行。局部截面急剧收缩,承载面积迅速减少,试样承受的载荷很快下降,直到断裂。断裂时,试样的弹性变形消失,塑性变形则遗留在破断的试样上。材料的塑性通常用试样断裂后的残余变形来衡量,单拉时的塑性指标用断后伸长率A 和断面收缩率Z 来表示。即 0

100%u L L A L -=

? 00

100%u

S S Z S -=

? (1-2) L u ,S u 分别代表试样拉断后的标距和断口的面积。

低碳钢颈缩部分的变形在总变形中占很大比重如图1-2所示。测试断后伸长率时,颈缩局部及其影响区的塑性变形都应包含在L u 之内。这就要求断口位置应在标距的中央附近。若断口落在标距之外则试验无效。

工程上通常认为,材料的断后伸长率A> 5%属于韧断,A< 5%则属于脆断。韧断的特征是断裂前有较大的宏观塑性变形,断口形貌是暗灰色纤维状组织。低碳钢断裂时有很大的塑性变形,断口为杯状周边为45°的剪切唇,断口组织为暗灰色纤维状,因此是一种典型的韧状断口。

铸铁是典型的脆性材料,其拉伸曲线如图1-1(c )所示。其拉伸过程较低碳钢简单,可近似认为是经弹性阶段直接过渡到断裂。其破坏断口沿横截面方向,说明铸铁的断裂是由拉应力引起,其强度指标只有R m 。由拉伸曲线可见,铸铁断后伸长率甚小,所以铸铁常在没有任何预兆的情况下突然发生脆断。因此这类材料若使用不当,极易发生事故。铸铁断口与正应力方向垂直,断面平齐为闪光的结晶状组织,是典型的脆状断口。 80 70 60

50

20 15 伸长量/ m m

延伸率/ %

多数工程材料的拉伸曲线介于低碳钢和铸铁之间,常常只有两个或三个阶段如图1-3。但强度、塑性指标的定义和测试方法基本相同。所以,通过拉伸破坏试验,分析比较低碳钢和铸铁的拉伸过程,确定其机械性能,在机械性能试验研究中具有典型意义。

三、设备

1. 万能材料试验机。

2. 0.02mm 游标卡尺。

四、试样的制备

试样制备是试验的重要环节。国家标准《金属拉伸试验试样》GB6397-86对此有详细规定。通常拉伸试样有比例试件和定标准试件两种。

一般拉伸试样由三部分组成,即工作部分,过渡部分和夹持部分(图1-4)。工作部分必须保持光滑均匀以确保材料表面的单向应力状态。均匀部分的有效工作长度L 0称做标距。d 0、S 0分别代表工作部分的直径和面积。过渡部分必须有适当的台肩和圆角,以降低应力集中,保持该处不会断裂。试样两端的夹持部分用以传递载荷,其形状尺寸应与试验机的钳口相匹配。

前已述及,颈缩局部及其影响区的塑性变形在断后伸长率中占很大的比重。虽然,同种材料的断后伸长率不仅取决于材质,而且还取决于试样的标距。试样愈短、局部变形所占比例愈大,A 也就愈大。为了便于相互比较,试样的长度应当标准化。按照规定,测试断后伸长率应当采用比例试样。比例试样的长度有两种规定:

10倍直径圆试样:

0010 , 11.3L d ==

(a ) (b )

图1-3 不同类型材料的拉伸图

图1-4 圆形截面拉伸试件

5倍直径圆试样:

005 , 5.65L d == 按照上述比例,板试样也分长、短两种: 长试样: 0L = 短试样: 0L =用10倍直径试样测定的断后伸长率记做A u0,用5倍直径试样测定的断后伸长率记做A 5

国家标准推荐使用短比例试样。

五、处理

1.强度指标计算

屈服极限 0

eL

eL F R S =

强度极限 0

m

m F R S =

屈服载荷F eL 取屈服平台的下限值。F m 取F-ΔL 曲线的最大载荷。铸铁不存在屈服阶段故只记R m 。

2.塑性指标的计算

断后伸长率 0

0100%u L L A L -=

? 断面收缩率 00

100%u

S S Z S -=

? 将自动绘图器绘出的图形用光滑曲线联结,并延长直线部分使之交于坐标原点。修正后绘在方格纸上,并注明比例尺,即方格上每一厘米代表若干载荷和伸长。 绘出低碳钢和铸铁试件试验前后的形状图形。

最后,根据试验结果,比较并说明两种材料机械性质的特点。

3.断口移中法

从破坏后的低碳钢试件及图1-2上可以看到,各处的残余变形不是均匀分布的,愈近断口(颈缩)处伸长愈多。因此测得L u 的数值与断口的部位有关。若试件断口不在标距中间三分之一范围内,应按国家标准的规定采用断口移中的办法,计算L u 长度。试验前要在试件标距内等分划十个格子。试验后,将试件对接在一起,从断口为起点O ,在长段上取基本等于短段的格数得B 点。计算L u 方法如下:

(1)当长段所余格数为偶数时,如图1-5(a )所示,则量取长段所余格数之一半,得c 点,将BC 段长度称到试件左端,则移后的L u 为 BC OB AO L 21++=

(2) 当在长段上所余格为奇数时,如图1-5(b )所示,则在长段上所余格数减1之半,得C 点,再由C 点向后移一格得C 1点。则移位后的标距L u 为: 11BC BC OB AO L +++=

当断口非常靠近试件两端,而与其头部之距离等于或小于直径的两倍时,一般认为试验结果无效,需要重新试验。 (附) 试验数据

A.试样原始尺寸

B.试验记录数据

C.计算结果 图1-5 拉伸试件断口移中 (b )

根据试验结果绘制拉伸图(R-ε)曲线及试样断口草图。

低碳钢和铸铁的拉伸实验

实验一 低碳钢和铸铁的拉伸实验 一、实验目的要求 1.测定低碳钢的流动极限S σ、强度极限b σ、延伸率δ、截面收缩率ψ和铸铁的强度极 限b σ。 2.低碳钢和铸铁在拉伸过程中表现的现象,绘出外力和变形间的关系曲线(L F ?-曲 线)。 3.比较低碳钢和铸铁两种材料的拉伸性能和断口情况。 二、实验设备和仪器 CMT5504/5105电子万能试验机、游标卡尺等 图1-1 CMT5504/5105电子万能试验机

三、拉伸试件 金属材料拉伸实验常用的试件形状如图所示。图中工作段长度l 称为标距,试件的拉伸变形量一般由这一段的变形来测定,两端较粗部分是为了便于装入试验机的夹头内。 为了使实验测得的结果可以互相比较,试件必须按国家标准做成标准试件,即d l 5=或d l 10=。 对于一般板的材料拉伸实验,也应按国家标准做成矩形截面试件。其截面面积和试件标距关系为A l 3.11=或A l 65.5=,A 为标距段内的截面积。 低碳钢拉伸 铸铁拉伸 图1-2 拉伸试件

四、实验原理和方法 1.低碳钢拉伸实验 低碳钢试件在静拉伸试验中,通常可直接得到拉伸曲线,如图1—3所示。用准确的拉 σ-曲线。首先将试件安装于试验机的夹头内,之后匀速缓伸曲线可直接换算出应力应变ε 慢加载(加载速度对力学性能是有影响的,速度越快,所测的强度值就越高),试样依次经过弹性、屈服、强化和颈缩四个阶段,其中前三个阶段是均匀变形的。 图1-3 低碳钢拉伸曲线 OA段,没有任何残留变形。在弹性阶段,载荷与变形 (1) 弹性阶段是指拉伸图上的' 是同时存在的,当载荷卸去后变形也就恢复。在弹性阶段,存在一比例极限点A,对应的应σ,此部分载荷与变形是成比例的。 力为比例极限 p (2) 屈服阶段对应拉伸图上的BC段。金属材料的屈服是宏观塑性变形开始的一种标志,是由切应力引起的。在低碳钢的拉伸曲线上,当载荷增加到一定数值时出现了锯齿现象。这种载荷在一定范围内波动而试件还继续变形伸长的现象称为屈服现象。屈服阶段中一个重要的力学性能就是屈服点。低碳钢材料存在上屈服点和下屈服点,不加说明,一般都是指下 F,即试件发生屈服而力首次下降前的最屈服点。上屈服点对应拉伸图中的B点,记为 SU F,是指不计初始瞬时效应的屈服阶段中的最小力值,注意这里的大力值。下屈服点记为 SL 初始瞬时效应对于液压摆式万能试验机由于摆的回摆惯性尤其明显,而对于电子万能试验机或液压伺服试验机不明显。

低碳钢、铸铁的拉伸试验

工程力学实验报告 实验名称: 试验班级: 实验组号: 试验成员: 实验日期:

一、试验目的 1、测定低碳钢的屈服点 σ,强度极限bσ,延伸率δ,断面收缩率ψ。 s 2、测定铸铁的强度极限 σ。 b 3、观察低碳钢拉伸过程中的各种现象(如屈服、强化、颈缩等),并绘制拉伸曲线。 4、熟悉试验机和其它有关仪器的使用。 二、实验设备 1.液压式万能实验机; 2.游标卡尺 三、设备简介 万能试验机简介 具有拉伸、压缩、弯曲及其剪切等各种静力实验功能的试验机称为万能材料试验机,万能材料试验机一般都由两个基本部分组成; 1、加载部分:利用一定的动力和传动装置强迫试件发生变形,从而使试件受到力的作用,即对试件加载。 2、测控部分:指示试件所受载荷大小及变形情况。 四、实验原理 低碳钢和铸铁是工程上最广泛使用的材料,同时,低碳钢试样在拉伸试验中所表现出的变形与抗力间的关系也比较典型。低碳钢的整个试验过程中工作段的伸长量与荷载的关系由拉伸图表示。做实验时,可利用万能材料试验机的自动绘图装置绘出低碳钢试样的拉伸图即下图中拉力F与伸长量△L的关系曲线。需要说明的是途中起始阶段呈曲线是由于试样头部在试验机夹具内有轻微滑动及试验机各部分存在间隙造成的。大致可分为四个阶段: σe

(1)弹性阶段(Ob段) 在拉伸的初始阶段,ζ-ε曲线(oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。线性段的最高点则称为材料的比例极限(ζ p ),线性段的直线斜率即为材料的弹性摸量E。 线性阶段后,ζ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全 消失。卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζ e ),一般对于钢等许多材料,其弹性极限与比例极限非常接近。 (2)屈服阶段(bc段) 超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。使材料发生屈服的应力称为屈服应力或屈服极 限(ζ s )。 当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。 (3)强化阶段(ce段) 经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。 若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线(如d-d'斜线),其斜率与比例阶段的直线段斜率大致相等。当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。 在硬化阶段应力应变曲线存在一个最高点,该最高点对应的应力称为材料的 强度极限(ζ b ),强度极限所对应的载荷为试件所能承受的最大载荷F b 。 (4)局部变形阶段(ef段) 试样拉伸达到强度极限ζ b 之前,在标距范围内的变形是均匀的。当应力增 大至强度极限ζ b 之后,试样出现局部显著收缩,这一现象称为颈缩。颈缩出现

低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸压缩实验报告 摘要:材料的力学性能也称为机械性质,是指材料在外力作用下表现的变形、破坏等方面的特性。它是由试验来测定的。工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。 关键字:低碳钢 铸铁 拉伸压缩实验 破坏机理 一.拉伸实验 1. 低碳钢拉伸实验 拉伸实验试件 低碳钢拉伸图 在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:

低碳钢拉伸应力-应变曲线 (1)弹性阶段(Ob段) 在拉伸的初始阶段,ζ-ε曲线(Oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。线性段的最高点则称为材料的比例极限(ζ p ),线性段的直线斜率即为材料的弹性摸量E。 线性阶段后,ζ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全 消失。卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζ e ),一般对于钢等许多材料,其弹性极限与比例极限非常接近。 (2)屈服阶段(bc段) 超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。使材料发生屈服的应力称为屈服应力或屈服极 限(ζ s )。 当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。 (3)强化阶段(ce段) 经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。 若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线(如d-d'斜线),其斜率与比例阶段的直线段斜率大致相等。当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。 在硬化阶段应力应变曲线存在一个最高点,该最高点对应的应力称为材料的 强度极限(ζ b ),强度极限所对应的载荷为试件所能承受的最大载荷F b 。 (4)局部变形阶段(ef段) 试样拉伸达到强度极限ζ b 之前,在标距范围内的变形是均匀的。当应力增 大至强度极限ζ b 之后,试样出现局部显著收缩,这一现象称为颈缩。颈缩出现后,使试件继续变形所需载荷减小,故应力应变曲线呈现下降趋势,直至最后在f点断裂。试样的断裂位置处于颈缩处,断口形状呈杯状,这说明引起试样破坏的原因不仅有拉应力还有切应力。 (5)伸长率和断面收缩率 试样拉断后,由于保留了塑性变形,标距由原来的L变为L1。用百分比表示的比值 δ=(L1-L)/L*100% 称为伸长率。试样的塑性变形越大,δ也越大。因此,伸长率是衡量材料塑性的指标。 原始横截面面积为A的试样,拉断后缩颈处的最小横截面面积变为A1,用百分比表示的比值

低碳钢和铸铁在拉伸试验中的力学性能教学内容

低碳钢和铸铁在拉伸试验中的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能 根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。它是由试验来测定的。工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。 1、低碳钢拉伸实验 在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能: (1)弹性阶段 在拉伸的初始阶段,ζ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。线性段的最高点则称为材料的比例极限(ζp ),线性段的直线斜率即为材料的弹性摸量E 。线性阶段后,ζ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζe ),一般对于钢等许多材料,其弹性极限与比例极限非常接近。 (2)屈服阶段 超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。使材料发生屈服的应力称为屈服应力或屈服极限(ζs )。当材料屈服时,如果用砂纸将试件表面 1 打磨,会发现试件表面呈现出与轴线成45°斜纹。这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。 (3)强化阶段 经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。 在硬化阶段应力应变曲线存在一个最高点,该最高点对应的应力称为材料的强度极限(ζb ),强度极限所对应的载荷为试件所能承受的最大载荷 Fb 。 (4)局部变形阶段 试样拉伸达到强度极限ζb 之前,在标距范围内的变形是均匀的。当应力增大至强度极限ζb 之后,试样出现局部显著收缩,这一现象称为颈缩。颈缩出现后,使试件继续变形所需载荷减小,故应力应变曲 2

低碳钢和铸铁在拉伸和压缩时的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。它是由试验来测定的。工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。 1.低碳钢拉伸实验 在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:(1)弹性阶段 在拉伸的初始阶段,σ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。线性阶段后,σ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。(2)屈服阶段 超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。使材料发生屈服的应力称为屈服应力或屈服极限(σs)。当材料屈服时,如果用砂纸将试件表面

打磨,会发现试件表面呈现出与轴线成45°斜纹。这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。 (3)强化阶段 经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。 在硬化阶段应力应变曲线存在一个最高点,该最高点对应的应力称为材料的强度极限(σb),强度极限所对应的载荷为试件所能承受的最大载荷Fb。 (4)局部变形阶段 试样拉伸达到强度极限σb之前,在标距范围内的变形是均匀的。当应力增大至强度极限σb之后,试样出现局部显著收缩,这一现象称为颈缩。颈缩出现后,使试件继续变形所需载荷减小,故应力应变曲

低碳钢和铸铁扭转实验

实验编号3 低碳钢和铸铁扭转实验 低碳钢和铸铁扭转破坏试验 一、概述 工程中有许多承受扭转变形的构件,了解材料在扭转变形时的力学性能,对于构件的合理设计和选材是十分重要的。材料在扭转变形下的力学性能只能通过试验来测定;扭转变形是构件的基本变形之一。因此扭转试验也是材料力学基本实验之一。 二、实验目的 1、测定低碳钢的剪切屈服极限τs,及低碳钢铸铁的剪切强度极限τ b 2、铸铁的抗扭强度极限τb 3、观察、比较分析两种材料在扭转过程中变形和破坏形式。 4、学习自动绘制T-υ曲线及微机控制电子扭转实验机、扭角仪的操作 三、实验设备和仪器 1、微机控制电子扭转实验机 2、游标卡尺 3、低碳钢和铸铁圆形扭转试件 四、试件 扭转试验所用试件与拉伸试件的标准相同,一般使用圆形试件,d0=10mm,标距l0=50mm或100mm,平行长度l为70mm或120mm。其它直径的试样,其平行长度为标距长度加上两倍直径。为防止打滑,扭转试样的夹持段宜为类矩形,如图3-1所示。 图3-1 五、实验原理 扭转试验是材料力学试验最基本、最典型的试验之一。进行扭转试验时,把试件两夹持端分别安装于扭转试验机的固定夹头和活动夹头中,开启试验机,试件便受到了扭转荷载,试件本身也随之产生扭转变形。扭转试验机上可以直接读出扭矩M和扭转角υ,同时试验机也自动绘出了M—υ曲线图,一般υ是试验机两夹头之间的相对扭转角。扭转试验的标准是GB/T10128-1988。

因材料本身的差异,低碳钢扭转曲线有两种类型,如图3-2所示。扭转曲线表现为弹性、屈服和强化三个阶段,与低碳钢的拉伸曲线不尽相同,它的屈服过程是由表面逐渐向圆心扩展,形成环形塑性区。当横截面的应力全部屈服后,试件才会全面进入塑性。在屈服阶段,扭矩基本不动或呈下降趋势的轻微波动,而扭转变形继续增加。当首次扭转角增加而扭矩不增加(或保持恒定)时的扭矩为屈服扭矩,记为M s;首次下降前的最大扭矩为上屈服扭矩,记为M su;屈服阶段中最小的扭矩为下屈服扭矩,记为M sL(不加说明时指下屈服扭矩)。对试件连续施加扭矩直至扭断,从试验机扭矩标识上读得最大值。考虑到整体屈服后塑性变形对应力分布的影响,低碳钢扭转屈服点和抗扭强度理论上应按下式计算。 τs=M s/Wρτb=M b/Wρ 图3-2低碳钢图3-3铸铁 铸铁试件扭转时,其扭转曲线不同于拉伸曲线,它有比较明显的非线性偏离,见图(3-3)。但由于变形很小就突然断裂,一般仍按弹性公式计算铸铁的抗扭强度,即 τb=M b/Wρ 圆形试件受扭时,横截面上的应力应变分布如图3-4b、c所示。在试件表面任一点,横截面上有最大切应力τ,在与轴线成±45的截面上存在主应力σ1=τ,σ3=-τ(见图3-4a)。低碳钢的抗剪能力弱于抗拉能力,试件沿横截面被剪断。铸铁的抗拉能力弱于抗剪能力,试件沿与σ1正交的方向被拉断。 图3-4 六、实验步骤 1.开机:试验机——>打印机——>计算机 注意:每次开机后,最好要预热10分钟,待系统稳定后,再进行试验

实验二低碳钢和铸铁的压缩实验

实验二金属材料(低碳钢和铸铁)的压缩实验 一、实验目的 (1)比较低碳钢和铸铁压缩变形和破坏现象。 (2)测定低碳钢的屈服极限σs和铸铁的强度极限σb。 (3)比较铸铁在拉伸和压缩两种受力形式下的机械性能、分析其破坏原因。 二、验仪器和设备 (1)万能材料试验机。 (2)游标卡尺。 三、试件介绍 根据国家有关标准,低碳钢和铸铁等金属材料的压缩试件一般制成圆柱形试件。低碳钢压缩试件的高度和直径的比例为3:2,铸铁压缩试件的高度和直径的比例为2:1。试件均为圆柱体。 四、实验原理及方法 压缩实验是研究材料性能常用的实验方法。对铸铁、铸造合金、建筑材料等脆性材料尤为合适。通过压缩实验观察材料的变形过程、破坏形式,并与拉伸实验进行比较,可以分析不同应力状态对材料强度、塑性的影响,从而对材料的机械性能有比较全面的认识。 压缩试验在压力试验机上进行。当试件受压时,其上下两端面与试验机支撑之间产生很大的摩擦力,使试件两端的横向变形受到阻碍,故压缩后试件呈鼓形。摩擦力的存在会

影响试件的抗压能力甚至破坏形式。为了尽量减少摩擦力的影响,实验时试件两端必须保证平行,并与轴线垂直,使试件受轴向压力。另外。端面加工应有较高的光洁度。 低碳钢压缩时也会发生屈服,但并不象拉伸那样有明显的屈服阶段。因此,在测定Ps 时要特别注意观察。在缓慢均匀加载下,测力指针等速转动,当材料发生屈服时,测力指针转动将减慢,甚至倒退。这时对应的载荷即为屈服载荷Ps。屈服之后加载到试件产生明显变形即停止加载。这是因为低碳钢受压时变形较大而不破裂,因此愈压愈扁。横截面增 ,因此也得不到强度极大时,其实际应力不随外载荷增加而增加,故不可能得到最大载荷P b ,所以在实验中是以变形来控制加载的。 限 b 前出现较明显的变形然后破裂,此时试验机测力铸铁试件压缩时,在达到最大载荷P b 指针迅速倒退,从动针读取最大载荷P 值,铸铁试件最后略呈故形,断裂面与试件轴线大 b 约呈450。 图2—2 低碳钢压缩图铸铁压缩图 五、实验步骤 (1)试验机准备。根据估算的最大载荷,选择合适的示力度盘(量程)按相应的操作规程进行操作。 (2)测量试件的直径和高度。测量试件两端及中部三处的截面直径,取三处中最小一处的平均直径计算横截面面积。 (3)将试件放在试验机活动台球形支撑板中心处。 (4)开动试验机,使活动台上升,对试件进行缓慢均匀加载,加载速度为0.5mm/min。对于低碳钢,要及时记录其屈服载荷,超过屈服载荷后,继续加载,将试件压成鼓形即可停

测定低碳钢和铸铁

以低碳钢和铸铁为代表,了解塑性材料在简单拉伸时的机械性质。它是力学性能试验中 最基本最常用的一个。一般工厂及工程建设单位都广泛利用该实验结果来检验材料的机械性能。试验提供的 E ,R eL ,R m ,A 和Z 等指标,是评定材质和进行强度、刚度计算的重要依据。本试验具体要求为: 1.了解材料拉伸时力与变形的关系,观察试件破坏现象。 2.测定强度数据,如屈服点R eL ,抗拉强度R m 。 3.测定塑性材料的塑性指标:拉伸时的伸长率A ,截面收缩率Z 。 4.比较塑性材料与脆性材料在拉伸时的机械性质。 二、原理 进行拉伸试验时,外力必须通过试样轴线,以确保材料处于单向应力状态。一般试验机都设有自动绘图装置,用以记录试样的拉伸图即F-ΔL 曲线,形象地体现了材料变形特点以及各阶段受力和变形的关系。但是F-ΔL 曲线的定量关系不仅取决于材质而且受试样几何尺寸的影响。因此,拉伸图往往用名义应力、应变曲线(即R-ε曲线)来表示: F R S = ——试样的名义应力 0 L L ?= ε——试样的名义应变 S 0和L 0分别代表初始条件下的面积和标距。R-ε曲线与F-ΔL 曲线相似,但消除了几何尺寸的影响。因此,能代表材料的属性。单向拉伸条件下的一些材料的机械性能指标就是在R-ε曲线上定义的。如果试验能提供一条精确的拉伸图,那么单向拉伸条件下的主要力学性能指标就可精确地测定。 不同性质的材料拉伸过程也不同,其R-ε曲线会存在很大差异。低碳钢和铸铁是性质截然不同的两种典型材料,它们的拉伸曲线在工程材料中十分典型,掌握它们的拉伸过程和破坏特点有助于正确、合理地认识和选用材料。 低碳钢具有良好的塑性,由R-ε曲线(图1-1)可以看出,低碳钢断裂前明显地分成四个阶段: 弹性阶段(OA):试件的变形是弹性的。在这个范围内卸载,试样仍恢复原来的尺寸,没有任何残余变形。习惯上认为材料在弹性范围内服从虎克定律,其应力、应变为正比关系,即 R E ε= (1-1) 比例系数E 代表直线OA 的斜率,称作材料的弹性模量。 屈服(流动)阶段(BC):R-ε曲线上出现明显的屈服点。这表明材料暂时丧失抵抗继续变形的能力。这时,应力基本上不变化,而变形快速增长。通常把下屈服点(B ˊ)作为材料屈服极限R eL 。R eL 是材料开始进入塑性的标志。结构、零件的应力一旦超过R eL ,材料就会屈服,零件就会因为过量变形而失效。因此强度设计时常以屈服极限R eL 作为确定许可应力的基础。从屈服阶段开始,材料的变形包含弹性和塑性两部分。如果试样表面光滑,材料杂质含量少,可以清楚地看到表面有45°方向的滑移线。

低碳钢和铸铁扭转试验

低碳钢和铸铁扭转实验 一、实验目的 1.观察比较低碳钢和铸铁在扭转过程中的变形现象、破坏形式。  2.测定低碳钢扭转时的屈服点τs 和抗扭强度τb 。  3.测定铸铁扭转的抗扭强度τb 。  二、实验设备与试件 1.扭转试验机。  2.游标卡尺。  3.扭转试件参照国家标准GB10128–88采用圆形截面试件(如图2–13所示),为中间段试件直径;0d L0为试件原始标距;Lc 为试件平行长度;d 0=10 mm,L0=100 mm或50 mm,Lc =120 mm或70 mm,如果采用其他直径的试件,其平行长度为标距加上两倍直径。试件两头为夹持端,因为试件受扭,在两头夹持部分对称加工两个相互平行的平面,以便于安装夹紧。  图2–13 扭转试件图 三、实验原理和方法 试件受扭时将产生扭转变形,扭矩T和扭角?相应增加,试验机将自动记录数据大小并在电脑显示屏上自动绘出??T曲线图,如图2–14所示。从图2–14(a)可以看出,低碳钢扭转试验开始为弹性变形阶段,T与?成正比,横截面上剪应力呈线性分布,横截面周边处的剪应力最大,圆心为零。当扭矩T增大,试件开始产生屈服,横截面周边处的剪应力首先达到屈服极限,随着扭转变形的增加,剪应力由横截面周边处开始向圆心扩展逐步达到屈服极限,即塑性区由圆周向圆心扩展,直到整个截面达到屈服。在屈服过程中??T曲线显示为屈服平台,这时扭矩为屈服扭矩Ts 。屈服过后为强化阶段,扭矩又开始缓慢上升,试件扭角迅速增加,当扭矩达到最大值Tb 时试件断裂。考虑到整体屈服后塑 性变形对应力分布的影响,低碳钢扭转屈服点理论上应按式τs =w T s 43计算,抗扭强度理论上应按τb =w T b 43计算,但是为了试验结果的可比性,根据国标GB/T10128–88,

低碳钢和铸铁在拉伸试验中的力学性能

低碳钢和铸铁在拉伸试验中的力学性能 低碳钢具有良好的塑性,由R-ε曲线(图1-1)可以看出,低碳钢断裂前明显地分成四个阶段: 弹性阶段(OA):试件的变形是弹性的。在这个范围内卸载,试样仍恢复原来的尺寸,没有任何残余变形。习惯上认为材料在弹性范围内服从虎克定律,其应力、应变为正比关系,即 比例系数E代表直线(OA) 的斜率,称作材料的弹性模量。 屈服(流动)阶段(BC):R-ε曲线上出现明显的屈服点。这表明材料暂时丧失抵抗继续变形的能力。这时,应力基本上不变化,而变形快速增长。通常把下屈服点(Bˊ)作为材料屈服极限ReL。ReL是材料开始进入塑性的标志。结构、零件的应力一旦超过ReL,材料就会屈服,零件就会因为过量变形而失效。因此强度设计时常以屈服极限ReL作为确定许可应力的基础。从屈服阶段开始,材料的变形包含弹性和塑性两部分。如果试样表面光滑,材料杂质含量少,可以清楚地看到表面有45°方向的滑移线。 强化阶段(CD):屈服阶段结束后,R-ε曲线又开始上升,材料恢复了对继续变形的抵抗能力,载荷就必须不断增长。如果在这一阶段卸载,弹性变形将随之消失,而塑性变形将永远保留下来。强化阶段的卸载路径与弹性阶段平行。卸载后若重新加载,加载线仍与弹性阶段平行,但重新加载后,材料的弹性阶段加长、屈服强度明显提高,而塑性却相应下降。这种现象称作为形变强化或冷作硬化。冷作硬化是金属材料极为宝贵的性质之一。塑性变形和形变强化二者联合,是强化金属材料的重要手段。例如喷丸,挤压,冷拨等工艺,就是利用材料的冷作硬化来提高材料强度的。强化阶段的塑性变形是沿轴向均匀分布的。随塑性变形的增长,试样表面的滑移线亦愈趋明显。D点是R-ε曲线的最高点,定义为材料的强度极限又称作材料的抗拉强度记作Rm。对低碳钢来说Rm是材料均匀塑性变形的最大抗力,是材料进入颈缩阶段的标志。

低碳钢和铸铁的扭转实验报告

低碳钢和铸铁的扭转实验报告

·2· 扭转试验报告 一、试验目的 1、测定低碳钢的剪切屈服极限τs 。和剪切强度极限近似值τb 。 2、测定铸铁的剪切强度极限τb 。 3、观察并分析两种材料在扭转时的变形和破坏现象。 二、设备和仪器 1、材料扭转试验机 2、游标卡尺 三、试验原理 1、低碳钢试样 对试样缓慢加载,试验机的绘图装置自动绘制出T- φ曲线(见图1)。最初材料处于 图1 低碳钢是扭转试验 弹性状态,截面上应力线性分布,T-φ图直线上升。到A 点,试样横截面边缘处剪应力达到剪切屈服极限τs 。以后,由屈服产生的塑性区不断向中心扩展,T-φ图呈曲线上升。至B 点,曲线趋于平坦,这时载荷度盘指针停止不动或摆动。这不动

·3· 或摆动的最小值就是屈服扭矩T s 。再以后材料强化,T-φ图上升,至C 点试样断裂。在试验全过程中,试样直径不变。断口是横截面(见图2a ),这是由于低碳钢抗剪能力小于抗拉能力,而横截面上剪应力最大之故。 图2 低碳钢和铸铁的扭转端口形状 据屈服扭矩 p s W T 43s =τ (2-1) 按式2-1可计算出剪切屈服极限τs 。 据最大扭矩T b 可得:p b b W T 43=τ (2-2) 按式2-2可计算出剪切强度极限近似值τb 。 说明:(1)公式(2-1)是假定横截面上剪应力均达到τs 后推导出来的。公式(2-2)形式上与公式(2-1)虽然完全 相同,但它是将由塑性理论推导出的Nadai 公式略去了一项 后得到的,而略去的这一项不一定是高阶小量,所以是近似的。

(2)国标GB10128-88规定τs和τb均按弹性扭转公式计算,这样得到的结果可以用来比较不同材料的扭转性能,但与实际应力不符。 II、铸铁试样 铸铁的曲线如图3所示。呈曲线形状,变形很小就 突然破裂, 有爆裂声。断裂面粗糙,是与轴线约成45°角的螺 旋面 (见图1-3-2b)。这是由于铸铁抗拉能力小于抗剪 能力, 而这面上拉应力最大之故。据断裂前的最大扭矩T b 按弹性 扭转公式1-3-3可计算抗扭强度τ 。 b 图3 铸铁扭转曲线图 四、试验步骤 1、测量试样尺寸 以最小横截面直径计算截面系数(抗扭截面模量)W p。 2、试验机准备 刻度盘指针调零指针调零,安装绘图记录纸,安装记录笔。 3、安装试样,用粉笔在试样上画一母线,用以观察试样变形情况。 ·4·

低碳钢和铸铁力学性能分析

低碳钢和铸铁力学性能分析 题目:低碳钢和铸铁的力学性能分析 学院:机械工程学院学号:xxxxxxxxxxx 姓名:专业班级:xxx 指导老师:xxx 日期:2019年4月 低碳钢和铸铁的力学性能分析 作者:xxx 作者单位:255000 山东理工大学 摘要:材料的力学性能是指在外力作用下所表现出的抵抗能力。由于载荷形式的不同,材料可表现出不同的力学性能,如强度、硬度、塑形、韧度、疲劳强度等。材料的力学性 能是零件设计、材料选择及工艺评定的主要依据。本文主要讨论低碳钢和铸铁的力学性能 在拉伸和压缩情况下的影响。 关键词:低碳钢、铸铁、拉伸、压缩 (一)材料微观组成分析 材料的微观结构几乎决定了外在性能,所以要了解研究材料的性能必须深入研究材料 的组成成分。而研究材料的组成成分需要从下面这张铁碳合金相图说起。 这张图记录了奥氏体在在不同温度下的恒温转变时组成成份和物质状态的变化。低碳 钢是指碳含量 低于0.3%的碳素钢;铸铁是指碳含量在2.11%-6.69%的金属,其中用于拉伸和压缩试 验的铸铁为灰口铸铁,成分一般范围为Wc=2.5%-4.0% Wsi=1.0%-2.2% Wmn=0.5%-1.3% Ws≤0.15% Wp≤0.3%。低碳钢经过奥氏体转变的基体是铁素体和珠光体,灰口铸铁的基体 是珠光体二次渗碳体和莱氏体。铁素体和工业纯铁相似,塑形韧性较好,强度硬度较低。 渗碳体是一种复 杂的间隙化合物,硬度很高,但塑性和韧性几乎为零,是钢中的主要强化相。珠光体 是铁素体和渗碳体的机械混合物,常见的形态是两者呈片层相间分布,片层越细强度越高。铸铁中的莱氏体是由珠光体和渗碳体组成的机械混合物,其中渗碳体较多,脆性大,硬度高,塑形很差。 1 2 (二)拉伸试验

低碳钢和灰口铸铁的拉伸,压缩实验

低碳钢和灰口铸铁的拉伸、压缩实验 1 实验目的 ⑴.观察低碳钢在拉伸时的各种现象,并测定低碳钢在拉伸时的屈服极限s σ,强度极限b σ,延伸率10δ和断面收缩率ψ。 ⑵.观察铸铁在轴向拉伸时的各种现象。 ⑶.观察低碳钢和铸铁在轴向压缩过程中的各种现象。 ⑷.观察试样受力和变形两者间的相互关系,并注意观察材料的弹性、屈服、强化、颈缩、断裂等物理现象。测定该试样所代表材料的F S 、F b 和l ?等值。 ⑸.对典型的塑性材料和脆性材料进行受力变形现象比较,对其强度指标和塑性指标进行比较。 ⑹.学习、掌握电子万能试验机的使用方法及其工作原理。 2 仪器设备和量具 50KN 电子万能试验机,单向引伸计,钢板尺,游标卡尺。 3 试件 实验证明,试件尺寸和形状对实验结果有影响。为了便于比较各种材料的机械性能, 国家标准中对试件的尺寸和形状有统一规定。根据国家标准,(GB6397-86),将金属拉伸比例试件的尺寸列表如下: 本实验的拉伸试件采用国家标准中规定的长比例试件(图2-1),实验段直径mm d 100=,标距mm l 1000=。本实验的压缩试件采用国家标准(GB7314-87)中规定的圆柱形试件 2/0=d h ,mm d 150=(图2-2)。

4 实验原理和方法 (一)低碳钢的拉伸实验 在拉伸实验前,测定低碳钢试件的直径0d 和标距0l 。实验时,首先将试件安装在实验机的上、下夹头内,并在实验段的标记处安装引伸仪,以测量实验段的变形。然后开动实验机,缓慢加载,与实验机相联的微机会自动绘制出载荷-变形曲线(l F ?-曲线,见图2-3)或应力-应变曲线(εσ-曲线,见图2-4),随着载荷的逐渐增大,材料呈现出不同的力学性能: (1)弹性阶段(Ob 段) 在拉伸的初始阶段,εσ-曲线(Oa 段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。线性段的最高点称为材料的比例极限(P σ),线性段的直线斜率即为材料的弹性摸量E 。 线性阶段后,εσ-曲线不为直线(ab 段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。卸载后变形能完全消失的应力最大点称为材料的弹性极限(e σ),一般对于钢等许多材料,其弹性极限与比例极限非常接近。 (2)屈服阶段(bc 段) 超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。使材料发生屈服的应力称为屈服应力或屈服极限(s σ)。 当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成0 45斜纹。这是由于试件的0 45斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。 d ' Δl 图2-2 压缩试件 图2-3 图2-4

实验二 低碳钢和铸铁的压缩实验

实验二金属材料(低碳钢和铸铁)的压缩实验一、实验目的 (1)比较低碳钢和铸铁压缩变形和破坏现象。 (2)测定低碳钢的屈服极限σ s 和铸铁的强度极限σ b 。 (3)比较铸铁在拉伸和压缩两种受力形式下的机械性能、分析其破坏原因。 二、验仪器和设备 (1)万能材料试验机。 (2)游标卡尺。 三、试件介绍 根据国家有关标准,低碳钢和铸铁等金属材料的压缩试件一般制成圆柱形试件。低碳钢压缩试件的高度和直径的比例为3:2,铸铁压缩试件的高度和直径的比例为2:1。试件均为圆柱体。 四、实验原理及方法 压缩实验是研究材料性能常用的实验方法。对铸铁、铸造合金、建筑材料等脆性材料尤为合适。通过压缩实验观察材料的变形过程、破坏形式,并与拉伸实验进行比较,可以分析不同应力状态对材料强度、塑性的影响,从而对材料的机械性能有比较全面的认识。 压缩试验在压力试验机上进行。当试件受压时,其上下两端面与试验机支撑之间产生很大的摩擦力,使试件两端的横向变形受到阻碍,故压缩后试件呈鼓形。摩擦力的存在会影响试件的抗压能力甚至破坏形式。为了尽量减少摩擦力的影响,实验时试件两端必须保证平行,并与轴线垂直,使试件受轴向压力。另外。端面加工应有较高的光洁度。 低碳钢压缩时也会发生屈服,但并不象拉伸那样有明显的屈服阶段。因此,在测定Ps时要特别注意观察。在缓慢均匀加载下,测力指针等速转动,当材料发生屈服时,测力指针转动将减慢,甚至倒退。这时对应的载荷即为屈服载荷Ps。屈服之后加载到试件产生明显变形即停止加载。这是因为低碳钢受压时变形较大而不破裂,因此愈压愈扁。横截面增大时,其实际应力不随外载荷增加而增 加,故不可能得到最大载荷P b,因此也得不到强度极限 b ,所以在实验中是以变形来控制加载的。 铸铁试件压缩时,在达到最大载荷P b前出现较明显的变形然后破裂,此时试验机测力指针迅速倒退,从动针读取最大载荷P b值,铸铁试件最后略呈故形,断裂面与试件轴线大约呈450。

测定低碳钢和铸铁的拉伸力学性能

测定低碳钢和铸铁的拉伸力学性能 一、实验目的 本试验以低碳钢和铸铁为代表,了解塑性材料在简单拉伸时的机械性质。它是力学性能试验中最基本最常用的一个。一般工厂及工程建设单位都广泛利用该实验结果来检验材料的机械性能。试验提供的 E ,R eL ,R m ,A 和Z 等指标,是评定材质和进行强度、刚度计算的重要依据。本试验具体要求为: 1.了解材料拉伸时力与变形的关系,观察试件破坏现象。 2.测定强度数据,如屈服点R eL ,抗拉强度R m 。 3.测定塑性材料的塑性指标:拉伸时的伸长率A ,截面收缩率Z 。 4.比较塑性材料与脆性材料在拉伸时的机械性质。 二、实验原理 进行拉伸试验时,外力必须通过试样轴线,以确保材料处于单向应力状态。一般试验机都设有自动绘图装置,用以记录试样的拉伸图即F-ΔL 曲线,形象地体现了材料变形特点以及各阶段受力和变形的关系。但是F-ΔL 曲线的定量关系不仅取决于材质而且受试样几何尺寸的影响。因此,拉伸图往往用名义应力、应变曲线(即R-ε曲线)来表示: 0F R S = ——试样的名义应力 L L ?=ε——试样的名义应变 S 0和L 0分别代表初始条件下的面积和标距。R-ε曲线与F-ΔL 曲线相似,但消除了几何尺寸的影响。因此,能代表材料的属性。单向拉伸条件下的一些材料的机械性能指标就是在R-ε曲线上定义的。如果试验能提供一条精确的拉伸图,那么单向拉伸条件下的主要力学性能指标就可精确地测定。 不同性质的材料拉伸过程也不同,其R-ε曲线会存在很大差异。低碳钢和铸铁是性质截然不同的两种典型材料,它们的拉伸曲线在工程材料中十分典型,掌握它们的拉伸过程和破坏特点有助于正确、合理地认识和选用材料。 低碳钢具有良好的塑性,由R-ε曲线(图1-1)可以看出,低碳钢断裂前明显地分成四个阶段: 弹性阶段(OA):试件的变形是弹性的。在这个范围内卸载,试样仍恢复原来的尺寸,没有任何残余变形。习惯上认为材料在弹性范围内服从虎克定律,其应力、应变为正比关系,即 R E ε= (1-1) 比例系数E 代表直线OA 的斜率,称作材料的弹性模量。 屈服(流动)阶段(BC):R-ε曲线上出现明显的屈服点。这表明材料暂时丧失抵抗继续变形的能力。这时,应力基本上不变化,而变形快速增长。通常把下屈服点(B ˊ)作为材料屈服极限R eL 。R eL 是材料开始进入塑性的标志。结构、零件的应力一旦超过R eL ,材料就会屈服,零件就会因为过量变形而失效。因此强度设计时常以屈服极限R eL 作为确定许可应力的基础。从屈服阶段开始,材料的变形包含弹性和塑性两部分。如果试样表面光滑,材料杂质含量少,可以清楚地看到表面有45°方向的滑移线。

低碳钢和铸铁在拉伸试验中的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能 根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。它是由试验来测定的。工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。 1、低碳钢拉伸实验 在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能: (1)弹性阶段 在拉伸的初始阶段,ζ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。线性段的最高点则称为材料的比例极限(ζp ),线性段的直线斜率即为材料的弹性摸量E 。线性阶段后,ζ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζ e ),一般对于钢等许多材料,其弹性极限与比例极限非常接近。 (2)屈服阶段 超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。使材料发生屈服的应力称为屈服应力或屈服极限(ζs )。当材料屈服时,如果用砂纸将试件表面 1 打磨,会发现试件表面呈现出与轴线成45°斜纹。这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。 (3)强化阶段 经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。 在硬化阶段应力应变曲线存在一个最高点,该最高点对应的应力称为材料的强度极限(ζ b ),强度极限所对应的载荷为试件所能承受的最大载荷Fb 。 (4)局部变形阶段 试样拉伸达到强度极限ζ b 之前,在标距范围内的变形是均匀的。当应力增大至强度极限ζ b 之后,试样出现局部显著收缩,这一现象称为颈缩。颈缩出现后,使试件继续变形所需载荷减小,故应力应变曲 2 线呈现下降趋势,直至最后在f 点断裂。试样的断裂位置处于颈缩处,断口形状呈杯状,这说明引起试样破坏的原因不仅有拉应力还有切应力。 (5)伸长率和断面收缩率 试样拉断后,由于保留了塑性变形,标距由原来的L 变为L1。用百分比表示的比值δ=(L1-L )/L*100%称为伸长率。试样的塑性变形越大,δ也越大。因此,伸长率是衡量材料塑性的指标。原始横截面面积为A 的试样,拉断后缩颈处的最小横截面面积变为A1,用百分比表示的比值Ψ=(A-A1)/A*100%称为断面收缩率。Ψ也是衡量材料塑性的指标。

低碳钢和铸铁的扭转实验报告

扭转试验报告 一、试验目的 1、测定低碳钢的剪切屈服极限τs 。和剪切强度极限近似值τb 。 2、测定铸铁的剪切强度极限τb 。 3、观察并分析两种材料在扭转时的变形和破坏现象。 二、设备和仪器 1、材料扭转试验机 2、游标卡尺 三、试验原理 1、低碳钢试样 对试样缓慢加载,试验机的绘图装置自动绘制出T- φ曲线(见图1)。最初材料处于 图1 低碳钢是扭转试验 弹性状态,截面上应力线性分布,T-φ图直线上升。到A 点,试样横截面边缘处剪应力达到剪切屈服极限τs 。以后,由屈服产生的塑性区不断向中心扩展,T-φ图 呈曲线上升。至B 点,曲线趋于平坦,这时载荷度盘指针停止不动或摆动。这不动

或摆动的最小值就是屈服扭矩T s 。再以后材料强化,T-φ图上升,至C 点试样断裂。 在试验全过程中,试样直径不变。断口是横截面(见图2a ),这是由于低碳钢抗剪能力小于抗拉能力,而横截面上剪应力最大之故。 图2 低碳钢和铸铁的扭转端口形状 据屈服扭矩 p s W T 43s =τ (2-1) 按式2-1可计算出剪切屈服极限τs 。 据最大扭矩T b 可得:p b b W T 43=τ (2-2) 按式2-2可计算出剪切强度极限近似值τb 。 说明:(1)公式(2-1)是假定横截面上剪应力均达到τs 后推导出来的。公式(2-2)形式上与公式(2-1)虽然完全 相同,但它是将由塑性理论推导出的Nadai 公式略去了一项 后得到的,而略去的这一项不一定是高阶小量,所以是近似的。 (2)国标GB10128-88规定τs 和τb 均按弹性扭转公式计算,这样得到的结果可以

实验二低碳钢和铸铁的压缩实验

实验二金属材料(低碳钢和铸铁)的压缩实验 、实验目的 (1)比较低碳钢和铸铁压缩变形和破坏现象。 (2)测定低碳钢的屈服极限 b s和铸铁的强度极限 b bo (3)比较铸铁在拉伸和压缩两种受力形式下的机械性能、分析其破坏原因 、验仪器和设备 (1)万能材料试验机。 (2)游标卡尺。 三、试件介绍 根据国家有关标准,低碳钢和铸铁等金届材料的压缩试件一般制成圆柱形试 件。低碳钢压缩试件的高度和直径的比例为3: 2,铸铁压缩试件的高度和直径的比 例为2: 1。试件均为圆柱体。 四、实验原理及方法 压缩实验是研究材料性能常用的实验方法。对铸铁、铸造合金、建筑材料等脆性材料尤为合适。通过压缩实验观察材料的变形过程、破坏形式,并与拉伸实验进行比较,可以分析不同应力状态对材料强度、塑性的影响,从而对材料的机械性能有比较全面的认识。 压缩试验在压力试验机上进行。当试件受压时,其上下两端面与试验机支撑之间产生很大的摩擦力,使试件两端的横向变形受到阻碍,故压缩后试件呈鼓形。摩擦力的存在会影响试件的抗压能力甚至破坏形式。为了尽量减少摩擦力的影响,实验时试件两端必须保证平行,并与轴线垂直,使试件受轴向压力。另外。端面加工应有较高的光洁度。 低碳钢压缩时也会发生屈服,但并不象拉伸那样有明显的屈服阶段。因此,在测定Ps时要特别注意观察。在缓慢均匀加载下,测力指针等速转动,当材料发生屈服时,测力指针转动将减慢,甚至倒退。这时对应的载荷即为屈服载荷Ps。屈服之后加载到试件产生明显变形即停止加载。这是因为低碳钢受压时变形较大而不破裂,因此愈压愈扁。横截面增大时,其实际应力不随外载荷增加而增加,故不可能得到最大载荷P b,因此也得不到强度极限b,所以在实验中是以变形来控制加载的。 铸铁试件压缩时,在达到最大载荷P b前出现较明显的变形然后破裂,此时试验机测力指针迅速倒退,从动针读取最大载荷Pb值,铸铁试件最后略呈故形,断裂面与试件轴线大约呈450。 五、实验步骤 (1)试验机准备。根据估算的最大载荷,选择合适的示力度盘(量程)按相应的操

相关主题
相关文档
最新文档