铁测定方法全铁的测定方法有些

铁测定方法全铁的测定方法有些
铁测定方法全铁的测定方法有些

铁测定方法全铁的测定方法有些

溶解性铁

地壳中含铁量(Fe)约为5.6%,分布很广,但天然水体中含量并不高。

实际水样中铁的存在形式是多种多样,可以在真溶液中以简单的水合离子和复杂的无机、有机络合物形式存在。也可以存在于胶体,悬浮物和颗粒物中,可能是二价,也可能是三价的。而且水样暴露于空气中,二价铁易被迅速氧化为三价,样品pH>3.5时,易导致高价铁的水解沉淀。样品在保存和运输过程中,水中细菌的繁殖也会改变铁的存在形态。样品的不稳定性和不均匀性对分析结果影响颇大,因此必须仔细进行样品的预处理。

铁及其化合物均为低毒性和微毒性,含铁量高的水往往带有黄色,有铁腥味。如作为印染、纺织、造纸等工业用水时,则会在产品上形成黄斑,影响质量,因此这些工业用水的铁含量必须在0.1mg/L以下。水中铁的污染主要是选矿、冶炼、炼铁、机械加工、工业电镀、酸洗废水等。 1.方法的选择

原子吸收法操作简单、快速、结果的精密度、准确度好,适用于环境水样和废水样的分析;邻菲啰啉光度法灵敏、可靠,适用于清洁

环境水样和轻度污染水的分析;污染严重,含铁量高的废水,可用EDTA络合滴定法。避免高倍数稀释操作引起的误差。

2.水样的保存与处理

测总铁,在采样后立刻用盐酸酸化至pH1保存;测过滤性铁,应在采样现场经0.45?m的滤膜过滤,滤液用盐酸酸化至pH1;测亚铁的样品,最好在现场显色测定,或按方法(二)操作步骤处理。

(一)火焰原子吸收分光光度法

GB11911--89 概述 1.方法原理

在空气—乙炔火焰中,铁的化合物易于原子化,可于波长248.3nm 处测量铁基态原子对铁空心阴极灯特征辐射的吸收进行定量。 2.干扰及消除

影响铁原子吸收法准确度的主要干扰是化学干扰。当硅的浓度大于20 mg/L时,对铁的测定产生负干扰;这些干扰的程度随着硅浓度的增加而增加。如试样中存在200 mg/L氯化钙时,上述干扰可以消除。一般来说,铁的火焰原子吸收法的基体干扰不太严重,由分子吸收或光散射造成的背景吸收也可忽略。但对于含盐量高的工业废水,

则应注意基体干扰和背景校正。此外,铁的光谱线较复杂,例如,在铁线248.3 nm附近还有248.8 nm线;为克服光谱干扰,应选则最小的狭缝或光谱带。

3.方法的适用范围

本法的铁检出浓度分别是0.03 mg/L,测定上限分别为5.0 mg/L。本法适用于地表水、地下水及化工、冶金、轻工、机械等工业废水中铁的测定。仪器

(1)原子吸收分光光度计及稳压电源。(2)铁空心阴极灯。(3)乙炔钢瓶或乙炔发生器。

(4)空气压缩机,应备有除水、除尘装置。

(5)仪器工作条件:不同型号仪器的最佳测试条件不同,可由各实

验室自己选择,按下表参考

原子吸收测定铁的条件

试剂

(1)铁标准贮备液:准确称取光谱纯金属铁1.000g,溶入60ml 1+1

的硝酸中,加少量硝酸氧化后,用去离子水准确稀释至1000 ml,此溶液含铁为1.00 mg/ ml。

(2)锰标准贮备液:准确称取1.000g光谱纯金属锰(称量前用稀

硫酸洗去表面氧化物,再用离子水洗去酸,烘干。在干燥器中冷

却后尽快称取),溶解于10ml 1+1硝酸。当锰完全溶解后,用1%硝酸稀释至1000 ml,此溶液每毫升含锰1.00 mg。

(3)铁锰混合标准使用液:分别准确移取铁和锰贮备液50.00 ml

和25.00ml,置1000ml容量瓶中,用1%盐酸稀释至标线,摇匀。此液每毫升含铁50.0?g,锰25.0?g。步骤 1.样品预处理

对于没有杂质堵塞仪器进样管的清澈水样,可直接喷入进行测定。如果总量或含有机质较高的水样时,必须进行消解处理。处理时先将

水样摇匀,分别适量水样置于烧杯中。每100 ml水样加5 ml硝酸,置于电热板上在近沸状态下将样品蒸干至近干。冷却后,重复上述操作一次。以1+1盐酸3 ml溶解残渣,用1%盐酸淋洗杯壁,用快速定量滤纸滤入50 ml容量瓶中,以1%盐酸稀释至标线。

每分析一批样品,平行测定两个空白样。 2.校准曲线绘制

分别取铁锰混合标准液0、1.00、2.00、3.00、4.00、5.00 ml于50 ml容量瓶中,用1%盐酸稀释至刻度,摇匀。用1%盐酸调零点后,在选定的条件下测定其相应的吸光度,经空白校正后绘制浓度—吸光度校准曲线。 3.试样的测定

在测定标准系列溶液的同时,测定试样及空白样的吸光度。由试样吸光度减去空白样吸光度,从校准曲线上求得试样中铁的含量。

计算

铁(Fe,mg/L)=

式中,m—由校准曲线查得铁量(?g); V—水样体积(ml)。精密度和准确度

用1%盐酸配制含铁2.00 mg/L的统一样品,经13个试验室分析,得铁室内相对标准偏差为0.86%;室间相对标准偏差为2.64%;相对

误差为+0.18%;加标回收率为100.4±2.1%。

全国12个省13个市得实验室对本地区42种不同类型的实际水样进行6次平行测定和加标回收率实验,获得的精密度和准确度均良好。以下表列出了部分结果。

部分水样铁的分析结果(mg/L)

m V

注意事项

(1)各种型号的仪器,测定条件不尽相同,因此,应根据仪器

使用

说明书选择合适条件。

(2)当样品的无机盐含量高时,采用氘灯、塞曼效应扣除背景,无

此条件时,也可采用邻近吸收线法扣除背景吸收。在测定浓度允许条件下,也可采用稀释方法以减少背景吸收。

(3)硫酸浓度较高时易产生分子吸收,以采用盐酸或硝酸介质为好。

(二)邻菲啰啉分光光度法

概述 1.方法原理

亚铁在pH3~9之间的溶液种与邻菲啰啉生成稳定的橙红色络合物(C12H8N2)3Fe3﹣。

此络合物在避光时可稳定。测量波长为510nm,其摩尔吸光系数为1.1?104。若用还原剂(如盐酸羟胺)将高铁离子还原,则本法可测高铁离子及总铁含量。 2.干扰及消除

强氧化剂、氰化物、亚硝酸盐、焦磷酸盐、偏聚磷酸盐及某些重金属离子会干扰测定。经过加酸煮沸可将氰化物及亚硝酸盐除去,并使焦磷酸、偏聚磷酸盐转化为正磷酸盐以减轻干扰。加入盐酸羟胺则可消除强氧化剂的影响。

土壤有效性铜-锌-铁-锰简易测定方法

土壤有效性铜\锌\铁\锰简易测定方法 植物所需微量元素包括铜、锌、铁、锰、硼、钼等,其主要生理作用有参与体内碳氮代谢、与叶绿素合成及稳定性有关、参与体内氧化还原反应、促进生物固氮、促进生殖器官的发育等。总之,尽管作物对微量元素的需求很少,但其对植物的生理作用却是必不可少的。目前,全国缺乏微量元素的农田面积逐年增加,但微肥的重要性还未引起农民的足够重视。因此,推广测土配方施肥,大力宣传植物所需微量元素的重要性以及测定土壤微量元素的含量迫在眉睫。现就土壤微量元素铜、锌、铁、锰简易测定方法介绍如下: 1基本方法 土壤样品经DTPA-TEA-CaCl2提取后,用原子光谱法直接测定溶液中的锌、锌、铁、锰。 2主要仪器、设备 ①原子吸收分光光度计;②酸度计;③往复式振荡机;④带盖塑料瓶。 3试剂 3.1DTPA浸提剂其成分为0.005mol/L DTPA、0.01mol/ L CaCl2和0.10mol /L TEA。称取1.967g二乙酸胺五乙酸(DTPA),溶于1 4.92g三乙醇胺(TEA)和少量水中;再将 1.47g氯化钙(CaCl2.H2O)溶于水后,一并转入1L容量瓶中,加水至约950mL;在酸度计上用6mol/ L盐酸溶液调节pH至7.30,用水定容,贮于塑料瓶中。 3.2标准贮备液 3.2.1铜标准贮备液称取1.00g金属铜(优级纯),溶解于20mL 1:1硝酸溶液,移入1L容量瓶中,用水定容,即为1 000ug /mL铜标准贮备液。分取此液5mL于100mL容量瓶中,用水定容,即为含50 ug/ mL铜标准溶液。 3.2.2锌标准贮备液称取1.00g金属锌(优级纯),用40mL 1:2盐酸溶液溶解,移入1L容量瓶中,用水定容,即为1 000ug/ mL锌标准贮备液。分取此液5mL于100mL容量瓶中,用水定容,即为含50 ug/ mL锌标准溶液。 3.2.3铁标准贮备液称取1.00g金属铁(优级纯),溶解于40mL 1:2盐酸溶液中(加热溶解),移入1L容量瓶中,用水定容,即为1 000ug/ mL铁标准贮备液。分取此液5mL于100mL容量瓶中,用水定容,即为含50 ug/ mL铁标准溶液。 3.2.4锰标准贮备液称取1.00g金属锰(优级纯),用20mL 1:1硝酸溶液溶解,移

水中铁的测定

水中铁的测定-1 2008-10-10 11:40 邻菲罗啉分光光度法 1.方法原理 亚铁在PH3-9之间的溶液中与邻菲罗啉生成稳定的橙红色络合物 〖(C 12H 8 N 2 ) 3 Fe〗,其反 应式为: 此络合物在避光时可稳定半年。测量波长为510nm,其摩尔吸光系数为1.1x10 4 .若用还原 (如盐酸羟胺)将高铁离子还原,则本法可测定高铁离子及总铁含量. 2.干扰及消除 强氧化剂,氰化物,亚硝酸盐,焦磷酸盐,偏聚磷酸盐及某些重金属离子会干扰测定,经过加酸 煮沸,可将氰化物及亚硝酸盐除去,并使焦磷酸,偏聚磷酸盐转化为正磷酸盐以减轻干扰,加入盐酸 羟胺则可消除强氧化剂的影响. 邻菲罗啉能与某些金属离子形成有色络合物而干扰测定.但在乙酸-乙酸胺的缓冲溶液中,不 大于铁浓度10倍的铜,锌,钴,铬及小于2mg/L的镍,不干扰测定,当浓度再高时,可加入过量显色剂 予以消除.汞,隔,银等能与邻沸罗啉形成沉淀,若浓度低时,可加过量邻沸罗啉来消除;浓度高时,可 将沉淀过滤除去.水样有底色,可用不加邻菲罗啉的试液作参比,对水样的底色进行校正. 3.方法适用范围 此法适用于一般环境水和废水中铁的监测,最低检出浓度为0.03mg/L,测定上限为5.00mg/L 的水样,可适当稀释后再按本方法进行测定. 4.仪器

分光光度计,10mm比色皿. 5.试剂 5.1铁标准储备液:准确称取0.7020g硫酸亚铁铵[(NH 4) 2 Fe(SO 4 ) 2 .6H 2 O],溶于1+1 硫酸50mL中,转 移至1000mL容量瓶中,加水至标线,摇匀.此溶液每毫升含铁100?g. 5.2铁标准使用液:准确移取标准储备液25.00mL置100mL容量瓶中,加水至标线,摇匀.此溶液每 毫升含铁25.0?g. 5.31+3盐酸 5.4 10%(m/v)盐酸羟胺溶液. 5.5缓冲溶液:40g乙酸铵加50mL冰乙酸用水稀释至100mL. 5.60.5%(m/v)邻菲罗啉(1,10-phennthroline)溶液,加数滴盐酸帮助溶解. 6.步骤 6.1标准曲线的绘制 依次移取铁标准使用液0,2.00,4.00,6.00,8.00,10.0mL置150mL锥形瓶中,加入蒸馏水至50.0 mL,再加1+3盐酸1mL,10%(m/v)盐酸羟胺1mL,玻璃珠1~2粒.然后,加热煮沸至溶液剩15mL左右, 冷却至室温,定量转移至50mL具塞刻度管中.加一小片刚果红试纸,滴加饱和乙酸钠溶液至试纸刚 刚变红,加入5mL缓冲溶液,0.5%(m/v)邻菲罗啉溶液2mL,加水至标线,摇匀.显色15min后,用10mm 比色皿,以水为参比,在510nm处测量吸光度,由经过空白校正的吸光度对铁的微克数作图. 6.2总铁的测定 采样后立即将样品用盐酸酸化至PH为1,分析时取50.0mL混匀水样置150mL锥形瓶中,加

铁含量的测定方法

铁含量的测定方法 铁含量的测定采用邻菲啰啉比色法。 一、原理 在一定酸度条件下,试液中亚铁离子(Fe2+)与1,10-邻菲啰啉生成红色配合物,于波长为506nm处,测定其吸光度,即可计算出铁含量。 二、试剂和仪器 柠檬酸三钠水溶液,150g/L;盐酸羟胺溶液,50 g/L;盐酸溶液,3mol/L;氨水溶液,2.5%;1,1 0-邻菲啰啉溶液,2.5 g/L:称量2.5g1, 10-邻菲啰啉溶于80℃的约l00ml水中,加lml浓盐酸,冷却后加水稀释至1000ml,储于阴凉处备用; 醋酸-醋酸钠缓冲溶液:称量272g醋酸钠(NaCH3·CO2·3H2O)于约500m1水中,加入冰醋酸240ml,加水稀释至1000ml; Fe2+标准溶液,lmg/ml:称量7.024g硫酸亚铁铵于约500ml水中,加入浓盐酸10ml,移入l000ml 容量瓶中,稀释至刻度; Fe2+标准溶液,20?g/ml:吸取lmg/ml的亚铁标准溶液20ml于1000ml容量瓶中,用水稀释至刻度,混匀,临用前配制。 仪器:分光光度计;1cm比色皿。 三、测定步骤 (一)工作曲线的绘制 量取20?g/ml的亚铁标准溶液0.00m1、2 .50m1、5 .00ml、10.00ml、20.00ml(相当于分别含0、50、100、200、400?g/ Fe2+)分别加入l00ml烧杯中,用水稀释至50ml,加入150g/L柠檬酸三钠溶液5m1,用3mol/L盐酸或2.5%氨水溶液调节溶液pH为2.4~2.6,加入50 g/L盐酸羟胺溶液5ml混匀,加入1,10-邻菲罗琳溶液5m1,加入醋酸-醋酸钠缓冲溶液l0ml,将溶液移入到l00 ml容量瓶中,用水稀释至刻度,混匀放置60min。 用分光光度计在波长506nm处用lcm比色皿,以水为参比溶液测定该标准系列的吸光度,以Fe2+标准溶液浓度(?g/100ml)为横坐标,以其对应吸光度作纵坐标绘制工作曲线。 (二)湿法磷酸中铁含量的测定 吸取1 ml湿法磷酸,用水稀释至100m1,混匀,移取1m1到100m1的烧杯中,用水稀释至50m1,以下操作同工作曲线的绘制,测定其吸光度。 不加试样,在同样条件下进行空白试验。 (三)计算 总铁含量按下式计算 w(Fe)= 式中:m1为从工作曲线上查得被测试液Fe的质量,?g;m0为从工作曲线上查得试剂空白溶液中Fe的质量,?g;m为吸取试样溶液相当于试样的质量,g

铁离子的测定

铁离子的测定 (邻菲啰啉法) 本方法采用邻菲啰啉分子吸收光谱法测定铁含量,本方法适用于含Fe0.02~20mg/L范围工业循环冷却水中铁含量的测定。 1 方法提要 用抗坏血酸将试样中的三价铁离子还原成二价铁离子,在pH2.5~9时,二价铁离子可与邻菲啰啉生成橙红色络合物,在最大吸收波长(510nm)处,用分光光度计测其吸光度。本方法采用pH4.5。 2 试剂和材料 2.1 硫酸; 2.2 硫酸铁铵[NH4Fe(SO4)2·12H2O2]; 2.3 硫酸:1+35溶液; 2.4 氨水:1+3溶液; 2.5 乙酸—乙酸钠缓冲溶液(pH=4.5):称取164g乙酸钠,溶于水,加84mL冰乙酸,稀释至1000mL; 2.6 抗坏血酸:20g/L溶液;溶解10.0g抗坏血酸于200mL水中,加入0.2g乙二胺四乙酸二钠(EDTA)及8.0mL甲酸,用水稀释至500mL,混匀,贮存于棕色瓶中(有效期一个月); 2.7 邻菲啰啉溶液:2.0g/L; 2.8 过硫酸钾溶液:40.0g/L,溶解4.0g过硫酸钾于水中并稀释到100mL,室温下贮存于棕色瓶中,此溶液可稳定放置14d。 2.9 铁标准溶液Ⅰ:1mL含有0.100mgFe,称取0.863g硫酸铁铵,精确至0.001g,置于200mL烧杯中,加入100mL水,10.0mL浓硫酸,溶解后全部转移到1000mL容量瓶中,用水稀释至刻度,摇匀。 2.10 铁标准溶液Ⅱ:1mL含有0.010mgFe,取1mL含有0.100mgFe的铁标准溶液Ⅰ稀释10倍,只限当日使用。 3 仪器和设备 分光光度计:带有厚度为3㎝的吸收池。 4 分析步骤 4.1 工作曲线的绘制 分别取0mL(空白),1.00mL,2.00mL,4.00mL,6.00mL,8.00mL,10.00mL铁标准溶液Ⅱ于7个100mL容量瓶中,加水至约40mL,加0.50mL(1+35)硫酸溶液,调pH 接近2(可投加一小块儿刚果红试纸,试纸变蓝pH即为2.5),加3.0mL抗坏血酸溶液,10.0mL 缓冲溶液,5.0mL邻菲啰啉溶液。用水稀释至刻度,摇匀。室温下放置15min,用分光光度

分光光度法测定水中铁离子含量.

专业项目课程课例 项目十二分光光度法测定水中铁离子含量 一、项目名称:分光光度法测定水中铁离子含量 二、项目背景分析 课程目标:本课程是培养分析化学操作技能和操作方法的一门专业实践课,以定量分析的基本理论为基础,以实验强化理论,以期提高化工工作者的分析操作能力。 功能定位:在定量分析中我们常常用到分光光度分析法,它具有操作简便、快速、准确等优点,在工农业生产和科学研究中具有很大的实用价值。是仪器分析的基础实验,也是一种重要的定量分析方法。分光光度法测定水中铁离子含量的测定项目综合训练了学生分光光度计使用、系列标准溶液配制、标准曲线绘制等多个技能。 学生能力:学生通过相关基础学科的学习已经具备了相应的化学知识和定量分析知识,也具备一定的独立操作和思维能力。 项目实施条件:该项目是仪器分析的基础实验,一般中职学校具备相关的实训实习条件,学生有条件完成相应的实习任务。 三、教学目标 1、了解721可见分光光度计的构造 2、了解分光光度法测定原理 3、掌握721可见分光光度计的操作方法 4、掌握分光光度法测定分析原始记录的设计 5、掌握分光光度法测定分析报告的设计 6、掌握分光光度法测定水中铁离子含量的测定方法 7、掌握分光光度法测定水中铁离子含量的分析原始记录和分析报告的填写 四、工作任务 1

2 五、参考方案 参考方案一 1、邻二氮杂菲-Fe 2+ 吸收曲线的绘制 用吸量管吸取铁标准溶液(20μg/mL )0.00、2.00、4.00mL ,分别放入三个50mL 容量瓶中,加入1mL 10%盐酸羟胺溶液,2mL 0.1%邻二氮杂菲溶液和5mL HAc-NaAc 缓冲溶液,加水稀释至刻度,充分摇匀。放置10min ,用3cm 比色皿,以试剂空白(即在0.0mL 铁标准溶液中加入相同试剂)为参比溶液,在440~560nm 波长范围内,每隔20~40nm 测一次吸光度,在最大吸收波长附近,每隔5~10nm 测一次吸光度。在坐标纸上,以波长λ为横坐标,吸光度A 为纵坐标,绘制A 和λ关系的吸收曲线。从吸收曲线上选择测定Fe 的适宜波长,一般选用最大吸收波长λmax 。 2、标准曲线的制作 用吸量管分别移取铁标准溶液(20μg/mL )0.00、2.00、4.00、6.00、8.00、10.00mL ,分别放入6个50mL 容量瓶中,分别依次加入1.00mL 10%盐酸羟胺溶液,稍摇动;加入2.00mL 0.1%邻二氮杂菲溶液及5.00mL HAc-NaAc 缓冲溶液,加水稀释至刻度,充分摇匀。放置10min ,用1cm 比色皿,以试剂空白(即在0.00mL 铁标准溶液中加入相同试剂)为参比溶液,选择λmax 为测定波长,测量各溶液的吸光度。在坐标纸上,以含铁量为横坐标,吸光度A 为纵坐标,绘制标准曲线。 3、水样中铁含量的测定 取三个50mL 容量瓶,分别加入5.00mL (或10.00mL 铁含量以在标准曲线范围内为合适)未知试样溶液,按实验步骤2的方法显色后,在λmax 波长处,用1cm 比色皿,以试剂空白为参比溶液,平行

全铁含量的测定

全铁含量的测定 (1)三氯化钛还原滴定法 1 方法提要 试样用硫磷混酸溶解,加入盐酸在热沸状态下用氯化亚锡还原大部分三价铁。在冷溶液中以中性红为指示剂,滴加三氯化钛还原剩余三价铁,并稍过量,在二氧化碳气体保护下,用重铬酸钾氧化过量三氯化钛,以二苯胺磺酸钠为指示剂,用重铬酸钾标准溶液滴定到终点。根据消耗的重铬酸钾标准溶液的体积计算试样中全铁百分含量。 2 主要试剂 2.1 硫磷混酸(1+1+1)。 2.2 盐酸(1+5)。 2.3 氟化钾(5%)。 2.4 碳酸氢钠:固体。1.19g/mL)中,加水稀释至100mL。ρ 2.5 氯化亚锡(6%):6g氯化亚锡溶于20mL盐酸(1.42g/mL)。ρ 2.6 硝酸 2.7 中性红指示剂(0.05%)。(1.69g/mL)。ρ 2.8 二苯胺磺酸钠指示剂(0.5%):称取二苯胺磺酸钠0.5g,溶于100mL水中,加2滴磷酸 2.9 三氯化钛(1+19):取三氯化钛溶液15~20%,用盐酸(1+9)稀释至20倍,加少许锌粒,防止氧化。 2.10 重铬酸钾标准溶液:c(k2Cr2O7)=0.03581mol/L。 3 分析步骤 1.42g/mL)1mL,加热溶解,至浓厚白烟从瓶中腾空2~3cm,后取下稍冷,

慢慢加入盐酸(1+5)20mL,加热至沸,滴加氯化亚锡到溶液呈淡黄色,加水50mL,溶解盐类,冷至室温。 取试样0.2000g置于300mL锥形瓶中,加入氟化钾溶液(5%)5mL,将试样湿润摇开,加入硫磷混酸15mL,硝酸(加4~5滴中性红指示剂,此时溶液呈蓝色,滴加三氯化钛(1+19)至溶液为无色,加约1g固体碳酸氢钠,滴加重铬酸钾(可用标准溶液或稍加稀释)至溶液呈稳定蓝色,立即加二苯胺磺酸钠指示剂(0.5%)4滴,用重铬酸钾标准溶液滴定至溶液为紫红色为终点。 4 分析结果的计算 TFe(%)=滴定时消耗重铬酸钾标准溶液的毫升数 5 注 5.1 溶样炉温宜高,冒烟时间不宜长,以防形成难溶盐类。 5.2 试样冒烟完毕取下后,应自然冷却至瓶内无白烟,再慢慢加入盐酸,防止反应剧烈,试液溅出。 5.3 加入盐酸后,煮沸时间不可过长,以防三氯化铁挥发。 5.4 用氯化亚锡还原时不可过量。 6 允许差 全铁量,% 标样允许差% 试样允许差% ≤50±0.14 0.20 >50 ±0.21 0.30

铁离子测定方法

5第十节铁含量的分析 方法一:邻菲罗啉分光光度法 循环水中总铁的变化,反映了系统中腐蚀抑制情况,对正确调整水处理配方有着指导意义。 1 适用范围 本标准适用于工业循环冷却水、锅炉水、蒸汽冷凝液、天然水中总铁、可溶性铁的分析,其测定Fe2+含量的范围在~20mg/L。 2 方法原理 用抗坏血酸将试样中的Fe3+还原为Fe2+,在PH=~9时,Fe2+可与邻菲罗啉生成橙红色络合物,在最大吸收波长510nm处,用分光光度计测其吸光度。 3 试剂 硫酸AR 硫酸铁铵[NH4Fe(SO4)2?2H2O] H2SO4溶液:(1+35) 氨水溶液:(1+3) 乙酸—乙酸钠缓冲溶液(PH=):64克乙酸钠溶于水中,再加136mL36%的乙酸,稀释至1L。抗坏血酸溶液(L):溶解抗坏血酸于200mL水中,加入乙二胺四乙酸二钠盐(EDTA)及甲酸,用水稀释至500mL,贮存于棕色瓶中(有效期一个月)。 邻菲罗啉溶液(L)(用适量无水乙醇溶解后,再用蒸馏水稀释)。 过硫酸钾溶液(L):溶解4g过硫酸钾于水中并稀至100mL,室温下贮存于棕色瓶中,此溶液可稳定放置14天。 铁标准贮备溶液(mL) 称取硫酸铁铵,精确到,置于200mL烧杯中,加入100mL水,浓H2SO4,溶解后全部转移到1000mL容量瓶中,用水稀释至刻度,摇匀。 铁标准工作溶液(mL) 取铁标准贮备溶液稀释10倍,只限当日使用。 4 仪器 VIS—723型分光光度计(510nm),附3cm比色皿。 5 分析步骤 工作曲线的绘制(绘制时键盘操作参考第三章第四节) 分别取0,,,,,,铁标准工作溶液于七个100mL容量瓶中,加水至约40mL,加硫酸溶液,调PH近2,加抗坏血酸,乙酸—乙酸钠缓冲溶液,邻菲罗啉溶液,用水稀释至刻度,摇匀,室温下放置15分钟,用分光光度计于510nm,3cm比色皿,以试剂空白调零测其吸光度。以测得的吸光度为纵坐标,相对应的Fe2+离子含量为横坐标,绘制标准曲线。 试样的测定 总铁的测定 取~50mL试样溶液于100mL锥形瓶中,体积不足50mL的要补水至50mL,加硫酸溶液,加过硫酸钾溶液,置于电炉上缓慢煮沸15分钟,保持体积不低于20mL,取下冷却至室温,用氨水溶液或硫酸溶液调PH近2,然后转移到100mL容量瓶中,加抗坏血酸溶液,乙酸—乙

实验十三土壤和植物中铁的测定

实验十三土壤和植物中 铁的测定 文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

实验十三 土壤和植物中铁的测定 (邻菲罗啉比色法) 植物中铁的测定 一、方法原理 先用盐酸羟胺(或对苯二酚、亚硫酸钠等)将溶液中的Fe 3+还原为Fe 2+,然后在pH2 ~ 9范围内与邻菲罗啉作用生成红色络合物,在0.1~ 6ppm 范围内,含铁量与色深成正比,可比色测定。 反应式: 4Fe 3+ + 2NH 20H → 4Fe 2+ + N 20 + H 20+4H + Fe 2+ + 3C 12H 8N 2 → Fe[C 12H 3N 2]32+ 测定波长为508nm ,该法灵敏度高,稳定性好。 二、实验试剂 1.10%盐酸羟胺:10g 盐酸羟胺(NH 20H ·HCl)溶于100ml 水中,此溶液可稳定几天。 2.0.2%2,4—二硝基酚:0.2g 2,4—二硝基酚溶于100ml 水。 3.1mol/LNaOH: 40g NaOH 溶于1000ml 水中。 4.0.1mol/LHCl :8.3ml .浓HCl 稀释为1000ml 。 5.1%邻菲罗啉:1g 邻菲罗啉(C 12H 8N 2?H 20)溶于100ml 水中;可温热助溶,贮于暗处,如 变色,要重配(也可取1g 溶于100ml 95%乙醇中)。 6. 铁标准溶液:取纯铁粉0.1000g(或优级纯硫酸亚铁铵[Fe(NH 4)2(SO 4)2?6H 20]0.7022g), 溶于20ml 1mol/LHCl ,移入1000ml 容量瓶,水定容,此为含Fe 100ppm 的铁标准溶液。 取10ml 此液,稀释定容为100ml ,此为10ppmFe 标准溶液。 三、实验仪器

实验3水中微量铁的测定

实验三水中微量铁的测定——邻菲啰啉分光光度法 一、实验目的 1.学习选择分光光度法实验条件的方法; 2.掌握分光光度法测定铁的基本原理及方法; 3.掌握分光光度计的使用方法。 二、实验原理 应用可见光分光光度法测定物质含量时,通常将被测物质与显色剂反应,使之生成有色物质,然后测量其吸光度,进而求得被测物质的含量。因此,显色反应的完全程度和吸光度的物理测量条件都影响到测定结果的准确性。 显色反应的完全程度取决于介质的酸度、显色剂的用量、反应的温度和时间等因素。在建立分析方法时,需要通过实验确定最佳反应条件。为此,可改变其中一个因素(例如介质的pH值),暂时固定其他因素,显色后测量相应溶液的吸光度,通过吸光度-pH曲线确定显色反应的适宜酸度范围。其它几个影响因素的适宜值,也可按这一方式分别确定。此外,加入试剂的顺序,离子价态,干扰物质的影响等都应加以研究,以便拟定合适的分析步骤,使实验快捷、准确。本实验通过对Fe2+-邻菲啰啉反应的几个基本条件实验,学习分光光度法测定条件的选择。 邻菲啰啉法是测定微量铁的一种常用的方法。一般情况下,铁以Fe3+状态存在时,盐酸羟胺可将其还原为Fe2+,反应如下: 2 Fe3++2 NH2OH·HCl═2 Fe2+ +N2 ↑+4 H+ +2 H2O+2 Cl- 在pH=2 9的溶液中,试剂与Fe2+生成稳定的1:3橘红色配合物,其lgK稳=21.3,在510 nm有最大吸收,ε=1.1×104 L·cm-1 mol-1。测定时,控制溶液酸度在pH=5左右为宜。酸度高时反应较慢;酸度太低,离子则容易水解,影响显色。 Cu2+、Co2+、Ni2+、Cd2+、Hg2+、Mn2+、Zn2+等离子也能与邻菲啰啉生成稳定配合物,这些离子含量较低时不影响测定,含量较高时可用EDTA掩蔽或经分离除去。 本实验通过绘制吸收曲线选择最大吸收波长或选择适宜的测量波长;通过变动某实验条件,固定其余条件,确定测定最佳酸度和显色剂用量。 三、仪器和试剂 仪器:Unico 2100型分光光度计(配1 cm比色皿)、酸度计(或精密pH试纸)、容量瓶、刻度吸量管等。 试剂 1. 铁标准溶液:100 μg·mL-1(准确称取0.2159 g分析纯硫酸铁铵(NH4Fe (SO4)2·12H2O)于小烧杯中,加水溶解,加入6 mol·L-1 HCl溶液5 mL,定量转移至250 mL容量瓶中,用水定容后摇匀,所得溶液每毫升含铁0.100 mg) 2. 邻菲啰啉溶液:0.2%(称取1g邻菲啰啉,先用5~10 mL 95%乙醇溶解,再用蒸馏水稀释到500 mL,临用前新配)

铁矿石中全铁含量测定方法分析

铁矿石中全铁含量测定方法分析 铁矿石全铁的测定,是指样品中铁的全量而言,包括铁的复杂硅酸盐在内。铁矿石的分解,在实际应用中,根据矿石的特性、分析项目的要求及干扰元素的分离等情况,通常选用酸分解和碱熔融的方法。样品分解时一般用过氧化钠熔融是最恰当的方法。对于不含复杂硅酸盐的铁矿也可以用磷酸溶矿法或盐酸法。 重铬酸钾容量法 在酸性溶液中,用氯化亚锡将三价铁还原为二价铁,加入氯化高汞以除去过量的氯化亚锡,以二苯胺磺酸钠为指示剂,用重铬酸钾标准溶液滴定至紫色。反应式为2Fe3+ + Sn 2+ + 6Cl―—→ 2Fe2+ + SnCl62― Sn2+ + 4Cl― + 2HgCl2—→ SnCl62― + Hg2Cl2↓ 6Fe2+ + Cr2O72- + 14H+—→ 6Fe3+ + 2Cr3+ + 2Cr3+ + 7H2O 此法的优点是:过量的氯化亚锡容易除去,重铬酸钾溶液比较稳定,滴定终点的变化明显,受温度的影响(30℃以下)较小,测定的结果比较准确。 《矿石及有色金属分析手册》P94 溶样方法: 1、三酸分解试样 2、过氧化钠分解试样 3、硫—磷混酸溶样 4、盐酸溶样 硫—磷混酸溶样 分析步骤:准确称取0.2g试样于250mL锥形瓶中,用少许水润湿,摇匀。加入10mL(2+3)硫磷混合酸及0.5g氟化钠,摇匀。在高温电炉上加热溶解3~5min,取下冷却,加入15mL 盐酸,低温加热至近沸并维持3~5min,溶液变澄清,取下趁热滴加二氯化锡溶液至铁(Ⅲ)离子的黄色消失,并过量1~2滴,用水冲洗瓶壁。在水槽中冷却至室温后,加入10mL二氯化汞饱和溶液,摇动后放置2~3 min,加水至120mL左右,冷却后加入5滴5g/L二苯胺磺酸钠指示剂,用重铬酸钾标准溶液滴定至紫色为终点。与试样分析同时进行空白试验。 注意: 1、溶样时需要用高温电炉,并不断地摇动锥形瓶以加速分解,否则在瓶底将析出焦磷酸盐或偏磷酸盐,使结果不稳定。 2、熔矿温度要严格控制。通常铁矿在250~300℃加热3~5min即可分解。温度过低,样品不易分解;温度过高,时间太长,磷酸会转化为难溶的焦磷酸盐,在350℃以上凝成硬块,影响滴定终点辨别,并使分析结果偏低。 3、本法适用于不含复杂硅酸盐的铁矿分析。磷酸的溶解力很强,对于大部分矿物都能分解,只有以下矿物不易分解:辰砂、辉钼矿、锡石、黄晶、锆英石、绿柱石以及复杂硅酸盐矿物。 过氧化钠分解试样 分析步骤:准确称取0.2g试样,置于30mL银坩埚中,加入3g过氧化钠,混匀,再加1g 过氧化钠覆盖。放入已经升温至650~700℃的马弗炉中,熔融5 min,取出冷却。将坩埚放入300mL烧杯中,加水20mL,浸取。待剧烈作用停止后,加盐酸15~20mL,同时搅拌,使溶块溶解,然后用5%盐酸洗净坩埚。在电炉上继续加热至近沸并维持约10min。取下趁热滴加二氯化锡溶液至铁(Ⅲ)离子的黄色消失,并过量1~2滴,用水冲洗杯壁。在水槽中冷却至室温后,加入10mL二氯化汞饱和溶液,摇动后放置2~3min,加水至120mL左右,

总铁离子的测定(精)

总铁离子的测定 (邻菲罗啉分光光度法) 本方法适用于循环冷却水和天然水中总铁离子的测定,其中含量小于1mg/L。 1、原理 亚铁离子在pH值3-9的条件下,与邻菲罗琳反应,生成桔红色络合离子,此络合离子在pH值3-4.5时最为稳定。水中三价铁离子用盐酸羟胺还原成亚铁离子,即可测定总铁。 2、试剂 2.1、1+1盐酸溶液。 2.2、1+1氨水。 2.3、刚果红试纸。 2.4、10%盐酸羟胺溶液。 2.5、0.12%邻菲罗琳溶液。 2.6、铁标准溶液的配制 称取0.864g硫酸铁铵溶于水,加2.5mL硫酸,移入1000mL容量瓶中,稀释至刻度。此溶液为1mL含0.1mg铁标准溶液。 吸取上述铁标准溶液10mL,移入100mL容量瓶中用水稀释至刻度,此溶液为1mL含0.01mg铁标准溶液。 3、仪器 3.1、分光光度计 4、分析步骤 4.1标准曲线的绘制 分别取1mL含0.01mg铁标准溶液0、1、2、3、4、5mL于6只50mL 容量瓶中,加水至约25mL,各加1毫米长的刚果红试纸在试纸呈蓝色时,各瓶加1mL10%盐酸羟胺溶液,2mL0.12%邻菲罗琳溶液。混匀后用1+1氨水调节使刚果红试纸呈紫红色,再加1滴氨水,使试纸呈红色,用水稀释至刻度。10分钟后于510nm处,用3cm比色皿,以试剂空白作参比,测其吸光度,以吸光度为纵坐标,铁离子毫克数为横坐标,绘制标准曲线。 4.2水样的测定 取水样50mL于150mL锥形瓶中,放入1毫米长的刚果红试纸,用1+1盐酸溶液调节使水呈酸性,p H<3,刚果红试纸显蓝色。加热煮沸10分钟,冷却后移入50mL容量瓶中,加10%盐酸羟胺溶液1mL,摇匀,1分钟后再加0.12%邻菲罗琳溶液2mL,用1+1氨水调节pH,使刚果红试纸呈紫红色,再加一滴氨水,试纸呈红色后用水稀释至刻度。10分钟后于510nm处,以3cm比色皿,以试剂空白作参比,测其吸光度。 5、分析结果的计算 水样中总铁离子含量X(mg/L),按下式计算:

水中二价铁 三价铁及总铁离子的测定

水中二价铁、三价铁及总铁离子的测定 (邻菲罗啉分光光度法) 本方法适用于循环冷却水和天然水中总铁离子的测定,其中含量小于1mg/L。 1、原理 亚铁离子在pH值3-9的条件下,与邻菲罗琳反应,生成桔红色络合离子,此络合离子在pH值时最为稳定。水中三价铁离子用盐酸羟胺还原成亚铁离子,即可测定总铁。 2、试剂 、HAc-NaAc缓冲溶液(pH≈):称取136g醋酸钠,加水使之溶解,在其中加入120 mL冰醋酸,加水稀释至500mL。 、HCl溶液(1+1)。 、盐酸羟胺溶液(10%):新鲜配制。 、邻二氮菲溶液(%):新鲜配制 、铁标准溶液的配制 铁标准储备液:准确称取硫酸亚铁铵(NH4)2Fe(SO4)],溶于1+1硫酸50mL中,转移至1000mL容量瓶中,加水至标线,摇匀.此溶液每毫升含铁. 吸取上述铁标准溶液10mL,移入100mL容量瓶中用水稀释至刻度,此溶液为1mL含铁标准溶液。 3、仪器 、分光光度计 4、分析步骤 标准曲线的绘制 分别取1mL含铁标准溶液0、2、4、6、8、10mL于6只50mL比色管中,加水至约25mL分别依次加入1mL 10%盐酸羟胺溶液,稍摇动;加入%邻二氮菲溶液及5mL HAc-NaAc缓冲溶液,加水稀释至刻度,充分摇匀。放置10min 后于510nm处,用比色皿,以试剂空白作参比,测其吸光度,以吸光度为纵坐标,铁离子毫克数为横坐标,绘制标准曲线。 水样的测定 取水样50mL于150mL锥形瓶中,用盐酸调节使水呈酸性,p H<3,刚果红试纸显蓝色。加热煮沸10分钟,冷却后移入50mL比色管中,加10%盐酸羟胺溶液1mL(测二价铁时不加),摇匀,1分钟后再加%邻菲罗琳溶液2mL,及5mL HAc-NaAc缓冲溶液后用水稀释至刻度。10分钟后于510nm处,以试剂空白作参比,测其吸光度。 5、分析结果的计算 水样中总铁离子含量X(mg/L),按下式计算:

FHZDZTR0153土壤非晶质氧化铁的测定光度法

FHZDZTR0153 土壤 非晶质氧化铁的测定 光度法 F-HZ-DZ-TR-0153 土壤—非晶质氧化铁的测定—光度法 1 范围 本方法适用于土壤非晶质氧化铁的测定。 2 原理 非晶质氧化物是指不产生X射线衍射谱的胶体氧化物。非晶质氧化铁中活性较高的一部分,又称活性铁,具有很大的表面积,对土壤的各项理化性质尤其是对阴、阳离子的专性吸附和稳定土壤结构起着十分重要的作用。非晶质氧化铁与游离氧化铁的比值称为氧化铁的活化度,(1-氧化铁活化度)表示老化程度,可以作为鉴别灰化土或土壤发生特征的指标,还能反映某些成土环境对土壤产生的影响。因此非晶质氧化铁对于了解土壤的基本理化性状及成土条件和环境极为有用。非晶质氧化铁广泛采用酸性草酸铵溶液提取法,此法具有较好的选择性,利用酸性草酸铵溶液中的草酸根的络合能力,将非晶质氧化铁中的铁络合成水溶性的草酸铁络合物进入提取液,再以邻啡啰啉光度法测定非晶质氧化铁。 3 试剂 3.1 草酸铵缓冲溶液:0.2mo1/L,pH3.0~pH3.2,称取62.1g草酸铵和31.5g草酸,溶于2500mL水中,此时溶液pH3.2左右,必要时用稀氢氧化铵溶液或稀草酸溶液调节。 3.2 盐酸羟胺溶液:称取10g盐酸羟胺,溶于水,再加水稀释至100mL。 3.3 邻啡啰啉溶液:称取0.1g邻啡啰啉(C 12H 8 N 2 ·H 2 O),溶于100mL水中,如不溶可少许加 热。 3.4 乙酸钠溶:称取10g乙酸钠,溶于100mL水中。 3.5 铁标准溶液:称取纯铁丝(先用稀盐酸洗去表面氧化物)或纯金属铁粉0.1000g(精确至0.0001g)置于250mL烧杯中,加入20mL盐酸(1+1),加热溶解后,冷却,移入1000mL容量瓶中,再加水稀释至刻度,摇匀。此溶液1mL含100μg铁。 4 仪器 4.1 振荡机,设有恒温装置。 4.2 离心机,最大转速5000r/min,附100mL离心管。 4.3 分光光度计。 4.4 锥形瓶,250mL。 4.5 容量瓶,50mL。 5 操作步骤 5.1 称取2.0000g(精确至0.0001g)通过0.25mm筛孔的风干土样置于250mL锥形瓶中,将锥形瓶装入里红外黑的双层布袋中,加入100.00mL草酸铵缓冲溶液,加塞,包扎好袋口,遮光防止光化学效应。将锥形瓶置于振荡机上振荡2h(保持恒温25℃).振荡后立即倾入离心管离心分离(2000r/min~3000r/min),将澄清液立即倾入另一250mL锥形瓶中,加塞备用。同时作空白试验。 5.2 吸取5mL提取液置于50mL容量瓶中,以少许水冲洗瓶颈,加入1mL盐酸羟胺溶液,摇匀,放置数分钟使高铁全部还原为亚铁。再加入5mL乙酸钠溶液使溶液pH调节至3~6,然后加入5mL邻啡啰啉溶液,摇匀,放置1.5h(室温20℃)使其充分显色。再加水稀释至刻度,摇匀。在分光光度计上,于520nm波长处,用1cm吸收皿测定吸光度,从工作曲线上查得相应的铁量。

自来水水中铁含量的测定方法

自来水水中铁含量的测定方法 2010-05-17 09:39 1. 水中铁含量的测定方法: 〔实验原理〕常以总铁量(mg/L)来表示水中铁的含量。测定时可以用硫氰酸钾比色法。 Fe3++3SCN-=Fe(SCN)3(红色) 〔实验操作〕 1.准备有关试剂(1)配制硫酸铁铵标准液称取0.8634 g分析纯的NH4Fe(SO4)2·12H2O溶于盛在锥形瓶中的50 mL蒸馏水中,加入20 mL 98%的浓硫酸,振荡混匀后加热,片刻后逐滴加入0.2 mol/L的KMnO4溶液,每加1滴都充分振荡混匀,直至溶液呈微红色为止。将溶液注入l 000 mL的容量瓶,加入蒸馏水稀释至l 000 mL。此溶液含铁量为0.1 mg/mL。(2)配制硫氰酸钾溶液称取50 g分析纯的硫氰酸钾晶体,溶于50 mL蒸馏水中,过滤后备用。(3)配制硝酸溶液取密度为1.42 g/cm3的化学纯的硝酸191 mL慢慢加入200 mL 蒸馏水中,边加边搅拌,然后用容量瓶稀释至500 mL。 2.配制标准比色液取六支同规格的50 mL比色管,分别加入0.1 mL、0.2 mL、0.5 mL、1.0 mL、2.0 mL、4.0 mL硫酸铁铵标准液,加蒸馏水稀释至40 mL后再加5 mL硝酸溶液和1滴2 mol/L KMnO4溶液,稀释至50 mL,最后加入l mL硫氰酸钾溶液混匀,放在比色架上作比色用。 3.测定水样的含铁总量取水样40 mL装入洁净的锥形瓶中,加入5 mL硝酸溶液并加热煮沸数分钟。冷却后倾入与标准比色液所用相同规格的比色管中,用蒸馏水稀释至50 mL处,最后加入1 mL硫氰酸钾溶液,混匀后与上列比色管比色,得出结果后用下式进行计算并得到结论。式中“相当的硫酸铁铵标准液量”指的是配制标准比色液时所用的硫酸铁铵标准液的体积。 2, 铁离子测定仪 https://www.360docs.net/doc/5f3485430.html,/ShowProduct.asp?ProductID=158 技术指标 测量范围 0.00to5.00mg/LFe 0to400μg/LFe 解析度 0.01mg/L 1μg/L 0.01mg/L 精度读数的±2%±0.04mg/L 读数的±8%±10μg/L 波长/光源 470nm硅光源 555nm硅光源 标准配置主机、HI93721-01试剂、HI731313玻璃比色皿两个、9V电池 主机、HI93746-01试剂、HI731313玻璃比色皿两个、9V电池 测量方法采用EPA推荐的方法中用于天然水和处理水的315B法,铁和试剂反应使

铁测定方法

溶解性铁 地壳中含铁量(Fe)约为5.6%,分布很广,但天然水体中含量并不高。 实际水样中铁的存在形式是多种多样,可以在真溶液中以简单的水合离子和复杂的无机、有机络合物形式存在。也可以存在于胶体,悬浮物和颗粒物中,可能是二价,也可能是三价的。而且水样暴露于空气中,二价铁易被迅速氧化为三价,样品pH>3.5时,易导致高价铁的水解沉淀。样品在保存和运输过程中,水中细菌的繁殖也会改变铁的存在形态。样品的不稳定性和不均匀性对分析结果影响颇大,因此必须仔细进行样品的预处理。 铁及其化合物均为低毒性和微毒性,含铁量高的水往往带有黄色,有铁腥味。如作为印染、纺织、造纸等工业用水时,则会在产品上形成黄斑,影响质量,因此这些工业用水的铁含量必须在0.1mg/L以下。水中铁的污染来源主要是选矿、冶炼、炼铁、机械加工、工业电镀、酸洗废水等。 1.方法的选择 原子吸收法操作简单、快速、结果的精密度、准确度好,适用于环境水样和废水样的分析;邻菲啰啉光度法灵敏、可靠,适用于清洁环境水样和轻度污染水的分析;污染严重,含铁量高的废水,可用EDTA络合滴定法。避免高倍数稀释操作引起的误差。 2.水样的保存与处理 测总铁,在采样后立刻用盐酸酸化至pH1保存;测过滤性铁,应在采样现场经0.45μm 的滤膜过滤,滤液用盐酸酸化至pH1;测亚铁的样品,最好在现场显色测定,或按方法(二)操作步骤处理。 (一)火焰原子吸收分光光度法 GB11911--89 概述 1.方法原理 在空气—乙炔火焰中,铁的化合物易于原子化,可于波长248.3nm处测量铁基态原子对铁空心阴极灯特征辐射的吸收进行定量。 2.干扰及消除 影响铁原子吸收法准确度的主要干扰是化学干扰。当硅的浓度大于20 mg/L时,对铁的测定产生负干扰;这些干扰的程度随着硅浓度的增加而增加。如试样中存在200 mg/L氯化钙时,上述干扰可以消除。一般来说,铁的火焰原子吸收法的基体干扰不太严重,由分子吸收或光散射造成的背景吸收也可忽略。但对于含盐量高的工业废水,则应注意基体干扰和背景校正。此外,铁的光谱线较复杂,例如,在铁线248.3 nm附近还有248.8 nm线;为克服光谱干扰,应选则最小的狭缝或光谱带。 3.方法的适用范围 本法的铁检出浓度分别是0.03 mg/L,测定上限分别为5.0 mg/L。本法适用于地表水、地下水及化工、冶金、轻工、机械等工业废水中铁的测定。

液体中铁离子的测定方法

吉林高琦聚酰亚胺材料有限公司 企业标准 JILIN HIPOLYKING-ZL-09-2010 液体中铁离子含量的测定 本标准适用于液体中的微量总铁离子含量的测定。 本标准由吉林高琦聚酰亚胺材料有限公司质量部张鑫编制起草; 审核人:批准人: 编制日期:2010-9-23

液体中铁离子含量的测定方法 1 范围 本标准规定了邻菲啰啉比色法测定水中二价铁离子和三价铁离子的含量。本标准适用于蒸汽凝水中二价铁离子和三价铁离子含量的测定。 2 原理 在酸性条件下,三价铁离子经盐酸羟胺还原成二价铁离子。在一定pH值范围内。二价铁离子与邻菲啰啉生成稳定的橘红色络合物。通过比色测定,求得二价铁离子和三价铁离子的含量。 3 试剂与材料 3.1 除非另有说明,在分析中仅使用确认为分析纯的试剂和蒸馏水或去离子水或相当纯度的水。 3.2 盐酸溶液:用浓盐酸配制成(1+9)溶液。 3.3 盐酸羟胺溶液:称取5g盐酸羟胺溶于少量水中,稀释至100ml,摇匀。 3.4 邻菲啰啉溶液:称取0.24邻菲啰啉于约 50ml水中,加热溶解,冷却至室温后稀释至100ml,摇匀。 3.5 氨水溶液:用氨水配制成(1+6)溶液。 3.6 乙酸——乙酸钠缓冲溶液(pH= 4.6):称取68.0g无水乙酸钠,溶于约500ml水中,加人 28.8ml相对密度1.05的冰乙酸,用水稀释至1L,摇匀。 3.7 硫酸亚铁铵标准贮备溶液(含二价铁离子量1.0mg/ml):准确称取7.0211g±0.0002g 硫酸亚铁铵[FeSO4(NH4)2 SO4·6H20],溶于约300ml水中,加入5m l相对密度1.84的硫酸,转人1L容量瓶中,用水稀释至刻度,摇匀。 3.8 硫酸亚铁铵标准溶液(含二价铁离子量10μg/ml):准确吸取硫酸亚铁铵标准贮备液(3.7)10.0ml于1L容量瓶中,用水稀释至刻度,摇匀。 3.9 刚果红试纸。 4 仪器 4.1 分析天平: 感量0.1mg 4.2 分光光度计: 波长准确度士3nm 5 测定步骤 5.1 工作曲线的绘制 5.1.1 二价铁离子标准工作溶液 分别准确吸取硫酸亚铁铵标准溶液(3.8) 0ml ,2.0ml ,4.0m l ,10.0ml,16.0ml,20.0ml,30.0m1,40.0ml于100ml容量瓶中。 5.1.2 依次加入2.0ml盐酸溶液(3.2),5.0ml邻菲啰啉溶液(3.4),再放入一小块刚果红试纸(3.9)于溶液(5.1.1)中,用氨水溶液(3.5)调至试纸刚变成红色,加入 5.0ml缓冲溶液(3.6),用水稀释至刻度,摇匀。放置30min后,在分光光度计上,用1cm比色皿,以试剂空白作参比,于波长510nm处测定其吸光度。 5.1.3 以二价铁离子的质量为横坐标,吸光度为纵坐标,绘制工作曲线。 5.2 试验水样的测定 做两份试验水样的重复测定。 5.2.1 准确吸取50ml试验水样于100ml容量瓶中,按5.1.2 测定吸光度。根据吸光度由工作曲线查得二价铁离子的质量,记为m1。 5.2.2 准确吸取50ml试验水样于100ml容量瓶中,加入2ml盐酸羟胺溶液(3.3),按5.1.2条测定吸光度。根据吸光度由工作曲线查得二价铁离子的质量,记为m2。

分光光度法测定土壤中的铁

分光光度法测定土壤中的铁 摘要铁元素对于农作物的生长十分重要,植物主要是从土壤中吸收氧化态的铁。采用原子吸收分光光度法测定土壤中的铁有着灵敏度高、干扰少、准确、快速等优点,所以被广泛应用。土壤样品经预处理后,采用DTPA-TEA消解法提取土壤中有效态的铁元素,通过火焰原子吸收分光光度法,在最佳测定条件下利用标准曲线法,完成对土壤中有效铁元素的测定。测定方法操作简便,线性范围大,同一浸取液可分别测定土壤中4种植物微量元素。 关键词土壤;铁;原子吸收分光光度法;DTPA-TEA消解法 土壤作为人类生存的根本,现代农业发展的基础,其必须含有充足的水分和养分。土壤中的养分包括氮、磷、钾、碳、氢及多种微量元素,土壤中的微量元素虽然含量不高,但对于农作物的生长不可或缺,如铁。植物从土壤中吸收的铁主要是二价或三价的氧化态铁,其中二价氧化态铁是主要形式[1-2]。铁有以下几个方面的功能:一是某些酶和辅酶的重要组成部分;二是对于叶绿素和叶绿体蛋白的合成有重要的调节作用;三是铁是氧化还原体系中的血红蛋白(细胞色素和细胞色素氧化酶)和铁硫蛋白的组分[3-5]。铁还是固氮酶中铁蛋白和钼铁蛋白的金属成分,在生物固氮中起着非常重要的作用,对于植物的光合作用和呼吸作用均有重要影响。 原子吸收分光光度法是于20世纪50年代中期出现并逐渐发展起来的一种新型仪器分析方法,其原理是基于蒸气相中被测元素的基态原子对其原子共振辐射的吸收强度来确定试样中被测元素含量的一种方法。原子吸收光谱于20世纪50年代中期开始,1953年澳大利亚的瓦尔西(A.Walsh)博士发明锐性光源(空心阴极灯),1954年全球第一台原子吸收在澳大利亚由他指导诞生,在1955年瓦尔西(A. Walsh)博士的著名论文“原子吸收光谱在化学中的应用”奠定了原子吸收光谱法的基础。20世纪50年代末期一些公司先后推出原子吸收光谱商品仪器,发展了Walsh的设计思想。到了60年代中期,原子吸收光谱开始进入迅速发展的时期 土壤中铁元素测定的主要方法是火焰原子吸收分光光度法,其非常适用于土壤提取液的测定,提取液可直接喷雾,灵敏度高,选择性好,抗干扰能力强,元素之间的干扰较小,可不经分离在同一溶液中直接测定多种元素,有良好的稳定性和重现性,仪器操作简便,应用广泛。在测定土壤中金属元素时,微量元素铁锰锌铜不经分离直接一步测定[6]。不同测定方法的区别在于对土壤样品的处理方式不同,处理方式包括微波消解法、硝酸—氢氟酸—高氯酸分解法、王水—氢氟酸—高氯酸分解法,但这些处理方法存在样品处理不完全、存在条件难于控制、结果偏差大、试剂具有一定危险性等缺点,而DTPA提取处理具有样品处理后可以直接用于测定、条件易于控制、能有效地消除干扰、测定结果偏差小、准确度高等优点[7-10]。 1 材料与方法

相关文档
最新文档