7075铝合金研究进展

7075铝合金研究进展
7075铝合金研究进展

7075系铝合金的国内外发展现状及趋势

摘要:Al-Zn-Mg-Cu系铝合金是目前航空航天上的主要受力构件。本文就其热处理方式、强化机制进行概述;对其国内外发展现状进行介绍,并对其今后发展趋势大胆地展望。

关键词:7075 Al-Zn-Mg-Cu系铝合金国内外发展现状

0 前言

铝作为地壳中储量最多的元素之一,约占地壳总质量的8.2wt%,由于铝在大气总比较活泼,其通常以氧化物的形式存在,而在Al2O3中提取Al通常采用的是电解法,提取比较困难,所以铝的发展历史迄今都不超过200年。当年,英国皇家学会为表彰门捷列夫对化学的杰出贡献,不惜重金制作了一只铝杯,赠送给门捷列夫。当前随着航空航天技术飞速发展,铝合金及其复合材料因其比强度较高,优良的抗腐蚀能力,优异的成形性能在航空航天上得到广泛的应用。7075(Al-Zn-Mg-Cu)系超硬铝合金是上个世纪40年代末最早应用于飞机上的铝合金材料,之后,通过添加其它种类合金元素,改变其合金元素的含量以及改变其热处理工艺得到诸多性能优良的航空航天材料。别士强等人在Al-Zn-Mg-Cu系铝合金中添加Ni进行研究,结果表明,0.25%的Ni含量在该合金中除中和铁生成

Al9FeNi 相外, 还生成了强化相Al

7Cu

4

Ni , 在时效过程中起沉淀硬化作用。

1 Al-Zn-Mg-Cu系铝合金

Al-Zn-Mg-Cu系铝合金是目前强度最高的一类铝合金,其强度500~700MPa,

在加上其优良的工艺性能,使得它成为航天航空工业上重要的结构材料。它是在Al—Zn—Mg 系合金的基础上发展起来的,属于可热处理强化铝合金,其屈强比高,比强度也很高,但塑性较低,耐蚀性相对于纯铝较差,疲劳强度也不高,通

常提高其耐蚀性采用包铝的方式。使用温度高于 120℃时会急剧软化,其中固溶

体分解,弥散相急剧长大。

其化学成分主要为:

化学成分/%,不大于其他杂质/%,不大

2 Al-Zn-Mg-Cu 系铝合金的热处理方式

Al-Zn-Mg-Cu 系超硬铝合金通常采用退火、淬火、时效(固溶加时效)的工艺进行热处理,从而得到较高的力学性能。固溶处理是将合金元素充分的融入基体中,固溶温度过高,合金元素溶解会很充分,但通常会使晶粒粗大;固溶温度太低,合金元素溶解不够充分,影响固溶效果。Al-Zn-Mg 系合金固溶处理温度低,而且淬火时的冷却速度对强度的影响小,室温下的时效硬化效果好,所以作为焊接结构材料被广泛使用。然后通过淬火固溶体保留到室温,淬火的效果主要取决于合金元素的溶解度及溶解方式和淬火的冷却速度。但淬火后的铝合金塑性明显下降,内应力较高,开裂倾向较大,所以,通常采用等温淬火来降低此类问题。而且,固溶强化的能力有限,所以淬火后的铝合金不像钢一样具有很高的强度。在后续的工序中,时效处理对铝合金强化起到重要的作用。时效是淬火后的铝合金在随后的低温保温一段时间后,第二相在过饱和的固溶体中析出,使得强度、硬度等性质发生变化的过程。根据时效温度的不同,又可分为低温时效(自然时效)和高温时效(人工时效),在时效的过程中,控制适当的时效温度、时效时间,是相当重要的。变形铝合金对时效拥有相当高的敏感性。铝合金的热处理状态可细分为T1~T10。

状态代号 代号释义

T1 高温成形+自然时效

T2 高温成形+冷加工+自然时效

T3 固溶处理+冷加工自然时效

T4 固溶处理+自然时效

T5 高温成形+人工时效

T6 固溶处理+人工时效

T7 固溶处理+时效

T8 固溶处理+冷加工+人工时效

T9 固溶处理+人工时效+冷加工

T10 高温成形+冷加工+人工时效

3 Al-Zn-Mg-Cu 系铝合金的强化机理

Al-Zn-Mg-Cu 系铝合金中多种微量的合金元素,下面本文将对Zn 、Mg 、Cu 在7075中发挥的作用进行讨论。

在Al-Zn-Mg-Cu 系铝合金中起到主要强化作用的合金元素是Zn 、Mg ,随着Zn 、Mg 含量的增加,强度显著提高,他们能形成T (Al 2Mg 3Zn 3)相、η(MgZn 2)相,这两相的脱溶沉淀效果相当显著,是7075系铝合金主要强化手段;Cu 也有一定的强化效果,Cu 与Al 、Mg 结合形成S(Al 2CuMg)相可起到强化作用,能提高

合金的强度,它的主要作用是提高抗腐蚀性能,提高基体的腐蚀电位。国内外许多研究人员在这一方面做了许多研究。梁维盛等人在Al-8.25Zn-2.4Mg-2.3Cu 合金 硅

Si 铁 Fe 铜 Cu 锰 Mn 镁 Mg 铬 Cr 锌 Zn 钛 Ti 单个 总和 铝 Al 7075 ≤

0.4 ≤0.5 1.2-2.0 ≤0.3 ≤0.3 2.1-2.9

0.18-0.28 5.1-6.1 ≤0.2 0.05 0.15 余量

系铝合金中添加微量Zr、Er对其力学性能进行分析得出,复合加入Zr、Er会对铸锭组织产生细化作用,主要是在凝固结晶中产生结晶形核的核心。而且其抗拉强度,延伸率都得到显著提高。Wei等人在Al-Zn-Mg-Cu系中添加Li元素,结果表明,含量1%的Li可起到促进沉淀相脱溶。别士强等人Al- Z n -M g- C u -R E 超高强铝合金中添加Ni合金元素,研究发现,0.25wt%的Ni加入后,硬度可达到138HB,还可生成Al 7Cu4Ni 的沉淀相。

前面已经叙述到Al-Zn-Mg-Cu系铝合金的超高强度与之时效作用有的密不可分的联系。一般认为该系沉淀相的析出顺序为:α(过饱和固溶体)→GP 区→η”→η′相→η相(MgZn2 )。其中GP区与母相保持共格关系,故界面能较小,而弹性应变能较大;η′为过渡相,与基体保持半共格,六方结构,呈针状,它的沉淀强化效果最佳。之后如果大量生成的η相,共格关系丧失,沉淀效果,称为过时效。时效强化机制可分为三类:内应力强化、切过析出相强化、绕过析出相强化。

4 Al-Zn-Mg-Cu系铝合金的发展现状

由于存在严重的缺口敏感和应力腐蚀等问题,Al-Zn-Mg-Cu系铝合金始终未在航空工业上应用。随着航天航空工业及其它民用产业的迅速发展,对该系合金提出了更高的要求,即在具有更高强度的同时保持较高水平的延伸率、耐腐蚀性能。通常解决这一版法的有效措施是添加微量元素,改变热处理工艺。在国外,90年代开始美国在T77工艺基础上进一步研究,于1993年提出DSA缓饱和时效处理的概念,DSA为连续时效处理工艺,实质是通过对时效温度-时间变化的程序控制,在合金基体沉淀相晶界形成特别的微区原子浓度分布,降低晶界与基体的化学电位差,使合金在改善抗腐蚀性能的同时,其强度达到了更高的水平。国内汝继刚等人也对铝合金的DSA(T6′+DS+T6′)处理进吸了一系列研究,发现DSA处理可明显改善超高强铝合金的强度和抗腐蚀综合性能。俄罗斯有着深厚的军工企业基础,所以铝合金的研究也处于世界领先水平。其生产的B95∏合金与美国的7075一样最先在飞机产业上应用,具有较好的弯曲成形性能和翻边成形能力。

在合金化学成分调控方面,我国之所以大部分铝合金依然需要进口,就是在成分方面控制不当,其中与熔炉熔炼时熔渣、环境、成分均匀性等因素无法正确攻关。近年来,许多学者提出净化处理来提高冶金质量和延伸率,通过电磁铸造可使7075 合金铸锭具有细小的晶粒尺寸和均匀的显微结构,从而提高其铸态及热处理态的力学性能并获得较好的固溶和时效处理效果,进而缩短时效处理时间。Zhang等人采用低频电铸造Al-10Zn-2.3Mg-2.4Cu-Zr超高铝合金铸锭,结果发现,这种铸锭内应力和塑性成形性能均优良于普通铸锭,而且在加热过程中,铸锭内部温度场梯度小,等温线上移。张北江等人改变电磁场频率对铸造7075铝合金微观结构及性能进行分析,结果发现,电磁场频率的改变可显著影响熔体的凝固组织;频率为30Hz时可最有效地抑制宏观偏析,改善铸锭的表面质量.15Hz时能够更有效地细化晶粒。龚澎等人采用半连续铸造方法,生产的铝合金该合金具有优良的淬透性能在400℃左右对铸锭进行预处理,可促进第二

Al3Zr均匀弥散析出,抑制随后热加工过程中的再结晶,从而细化晶粒,并改善合金工艺塑性。

在热处理,尤其在时效方面,研究时效工艺对7050 合金力学性能及其显微组织的影响,开发可应用于大规模生产的时效处理工艺,使国产超高强7050

铝合金的性能达到美国标准,满足我国航空航天工业的需求。所以国内外众多学者已经研究了许多时效工艺,分别有:控制时效温度,停放时间,保温时间,多级时效等方法,而且取得许多力学性能优良的铝合金,并且耐腐蚀等性能均有提高。张宏伟采用二级时效对7075系铝合金进行研究,二级时效为165℃、16h 时,7050合金挤压带板的纵向和横向抗拉强度分别可达600 MPa和550 MPa。宁爱林等人研究发现,回归再时效过程中的再时效可以较短时间回归过程中产生的晶界无析出带及消除合金在预时效,同时还提高了合金晶内组织的弥散度。

5总结及Al-Zn-Mg-Cu系铝合金的发展趋势

7075系铝合金作为当代飞机的受力部件,有着比强度高,、屈强比大、塑韧性强等优点,是今后诸多产业的支柱结构型材。但目前,7075系超高强铝合金产业化问题存在较多不足。再者,此类铝合金耐腐蚀性能差,疲劳强度低等缺点限制其的广泛应用。

以后,应当从以下几个方面改善和研发普通高强铝合金:

(1)、利用快凝和铸造时施加外场(电磁场等)开发更高强度的新型超高强铝合金,强化基体固溶更多的合金元素;

(2)、加强对熔炉熔炼技术研究,深化净化技术的开发,降低熔池内部杂质含量,更不可能让宏观缺陷出现,减小裂纹扩展缺陷,提高其组织均匀性;

(3)、开发铝基复合材料,得到耐腐蚀性能优良的复合涂层。

参考文献:

[1] Wei Fang et.al Influence of 1.0 wt% Li on Precipitates in

Al-Zn-Mg-Cu Alloy .Chinese Journal of Aeronautics 21 ( 2008)

565-570;

[2] 李秀华等.7804超硬铝合金板材成形性能的试验研究【J】.沈阳工业大

学学报.2005年10月第5卷;

[3] 刘倩.5083铝合金超塑成形力学性能研究与动态再结晶模型建立【D】.

南京航空航天大学.2012年3月;

[4] 张雪等.7050铝合金非等温时效过程组织演变研究【D】.哈尔滨工业

大学.2012年7月;

[5] 张宏伟.7050铝合金双级时效工艺研究【D】.哈尔滨工业大学.2009年3

月;

[6] 王国军等.Al- 2.2Cu-1.5Mg-1.0Fe-1.0Ni 高纯铝合金的熔铸工艺【J】.

铸造技术.2009年11月;

[7] 李念奎等.Al2Zn2Mg2Cu系合金组织对性能的影响【J】.轻合金加工技

术.2008年;

[8] 张国英等.Al-Zn-Mg-Cu系铝合金中不同区域电子结构及应力腐蚀机理

分析【J】.金属学报.2009年1月;

[9] 薛文斌等.LC4超硬铝合金微弧氧化膜电化学腐蚀特性【J】.材料热处理

学报.2007年6月;

[10] 汝继刚等.超高强铝合金热处理工艺研究【J】 .材料工程 .1999年第2

期;

[11] 李秀华等.超硬铝合金的微观组织和力学性能的研究【J】.沈阳航空工

业学院学报.2005年10月

[12] Zhang et.al Production of super-high strength aluminum alloy

billets by low Frequency electromagnetic casting.Transactions of Nonferrous Metals Society of China. 21(2011) 2134—2139

[13] 张北江等.电磁场频率对电磁铸造7075铝合金微观组织的影响【J】.金属

学报.2012年12 月;

[14] 林毅等.高强度铝合金的发展【J】.大众科技.2008年12期;

[15] 陈小会等.高强铝合金的研究现状及进展【J】;

[16] 宁爱林等.铝合金回归再时效状态的超峰时效强度行为分析【J】.金属学

报.2006年12月;

[17] 别世强等.镍对Al- Z n -M g- C u -R E 超高强铝合金组织和硬度的影

响【J】.材料热处理.2006年第35卷第24期;

[18] 巢宏等.三级固溶处理对Al-Zn-Mg-Cu 系铝合金组织和剥落腐蚀性能

的影响【J】.2009年6月;

[19] 梁维胜等.添加微量锆、铒对铸造A-l8. 25Zn-2. 4Mg-2. 3Cu合金组织与

力学性能的影响【J】.稀有金属.2009年10月

[20] 龚澎等.一种新型Al-Zn-Mg-Cu系铝合金的均匀化工艺研究【J】.航空

材料学报.2009年10月

热处理对7075铝合金组织和性能的影响

热处理对7075铝合金组织和性能的影响 摘要:对7075铝合金进行了固溶和单级时效处理,研究了单级时效对铝合金组织和性能的影响,结果表明铝合金经单级时效后纤维组织消失,在晶界处生成第二相粒子。铝合金显微硬度的峰值时效温度为120℃,时间为16h,硬度为220HV。120℃/24h时效后合金的峰值强度为680.5MPa。本研究中主要阐述热处理对7075铝合金组织和性能的影响。 关键词:热处理;7075铝合金;组织性能 引言 近些年来,铝合金的发展历程先后经历了由单一的追求高强度到追求高强耐腐蚀,再到追求高强高韧耐腐蚀性能,又到高强高韧耐腐蚀抗疲劳,最终到现在的追求高淬透性高综合性能五个发展阶段。然后发展方向却集中在以满足高强高韧铝合金的航空航天领域以及适用于各种使用条件的民用铝合金领域。当前对于铝合金强韧化以及耐蚀性的研究已经成为了重中之重,相信随着综合性能的提高,铝合金在国民经济发展中的运用将更加广泛。 1、7xxx系铝合金概述 7xxx铝合金是以Al-Zn-Mg和Al-Zn-Mg-Cu合金为主的一种超高强度铝合金,它是超高系列铝合金的最主要代表,Fe和Si是7xxx铝合金的主要有害杂质。较2xxx高强度铝合金在强度和硬度方面高出许多。属于热处理可强化的合金。该系铝合金具有强度高、密度小、易加工、焊接性能良好等优良特点,并且一般耐蚀性较好,因此在航空航天工业、车辆、建筑、桥梁、工兵装备及大型压力容器方面得到了广泛的应用。现阶段7xxx铝合金的研究主要集中在通过调节合金化元素和优化热处理工艺来得到高强高韧耐腐蚀的综合性能[1]。这也是本文的研究方向的出发点。该系代表合金如7005、7050、7075等。 2、试验材料与方法 试验材料为7075铝合金,将铝合金(尺寸为20mmX20mmX160mm)在盐浴中进行固溶处理,处理工艺为480℃/2h铝合金固溶处理后在试验箱中进行单级时效处理,时效温度分别为100,120,150℃,时效时间为0-48h。 将试样按国标GB/T228-2010用线切割加工成拉伸试样,用酒精超声清洗去除表面油污,在MT810万能试验机上进行拉伸强度测试,取5个试样的平均值;采用

铝合金的牌号、状态和性能解析

1铝的基本特性与应用范围 铝是元素周期表中第三周期主族元素,原子序数为13,原子量为26.9815。 铝具有一系列比其他有色金属、钢铁、塑料和木材等更优良的特性,如密度小,仅为2.7 g / cm3,约为铜或钢的1/3;良好的耐蚀性和耐候性;良好的塑性和加工性能;良好的导热性和导电性;良好的耐低温性能,对光热电波的反射率高、表面性能好;无磁性;基本无毒;有吸音性;耐酸性好;抗核辐射性能好;弹性系数小;良好的力学性能;优良的铸造性能和焊接性能;良好的抗撞击性。此外,铝材的高温性能、成型性能、切削加工性、铆接性以及表面处理性能等也比较好。因此,铝材在航天、航海、航空、汽车、交通运输、桥梁、建筑、电子电气、能源动力、冶金化工、农业排灌、机械制造、包装防腐、电器家具、日用文体等各个领域都获得了十分广泛的应用,下表列出了铝的基本特性及主要应用领域。 铝的基本特性及主要应用领域

3 变形铝合金分类、牌号和状态表示法 3. 1变形铝合金的分类 变形铝合金的分类方法很多,目前,世界上绝大部分国家通常按以下三种方法进行分类。 ⑴按合金状态图及热处理特点分为可热处理强化铝合金和不可热处理强化铝合金两大类。不可热处理强化铝合金(如:纯铝、Al-Mn、Al-Mg、Al-Si系合金)和可热处理强化铝合金(如:Al-Mg-Si、Al-Cu、Al-Zn-Mg 系合金)。 ⑵按合金性能和用途可分为:工业纯铝、光辉铝合金、切削铝合金、耐热铝合金、低强度铝合金、中强度铝合金、高强度铝合金(硬铝)、超高强度铝合金(超硬铝)、锻造铝合金及特殊铝合金等。 ⑶按合金中所含主要元素成分可分为:工业纯铝(1×××系),Al-Cu合金(2×××系),Al-Mn合金(3×××系),Al-Si合金(4×××系),AL-Mg合金(5×××系),Al-Mg-Si合金(6×××系),Al-Zn-Mg合金(7×××系),Al-其它元素合金(8×××系)及备用合金组(9×××系)。 这三种分类方法各有特点,有时相互交叉,相互补充。在工业生产中,大多数国家按第三种方法,即按合金中所含主要元素成分的4位数码法分类。这种分类方法能较本质的反映合金的基本性能,也便于编码、记忆和计算机管理。我国目前也采用4位数码法分类。 3. 2中国变形铝合金的牌号表示法 根据GB/T16474 —1996“变形铝及铝合金牌号表示方法”,凡化学成分与变形铝及铝合金国际牌号注册协议组织(简称国际牌号注册组织)命名的合金相同的所有合金,其牌号直接采用国际四位数字体系牌号,

7075铝合金特性

後熱處理對摩擦攪拌7075鋁合金特性之影響 洪飛義1,* 呂傳盛2陳立輝2黃展鴻2 1成功大學奈米科技暨微系統工程研究所 / 微奈米中心 2成功大學材料科學及工程學系 The effects of post heat treatment in friction stir processed 7075 Al alloy F.Y. Hung1,*, T. S. Lui2, L. H. Chen2 and T. H. Huang 2 1 Institute of Nanotechnology and Microsystems Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, TAIWAN 701. 2 Department of Materials Science and Engineering, National Cheng Kung University, Tainan, TAIWAN 701. Corresponding author, Email: 1 fyhung@https://www.360docs.net/doc/6012416079.html,.tw 本研究利用自然時效、復原處理及人工時效等熱處理針對摩擦攪拌製程(FSP)之7075鋁合金之攪拌區(stir zone, SZ)微觀組織及拉伸特性進行探討。實驗結果顯示,攪拌後析出物濃度分佈不均勻,而經重新固溶可改善此現象,並有助於提升拉伸性質。在經過自然時效後施加復原處理,有助於提升延性;若攪拌後直接施行120℃、220℃及320℃之人工時效,其拉伸強度會隨溫度的上升而下降,而延性在320℃時會有所提升,此與晶界上η相粗大化及晶界附近自由析出空乏區(Precipitation Free Zone, PFZ)的存在有密切關係。 關鍵字:熱處理、摩擦攪拌製程、7075鋁合金 This study using natural aging, reversion and artificial aging, discussed the variation of the microstructure and tensile properties on stir zone of FSP 7075 Al alloy. The results showed the distribution of the precipitates concentration after FSP was not uniform. This effect had improved and raised the tensile properties through a solid solution treatment before natural aging. After natural aging then performing reversion, the ductility of SZ had increased. The SZs had an artificial aged at 120℃, 220℃ and 320℃, the tensile resistance had decreased and the ductility had a tendency to increase as increasing the temperature. The reason had a closed relation between the η phases of grain boundary and the PFZ forming near grain boundary. Keywords: heat treatment, FSP, 7075 Al alloy 1. 前言 摩擦攪拌接合(Friction Stir Welding , FSW)為一種固態接合技術[1]。此技術在過程中溫度並未達到熔點溫度[2],適合使用在鋁合金的焊接上。而摩擦攪拌製程(Friction Stir Processing,FSP)是利用攪拌過程中所產生的剪應變與摩擦熱,使材料在固態攪拌過程中產生動態再結晶現象,而達到均勻且細化晶粒的效果[3]。 在7000 系鋁合金研究上,經FSW/FSP後的攪拌材強度雖不及母材,但機械性質仍明顯優於傳統熔融銲接。然而,在摩擦攪拌後會有時效現象,在應用上及加工方面會有顯著的影響。因此施加有效之後熱處理是值得探討的課題。鑑於在攪拌後熱處理效應的研究仍相當缺乏,故本研究針對7075鋁合金進行FSP後熱處理,包含自然時效、回復處理及人工時效,以探討其對SZ組織及機械性質之影響。 2. 實驗方法 本實驗以7075壓延鋁材(7075-R) 經固溶處理及人工時效(T6)而得到的7075時效材(7075-T6)作為母材,其化學組成如表1;攪拌後定義出攪拌面、橫截面和縱面三個方向,依序表示為ND、PD、TD,摩擦攪拌示意圖如圖1,本研究使用的摩擦攪拌參數為轉速1677rpm,進给速率0.58 mm/s,傾斜角1.5°,下壓力3.8MPa。 FSP後進行不同的熱處理:自然時效、回復處理及人工時效,各種不同熱處理的程序及代號列於表2。在組織特性觀察方面,利用電子微探儀(EPMA) 觀察元素分佈狀況;以穿透式電子顯微鏡(TEM)分析不同熱處理條件析出物形態的變化。拉伸性質方面,應變數率均為1.67×10-3sec-1,在室溫下進行拉伸測試。 3. 結果與討論 3.1 FSP後固溶處理對自然時效之影響 自然時效後的拉伸結果如圖2所示。根據前人研究所示[2],攪拌過程中有部分固溶的效果,在經過自然時效後,由於固溶相再次析出,導致降伏強度上升而延伸率下降,然而在重新固溶及經過自然時效後,在降伏強度上升的同時延伸率則有所提升,而且均比前者有更好的拉伸性質。因此,析出物的分佈狀態為影響SZ拉伸強度及延性的重要因素之一。攪拌後距離表面1mm的ND面元素分佈如圖3所示,析出物的濃度分佈有不均勻現象;而經過固溶處理後的元素分佈如圖4所示,析出物的濃度分佈較固溶處理前均勻,所以在經過重新固溶後,有改善析出物濃度不均勻的效用。 在攪拌及自然時效後,析出物的分佈濃度並不均勻,會對於在拉伸時均勻變形的能力造成影響。由於高低濃度之間為應力集中處,破斷裂縫會優先沿著兩區之間的方向,即洋

含锂超高强铝合金沉淀过程研究现状

https://www.360docs.net/doc/6012416079.html, 含锂超高强铝合金沉淀过程研究现状 路丽英[1] 屈向前[2] 张建军[1] 苑彩平[1] [1]内蒙古工业大学材料科学与工程学院,呼和浩特 (010051) [2]北方重工业集团锻造公司,包头 (014033) 摘要: 近年来,含锂超高强铝合金的研究渐多,获得了一定的应用。重点回顾了含锂超高强铝合金沉淀过程的研究现状及锂元素的作用机理。 关键词: 锂元素 超高强铝合金 强化相 0前言 作为传统铝合金的重要分支之一,超高强铝合金的研究及发展一直引起人们的关注和浓厚的兴趣。超高强铝合金比重小、强度高、热加工性能良好,广泛应用于航空及民用工业等领域,特别在飞机制造业中,超高-强铝合金是重要的结构材料之一。近几十年来,通过调整成分、提高冶金质量、采用一系列新的热工艺和热处理制度,其综合性能有了明显的改进,有望与新型Al-Li合金及先进复合材料相媲美。 锂元素作为最轻的金属元素加入铝合金中可以降低合金的密度,提高合金的比强度和弹性模量[1]。Al-Zn-Mg-Cu合金中加入一定量的Li,可以减轻这种高强铝合金的密度。 Al-Zn-Mg-Cu-Li合金的沉淀过程研究比较少,但由于Al-Zn-Mg-Cu合金在实际应用中的重要性,今年来人们开始关注Al-Zn-Mg-Cu-Li合金的沉淀过程的研究。 1 国外 Al-Zn-Mg-Cu-Li合金的沉淀过程的研究现状 Huang[2,3]研究了Li在7075合金中的作用,当Li的含量为0.7%时,由于Li与空位高的结合能,使得Li-V积聚作为形核的位置,形成了空位富集的GP区,因为Li与空位的结合使Zn和Mg的传输受到限制,使得形成的GP区里缺少Zn和Mg,从而导致在7075合金中的富溶质GP区变为空位富集GP区,使得以后沉淀形状。尺寸分布、时效动力学、时效硬化速率发生变化,由原来在7075合金中的形核方式:富溶质GP区→η′相→η(MgZn2)相,转变为: Τ′Τ 空位富集GP区→相→相 Dinsdale[4]也研究了两种含Li的Al-Zn-Mg-Cu合金,两种合金的基体上都分布着弥散的δ′相和位错形核的S相,在Li(2.6%)、Zn(2.22%)的合金中产生少量均匀分布的S相;而在Li(1.8%)、Zn(3.4%)的合金中产生大量分布的S相,增加的S相使得合金的韧性有所改善,而使强度有所下降,这与基体上δ′相的减少有关。

锌及锌合金电镀综述.

锌及锌合金电镀综述 (江苏理工学院 12110101) 摘要:本文综述了锌及锌合金电镀的国内外研究现状。首先介绍了锌电镀的应用及其工艺影响因素;再对几种常用的锌合金电镀作了简要介绍,其中重点介绍了应用最广泛的Zn-Al合金,Zn-Ni合金的国内外现状及电镀原理;最后对锌及锌合金电镀的应用提出了展望。 关键词:锌电镀;锌合金;工艺影响因素;国内外现状 Zinc and Zinc alloy plating review Ding Lihong (Jiangsu Institute of Technology 12110101) Abstract: This paper reviews the research status of zinc and zinc alloy electroplating at home and abroad. First introduces the influence factors and application technology of zinc plating of zinc alloy plating; several are briefly introduced in this paper, which focuses on the Zn-Al alloy widely used at home and abroad, the status and principles of electroplating Zn-Ni alloy; finally on zinc and zinc alloy plating should be looking for presents. Keywords: zinc plating; zinc alloy; effect factors; the status quo at home and abroad

7075_T651铝合金疲劳特性研究

第30卷 第4期 2010年8月 航 空 材 料 学 报 J OURNAL OF A ERONAUT ICAL MAT ER I A LS V o l 130,N o 14 A ugust 2010 7075-T651铝合金疲劳特性研究 韩 剑, 戴起勋, 赵玉涛, 李桂荣 (江苏大学材料科学与工程学院,江苏镇江212013) 摘要:在不同的应力幅值下测试了7075-T651铝合金的疲劳寿命,拟合试验数据得到合金S -N 曲线,估算疲劳极限为223M P a 。用扫描电镜观察高低应力幅值下的疲劳试样断口,结果表明:合金的加工缺陷或粗大夹杂处往往为裂纹源,裂纹扩展伴随着小平面断裂的发生,高应力幅下疲劳裂纹扩展区出现犁沟和轮胎花样,而低应力幅下的疲劳裂纹扩展区中除有大量疲劳条带外,还出现了疲劳台阶和二次裂纹。合金的疲劳瞬断区则存在着撕裂棱与等轴韧窝。弥散分布的微小析出相对合金的疲劳性能有着积极的影响。关键词:7075-T 651铝合金;S -N 曲线;疲劳断口DO I :1013969/j 1i ssn 11005-505312010141018 中图分类号:TG146121 文献标识码:A 文章编号:1005-5053(2010)04-0092-05 收稿日期:2009-04-21;修订日期:2009-06-16基金项目:国家863高技术研究项目(2007AA 03Z548)作者介绍:韩剑(1984)),男,硕士研究生,从事高强铝合金组织与性能方面的研究,(E -m a il)han ji an_m oon @yahoo .com .cn 通讯作者:戴起勋,男,教授,博士生导师,(E -m ail)qxda i @u j s .edu .cn 。 7075合金是美国较早开发的一种铝合金,是航空航天领域广泛使用的一种轻型结构材料。近年来,因其强度高、重量轻的特性也在其他领域得到广 泛应用,例如攀岩设备及自行车零件都普遍使用7075铝合金 [1~4] 。在对7075合金所开展的研究工 作中,其疲劳性能因与实际应用联系较为密切,是一 个极有理论意义和应用价值的课题,目前虽然已有许多科研工作者对其进行了广泛的研究 [5~8] ,但对 其疲劳断裂机理研究却不多。为了进一步深化研究,充分挖掘7075铝合金的使用潜力,本研究对时效 7075-T651铝合金材料在不同应力幅下的疲劳断裂机理进行了研究。 1 试验材料和方法 试验材料为A lcan 生产的厚度为23mm 的7075-T651铝合金成品板材,合金成分如表1所示。合金抗拉强度达到580M Pa ,屈服强度为570M Pa ,断后伸长率为8%。 表1 试验合金成分(质量分数/%) T able 1 T he component o f alu m i nu m a lloy (m ass fracti on /%) Zn M g Cu M n T i C r N i Fe S i A l 5.68 2.40 1.63 0.14 0.22 0.18 0.044 0.18 0.06 Ba.l 疲劳试验在PLA30050疲劳试验机上进行,参照GB /T 4337)1984制成标准圆棒光滑试样。试验在室温下进行,应力水平设置在518MPa 到200MPa 之间测试轴向应力疲劳性能,疲劳试验的应力比R =-1,即轴向拉压对称加载,控制波形为正弦波,循环加 载频率为20H z 。试样在机器上循环加载直至断裂,记录加载周次。将疲劳断口完整切下,浸于酒精中在超声波清洗仪中清洗,而后在JS M-7001F 型扫描电子显微镜下进行断口形貌观察和分析,并用扫描电镜自 带的I nca Ener gy 350能谱仪作EDS 分析。 2 试验结果与分析 2.1 疲劳寿命曲线 将测得的试验数据拟合得到S-N 曲线(图1),数据点基本平均分布在曲线两侧,较为吻合。S-N 曲线没有水平部分,只是随着应力的降低,循环周次不断增大。通常,如果材料应力循环107 周次不断

项目名称超高强铝合金材料的增材制造(3D打印)关键技

项目名称:超高强铝合金材料的增材制造(3D打印)关键技术研究与应用 参与人员:李小平, 雷卫宁,史先传,孙顺平,王洪金,顾斌杰,陈菊芳 项目简介:团队研发的金属3D打印(Metals 3D Printing)的设备,采用熔融的金属(合金)通过高压雾化气体将金属液体成分雾化成细小的液体和固体颗粒的混合物,结合计算机三维设计,控制雾化器的雾化状态和各参数,同时控制接收体的运动轨迹和速度,实现金属的逐层堆积,达到生产不同形状和尺寸的金属零部件的目的。而且生产的金属3D打印设备具有效率高(5-10Kg/每分钟),打印生产的材料或零件致密度高(≥95%的金属或合金的理论密度),内部组织结构细小(平均晶粒大小为10-20μm),具有优良的综合力学性能等优良特点。该项目运用已有的理论和工艺的研究成果,开展该领域的成形设备的研制,开发出相应的自动化程度高、稳定可靠的工程化装备,满足诸多领域对高强高韧铝合金材料与产品的需求,而且因为性能的大幅提高为轻量化的结构设计提供了材料保障。特别是具有很好的变形加工性能,经过后续的变形可以制备不同形状和尺寸的超高性能的零部件,广泛应用于航空航天、石油和地质勘探、船用轻质材料、汽车工业设计、建筑、工程和施工(AEC)、医疗产业等领域。 创新成果主要体现在以下两方面: 1)高强铝合金材料的开发与应用 采用自主研制的金属增材制造,针对不同的铝合金材料(如7050、7055、7075等铝合金),制备出具有晶粒细小(平均粒径5-20μm)、组织均匀、能够抑制宏观偏析,具有半固态加工所要求的等轴晶粒的组织特征,在设备和工艺上保证制备的坯体组织和成分的均匀性,为半固态加工准备具有优异组织和性能的原材料,特别是针对7×××系铝合金超高强、高韧材料的工业化生产展开研究,通过对增材制造材料在后续的成型工艺的研究,探索优化的工艺,;采用中频电源进行加热,在加热过程中严格控制加热温度和保温时间,以实现产品性能的最优化。通过热挤压成管或型材过程中的挤压温度、挤压比、挤压速率等工艺参数对薄壁管材的成型性以及对产品组织和性能的影响,探索出了一条优化的工艺,达到批量生产的目的。实现了7系铝合的复杂薄壁零件的批量生产,性能指标达到或超过美国现有7075/7055铝合金材料水平的高性能船用、核反应堆重要耐高压、轻质薄壁管件和板材,可以从根本上解决当前我国对此种先进铝合金的迫切需求,优化新型铝合金的制备技术和工艺、材料热处理和热加工工艺,其性能稳定,产品性能达到或超过国外同类产品的先进水平。 团队以航空航天领域应用较广的Al-Zn-Mg-Cu 7xxx铝合金为实验材料,以高性能7xxx含微量稀土元素铝合金为研究对象,通过添加微量稀土元素,结合增材制造技术获得此类铝合金制件。很好地解决了控制细晶7×××系铝合金在后续进行大变形时再结晶过程中的晶粒异常长大的现象,为设计和制造新型高性能超高强7xxx铝合金结构材料提供新的思路和方法。 2)核心设备的研究与开发 自主研发的增材制造(3D打印)设备,采用熔融的金属(合金)通过高压雾化气体将金属液体成分雾化成细小的液体和固体颗粒的混合物,结合计算机三维设计,控制雾化器的雾化状态和各参数,同时控制接收体的运动轨迹和速度,实现金属的逐层堆积,达到生产不同形状和尺寸的金属零部件的目的。成功地研制出拥有自主知识产权的全自动控制的设备,达到了工程化和产业化的目的。而且生产的金属3D打印设备具有效率高(5-10Kg/每分钟),打印生产的材料或零件致密度高(≥95%的金属或合金的理论密度),内部组织结构细小(平均晶粒大小为10-20μm),具有优良的综合力学性能等优良特点。 围绕本项目的发明专利详见下表:

铝合金表面处理研究

铝合金表面处理研究 学号:20091829 姓名:刘哲 专业班级:材科09-4班 2012年07月04日

铝合金表面处理研究 摘要:主要介绍了铝合金表面处理的一种方法-电镀,并对一些预处理进行分析与研究,知道了电镀过程中的一些参数的最佳数值。 关键字:表面处理、电镀、预处理 前言 金属表面复合涂层技术是指利用表面涂层工艺方法,如电镀、化学镀、真空熔覆、热喷涂、气相沉积、阳极氧化、热化学反应法、溶胶-凝胶法、离子注入以及涂装等技术,在金属表面形成一层或数层具有复合材料结构和性质,并与金属表面结合良好的薄膜[1]。近年来,进行涂覆的基体金属及合金主要有:碳钢、合金钢、铸铁、铝合金、铜合金、镁合金及钛合金等。金属表面复合涂层可广泛应用于石油、化工、能源、机械、冶金、电子信息、航空航天及军事装备等领域,正向着多功能性和应用性的方向发展。因此,金属表面复合层作为新材料研究的一个重要方向,具有广阔的应用前景。 铝在地壳中的含量仅次于氧和硅,居第三位,是地壳中含量最丰富的金属元素。铝的产量在金属中仅次于钢铁的。至19 世纪末,铝才崭露头角,成为在工程应用中具有竞争力的金属。铝合金的加工性能好,表面经抛光后具有良好的光反应能力。因此,在飞机、汽车、电器、仪表、日用品等领域,铝合金获得广泛的应用[2]。然而铝合金也存在缺点,主要是耐腐蚀性差,并且还有产生晶间腐蚀的倾向,这是一种最危险的腐蚀破坏。通过表面处理的途径,即氧化或电镀可以提高铝合金的耐蚀性,从而提高其使用性能[3 ],对铝和铝合金表面制备复合涂层意义深远[4]。国外在铝合金表面复合涂层研究方面投入了大量人力、物力,近年来相继出现了多种复合涂层。如美国为航空、航天应用的铝合金件开发了“TUFRAM”涂层,它是由一般阳极氧化膜层再渗入有机聚合物而成,表面性能优异,在民用产品方面也得到了推广[5]。我国在铝合金表面复合涂层研究方面也非常活跃。Li 等[6]应用化学复合镀在铝合金表面制备出了含70vol%SiC 颗粒的Ni-P-SiC 复合涂层。蒋驰等[7]在铝材基体上,综合应用等离子喷涂和电弧喷涂等热喷涂方法,喷涂钽、镝、铅等材料,制备具有辐射屏蔽效应的多层复合涂层,涂层与基体之间结合紧密,组织均匀致密,孔隙率低,满足了辐射屏蔽要求。黄开金等[8]采用激光熔覆在AA7075 铝合金表面熔覆了Zr-Cu-Ni-Al-TiC 复合粉末,制备出Zr 基复合涂层,熔覆层表现出优异的耐磨性,尤其是随着熔覆层中TiC 含量的增加,耐磨性得到显著的提高。 一.铝合金电镀预处理 复合电镀是在电解质溶液中加入一种或数种不溶性固体颗粒,在金属离子被还原、形成镀层的同时,不溶性固体颗粒均匀弥散地分布于金属镀层中,形成复合镀层。采用电镀法可以制备多种复合镀层,主要有耐磨、自润滑、弥散强化、耐蚀性等复合镀层以及提高有机涂层结合强度的中间复合镀层。复合电镀具有以下特点:工艺简单、镀层多样化和分散相颗粒品种多[1]。 1.1挂具 对于铝合金电镀来讲,挂具是先决条件,特别是大件,必须要保证足够大的接触

低温铝合金国内外研究及应用情况(DOC)

低温铝合金国内外研究及应用情况 低温设备在航空、航天、超导技术以及民用工业中得到日益广泛的应用, 主要用于航天飞机、火箭动力装置的液氢(20K)、液氧(90K)储箱,以及低温超导磁体的结构支撑件等。确保这些设备的安全运行至关重要。其中低温金属材料的选取和设计是重要的 环节之一。低温金属材料机械性能与常温状态下相比有较大的差别,某些金属材料延性和韧度会急剧降低, 即发生低温冷脆转变。脆性断裂经常是突然发生,迅速扩展,会造成灾难性重大事故。缺乏专门的低温金属材料知识和性能数据,将会造成选材和设计不当,在低温装备运行中将引发失效事故。 铝合金材料具有密度低、无磁性、低温下合金相稳定、在磁场中比电阻小、气密封性好、感应放射能衰减快等特性, 因此越来越广泛的应用于低温领域。近几十年来,国内外已经积累了大量的铝合金低温机械性能方面的研究。 一、低温铝合金的定义及分类 适合于低温环境使用的大多数固溶强化铝合金及一些沉淀硬化铝合金。 可分为两类:(1)固溶强化合金,5000系,3000系; (2)沉淀硬化合金,2000系,6000系,7000系。 常用的低温铝合金是: Al-4.5Mg(5083),在退火态使用的易焊接铝合金; 3003铝合金;Al-1.0Mg-0.6Si(6061)多用途铝合金; Al-6.0Cu(2219),在沉淀硬化态使用的铝合金。 Al-Li轻合金(如2090,8090等)是性能优异的低温材料,随着温度降低,其强度、塑性、韧性大幅度提高,如2090合金的低温性能(约4K)比2219合金要好得多。 在锻造合金最常用的低温服务考虑的合金1100,2014,2024,2219,3003,5083,5456,6061,7005,7039和7075。合金5083这是对低温应用最广泛使用的铝合金,展品冷却到室温的氮沸点(- 195oC): 目前低温铝合金研究主要集中在:Al-4.5Mg(5083)、Al-Zn-Mg-Cu系、Al-Cu (2219)、Al-Li轻合金 问题:在航空领域应用较多,但低温铝合金板材产业化较少,低温铝合金板材制备LNG储罐国内未见详细报道(只有部分焊接问题探讨过) 二、铝合金低温性能 1、几种典型的铝合金在低温下拉伸性能如表所示。 从表1中可以看出,所有的铝合金的拉伸强度和屈服强度都随温度的降低而上升,并且拉伸强度增加比较明显,在20K以下增加停止,并且某些合金略有下降。大部分合金

7075铝合金表面处理

7075铝合金表面处理 1. 化学镀镍、渗氮、热扩渗都是传统的铝合金表面强化技术,能够改善材料的表面性能。研究化学镀镍加气体渗氮的复合方法处理7075铝合金表面的工艺和性能以及7075铝合金与Mg-Zn合金相互扩散过程。对带有镍层表面的7075铝合金进行气体渗氮,增大了铝合金的表面硬度,其硬度最高达700HV,是基体硬度的7-8倍。 2. 7075铝合金表面镀硬铬工艺。 3. 化学镀技术:在铝合金基体上制备Ni-Cu-P合金镀层、Ni-P/纳米金刚石或者Ni-Co-P/Si3N4化学复合镀层。 4. 铝合金复合涂层技术,研究硬质阳极氧化处理,发展具有减摩耐磨性能的自润滑铝合金复合涂层。将铝先进行硬质阳极氧化,然后采用热浸法引入聚四氟乙烯微粒至氧化膜膜孔及表面,通过真空精密热处理后形成复合涂层。 5. 复合电镀:利用复合电镀技术,在铝合金基体上电镀Ni/微米Al2O3/纳米Al2O3复合镀层。 6. 喷涂方法:在铝合金表面喷涂烧结型WC-17Co粉末,制备WC涂层,以提高铝合金基体的耐磨性。 7. 激光熔覆技术 用激光熔覆技术对铝合金表面进行改性,在铝合金表面激光熔覆制备各种性能的硅涂层。利用横流CO2高激光器,以铝合金为基材,在其表面预置硅粉后进行激光处理,研究熔覆工艺参数优化、组织形貌、热处理研究。 8. 低温常压化学气相沉积(APCVD)技术,在铝及其合金基底上制备硅氧化物陶瓷薄膜。沉积温度为400℃,有效提高铝及铝合金表面的耐磨性。 9. 强流脉冲电子束表面改性:高能电子束在很短的脉冲时间内将能量注入材料表面极薄的一层。利用Nadezhda-2型强流脉冲电子束装置研究了对6063铝合金化学镀的影响和YG8硬质合金的改性研究。 10. 铝合金表面镀渗复合改性处理工艺:利用闭合场非平衡磁控溅射预先在铝合金表面制备一层Ti膜,再进行脉冲等离子体渗氮处理,探索了铝合金表面镀渗复合改性处理工艺。复合改性后与未处理铝合金的磨损率相比,下降了64.7%。 11. 利用电弧离子镀在铝合金上镀制TiN膜以及Ti/TiN多层膜。 12. 对铝合金进行等离子体基离子注入(Plasma Based Ion Implantation,PBII)氮、碳及磁控溅射沉积Ti结合PBII氮、碳注入,在基体表面形成改性层,从而使铝合金表面硬度、耐磨性和耐腐蚀性得到提高,延长铝合金塑料模具的使用寿命。 13. 微等离子体氧化技术:将铝合金置于电解液中通电,使其表面产生微等离子体放电,从而在铝合金表面原位生长一层陶瓷膜的表面处理技术。通过这种技术可在铝合金表面获得高硬度、高热抗、耐腐蚀性好、附着力高、色泽稳定的陶瓷膜层。 14. 铝合金微弧氧化陶瓷层:通过微弧氧化可获得硬质陶瓷层; 15. 铝合金硬质阳极氧化膜技术:研究常温下的硬质阳极氧化工艺,以硫酸为基础电解液,加入有机酸改性,采用恒流法直流叠加脉冲阳极氧化,在2024铝合金表面得到硬度350HV、膜厚50μm的氧化膜。 16. 利用电弧氮化法直接在铝及铝合金基体上制备氮化层。使用普通的钨极氩弧焊机,通入不同比例的氮气与氩气混合气体,在纯Al合金基体上,高温电弧使基体局部熔化,同时使氮气电离,与熔化的Al发生反应生成AlN,冷却后形成氮化层,提高抗磨料磨损和摩擦磨损性能。

5052铝合金与7075铝合金参数对比

5052铝合金与7075铝合金参数对比 一、材料名称: 铝及铝合金轧制板材(≤150mm,O态) 牌号:5052 铝合金板(2张) 标准:GB/T 3880-2006 5052铝板的介绍:5052铝板为AL-Mg系合金铝板,是应用最广的一种防锈铝,这种合金的强度高,特别是具有抗疲劳强度:塑性与耐腐蚀性高,不能热处理强化,,在半冷作硬化时塑性尚好,冷作硬化时塑性低,耐腐蚀好,焊接性良好,可切削性能不良,可抛光。。 二、5052铝板的应用范围 5052铝板用途主要用于要求高的可塑性和良好的焊接性,在液体或气体介质中工作的低载荷零件,如邮箱,汽油或润滑油导管,各种液体容器和其他用深拉制作的小负荷零件:线材用来做铆钉。也常用于交通车辆、船舶的钣金件,仪表、街灯支架与铆钉、五金制品、电器外壳等。 三、5052铝板的化学成份: 铝 Al :余量;硅 Si :0.25;铜 Cu :0.10 ;镁 Mg:2.2~2.8;锌 Zn:0.10;锰 Mn:0.10;铬 Cr:0.15~0.35 ;铁 Fe: 0.4 0 。 四、5052铝板的力学性能 抗拉强度(σb ):170~305MPa 条件屈服强度σ0.2 (MPa)≥65 弹性模量(E): 69.3~70.7Gpa 退火温度为:345℃。不同加工硬化和热处理状态下,力学性能有所不同。

五、5052铝板的表面质量 1、表面不允许有裂纹、腐蚀斑点和硝盐痕迹。 2、表面上允许有深度不超过缺陷所在部位壁厚公称尺寸8%的起皮、气泡、表面粗超和局部机械损伤,但缺陷最大深度不能超过0.5mm,缺陷总面积不超过板材总面积的5%。 3、允许供货方沿型材纵向打光至表面光滑。 4、其他要求:有需求方和供货方自己拟定。 六、5052铝板焊接焊条型号 5052铝板可用ER5356焊条焊接,焊接以后能满足5052铝板的力学性能。5356的化学成分:Si:0.25; Fe:0.40 ;Cu:0.10;Mn:0.05-0.20;Mg :4.5-5.6; Cu:0.02--0.20; Zn:0.10- 0.20 ; Ti:0.06--0.20 ;Al:余量;5336含镁量高一些。 七、5052铝板系列和1060铝板系列的区别 硬度:1060铝板的抗拉强度为 110-130之间,而5052系列的抗拉强度则达到了210-230之间也就是说5052的硬度比1060的硬度高100%。延伸率:1060系列的延伸率为5%,而5052系列的延伸率达到了12-20%之间,也可以这样认为,在5052系列比1060硬100%的情况下,延伸率也提高了200%左右。化学性能:1060为纯铝板,5052为合金铝板,在特殊环境下5052耐腐蚀更好一些。 八、相关产品标准 铝板带国家标准(GB/T 3880-2006),适用于铝合金板带材料的统一标准。词条图册更多图册 九、5052铝板现货规格: 5052板材现货规格:0.3mm-350mm(厚度) 5052棒材现货规格:3.0mm-500mm(直径) 5052线材现货规格:0.1mm-20mm(线径) 5052管材现货规格:20mm-100mm(管径) 可以为客户提供各种规格的加工 7075铝合金

7075超硬铝合金

广毅荣供应:进口超硬铝合金、超硬铝合金的价格、7075铝板、7075超硬铝合金、7075模具铝板、7075高耐磨铝棒、7075超硬合金铝板、7075进口铝棒、7075航空航天铝合金、进口美铝7075超硬铝合金、7075铝合金SGS环保报告、7075铝板原产地材质证明、进口铝合金特硬铝材超硬铝的性能进口超硬铝合金7075超硬铝高强度模具铝板7075铝薄板批发东莞7075铝板厂家AL7075-T651超硬铝合金进口7075合金铝板150度最硬航空铝模具制造7075铝板高强度超硬铝合金7075 7075超厚模具铝板高硬度7075航空铝板 7075超硬铝合金 化学成份: 硅Si:0.40 铜Cu:1.2~2.0 镁Mg:2.1~2.9 锌Zn:5.1~6.1 锰Mn:≤0.30 钛Ti:≤0.20 铬Cr:0.18~0.28 铁Fe:0.50 注:单个:≤0.05;合计:≤0.15 铝Al:余量 材质成分及工艺过程严格控制,保证每批次材质成分和机械性能的标准性。 7075铝合金棒的加工特性 7075铝被称为超高强铝合金,合金的屈服强度接近与抗拉强度,屈服比高,比强度也很高,但塑性和高温强度较底,宜做常温、120℃以下使用的承力结构件,合金易于加工, 有姣好的耐腐蚀性能和较高的韧性。该合金广泛用于航空和航天领域,并成为这个领域中最重要的 结构材料之一。

物理特性及机械性能: 抗拉强度:524Mpa 0.2%屈服强度455Mpa 伸长率:11% 弹性模量:E/Gpa:71. 7075铝板产品特点: 1.高强度可热处理合金。 2.良好机械性能。 3.可使用性好。 4.易于加工,耐磨性好。 5.抗腐蚀性能、抗氧化性好 7075简介: 7075是一种冷处理锻压合金,强度高,远胜于软钢。7075是商用最强力合金之一。普通抗腐蚀性能、 良好机械性能及阳极反应。细小晶粒使得深度钻孔性能更好,工具耐磨性增强,螺纹滚制更与重不同。 铝7075是一种冷处理锻压合金,强度高,远胜于软钢。7075铝合金是商用最强力合金之一。 普通抗腐蚀性能、良好机械性能及阳极反应。细小晶粒使得深度钻孔性能更好,工具耐磨性增强, 螺纹滚制更与重不同。 铝合金的保养和维护: 铝型材产品,具有强度高、重量轻、耐腐性强、结构新颖、装配方便、用材节省、经久耐用的特点,蛤是不合理的保养、安装和维护也会影响铝型材产品的外形美观、表面的色泽。故应有正确的保养和维护的方法。 1、铝型材在搬运过程中,必须轻拿轻放,严防磕碰造成表面碰伤,影响表面美观; 2、铝型材在运输过程中,必须用苫布盖好,严防雨水、雪的侵入;

7075

7075 7000铝合金是另外一种常用的合金,品种繁多.它包含有锌和镁.比较常见的铝合金中强度最好的就是7075合金,但是它无法进行焊接,而且它的抗腐蚀性相当差,很多CNC切削制造的零部件用的就是7075合金.锌在这系列中是主要合金元素,加上少许镁合金可使材料能受热处理,到达非常高强度特性。这系列材料一般都加入少量的铜、铬等合金,而其中以编号7075 铝合金尤为上品,强度最高,适合飞机构架及高强度配件。 7075-T651这个系列合金的成份,主要包括铝、铜、镁、锌等金属,其比率如下表所示︰ 表13 7075 化学成分 硅铁铜锰镁铬镍锌钛其它(3) 铝(4) 每个总计 0.4 0.5 1.2-2.0 0.30 2.1-2.9 0.18-0.35 - 5.1-6.1 0.20(5) 0.05 0.15 余数 注: (1)组合之元素性质以最高百分率表示,除非列出的是一个范围或是最低值。 (2) 为了定出合适的数值限制,分析得来的观察或计算数值都是依据标准规则(ANSI Z25.1) 以表示明确的范围。 (3) 除了非合金外,合金内的元素所规定的份量通常在分析报告中指示出来。但如果在分析过程中 怀疑有其它元素存在或有部份元素被怀疑有过量的情形,更应进一步的分析直至有证实为止。 (4) 不是经由精炼过程的非合金铝中的铝质的含量就是其它的金属的总量和百分百纯铝之差-其差别 在于百份0.01或稍多一点。(百份比的小数点后第二位) (5) 最多可含有0.25%锆和钛。 锌是7075中主要合金元素,向含3%-7.5%锌的合金中添加镁,可形成强化效果显著的MgZn2,使该合金的热处理效果远远胜过于铝-锌二元合金。提高合金中的锌、镁含量,抗拉强度会得到进一步的提高,但其抗应力腐蚀和抗剥落腐蚀的能力会随之下降。经受热处理,能到达非常高的强度特性。 7075材料一般都加入少量铜、铬等合金,该系当中以7075-T651铝合金尤为上品,被誉为铝合金中最优良的产品,强度高、远胜任何软钢。此合金并具有良好机械性及阳极反应。代表用途有航空航天、模具加工、机械设备、工装夹具,特别用于制造飞机结构及其他要求强度高、抗腐蚀性能强的高应力结构体。 7075铝板 7075是一种冷处理锻压合金,强度高,远胜于软钢。7075是商用最强力合金之一。普通抗腐蚀性能、良好机械性能及阳极反应。细小晶粒使得深度钻孔性能更好,工具耐磨性增强,螺纹滚制更与重不同。 7075铝板的物理特性及机械性能:抗拉强度524Mpa,0.2%屈服强度455Mpa:伸长率11%,弹性模量E/Gpa:71,硬度150HB,密度:2810。 7075铝板的主要用途:航天航空工业、吹塑(瓶)模、超声波塑焊模具、高儿夫球头、鞋模、纸塑模、发泡成型模、脱腊模、范本、夹具、机械设备、模具加工。 7075铝板特点: 1.高强度可热处理合金。

锌铝合金的研究现状及应用概况

?综述 Survey? 锌铝合金的研究现状及应用概况 刘永红1,张忠明2,刘宏昭2,吴子英2 (11重庆农药厂农研所,重庆400033; 21西安理工大学机械与精密仪器工程学院,陕西西安710048)摘要:回顾了锌铝合金的发展历史,介绍了合金的主要组元及其作用;综述了锌铝合金的研究现状及应用概况;指出进一步开发和应用这种合金,对我国的工业发展具有重要的意义。 关键词:锌铝合金;研究现状;应用概况 中图分类号:TG292 文献标识码:A 文章编号:100028365(2001)0120042203 Investigation Actuality and G eneral Application in Situation of in Zinc2aluminium Alloys L IU Y ong2hong1,ZHAN G Zhong2ming2,L IU Hong2zhao2,WU Z i2ying2 (11Pesticide Research Department,Chongqing Pesticide Factory,Chongqing400033,China; 21School of Mechanical&Instrumental En2 ginerring,Xi’an University of Technology,Xi’an710048,China) Abstract:The development history of Z inc2aluminium is reviewed in this paper.The role of main alloy ingredient of the alloys are introduced.Its current status of research and general situation of application are summarized subsequently.It plays an im2 portant role on development of industry with applicating and studying this alloy further at home. K ey w ords:Znic2aluminium;Current status of research;G eneral situation of application 锌铝合金具有良好的力学性能、耐磨减摩性能以及其他一些独特的性能(如碰撞时不产生火花,无磁性等),用其代替部分铜合金甚至铝合金具有明显地经济性,同时,该合金熔点低、耗能少、成本低廉、成型方便,适合于多种铸造方法,因此具有很强的市场竞争力,对其研究和应用也在不断地深入和发展,并成为金属材料科学研究的热点之一。 1 锌铝合金的发展简况 锌远在公元前500年就为人们所知,人们在Cameros遗址中发现了古人用锌制做的手镯[1]。大约16世纪,金属锌传入欧洲。锌合金出现于本世纪初期,并作为锡和铅的代用品用于制造印刷铅字,为这种用途而开发的最早的1种锌基合金含6%Sn,5%Cu 和0.5%Al。但早期的锌合金易于晶间腐蚀和过早失效,在潮湿环境下易开裂。使得人们难以想象锌及其合金也能成为性能优良的工程材料。随着锌冶炼技术的进步,人们可以得到纯度很高的锌,改善锌合金的晶间腐蚀性成为现实。上世纪30年代左右,美国新泽西锌合金公司研制出了Zamak3和Zamak5锌铝压铸合金。在战前和二次世界大战期间,德国由于铜资源紧缺,而用重力铸造锌铝合金代替铜制造轴承材料。锌铝合金熔点低、机械性能好,因而在压铸工业中得到了广泛地应用。上世纪60年代前后,由于塑料工业的兴起,使 收稿日期:2000206213; 修订日期:2000206223 基金项目:中国博士后科学基金资助;凝固技术重点实验室开放课题资助项目(59671026)。 作者简介:刘永红(19682 ),女,湖南新化人,工程师,学士1锌合金面临竞争与挑战。1959年国际铅锌研究组织发起了1个旨在开发新型的、先进的压铸锌铝合金的研究计划,这个计划促使了薄壁锌铝合金压铸技术和IL ZRO216、IL ZRO212铸造锌铝合金[1、2]的出现。IL ZRO212(后经改进发展成ZA12合金)铸造锌合金的蠕变性能与Zamak3和Zamak5相当,但其铸造性能和力学性能更好。上世纪70年代后期又开发了性能更优的ZA8和综合力学性能最佳的ZA27合金。此后,在世界范围内,人们开始研究、开发锌铝合金,一些国家还将锌铝合金列入国家标准[3]。 2 锌铝合金的主要组元及其作用 锌铝合金中的主要组元除了锌、铝以外,还有铜、镁元素,了解这些组元的相互作用对于锌铝合金的研究、开发和推广应用具有重要意义。 锌是六方晶格,无同素异构转变。纯锌的力学性能较低(σ b =150MPa),难以满足工程构件对性能的要求,因此应用中常加入强化元素。锌基合金中常用的强化元素有铝、铜和镁。其中铝是锌铝合金中首要的强化元素,铝可以提高锌合金的流动性,细化晶粒,改善铸件的机械性能。锌铝合金中,随铝含量增加,强度提高,韧性下降。铝与锌之间高温时无限互溶,低温下相互形成置换式固溶体,不形成金属间化合物。铝在锌中固溶度很小,而锌在铝中有很大的固溶度,且随温度变化显著,如共析温度下富铝相的固溶锌量高达30%,室温下其溶解度变为2%,这使得这种合金有很强的固溶强化效果。 — 2 4 —

相关文档
最新文档