运筹学第二章线性规划的对偶理论复习题

运筹学第二章线性规划的对偶理论复习题
运筹学第二章线性规划的对偶理论复习题

运筹学大作业 哈工大

课程名称:对偶单纯形法 一、教学目标 在对偶单纯形法的学习过程中,理解和掌握对偶问题;综合运用线性规划和对偶原理知识对对偶单纯形法与单纯形法进行对比分析,了解单纯形法和对偶单纯形法的相同点和不同点,总结出各自的适用范围;掌握对偶单纯形法的求解过程;并能运用对偶单纯形法独立解决一些运筹学问题。 二、教学内容 1) 对偶单纯形法的思想来源(5min) 2) 对偶单纯形法原理(5min) 3) 总结对偶单纯形法的优点及适用情况(5min) 4) 对偶单纯形法的求解过程(10min) 5) 对偶单纯形法例题(15min) 6) 对比分析单纯形法和对偶单纯形法(10min) 三、教学进程: 1)讲述对偶单纯形法思想的来源: 1954年美国数学家C.莱姆基提出对偶单纯形法(Dual Simplex Method )。单纯形法是从原始问题的一个可行解通过迭代转到另一个可行解,直到检验数满足最优性条件为止。对偶单纯形法则是从满足对偶可行性条件出发通过迭代逐步搜索原始问题的最优解。在迭代过程中始终保持基解的对偶可行性,而使不可行性逐步消失。因此在保持对偶可行性的前提下,一当基解成为可行解时,便也就是最优解。 2)讲述对偶单纯形法的原理 A.对偶问题的基本性质 依照书第58页,我们先介绍一下对偶问题的六个基本性质: 性质一:弱对偶性 性质二:最优性。如果 x j (j=1...n)原问题的可行解,y j 是其对偶问题可 行解,且有 ∑=n j j j x c 1 =∑=m i i i y b 1 ,则x j 是原问题的最优解,y j 是其对偶问题的最

优解。 性质三:无界性。如果原问题(对偶问题)具有无界解,则其对偶问题(原问题)无可行解。 性质四:强对偶性。如果原问题有最优解,则其对偶问题也一定有最优解。 性质五:互补松弛型。在线性规划问题的最优解中,如果对应某一约束条件的对偶变量值为零,则该约束条件取严格等式;反之如果约束条件取严格不等式,则其对应的对偶变量一定为零。 性质六:线性规划的原问题及其对偶问题之间存在一对互补的基解,其中原问题的松弛变量对应对偶问题的变量,对偶问题的剩余变量对应原问题的变量;这些互相对应的变量如果在一个问题的解中是基变量,则在另一问题的解中是非基变量;将这对互补的基解分别代入原问题和对偶问题的目标函数有z=w. B.对偶单纯形法(参考书p64页) 设某标准形式的线性规划问题,对偶单纯形表中必须有c j -z j ≤0(j=1...n),但b i (i=1...m)的值不一定为正,当对i=1...m ,都有b i ≥0时,表中原问题和对偶问题均为最优解,否则通过变换一个基变量,找出原问题的一个目标函数值较小的相邻的基解。 3)为什么要引入对偶单纯形法 从理论上说原始单纯形法可以解决一切线性规划问题,然而实际问题中,由于考虑问题的角度不同,变量设置的不同,便产生了原问题及其对偶问题,对偶问题是原问题从另外一个角度考虑的结果。用对偶单纯形法求解线性规划问题时,当约束条件为“≥”时,不必引入人工变量,使计算简化。 例如,有一线性规划问题: min ω =12 y 1 +16y 2 +15 y 3 约束条件 ?? ?? ???≥=≥+≥+0)3,2,1(3522 423121 i y y y y y i

运筹学第四章多目标规划

习题四 4.1 分别用图解法和单纯形法求解下述目标规划问题 (1) min z =p 1(+1d ++2d )+p 2-3d st. -x 1+ x 2+ d -1- d + 1=1 -0.5x 1+ x 2+ d - 2-d + 2=2 3x 1+3x 2+ d -3- d +3=50 x 1,x 2≥0;d -i ,d +i ≥0(i =1,2,3) (2) min z =p 1(2+1d +3+2d )+p 2-3d +p 3+4d st. x 1+ x 2+d -1-d + 1 =10 x 1 +d -2-d +2 =4 5x 1+3x 2+d -3-d +3 =56 x 1+ x 2+d -4-d +4 =12 x 1,x 2≥0;d -i ,d +i ≥0(i =1, (4) 4.2 考虑下述目标规划问题 min z =p 1(d +1+d +2)+2p 2d -4+p 2d -3+p 3d -1 st. x 1 +d -1-d +1=20 x 2+d -2-d +2=35 -5x 1+3x 2+d - 3-d + 3=220 x 1-x 2+d -4-d +4=60 x 1,x 2≥0;d -i ,d +i ≥0(i =1, (4) (1)求满意解; (2)当第二个约束右端项由35改为75时,求解的变化; (3)若增加一个新的目标约束:-4x 1+x 2+d -5-d +5=8,该目标要求尽量达 到目标值,并列为第一优先级考虑,求解的变化; (4)若增加一个新的变量x 3,其系数列向量为(0,1,1,-1)T ,则满意解如何变化? 4.3 一个小型的无线电广播台考虑如何最好地来安排音乐、新闻和商业节目时间。依据法律,该台每天允许广播12小时,其中商业节目用以赢利,每小时可收入250美元,新闻节目每小时需支出40美元,音乐节目每播一小时费用为17.50美元。法律规定,正常情况下商业节目只能占广播时间的20%,每小时至少安排5分钟新闻节目。问每天的广播节目该如何安排?优先级如下: P 1:满足法律规定要求; P 2:每天的纯收入最大。 试建立该问题的目标规划模型。

运筹学第二章线性规划

第二章线性规划 教学目的和要求: 目的:使学生具备线性规划的基本知识以及应用线性规划的基本能力。 要求:理解线性规划概念,标准型,解的概念,基本定理;掌握单纯形法,人工变量法,了 解图解法。 重点:线性规划标准型,解的概念,单纯形法,人工变量法。 难点:线性规划基本定理,单纯形法。 教学方法:讲授法,习题法。 学时分配:12学时 作业安排:见教材P 38. 线性规划是运筹学的一个重要分支。1939年苏联科学家康托罗维奇提出了生产组织和计划中的线性规划模型。1947年美国学者丹捷格(George B.Dantzig)提出了求解一般线性规划问题的方法。此后,线性规划理论日趋成熟,应用也日益广泛和深入。 第一节线性规划问题 一、问题的提出 在企业的生产经营活动中经常会面临这样两类问题:一是如何合理地利用有限的人力、物力、财力等资源,取得最佳的经济效果;二是在取得一定的经济效果的前提下,如何合理安排使用人力、物力、财力等资源,使花费的成本最低。 例1.生产计划问题 某工厂利用甲、乙、丙、丁四种设备生产A 、B 、C 三种产品,具体数据如下表所示。 A 、B 、C 单位产品的利润分别是4.5、5、7(百元)。问如何安排生产计划,才能使所获总利润最大? 解:设产品A 、B 、C 产量分别为X 1,X 2,X 3件,Z 表示利润,要求总利润最大,即求Z=4.5X 1+5X 2+7X 3 的最大值,故记作极大化Z=4.5X 1+5X 2+7X 3,另外对甲、乙、丙、丁设备需满足2X 1+2X 2+4X 3≦800, X 1+2X 2+3X 3≦650,4X 1+2X 2+3X 3≦850,2X 1+4X 2+2X 3≦700;同时产量应非负,故X j ≧0 (j=1,2,3); 以上问题可用数学模型表示为: 极大化Z=4.5X 1+5X 2+7X 3 满足 2X 1+2X 2+4X 3≦800 X 1+2X 2+3X 3≦650 4X 1+2X 2+3X 3≦850 2X 1+4X 2+2X 3≦700 X j ≧0 (j=1,2,3) 例2.运输问题 设某种物资有m 个产地;A 1,A 2, …,A m ,它们的产量分别为a 1,a 2, …,a m ,有n 个销地B 1,B 2, …,B n 需要这种物资,它们的销量分别为b 1,b 2, …,b n 。已知A i 到B j 的单位运价是C ij (i=1,2, …,m; j=1,2, …,n)。 设供销满足平衡条件,即 。 问怎样组织运输,才能满足要求,且使总运费最少? ---- 7 5 4.5 单位利润 700 2 4 2 丁 850 3 2 4 丙 650 3 2 1 乙 800 4 2 2 甲 设备可供工时(h) C B A 产品 设备 ∑=∑==n 1j j b m 1i i a

运筹学第四章

运筹学第四章习题答案 4.1若用以下表达式作为目标规划的目标函数,其逻辑是否正确?为什么? (1)max {- d -+d } (2)max {-d ++ d } (3)min {-d ++d } (4)min {-d -+ d } (1)合理,令f (x )+- d -+ d =b,当f (x )取最小值时,- d -+ d 取最大值合理。 (2)不合理,+ d 取最大值时,f (x )取最大值,- d 取最大值时,f (x )应取最小值 (3)合理,恰好达到目标值时,- d 和+ d 都要尽可能的小。 (4)合理,令f (x )+- d -+ d =b,当f (x )取最大值时,- d -+ d 取最小值合理。 4.2用图解法和单纯形法解下列目标规划问题 (1)min {P 13 +d ,P 2- 2d ,P 3(- 1d ++ 1d )} 24261121=-+++- d d x x 52221=-+++- d d x x 155331=-++-d d x 3,2,1,0,,,21=≥+-i d d x x i i (2)min{P 1(+++43d d ),P 2+1d ,P 3-2d ,P 4(--+4 35.1d d )} 401121=-+++-d d x x 1002221=-++--d d x x 30331=-++-d d x 15442=-++-d d x 4,3,2,1,0,,,21=≥+-i d d x x i i (1)图解法

0 A B C X 1 由图可知,满足域为线段EG,这就是目标规划方程的解,可求得:E,G 的坐标分别为(0,12),(3,3) 故该问题的解为)312,3()3,3()12,0(21221a a a a a +=+ )1,0,(2121=+≥a a a a (2)图解法 2 1 由图可知,满足域为线段AB A(25,15),B(30,10)故该问题的解可 表示为)1015,3025()10,30()15,25(212121a a a a a a ++=+ )1,0(212,1=+≥a a a a

运筹学课件第四章目标规划

第四章目标规划 一、学习目的与要求 1、掌握目标规划的图解法模型; 2、掌握目标规划的单纯形的求解模型; 3、掌握目标规划的灵敏度分析。 二、课时6学时 第一节目标规划问题及其数学模型 一、问题的提出 应用线性规划可以处理许多线性系统的最优化问题,但线性规划,整数规划和非线性规划都只有一个目标函数,而在实际问题中,常常需要考虑多个目标:如设计一个新产品的工艺过程,不仅希望获利大,而且希望产量高,消耗低,质量好,投入少等。而这些目标之间通常是矛盾的。所以这类问题多目标问题比单目标问题要复杂得多,我们把这一类问题称为目标规划问题。 目标规划与线性规划相比,有以下优点: 1.线性规则只讨论一个线性目标函数在一组线性约束条件下的极值问题。 实际问题中,往往要考虑多个目标的决策问题,这些目标可能互相矛盾,也可能没有统一的度量单位,很难比较。目标规划就能够兼顾地处理多种目标的关系,求得更切合实际的解。 2.线性规划是在满足所有约束条件的可行解中求得最优解。而在实际问题 中往往存在一些相互矛盾的约束条件,如何在这些相互矛盾的约束条件下,找到一个满意解就是目标规划所要讨论的问题。 3.线性规划问题中的约束条件是不分主次、同等对待的,是一律要满足的“硬约束”。而在实际问题中,多个目标和多个约束条件不一定是同等重要的,而是有轻重缓急和主次之分的,如何根据实际情况确定模型和求解,使其更合实际是目标规划的任务。 4.线性规划的最优解可以说是绝对意义下的最优,为求得这个最优解,往往要花去大量的人力、物力和才力。而在实际问题中,却并不一定需要去找这种最优解。目标规划所求的满意解是指尽可能地达到或接近一个或几个已给定的指标值,这种满意解更能够满足实际的需要。 因此可以认为,目标规划更能够确切描述和解决经济管理中的许多实际问题。目前目标规划的理论和方法已经在经济计划、生产管理、经营管理、市场分析、财务管理等方面得到广泛的应用。 二、目标规划的数学模型 例1 某工厂生产两种产品,受到原材料和设备工时的限制。在单件利润等有关数据已知的条件下,要求制定一个获利最大的生产计划,具体数据见表:

《运筹学》第3章习题

第三章线性规划对偶理论与灵敏度分析习题 一、思考题 1.对偶问题和对偶变量的经济意义是什么? 2.简述对偶单纯形法的计算步骤。它与单纯形法的异同之处是什么? 3.什么是资源的影子价格?它和相应的市场价格之间有什么区别? 4.如何根据原问题和对偶问题之间的对应关系,找出两个问题变量之间、解及检 验数之间的关系? 5.利用对偶单纯形法计算时,如何判断原问题有最优解或无可行解? 6.在线性规划的最优单纯形表中,松弛变量(或剩余变量)0>+k n x ,其经济意 义是什么? 7.在线性规划的最优单纯形表中,松弛变量k n x +的检验数0>+k n σ(标准形为 求最小值),其经济意义是什么? 8.将i j j i b c a ,,的变化直接反映到最优单纯形表中,表中原问题和对偶问题的解 将会出现什么变化?有多少种不同情况?如何去处理? 二、判断下列说法是否正确 1.任何线性规划问题都存在且有唯一的对偶问题。 2.对偶问题的对偶问题一定是原问题。 3.若线性规划的原问题和其对偶问题都有最优解,则最优解一定相等。 4.对于线性规划的原问题和其对偶问题,若其中一个有最优解,另一个也一定 有最优解。 5.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷多个最优解。 6.已知在线性规划的对偶问题的最优解中,对偶变量0>* i y ,说明在最优生产计 划中,第i 种资源已经完全用尽。 7.已知在线性规划的对偶问题的最优解中,对偶变量0=*i y ,说明在最优生产计 划中,第i 种资源一定还有剩余。 8.对于i j j i b c a ,,来说,每一个都有有限的变化范围,当其改变超出了这个范围 之后,线性规划的最优解就会发生变化。 9.若某种资源的影子价格为u ,则在其它资源数量不变的情况下,该资源增加k 个单位,相应的目标函数值增加 u k 。 10.应用对偶单纯形法计算时,若单纯形表中某一基变量0

《运筹学》习题线性规划部分练习题及答案.doc

《运筹学》线性规划部分练习题 一、思考题 1. 什么是线性规划模型,在模型中各系数的经济意义是什么? 2. 线性规划问题的一般形式有何特征? 3. 建立一个实际问题的数学模型一般要几步? 4. 两个变量的线性规划问题的图解法的一般步骤是什么? 5. 求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 6. 什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 7. 试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 8. 试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 9. 在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 10.大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 11.什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 二、判断下列说法是否正确。 1. 线性规划问题的最优解一定在可行域的顶点达到。 2. 线性规划的可行解集是凸集。 3. 如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。 4. 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。 5. 线性规划问题的每一个基本解对应可行域的一个顶点。 6. 如果一个线性规划问题有可行解,那么它必有最优解。 7. 用单纯形法求解标准形式(求最小值)的线性规划问题时,与0 >j σ对应的变量都可以被选作换入变量。 8. 单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。 9. 单纯形法计算中,选取最大正检验数k σ对应的变量k x 作为换入变量,可使目 标函数值得到最快的减少。 10. 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。 三、建立下面问题的数学模型 1. 某公司计划在三年的计划期内,有四个建设项目可以投资:项目Ⅰ从第一年到 第三年年初都可以投资。预计每年年初投资,年末可收回本利120% ,每年又可以重新将所获本利纳入投资计划;项目Ⅱ需要在第一年初投资,经过两年可收回本利150% ,又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目Ⅲ需要在第二年年初投资,经过两年可收回本利160% ,但用于该项目的最大投资额不得超过15万元;项目Ⅳ需要在第三年年初投资,年末可收回本利140% ,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润? 2.某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、 100克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单 价如下表2—1所示:

《运筹学》第3章习题

第三章线性规划对偶理论与灵敏度分析习题 一、 思考题 1. 对偶问题和对偶变量的经济意义是什么 2.简述对偶单纯形法的计算步骤。它与单纯形法的异同之处是什么 3.什么是资源的影子价格它和相应的市场价格之间有什么区别 4.如何根据原问题和对偶问题之间的对应关系,找出两个问题变量之间、解及检 验数之间的关系 5.利用对偶单纯形法计算时,如何判断原问题有最优解或无可行解 6.在线性规划的最优单纯形表中,松弛变量(或剩余变量)0>+k n x ,其经济意 义是什么 7.在线性规划的最优单纯形表中,松弛变量k n x +的检验数0>+k n σ(标准形为 求最小值),其经济意义是什么 8.将i j j i b c a ,,的变化直接反映到最优单纯形表中,表中原问题和对偶问题的解 将会出现什么变化有多少种不同情况如何去处理 二、 判断下列说法是否正确 1.任何线性规划问题都存在且有唯一的对偶问题。 2.对偶问题的对偶问题一定是原问题。 3.若线性规划的原问题和其对偶问题都有最优解,则最优解一定相等。 4.对于线性规划的原问题和其对偶问题,若其中一个有最优解,另一个也一定 有最优解。 5.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷多个最优解。 6.已知在线性规划的对偶问题的最优解中,对偶变量0>*i y ,说明在最优生产计 划中,第i 种资源已经完全用尽。 7.已知在线性规划的对偶问题的最优解中,对偶变量0=*i y ,说明在最优生产计 划中,第i 种资源一定还有剩余。 8.对于i j j i b c a ,,来说,每一个都有有限的变化范围,当其改变超出了这个范围 之后,线性规划的最优解就会发生变化。 9.若某种资源的影子价格为u ,则在其它资源数量不变的情况下,该资源增加k 个单位,相应的目标函数值增加 u k 。 10.应用对偶单纯形法计算时,若单纯形表中某一基变量0

运筹学中线性规划实例汇总

实验报告 课程名称:运筹学导论 实验名称:线性规划问题实例分析专业名称:信息管理与信息系统 指导教师:刘珊 团队成员:邓欣(20112111 蒋青青(20114298 吴婷婷(20112124 邱子群(20112102 熊游(20112110 余文媛(20112125 日期:2013-10-25 成绩:___________

1.案例描述 南部联盟农场是由以色列三个农场组成的联合组织。该组织做出了一个关于农场农作物的种植计划,如下: 每一个农场的农业产出受限于两个量,即可使用的灌溉土地量和用于灌溉的水量。数据见下表: 适合本地区种植的农作物包括糖用甜菜、棉花和高粱。这三种作物的差异在于它们每亩的期望净收益和水的消耗量不同。另外农业部门已经制定了南部联盟农场作物总亩数的最大配额,见下表: 作物的任何组合可以在任何农场种植,技术部门的任务是找出一个种植方案使南部联盟农场的净收益最大化。 2.建立模型 决策变量为Xi(i=1,2,……,9,表示每个农场每种作物的种植量。 MAX Z=1000(X1+X2+X3+750(X4+X5+X6+250(X7+X8+X9 约束条件: (1)每一个农场使用的土地 X1+X4+X7≤400

X2+X5+X8≤600 X3+X6+X9≤300 (2每一个农场的水量分布 3X1+2X4+X7≤600 3X2+2X5+X8≤800 3X3+2X6+X9≤375 (3每一种作物的总种植量 X1+X2+X3≤600 X4+X5+X6≤500 X7+X8+X9≤325 非负约束Xi≥0 , i=1,2, (9) 3.计算机求解过程 步骤1.生成表格 步骤2.输入数据

(完整word版)第二章运筹学 线性规划

第二章 线性规划 主要内容:1、线性规划问题及数学模型 2、线性规划问题的解及其性质 3、图解法 4、单纯形法 5、大M 法和两阶段法 重点与难点:线性规划数学模型的建立:一般形成转化为标准型的方法:单纯形法的求解步骤。 要 求:理解本章内容,掌握本章重点与难点问题;深刻理解线性规划问题的基本概念、基本性质,熟练掌握 其求解技巧;培养解决实际问题的能力。 §1 线性规划的数学模型及解的性质 一、数学模型(一般形式) 例 1 已知某市有三种不同体系的建筑应予修建,其耗用资源数量及可用的资源限量如下表,问不同体系的面积应各建多少,才能使提供的住宅面积总数达到最大? 解:设三种体系的建筑面积依次为1x ,2x ,3x 万平方米, 则目标函数为 321max x x x z ++= 约束条件为 ?? ?? ???????=≥≤++≤≤++≤++≤++3,2,10 4005.335.41470021015000 180190110200025301211000 122137105 3211321321321j x x x x x x x x x x x x x x j 例2 某工厂要安排生产甲、乙两种产品。已知:

问:如何安排两种产品的生产数量,才能使总产值最高? 解:设 21,x x 分别为甲、乙两种产品的生产量: 则目标函数为 21127m ax x x z += 约束条件为??? ??? ?=≥≤+≤+≤+2,1,03001032005436049112121j x x x x x x x j 从以上两例可以看出,它们都属于一类优化问题。它们的共同特征: ①每一个问题都有一组决策变量(n x x x 21,)表示某一方案;这组决策变量的值就代表一个具体方案。一般这 些变量的取值是非负的。 ②存在一定的约束条件,这些约束条件可以用一组线性等式或不等式来表示。 ③都有一个要求达到的目标,它可用决策变量的线性函数(称为目标函数)来表示;按问题的不同,要求目标函数实现最大化或最小化。 满足以上三个条件的数学模型称为线性规划的数学模型。其一般形式为: 目标函数 n n x c x c x c z +++= 2211m ax (m in) 约束条件 ()()()????? ????=≥=≥≤+++=≥≤+++=≥≤+++n j x b x a x a x a b x a x a x a b x a x a x a j m n mn m m n n n n ,,2,1,0,,,22112222212111212111 可行解:满足约束条件的一组决策变量,称为可行解。 最优解:使目标函数取得最大(小)值的可行解,称为最优解。 最优值:目标函数的最大(小)值,称为最优值。 二、标准型 (一)问题的标准形式: n n x c x c x c z +++= 2211ma x ????? ?? ??=≥=+++=+++=+++n j x b x a x a x a b x a x a x a b x a x a x a j m n mn m m n n n n ,,2,1,022112222212111212111

运筹学_第2章_对偶理论习题

第二章线性规划的对偶理论 2.1 写出下列线性规划问题的对偶问题 max z=2x1+2x2-4x3 x1 + 3x2 + 3x3 ≤30 4x1 + 2x2 + 4x3≤80 x1、x2,x3≥0 解:其对偶问题为 min w=30y1+ 80y2 y1+ 4y2≥2 3y1 + 2y2 ≥2 3y1 + 4y2≥-4 y1、y2≥0 2.2 写出下列线性规划问题的对偶问题 min z=2x1+8x2-4x3 x1 + 3x2-3x3 ≥30 -x1 + 5x2 + 4x3 = 80 4x1 + 2x2-4x3≤50 x1≤0、x2≥0,x3无限制 解:其对偶问题为 max w=30y1+80 y2+50 y3 y1-y2 + 4 y3≥2 3y1+5y2 + 2y3≤8 -3y1 + 4y2-4y3 =-4 y1≥0,y2无限制,y3≤0 2.3已知线性规划问题 max z=x1+2x2+3x3+4x4 x1 + 2x2 + 2x3 +3x4≤20 2x1 + x2 + 3x3 +2x4≤20 x1、x2,x3,x4≥0 其对偶问题的最优解为y1*=6/5,y2*=1/5。试用互补松弛定理求该线性规划问题的最优解。 解:其对偶问题为

min w=20y1+ 20y2 y1 + 2y2≥1 (1) 2y1 + y2 ≥2 (2) 2y1 +3y2≥3 (3) 3y1 +2y2≥4 (4) y1、y2≥0 将y1*=6/5,y2*=1/5代入上述约束条件,得(1)、(2)为严格不等式;由互补松弛定理可以推得x1*=0,x2*=0。又因y1*>0,y2*>0,故原问题的两个约束条件应取等式,所以 2x3*+3x4* = 20 3x3* +2x4* = 20 解得x3* = x4* = 4。故原问题的最优解为 X*=(0,0,4,4)T 2.4用对偶单纯形法求解下列线性规划 min z=4x1+2x2+6x3 2x1 +4x2 +8x3 ≥24 4x1 + x2 + 4x3≥8 x1、x2,x3≥0 解将问题改写成如下形式 max(-z)=-4x1-2x2-6x3 -2x1-4x2 -8x3 + x4=-24 -4x1-x2-4x3+x5 =-8 x1、x2,x3,x4,x5≥0 显然,p4、p5可以构成现成的单位基,此时,非基变量在目标函数中的系数全为负数,因此p4、p5构成的就是初始正侧基。整个问题的计算过程列在表2—7中。

运筹学_第1章_线性规划习题

第一章线性规划 习题1.1(生产计划问题)某企业利用A、B、C三种资源,在计划期内生产甲、乙两种产品,已知生产单位产品资源的消耗、单位产品利润等数据如下表,问如何安排生产计划使企业利润最大? 解:设x1、x2分别代表甲、乙两种产品的生产数量(件),z表示公司总利润。依题意,问题可转换成求变量x1、x2的值,使总利润最大,即 ma x z=50x1+100x2 且称z=50x1+100x2为目标函数。 同时满足甲、乙两种产品所消耗的A、B、C三种资源的数量不能超过它们的限量,即可分别表示为 x1 + x2≤300 2x1 + x2≤400 x2≤250 且称上述三式为约束条件。此外,一般实际问题都要满足非负条件,即x1≥0、x2≥0。 这样有 ma x z=50x1+100x2 x1 + x2≤300 2x1 + x2≤400 x2≤250 x1、x2≥0

习题1.2 靠近某河流有两个化工厂,流经第一化工厂的河流流量为每天500万m 3,在两个工厂之间有一条流量为200万m 3的支流。两化工厂每天排放某种有害物质的工业污水分别为2万m 3和1.4万m 3。从第一化工厂排出的工业污水流到第二化工厂以前,有20%可以自然净化。环保要求河流中工业污水含量不能大于0.2%。两化工厂处理工业污水的成本分别为1000元/万m 3和800元/万m 3。现在要问在满足环保要求的条件下,每厂各应处理多少工业污水,使这两个工厂处理工业污水的总费用最小。 解:设x 1、x 2分别代表工厂1和工厂2处理污水的数量(万m 3)。则问题的目标可描述为 min z =1000x 1+800x 2 约束条件有 第一段河流(工厂1——工厂2之间)环保要求 (2-x 1)/500 ≤0.2% 第二段河流(工厂2以下河段)环保要求 [0.8(2-x 1) +(1.4-x 2)]/700≤0.2% 此外有 x 1≤2; x 2≤1.4 化简得到 min z =1000x 1+800x 2 x 1 ≥1 0.8x 1 + x 2 ≥1.6 x 1 ≤2 x 2≤1.4 x 1、x 2≥0 习题1.3 ma x z =50x 1+100x 2 x 1 + x 2≤300 2x 1 + x 2≤400 x 2≤250 图1—1 x 2

运筹学--第一章 线性规划

习题一1.1 用图解法求解下列线性规划问题,并指出各问题是具有唯一最优解、 无穷多最优解、无界解或无可行解。 (1) min z =6x1+4x2(2) max z =4x1+8x2 st. 2x1+x2≥1 st. 2x1+2x2≤10 3x1+4x2≥1.5 -x1+x2≥8 x1, x2≥0 x1, x2≥0 (3) max z =x1+x2(4) max z =3x1-2x2 st. 8x1+6x2≥24 st. x1+x2≤1 4x1+6x2≥-12 2x1+2x2≥4 2x2≥4 x1, x2≥0 x1, x2≥0 (5) max z =3x1+9x2(6) max z =3x1+4x2 st. x1+3x2≤22 st. -x1+2x2≤8 -x1+x2≤4 x1+2x2≤12 x2≤6 2x1+x2≤16 2x1-5x2≤0 x1, x2≥0 x1, x2≥0 1.2. 在下列线性规划问题中,找出所有基本解,指出哪些是基本可行解并分别代入目标函数,比较找出最优解。 (1) max z =3x1+5x2(2) min z =4x1+12x2+18x3 st. x1+x3=4 st. x1+3x3-x4=3 2x2+x4=12 2x2+2x3-x5=5 3x1+2x2+x5=18 x j≥0 (j=1, (5) x j≥0 (j=1, (5) 1.3. 分别用图解法和单纯形法求解下列线性规划问题,并对照指出单纯形法迭代的每一步相当于图解法可行域中的哪一个顶点。 (1) max z =10x1+5x2 st. 3x1+4x2≤9 5x1+2x2≤8 x1, x2≥0 (2) max z =100x1+200x2 st. x1+x2≤500 x1≤200 2x1+6x2≤1200 x1, x2≥0 1.4. 分别用大M法和两阶段法求解下列线性规划问题,并指出问题的解属于哪一类: 9

《运筹学》之线性规划 (2)

运筹学 线性规划基本性质

线形规划基本性质目录 线性规划(概论) 线性规划问题:生产计划问题 例1.1 生产计划问题(资源利用问题)例1.1生产计划问题分析 例1.1生产计划问题模型 例1.1生产计划问题表格描述 例1 .2 营养配餐问题 各种食物的营养成分表 各种食物的营养成分表(转置) 例1 .2 营养配餐问题求解 用于成功决策的实例 线形规划的一般模型:特点 线形规划的一般模型:数学模型线性规划问题隐含的假定 比例性假定 可加性假定 连续性假定 确定性假定 线形规划的图解法 线形规划解的可能结果 线形规划的标准形式1 线形规划的标准形式2 非标准型LP的标准化:目标函数 非标准型LP的标准化:约束函数1 非标准型LP的标准化:约束函数2 非标准型LP的标准化:决策变量 线形规划解的概念:可行解 线形规划解的概念:最优解 线形规划解的概念:基本解 线形规划解的概念:最优基本解 线形规划的应用模型 生产计划问题 生产计划问题:表格分析 生产计划问题:模型 产品配套问题 产品配套问题:工时分析 产品配套问题:配套分析 产品配套问题:模型 结束放映

线性规划(概论) 线形规划是研究解决有限资源最佳分配的运筹学方法,即如何对有限的资源做出最佳方式的调配和最有利的利用,以便最充分地发挥资源的效能去获得最佳经济效益。

线性规划问题:生产计划问题 1、如何合理使用有限的人力、物力和资 金,实现最好的经济效益。 2、如何合理使用有限的人力、物力和资 金,以达到最经济的方式,完成生产 计划的要求。

例1.1 生产计划问题(资源利用问题) 胜利家具厂生产桌子和椅子两种家具。桌子售价50元/张,椅子销售价格30元/把,生产桌子和椅子要求需要木工和油漆工两种工种。生产一张桌子需要木工4小时,油漆工2小时。生产一把椅子需要木工3小时,油漆工1小时。该厂每个月可用木工工时为120小时,油漆工工时为50小时。问该厂如何组织生产才能使每月的销售收入最大?

运筹学-线性规划模型在实际生活中的应用

线性规划模型在实际生活中的应用 【摘要】线性规划在实际生活中扮演着很重要的角色,研究对象是计划管理工作中有关安排和估值的问题,其广泛应用于经济等领域,是实际生活中进行管理决策的最有效的方法之一。解决的主要问题是在给定条件下,按某一衡量指标来寻找安排的最优方案。本文通过对例题利用线性规划分析,如何合理的分配利用,最终找到最优解使企业利润最大,说明了线性规划在实际生活中的应用,而且对线性规划问题模型的建立,模型的解进行了分析,运用图解法和单纯形法解决问题。 【关键词】线性规划、建模、实际生活、图解法、单纯形法 前言:线性规划(Linear programming,简称LP)是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。为合理地利用有限的人力、物力、财力等资源作出的最优决策,提供科学的依据。 在实际生活中,经常会遇到一定的人力、物力、财力等资源条件下,如何精打细算巧安排,用最少的资源取得最大的效益的问题,而这正是线性规划研究的基本内容,它在实际生活中有着非常广泛的应用.任何一个组织的管理者都必须对如何向不同的活动分配资源的问题做出决策,即如何有效地利用人力、物力完成更多的任务,或在预定的任务目标下如何耗用最少的人力、物力去实现目标。在许多情况下,大量不同的资源必须同时进行分配,需要这些资源的活动可以是不同的生产活动,营销活动,金融活动或者其他一些活动。随着计算技术的不断发展,使成千上万个约束条件和决策变量的线性规划问题能迅速地求解,更为线性规划在经济等各领域的广泛应用创造了极其有利的条件。线性规划已经成为现代化管理的一种重要的手段。本文运用常用的图解法和单纯形法解决利润最大化决

最全的运筹学复习题及答案

四、把下列线性规划问题化成标准形式: 2、minZ=2x1-x2+2x3 五、按各题要求。建立线性规划数学模型 1、某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:

根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。月销售分别为250,280和120件。问如何安排生产计划,使总利润最大。 2、某建筑工地有一批长度为10米的相同型号的钢筋,今要截成长度为3米的钢筋90根,长度为4米的钢筋60根,问怎样下料,才能使所使用的原材料最省 ? 1.某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示: 起运时间服务员数 2—6 6—10 10一14 14—18 18—22 22—2 4 8 10 7 12 4 每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数最少?

五、分别用图解法和单纯形法求解下列线性规划问题.并对照指出单纯形迭代的每一步相当 于图解法可行域中的哪一个顶点。

六、用单纯形法求解下列线性规划问题: 七、用大M法求解下列线性规划问题。并指出问题的解属于哪一类。

八、下表为用单纯形法计算时某一步的表格。已知该线性规划的目标函数为maxZ=5x1+3x2,约束形式为“≤”,X3,X4为松驰变量.表中解代入目标函数后得Z=10 X l X2X3X4 —10 b -1 f g X3 2 C O 1 1/5 X l a d e 0 1 (1)求表中a~g的值 (2)表中给出的解是否为最优解? (1)a=2 b=0 c=0 d=1 e=4/5 f=0 g=-5 (2)表中给出的解为最优解 第四章线性规划的对偶理论 五、写出下列线性规划问题的对偶问题 1.minZ=2x1+2x2+4x3

运筹学线性规划习题.doc

一、需要掌握的主要内容 1、单纯形法的计算过程 (1)确定初始基本可行解 (2)最优性检验; (3)基变换。 2、单纯形法的灵敏度分析 (1)最终单纯形表中,变量系数的灵敏度分析针对最优解不变时,判断其变化范围; (2)约束条件常数项b的灵敏度分析针对最优解不变时,判断其变化范围; (3)增加一个变量的灵敏度分析 首先,确定增加变量在初始单纯形表中的系数列P j ;然后,求出其对应在最终单纯形表 中的系数列P j ;最后求出σ j =C j -C B B-1P j 。 若σ j ≤0,则最优解不变;σ j ≥0,则继续进行基变换,直到求出最优解。 二、需要基本掌握的内容 1、解、基本解、可行解、基本可行解等基本概念; 2、利用单纯形法求解如何判断无可行解、无界解和无穷最优解等基本理论; 3、如何写出一个线性规划的对偶问题; 4、对偶单纯形法的基本思路和过程。 一、填空题 (1)线性规划模型中,松弛变量的经济意义是,它在目标函数中的系数是。 (2)设有线性规划问题:max z=CX AX≤b X≥0 有一可行基B,记相应基变量为X B ,非基变量为X N ,则可行解的定义为,基本可行 解的定义为,B为最优基的条件是。 (3)线性规划模型具有可行域,若其有最优解,必能在上获得。 二、选择题 1.线性规划一般模型中,自由变量可以用两个非负变量的()代换。 A.和 B.差 C.积 D.商 2.满足线性规划问题全部约束条件的解称为() A.最优解 B.基本解 C.可行解 D.多重解 3.当满足最优检验,且检验数为零的变量的个数大于基变量的个数时,可求得() A.多重解 B.无解 C.无界解 D.退化解 4.原问题与对偶问题的()相同。 A.最优解 B.最优目标值 C.解结构 D.解的分量个数 5.记线性规划原问题(p)max z=CX,对偶问题(D) min w=Yb AX≤b YA≥C

运筹学线性规划

1 人力资源分配的问题 例1.某昼夜服务的公交线路每天各时间段内所需司机和乘务人员数如下: 设司机和乘务人员分别在各时间段开始时上班,并连续工作八小时,问该公交线路怎样安排 司机和乘务人员,既能满足工作需要,又配备最少司机和乘务人员? 分析:不同上班班次时段的司机和乘务人员数 (图见书) 解:设 xi 表示第i 班次时开始上班的司机和乘务人员数,这样我们建立如下的数学模型。 ?? ? ??? ???? ? =≥≥+≥+≥+≥+≥+≥++++++=6,,2,1030205060 7060.6554433221616 54321 j x x x x x x x x x x x x x t s x x x x x x minZ j 且为整数 例2.一家中型的百货商场,它对售货员的需求经过统计分析如下表所示。为了保证售货人员充分休息,售货人员每周工作5天,休息两天,并要求休息的两天是连续的。问应该如何安排售货人员的作息,既满足工作需要,又使配备的售货人员的人数最少?

解:设xi ( i = 1,2,…,7)表示星期一至日开始休息的人数,这样我们建立如下的数学模型。 (图见书) ?? ? ??? ? ? ???? ?=≥≥++++≥++++≥++++≥++++≥++++≥++++≥++++++++++=7,6,,2,1028311925241528.432173217621765176547654365432543217654321 j x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x t s x x x x x x x minZ j 且为整数 约束条件:目标函数: 2 生产计划的问题 例3.某企业生产甲、乙、丙三种产品,每一产品均须经过A 、B 两道工序。A 工序有两种设备可完成,B 工序有三种设备可完成,除甲产品和乙产品的A 工序可随意安排外,其余只能在要求的设备上完成。加工单位产品所需工序时间及其他各项数据的费用有关资料见下表。试制订利润最大的产品加工方案。 (图见书) 解:用8个单下标变量分别表示3种产品在相应工序中的生产量,如表所示。 在约束条件中需考虑 x1+x2=x3+x4+x5 线性规划模型的目标函数为: max z=[(1.25-0.25)(x1+x2)+(2-0.35)(x6+x7)+(2.8-0.5)x8] - [0.05(5x1+10x6)+0.0321(7x2+9x7+12x8)+0.0625(6x3+8x6+8x7)+0.111857(4x4+11x8)+0.05×7x5] 即:max z=0.75x1+0.7753x2+0.65x6+0.8611x7+0.6844x8-0.375x3-0.4474x4-0.35x5 该问题线性规划模型为: max z= 0.75x1+0.7753x2+0.65x6+0.8611x7+0.6844x8-0.375x3-0.4474x4-0.35x5 ? ????? ??? ??=≥=---+≤≤+≤++≤++≤+8 ,,2,1004000770001144000886100012976000105..543215 8476387261 j x x x x x x x x x x x x x x x x x t s j 3 套裁下料问题 例4.现要做100套钢架,每套用长为2.9m,2.1m 和1.5m 的圆钢各一根。已知原料长7.4m ,问应如何下料使所用料最省? 若用套裁,下面有几种套裁方案,都可以考虑采用

相关文档
最新文档