图像纹理分析的方法与应用

图像纹理分析的方法与应用
图像纹理分析的方法与应用

 万方数据

图像纹理分析的方法与应用

作者:张学军, 郭建

作者单位:张学军(西北师范大学教育技术与传播学院,甘肃,兰州,730070), 郭建(西北师范大学教育技术与传播学院,甘肃,兰州,730070;盘锦市经济技术学校,辽宁,盘锦,124201)

刊名:

黑龙江科技信息

英文刊名:HEILONGJIANG SCIENCE AND TECHNOLOGY INFORMATION

年,卷(期):2009(16)

参考文献(9条)

1.占杰;陈阳;陈武凡一种新的基于大尺寸信息的MRF先验模型[期刊论文]-计算机工程与科学 2009(01)

2.方恒;吴怀宇基于MRF和颜色空间的立体图像匹配算法[期刊论文]-计算机技术与发展 2008(12)

3.刘杰;张艳宁;许星;王志印一种基于灰度颁布马尔可夫模型的图像分割[期刊论文]-计算机应用 2008(03)

4.谢磊;李梅;高智勇一种基于小波变换的马尔可夫随机场的视频对象分割[期刊论文]-计算机工程与应用

2008(07)

5.林生佑;叶福军基于MRF的复杂图像抠图[期刊论文]-中国图象图形学报A 2008(03)

6.刘琼;周慧灿;王耀南基于极坐标Log Gabor小波的纹理分析方法[期刊论文]-计算机应用与软件 2008(08)

7.王媛媛基于小波域纹理分析的图像自适应信息隐藏 2008

8.张璐璐;范海玲分形理论在图像信息提取中的应用[期刊论文]-光盘技术 2008(03)

9.褚标小波理论在图像去噪与纹理分析中的应用研究 2008

本文链接:https://www.360docs.net/doc/6015643289.html,/Periodical_hljkjxx200916052.aspx

数字图像处理在医学上的应用

数字图像处理的应用 数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号,并通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。 数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展;三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。 进行数字图像处理所需要的设备包括摄像机、数字图像采集器(包括同步控制器、模数转换器及帧存储器)、图像处理计算机和图像显示终端。 图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。 接下来,就讨论一下数字图像处理在医学上的应用。 自发现X射线以来,在医学领域可以用图像的形式揭示更多有用的医学信息,医学的诊断方式也发生了巨大的变化。随着科学技术的不断发展,现代医学已越来越离不开医学图像的信息处理。 目前的医学图像包括CT图像、核磁共振图像、B超扫描图像、数字X 光机图像、X 射线透视图像、各种电子内窥镜图像、显微镜下病理切片图像等。由于人眼识别度等客观因素的影响,大部分的图像需要依靠计算机的帮助。随着数字图像处理技术的发展,对这些图像的分析以及处理,会变得更加快捷,分析的结果也会更加精准。

与其他领域的应用相比较,医学影像等卫生领域信息更具独特性,医学图像较普通图像纹理更多,分辨率更高,相关性更大,存储空间要更大,并且为严格确保临床应用的可靠性,其压缩、分割等图像预处理、图像分析及图像理解等要求更高。 首先,对于一个病例,要进行图像采集,由于采集到的图像因试验测量系统和测量者个人因素存在较多噪声,所以要先通过预处理对图像进行去噪处理和灰度变换处理等使其变得较为清晰。预处理完成后再利用中心路径提取算法对所获取的图像进行进一步处理。 接下来要做的就是图像处理。 先对图像二值化,二值形态学的运算对象是集合给出一个图像集合和一个结构元素集合利用结构元素对图像进行操作。然后做中心线的提取等。 使用计算机进行图像的采集预处理以及二值化和计算排除了人为测 量的不精确性和误差提高了测量结果的可靠性。 随着信息技术的飞速发展和计算机应用水平的不断提高,利用计算机断层成像、正电子放射层析成像、单光子辐射断层摄像、磁共振成像、超声成像及其它医学影像设备所获得的图像被广泛应用于医疗诊断、组织容积定量分析、病变组织定位、解剖结构学习、治疗规划、功能成像数据的局部体效应校正、计算机指导手术和术后监测等各个环节。 医学图像处理借助于计算机图形、图像技术,使医学图像的质量和显示方法得到了极大的改善。这不仅可以基于现有的医学影像设备来极

图像纹理特征的分析方法研究

图像纹理特征的分析方法研究 黄晶,杨杰 武汉理工大学信息工程学院,武汉(430063) E-mail :jinghuang1019@https://www.360docs.net/doc/6015643289.html, 摘 要:本文重点介绍了几种借助纹理统计特征的分析方法,并对算法进行了比较。这些方 法包括:基于图像分形维数的特征分析,基于灰度共生矩阵的特征分析,基于灰度直方图的 特征提取。 关键词:分形维数,灰度共生矩阵,纹理特征 中图分类号:TP391 1.引言 虽然存在形形色色的图像纹理,并且人们进行纹理分析方面的工作已近半个世纪,但至 今还没有一个公认的确切的定义。纹理图像在局部区域内可能称不规则性,但在整体上则表 现出某种规律性,其灰度分布往往表现出某种周期性。 就其广义而言,纹理特征就是图像局部性质的统计,一个纹理图像可以看成一组独立的 同分布随机变量(,)W j k 经一空间算子()O ?作用而成的结果(,)F j k ,并用这些数字特征构 造图像的纹理特征。对纹理特征的提取方法可以分为统计法﹑构造法和频谱法。 2.纹理特征的分析方法 2.1 基于分形维数的特征分析 在分形理论中,最经典的理论是Hausdorff 维数[1],它对分形的理论分析和理解都很重 要,但很难直接求取,在实际运用中更多的是盒维数,关联维数,自相似维数以及尺度维数, 本文选取的是盒维数中的差分盒维数。 差分盒维数算法是以盒维数算法为基础提出的一种简单、快速、精确的算法。将M M ×大小的图像分割成L L ×的子块,令r=L/M ,将图像视为一个三维空间中的一个表面 (,,(,))x y f x y ,其中(,)f x y 为图像(,)x y 位置处的灰度值。X ,Y 平面被分割成许多L L ×的网格。在每个网格上,是一列L L h ××的盒子,h 为单个盒子的高度。设总的灰度级为G 。 设在第(,)i j 网格中图像灰度的最小值和最大值分别落在第k 和第l 个盒子中,则: (,)1r n i j l k =?+ (1) 其中r n 是覆盖第(,)i j 网格中的图像所需的盒子数,因而可以求出覆盖整个图像所需的 盒子数r N : ,(,)r r i j N n i j =∑ (2) 则其分形维数log()lim log(1/) r N D r = (3)基于分形维数的特征分析算法: (1)将原图转化为灰度图像; (2)以图像的任意像点(,,(,))i j f i j 为中心选取L L ×大小的窗口计算r n

ebnnuqc医学_图像处理技术

^ | You have to believe, there is a way. The ancients said:" the kingdom of heaven is trying to enter". Only when the reluctant step by step to go to it 's time, must be managed to get one step down, only have struggled to achieve it. -- Guo Ge Tech 医学图像处理技术 摘要:随着医学成像和计算机辅助技术的发展,从二维医学图像到三维可视化技术成为研究的热点,本文介绍了医学图像处理技术的发展动态,对图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。在比较各种技术在相关领域中应用的基础上,提出了医学图像处理技术发展所面临的相关问题及其发展方向。关键词:医学图像处理;图像分割;图像配准;图像融合;纹理分析 1.引言 近20 多年来,医学影像已成为医学技术中发展最快的领域之一,其结果使临床医生对 人体部病变部位的观察更直接、更清晰,确诊率也更高。20 世纪70 年代初,X-CT 的发明 曾引发了医学影像领域的一场革命,与此同时,核磁共振成像象(MRI :Magnetic Resonance Imaging)、超声成像、数字射线照相术、发射型计算机成像和核素成像等也逐步发展。计算机和医学图像处理技术作为这些成像技术的发展基础,带动着现代医学诊断正产生着深刻的变革。各种新的医学成像方法的临床应用,使医学诊断和治疗技术取得了很大的进展,同时将各种成像技术得到的信息进行互补,也为临床诊断及生物医学研究提供了有力的科学依据。 在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,往往需要借助医生的经验来判定。至于准确的确定病变体的空间位置、大小、几何形状及与周围生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图象处理技术对二维切片图象进行分析和处理,实现对人体器官、软组织和病变体的分割提取、三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分析,可以大大提高医疗诊断的 准确性和可靠性。此外,它在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用。 本文对医学图像处理技术中的图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。 2.医学图像三维可视化技术 2.1三维可视化概述 医学图像的三维可视化的方法很多,但基本步骤大体相同,如图.。从#$ /&’(或超声等成像系统获得二维断层图像,然后需要将图像格式(如0(#1&)转化成计算机方便处理的格式。通过二维滤波,减少图像的噪声影响,提高信噪比和消除图像的尾迹。采取图像插值方法,对医学关键部位进行各向同性处理,获得体数据。经过三维滤波后,不同组织器官需要进行分割和归类,对同一部位的不同图像进行配准和融合,以利于进一步对某感兴趣部位的操作。根据不同的三维可视化要求和系统平台的能力,选择不同的方法进行三维体绘制,实现三维重构。

图像处理和识别中的纹理特征和模型

纹理特征和模型 1,基于纹理谱的纹理特征 图像纹理分析中,最重要的问题是提取能够描述纹理的特征信息;这些特征可被用来分类和描述不同的纹理图像。在实际中常用到的方法有结构法和统计法;本文提出一种新的统计方法,每个纹理单元表征该位置及其领域象素的特征,整幅图像的纹理特征用纹理谱来表征,用这种方法进行分析较为简单。 定义纹理谱:纹理单元的频率分布。 基于纹理频谱的纹理特征: 3×3领域:权重: original reference calculate by myself (1)、黑白对称性 ()(3281) 1*100 () s i S i BWS S i ?? -+ ?? ?? =- ?? ?? ?? ∑ ∑ 反映频谱的对称性,不随纹理单元中起始计数位置的不同而不同。 (2)、几何对称性 ()4() 1 1*100 4 2*() Sj i Sj i GS Sj i ?? -+ ?? ?? =- ?? ?? ?? ∑ ∑ ∑ 反映图像旋转180度后,纹理谱的相似性; (3)、方向度

()()11*10062*()Sm i Sn i DD Sm i ?? -?? ??=-?????? ∑∑ ∑ 反映线性结构的角度。大的DD 说明纹理谱对图像的方向模式较为敏感;即图 像中有线性机构纹理单元存在。 以上三个特征都是图像的几何特征,可描述原始图像的宏观纹理;下面介绍几个描述图像微观纹理的特征。 (4)、方向特征 微观水平结构特征: ()*()MHS S i HM i =∑ ()(,,)*(,,)HM i P a b c P f g h = 同样,我们可以得到其它方向的方向纹理特征MVS ,MDS1,MDS2 (5)中心对称性 2()*[()]CS S i K i =∑ 2.常用统计特征: 把图像看成是一个二维随机过程的一次实现,可得到图像的直方图、均值、方差、偏度、峰度、能量、墒、自相关、协方差、惯性矩、绝对值、反差分等特征量。常用来描述纹理的统计特征的技术有子相关函数、功率谱、正交变换、灰度级同时事件、灰度级行程长、灰度级差分、滤波模板、相对极值密度、离散马尔可夫随机场模型、自回归模型、同时自回归模型等。 原图: 1、2、3、4阶矩

医学图像处理综述

医学图像处理综述 墨南-初夏2010-07-24 23:51:56 医学图像处理的对象是各种不同成像机理的医学影像。广泛使用的医学成像模式主要分为X射线成像(X—CT) ,核磁共振成像(MRI),核医学成像(NMI)和超声波成像(UI) 这四类。 (1)x射线成像:传统x射线成像基于人体不同器官和组织密度不同。对x射线的吸收衰减不同形成x射线影像。(例如人体中骨组织密度最大,在图像上呈白影,肺是软组织并且含有气体,密度最低,在照片上的图像通常是黑影。)常用于对人体骨骼和内脏器官的疾病或损伤进行诊断和定位。现代的x射线断层成像(x—cT) 发明于20世纪70年代,是传统影像技术中最为成熟的成像模式之一,其速度已经快到可以对心脏实现动态成像。其缺点是医生要在病人接收剂量和片厚之间进行折衷选择,空间分辨率和对比度的还需进一步提高。 (2)核磁共振成像(MIR) 发展于20世纪70年代,到80年代才进入市场,这种成像设备具有在任意方向上的多切片成像、多参数和多核素成像、可实现整个空问的真三维数据采集、结构和功能成像,无放射性等优点。目前MRI的功能成像(fMRI) 是MIR设备应用的前沿领域,广泛应用于大脑功能性疾病的诊断,并为肿瘤等占位性病变提供功能信息。MRI 受到世人的广泛重视,其技术尚在迅速发展

过程中。 (3)核医学成像(NMI ) ,目前以单光子计算机断层成像(SPECT) 和正电子断层成像(PET) 为主,其基本原理是向人体注射放射性核素示踪剂,使带有放射性核素的示踪原子进入人体内要成像的脏器或组织通过测量其在人体内的分布来成像。NMI不仅可以提供静态图像,而且可提供动态图像。 (4)超声波成像(Ultrasonic Imaging ) ,属于非电离辐射的成像模态,以二维平面成像的功能为主,加上血液流动的彩色杜普勒超声成像功能在内,在市场上已经广泛使用。超声成像的缺点是图像对比度差、信噪比不好、图像的重复性依赖于操作人员。但是,它的动态实时成像能力是别的成像模式不可代替的 在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体.这往往需要借助医生的经验来判定。至于准确地确定病变体的空间位置、大小、几何形状及与周围 生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图像处理技术对二维切片图象进行分析和处理。实现对人体器官,软组织和病变体的分割提取,三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分

图像纹理特征总体描述

图像纹理特征总体简述 纹理是一种反映图像中同质现象的视觉特征,它体现了物体表面的具有缓慢变化或者周期性变化的表面结构组织排列属性。纹理具有三大标志: ?某种局部序列性不断重复; ?非随机排列; ?纹理区域内大致为均匀的统一体; 不同于灰度、颜色等图像特征,纹理通过像素及其周围空间邻域的灰度分布来表现,即局部纹理信息。另外,局部纹理信息不同程度上的重复性,就是全局纹理信息。 纹理特征体现全局特征的性质的同时,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局部的偏差而无法匹配成功。 在检索具有粗细、疏密等方面较大差别的纹理图像时,利用纹理特征是一种有效的方法。但当纹理之间的粗细、疏密等易于分辨的信息之间相差不大的时候,通常的纹理特征很难准确地反映出人的视觉感觉不同的纹理之间的差别。例如,水中的倒影,光滑的金属面互相反射造成的影响等都会导致纹理的变化。由于这些不是物体本身的特性,因而将纹理信息应用于检索时,有时这些虚假的纹理会对检索造成“误导”。

一. 纹理特征的特点 ?优点: ?包含多个像素点的区域中进行统计计算; ?常具有旋转不变性; ?对于噪声有较强的抵抗能力; ?缺点: ?当图像的分辨率变化的时候,所计算出来的纹理可能会有较大偏差; ?有可能受到光照、反射情况的影响; ?从2-D图像中反映出来的纹理不一定是3-D物体表面真实的纹理; 二. 纹理特征分类 1. 基本说明

Gabor纹理特征

利用Gabor滤波器组提取图像纹理特征 本部分将包含以下四个方面:纹理特征提取方法综述、Gabor滤波器简介、Gabor滤波器组实现纹理特征提取的步骤与实现、存在的问题与改进策略。 1、纹理特征提取方法综述[1] 纹理没有准确的定义,但对纹理认识的共识是:①纹理不同于灰度和颜色等图像特征,它通过像素及其周围空间邻域的灰度分布来表现,即局部纹理信息;②局部纹理信息不同程度的重复性,即全局纹理信息。 按照纹理特征提取方法所基于的基础理论和研究思路的不同,并借鉴非常流行的Tuceryan和Jain的分类方法,将纹理特征提取方法分为四大家族:统计家族、模型家族、信号处理家族和结构家族。 统计家族的方法是基于像元及其邻域的灰度属性,研究纹理区域中的统计特性,或像元及其邻域内的灰度的一阶、二阶或高阶统计特性;在模型家族中,假设纹理是以某种参数控制的分布模型方式形成的,从纹理图像的实现来估计计算模型参数,以参数为特征或采用某种分类策略进行图像分割,因此模型参数的估计是该家族方法的核心问题;信号处理的方法是建立在时、频分析与多尺度分析基础之上,对纹理图像中某个区域内实行某种变换后,再提取保持相对平稳的特征值,以此特征值作为特征表示区域内的一致性以及区域间的相异性;结构家族的方法基于“纹理基元”分析纹理特征,着力找出纹理基元,认为纹理由许多纹理基元构成,不同类型的纹理基元、不同的方向及数目等,决定了纹理的表现形式。信号处理家族的方法从变换域提取纹理特征,其他3个家族直接从图像域提取纹理特征。各个家族的方法既有区别,又有联系。 利用Gabor滤波器组提取图像纹理特征,如图所示,可以归结为信号处理家族中小波方法的一个分支。

图像特征提取总结

图像常见xx方法简介 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一、颜色特征 (一)特点: 颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。 一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。 由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的xx与匹配方法 (1)颜色直方图 其优点在于: 它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于: 它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间: RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:

直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2)颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。 在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3)颜色矩 这种方法的数学基础在于: 图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。 (4)颜色聚合向量 其核心思想是: 将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。 (5)颜色相关图 二纹理特征 (一)特点: 纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行

confocal医学图像处理与分析-讲义1

医学图像处理与分析 北京大学医药卫生分析中心杨建茹 2010.3.15 第一节图像处理概述 1.图像(image)的定义 ?象,像 ?图像的定义 *图像是指景物在某种介质上的再现。 *图像是人们对客观世界的景象、事物的观察,以及对人们的思维、想像的一种描述与记录。*凡是能为人类视觉系统所感知的信息形式或人们心中的有形想像统称为图像。 *图像是对客观存在的物体的一种相似性的生动模仿或描述。是物体的一种不完全、不精确,但在某种意义上是适当的表示。 图像是用各种观测系统以不同形式和手段观测客观世界而获得的,可以直接或间接作用于人眼并进而产生视知觉的实体。 注:图像是人类从外界获得信息的主要来源。 各种观测系统的使用是人类视觉延续的原因。(显微镜、望远镜、CT等) 2.图像分类 总体而言分为:宏观、微观表面、内部 按色调不同分:无色调的黑白图像有色调的彩色图像 按亮度等级分:二值图像多值图像 按其内容的活动程度分:静态图像动态图像 按所占空间维数不同分:二维平面图像多维立体图像 按人眼观察的程度分:可见图像不可见图像 连续图像——离散图像 模拟图像——数字图像 3.模拟图像与数字图像 ①模拟图像 a. 定义:图像是用各种观测系统以不同形式和手段观测客观世界而获得的,可以直接或间接 作用于人眼并进而产生视知觉的实体。 b. 存在形式:常见的各种照片、图片、海报、广告画等均属模拟图像.医学中的图像包括组 织胚胎学、病理学、细胞学、遗传学、分子生物学、放射学、超声、X线、CT、磁共振、PET、电子显微术和热像等图像。如果把图形(如心电图、脑电图等)都包括进去,则几乎医学基础研究和临床诊断就离不开图像(形)了。 c.函数表示:f (x,y,λ,t) x,y ——表示图像在某点的坐标 f (x,y) ——表示图像在(x,y)点的强度(亮度) ②数字图像

医学图像处理及特点

数字医学图像及其特点 【摘要】数字医学是现代医学的重要发展方向,随着计算机技术的不断发展,数字医学图像在医学中的应用领域越来越广泛。本文主要针对数字图像在医学中的应用及其特点展开相关的综述。 【关键词】数字图像医学影像图像处理 引言 随着电子技术、计算机技术的不断推广和应用,计算机技术在医学领域的应用也日趋明显,尤其是在医学数字图像处理方面体现的尤为突出。数字医学影像通过无创伤的数据采集获得人体内部解剖学或生理功能信息,并以图像形式提取并显示出来【1】,因而数字图像在这种背景下应运而生。 1 数字医学图像的特点 现代医学影像包括四大部分:①以X-CT 为代表的X 射线影像;②磁共振成像MRI;③放射性核素显像如ECT;④超声波成像如超声CT 等。不管哪种医学图像,其影像灰度分布都是由人体组织特性参数的不同决定的。通常,这种差异(对比度)很小,导致影像上相邻灰度差别也就很小。而人眼对灰度的分辨率很低,只能清楚分辨从全黑到全白的十几个灰阶。所以,影像成像后必须经过数字后处理方具实用价值【2】。 2 数字图像处理 数字图像处理就是将图像转化为一个数字矩阵存放在计算机中,并采用一定的算法对其进行处理。数字图像处理的基础是数学,最主要任务就是各种算法的设计和实现。医学影像等卫生领域信息更具独特性,数字医学图像较普通图像纹理更多,分辨率更高,相关性更大,存储空间要更大,并且为严格确保临床应用的可靠性,其压缩、分割等图像预处理、图像分析及图像理解等要求更高【3】。数字医学图像处理跨计算机、数学、图形学、医学等多学科研究领域,数字医学图像处理技术包括图像变换、图像压缩、图像增强、图像平滑、边缘锐化、图像分割、图像识别【4】、图像融合等等。近年来,研发人员将众多领域方法引入应用于数字医学图像处理,经过不断的改进,处理算法的速度、处理效果得到不同程度的改善。随着信息技术的飞速发展和计算机应用水平的不断提高,利用计算机断层成像、正电子放射层析成像、单光子辐射断层摄像、磁共振成像、超声成像及其它医学影像设备所获得的图像被广泛应用于医疗诊断、组织容积定量分析、病变组织定位、解剖结构学习、治疗规划、功能成像数据的局部体效应校正、计算机指导手术和术后监测等各个环节【5】。 3 数字图像处理的优点

纹理特征

纹理特征 纹理是指存在于图像中某一范围内的形状很小的、半周期性或有规律地排列的图案。在图像判读中使用纹理表示图像的均匀、细致、粗糙等现象。纹理是图像处理和模式识别的主要特征之一。纹理特征是指图像灰度等级的变化,这种变化是与空间统计相关的。图像的纹理特征反应了图像本身的属性,有助于图像的区分。一般的图片都具有丰富、稳定的纹理特征,且利用统计方法方法提取图像的纹理特征具有计算量小的特点。 a.统计法 a)灰度共生矩阵 假定,在一幅图像中规定了一个方向(水平的、垂直的等)和一个距离(一个象素,两个象素等)。那么该物体的共生矩阵P 的第(i,j )个元素值等于灰度级i 和j 在物体内沿该方向相距该指定距离的两个像素上同时出现的次数,除以M ,其中M 是对P 有贡献的像素对的总数。矩阵P 是N ×N 的,其中N 为灰度阴影级的划分数目。 各个共生矩阵可以通过对距离和方向的各个组合来定义。对矩阵有贡献的像素对的总数M ,比物体内部像素的个数少,而且这个数目随着距离的增加逐渐减少。因此,小物体的矩阵会相当稀疏。由于这个原因,灰度级划分N 常常被减少,例如从256级到8级,以便于共生矩阵的计算。 在水平方向上的共生矩阵,如果考虑当前像素的左右方向上的像素,则称为对称共生矩阵,如果只考虑当前像素的右或左方向上的像素,则称为非对称共生矩阵。 例如,设一幅图像的大小为M ×N ,灰度级为L ,G ={0,1,2……., L-1},f(x,y)是坐标(x,y)处像素的灰度级,一幅图像的一个共生矩阵是一个L ×L 矩阵L L ij t T *][,T 中的元素是图像灰度的空间关系,以及按特定方式表示的两灰度间变化的次数。 我们只考虑水平方向的共生矩阵,则对称共生矩阵的定义如下: ∑∑=== M i N j ij k l t 00 ),(δ (3-2) 式中 ?? ?=-==+=j k l f i k l f j k l f i k l f )1,(,),()1,(,),( ;1),(=k l δ (3-3) 否则 0),(=k l δ (3-4) 当只考虑水平方向的右边的像素,则非对称共生矩阵的定义如下: j k l f i k l f =+=)1,(,),( ;1),(=k l δ (3-5) 否则 ;0),(=k l δ (3-6) 我们得到从灰度级i 到j 变化的概率如下:

图像处理在医学上的应用

数字图像处理在医学上的应用 徐胜632081101020 控制理论与控制工程 摘要: 本文介绍了数字图像处理技术在医学中的应用。并且举例采用显微光学放大系统及CCD数字图像采集系统拍摄人体微血管图像在对采集的图像进行二值化。图像处理技术也是医学影像学的重要组成部分,在人体信息可视化的基础上,进一步分析、识别、分割、理解、分类等,以便医生更加直观利用信息做出临床诊断。在医学教学、研究中具有广阔的应用价值。 关键词: 数字图像处理; 二值化; CCD数字图像采集; 1 引言 自伦琴1895年发现X射线以来,在医学领域可以用图像的形式揭示更多有用的医学信息,医学的诊断方式也发生了巨大的变化。随着科学技术的不断发展,现代医学已越来越离不开医学图像的信息处理, 医学图像在临床诊断、教学科研等方面有重要的作用。目前的医学图像主要包括CT (计算机断层扫描) 图像、MRI( 核磁共振)图像、B超扫描图像、数字X 光机图像、X 射线透视图像、各种电子内窥镜图像、显微镜下病理切片图像等。但是由于医学成像设备的成像机理、获取条件和显示设备等因素的限制, 使得人眼对某些图像很难直接做出准确的判断。计算机技术的应用可以改变这种状况,通过图像变换和增强技术来改善图像的清晰度, 突出重要的内容,抑制不重要的内容,以适应人眼的观察和机器的自动分析,这无疑大大提高了医生临床诊断的准确性和正确性。 数字图像处理的基本方法就是图像复原与图像增强。图像复原就是尽可能恢复原始图像的信息量,尽量保真。数字化的一个基本特征是它所固有的噪声。噪声可视为围绕真实值的随机波动, 是降低图像质量的主要因素。图像复原的一个基本问题就是消除噪声。图像增强就是通过利用人的视觉系统的生理特性更好地分辨图像细节。 与其他领域的应用相比较,医学影像等卫生领域信息更具独特性,医学图像较普通图像纹理更多,分辨率更高,相关性更大,存储空间要更大,并且为严格确保临床应用的可靠性,其压缩、分割等图像预处理、图像分析及图像理解等要求更高。医学图像处理跨计算机、数学、图形学、医学等多学科研究领域,医学图像处理技术包括图像变换、图像压缩、图像增强、图像平滑、边缘锐化、图像分割、图像识别、图像融合等等。 在此联系数字图像处理的相关理论知识和步骤设计规划系统采集和处理的具体流程同时充分考虑到图像采集设备的拍摄效果以及最终处理结果的准确性,例举了基于图像处理技术的人体手指甲襞处微血管管袢直径的测量方法。 2人体微血管显微图像的采集 人体微血管显微图像的采集采用了如图1所示的显微光学系统和图像采集系统主要由透镜模组滤镜模组光源系统电荷耦合器件以及图像采集卡等构成。

皮肤纹路

一、实验目的 1、掌握皮肤纹理的测定和分析方法。 2、了解正常人皮肤纹理特点及临床意义。 二、实验原理 皮肤纹理是真皮乳头向表皮突出,形成许多整齐的乳头线,称为嵴纹。在突起的嵴纹之间形成凹陷的沟,这些凹凸的纹理构成了人体的指纹和掌纹,简称皮纹。 皮纹形成于胚胎发育的早期(14~19周),出生后终生不变,而且每个人都有其特定的皮纹。因此,长期以来皮纹作为侦破案件的手段之一。大量的研究表明,某些遗传病患者的皮纹发生变异,可作为某些遗传病诊断的辅助指标。 三、实验用品 磁盘、人造海绵垫、红色印油(或黑色油墨)、8K白纸、直尺、放大镜、量角器、铅笔、纱布等。 四、实验内容 (一)皮肤资料印取方法 1、将红色印油适量地倒人磁盘的海绵垫上,用纱布涂抹均匀,再把白纸平铺于桌面上,准备取印。 2、受检者洗净双手,擦干后将手掌按在海绵垫上,使掌面获得均匀的印油(注意不要来回涂抹,印油量要适中)。 3、按压法印取掌纹。先将掌腕线印在白纸上,然后从后向前依掌、指顺序逐步轻轻放下,手指自然分开,适当用力按压手背,尤其是腕部、掌心及手指基部,以免漏印。提起手掌时,先将指头翘起,尔后是掌和掌腕面,这样便可获得满意的掌纹。注意不可加压过重,不可移动手掌和白纸,以免使皮纹重叠或模糊不清。 4、滚动法印取指纹。即在对应的掌纹下方,由左至右依次印取10个手指的指纹。印时,将手指由一侧向另一侧轻轻滚动1次(切勿来回滚动,以免图像重叠)。注意印出手指两侧的皮纹,记下10个手指的顺序。 (二)皮肤纹理分析 选取不同人的不同皮肤纹理,用放大镜进行观察:计数并分析指纹、掌纹及atd角等。

1、指纹:手指末 端腹面的皮纹。可分为 弓形纹、箕形纹和斗形 纹3种类型。 判断依据:皮纹线的走向和形态;有无 三叉点;有无圆心。 (1)弓形纹:弓形纹可分为简单弓形纹和帐篷形弓形纹。 简单弓形纹的特点:皮纹线由手指的一侧走向另一侧,中部隆起呈弓形,无三叉点和圆心。帐篷形弓形纹与简单弓形纹基本相同,只是弓形弯度较大,呈帐篷状。18-三体综合症弓形纹比例较高。 (2)箕形纹:箕形纹可分为尺箕和桡箕。箕形纹的特点是:皮纹线由一侧发出,斜向上弯曲后又回到原侧,出现1个三叉点和1个圆心。按箕口朝向分为:箕口朝向本手小指侧,即尺骨方向者称尺箕或正箕;箕口朝向本手拇指侧,即桡骨方向者称桡箕或反箕。先天愚型尺箕比例高。 (3)斗形纹:分为简单斗形纹和双箕斗形纹。简单斗形纹的特点是:皮纹线呈螺旋形或同心圆形,一般有一个圆心,两个三叉点。双箕斗形纹是由两个斗形纹互相绞结而成。 2、嵴纹数目的计数 指嵴纹的计数:弓形纹无三叉点,计数为零。箕形纹从圆心向三叉点连直线,计算经过直线的嵴线数。斗形纹从圆心分别向三叉点连直线,分别算出嵴纹数,在计算嵴纹总数时,只取其中较大的数值。 3、指嵴纹总数(TRC) 指嵴纹总数(TRC):等于双手10个指的嵴纹数相加之和。 4、褶纹 褶纹是手指和手掌的关节弯曲活动处形成的明显可见的褶线。可分为指褶纹和掌褶纹。 (1)指褶线 正常人除拇指仅有1条指褶纹外,其余4指均有2条指褶纹。某些染色体病患者,如21三体、18三体患者中其第5指仅有1条指褶线。 (2)掌褶纹

图像纹理特征提取方法

安徽大学 本科毕业论文(设计、创作) 题目:图像纹理特征提取方法研究 学生姓名:朱邵成学号:Z01114175 院(系):电气工程与自动化学院专业:自动化 入学时间:2011年9月 导师姓名:寻丽娜职称/学位:讲师/博士 导师所在单位:安徽大学电气工程与自动化学院 完成时间:2015年5月

图像纹理特征提取方法研究 摘要 近年来,随着信息多媒体时代的到来,以及网络在世界范围内的日益流行、云计算的风行,人们在日常生活工作接触的信息量越来越大。图像作为信息的一种载体,具有直观、信息量大、便于不同国家间交流的特点,是网络多媒体的重要组成部分。基于文本的图像检索是基于内容图像检索的基础,用人工方式解释图像信息,其工作量我们难以想象,可行性也值得商榷。因此CBIR方法有效解决了这一个难题。基于内容的图像检索(CBIR)包括四个阶段,分别是:获取图像、提取特征、分类图像、检索图像。图像检索主要是一个核心问题:选取何种算法提取哪一种图像特征,快速有效的进行图像的区分与检测。纹理特征的提取是 CBIR 的关键问题之一,本论文也是基于图像纹理特征的提取为基础。首先,本文使用基于纹理基元的共生矩阵分析方法,用来提取纹理特征向量。此方法中,采用局部二进制模式(Local Binary Pattern,LBP)来进行图像的基本纹理基元的提取,并用灰度共生矩阵(Gray Level Co.occurrence Matrix,GLCM)中共生矩阵的分析方法来对纹理基元图像进行分析。其次文中深入研究了基于灰度共生矩阵( GLCM) 的纹理特征提取方法,给出了基于 Matlab 的简便实现代码,分析了共生矩阵各个构造参数对构造共生矩阵的影响。分析结果对优化灰度共生矩阵的构造、实现基于灰度共生矩阵( GLCM) 的特定图像的纹理特征提取等都具有重要参考意义。 关键词:纹理特征;灰度共生矩阵;基于内容的图像检索;Matlab

医学图像处理技术及其发展

医学图像处理技术及其发展 摘要:文章介绍了医学图像处理的基本技术,对图像分割、图像配准、图像融合、伪彩色处理和纹理分析技术进行了综述。介绍了三维医学图像的可视化和基于PACS 的医学图像压缩在医学图像处理方面的应用。最后指出了医学图像处理的发展方向。 关键词:医学图像处理;图像配准;图像融合;图像分割;纹理分析;伪彩色处理;可视化 近年来,医学影像已成为医学技术中发展最快的领域之一。随着科技的进步,多学科交叉和融合已成为现代科学发展的突出特色和重要途径。自从显微镜问世以来,对医学图像的分析己成为医学研究中的重要方法,特别是X-CT,MRI、PET,SPECT等新型成像技术和设备的出现以及电脑技术的发展,使得医学图像处理技术对医学科研及临床实践的作用和影响日益增大,其结果使临床医生对人体内部病变部位的观察更直接、更清晰,确诊率也更高。各种新的医学成像方法的临床应用,使医学诊断和治疗技术取得了很大的进展,同时将各种成像技术得到的信息进行互补,也为临床诊断及生物医学研究提供了有力的科学依据。因此,医学图像处理技术一直受到国内外有关专家的高度重视,本文对医学图像处理技术进行了综述。 1.图像配准和图像融合 在临床诊断上,医生常常需要各种医学图像的支持,如CT、MRI.、PET 、 SPECT以及超声图像等,但无论哪一类的医学图像往往都难以提供全而的信息,这就需要将患者的各种图像信息综合研究,如何

使多次成像或多种成像设备的信息得到综合利用,弥补信息不完整、部分信息不准确或不确定引起的缺陷,使临床的诊断治疗、放疗定位、计划设计、外科手术和疗效评估更准确,已成为医学图像处理急需解决的重要课题。而这就首先必须解决图像的配准(或叫匹配)和融合问题。医学图像配准是确定两幅或多幅医学图像像素的空间对应关系;而融合是指将不同形式的医学图像中的信息综合到一起,形成新的图像的过程图像配准是图像融合必需的预处理技术,反过来,图像融合是图像配准的一个目的。 医学图像配准是通过寻找某种空间变换,使两幅图像的对应点达到空间位置和解剖结构上的完全一致。要求配准的结构能使两幅图像上所有的解剖点,或至少是所有具有诊断意义以及手术区域的点都达到匹配。目前医学图像配准方法有基于外部特征的图像配准(有框架)和基于图像内部特征的图像配准(无框架)两种方法。后者由于其无创性和可回溯性,已成为配准算法的研究中心。基于互信息的弹性形变模型也逐渐成为研究热点。互信息是统计两个随机变量相关性的测度,以互信息作为两幅图像相似性测度进行配准基于如下原理:当两幅基于共同的解剖结构的图像达到最佳配准时,它们对应的图像特征的互信息应为最大。 近年来,医学图像配准技术有了新的进展,在配准方法上应用了信息学的理论和方法,例如应用最人化的互信息量作为配准准则进行图像的配准,在配准对象方而从二维图像发展到三维多模医学图像的配准。在医学图像配准技术方而引入信号处理技术,例如傅氏变换和

图像纹理分析的方法与应用

万方数据

图像纹理分析的方法与应用 作者:张学军, 郭建 作者单位:张学军(西北师范大学教育技术与传播学院,甘肃,兰州,730070), 郭建(西北师范大学教育技术与传播学院,甘肃,兰州,730070;盘锦市经济技术学校,辽宁,盘锦,124201) 刊名: 黑龙江科技信息 英文刊名:HEILONGJIANG SCIENCE AND TECHNOLOGY INFORMATION 年,卷(期):2009(16) 参考文献(9条) 1.占杰;陈阳;陈武凡一种新的基于大尺寸信息的MRF先验模型[期刊论文]-计算机工程与科学 2009(01) 2.方恒;吴怀宇基于MRF和颜色空间的立体图像匹配算法[期刊论文]-计算机技术与发展 2008(12) 3.刘杰;张艳宁;许星;王志印一种基于灰度颁布马尔可夫模型的图像分割[期刊论文]-计算机应用 2008(03) 4.谢磊;李梅;高智勇一种基于小波变换的马尔可夫随机场的视频对象分割[期刊论文]-计算机工程与应用 2008(07) 5.林生佑;叶福军基于MRF的复杂图像抠图[期刊论文]-中国图象图形学报A 2008(03) 6.刘琼;周慧灿;王耀南基于极坐标Log Gabor小波的纹理分析方法[期刊论文]-计算机应用与软件 2008(08) 7.王媛媛基于小波域纹理分析的图像自适应信息隐藏 2008 8.张璐璐;范海玲分形理论在图像信息提取中的应用[期刊论文]-光盘技术 2008(03) 9.褚标小波理论在图像去噪与纹理分析中的应用研究 2008 本文链接:https://www.360docs.net/doc/6015643289.html,/Periodical_hljkjxx200916052.aspx

二、人类皮纹分析知识讲解

二、人类皮纹分析

二、人类皮纹分析 实验学时:10 学时 实验类型:设计性 每组人数: 4 人/组 一、实验目的 1、掌握皮纹分析的基本知识和方法。 2、了解皮纹分析在遗传学中的作用。 二、实验原理 人体的手、脚掌面具有特定的纹理表现,简称皮纹。人类的皮肤由表皮和真皮构成。真皮乳头向表皮突起,形成许多排列整齐、平行的乳头线,此线又称嵴纹。嵴纹上有许多汗腺的开口。突起的嵴纹相互又形成凹陷的沟。这些凹凸的纹理就构成了人体的指(趾)纹和掌纹。目前,皮纹学的知识和技术,广泛应用于人类学、遗传学、法医学以及作为临床某些疾病的辅助诊断。 人体的皮纹既有个体的特异性,又有高度的稳定性。皮纹在胚胎发育第13周开始出现,第19周左右形成,出生后终生不变。 三、主要仪器及试剂 本实验基本不需要用仪器设备,学生可以对自己选定的皮纹通过肉眼直接观察收集数据。(或使用放大镜、印台、印油、白纸、直尺、铅笔、量角器。) 四、实验方案 肉眼直接观察或将双手洗净、擦干,把全手掌在印台上均匀地涂抹上印油,五指分开按在白纸上。注意用力不宜过猛过重,不能移动手掌或白纸,以免所印皮纹重叠而模糊不清。 1、指纹观察 手指末端腹面的皮纹称为指纹。根据纹理的走向和三叉点的数目,可将指纹分为三种类型:弓形纹、箕形纹、斗形纹。 1.1 弓形纹(arch,A):特点是嵴线由一侧至另一侧,呈弓形,无中心点和三叉点。根据弓形弯度分为简单弓形纹和篷帐式弓形纹。

1.2 箕形纹(loop,L):箕形纹俗称簸箕。在箕头的下方,纹线从一侧起始,斜向上弯曲,再回转起始侧,形状似簸箕。此处有一呈三方向走行的纹线,该中心点称三叉点。根据箕口朝向的方位不同,可分为两种:箕口朝向手的尺侧者(朝向小指)称正箕或尺箕;箕口朝向手的桡侧者(朝向拇指),称反箕或桡箕。 1.3 斗形纹(whorl,W):是一种复杂、多形态的指纹。特点是具有两个或两个以上的三叉点。斗形纹可分绞形纹(双箕斗)、环行纹、螺形纹和囊形纹等。 根据统计,指纹的分布频率因人种而异,存在种族,性别的差异。东方人尺箕和斗形纹出现频率高,而弓形纹和桡箕较少;女性弓形纹多于男性,而斗形纹较男性略少。 2、嵴纹计数 2.1 指嵴纹计数:弓形纹由于没有圆心和三叉点,计数为零。箕形纹和斗形纹,则可从中心(圆心)到三叉点中心绘一直线,计算直线通过的嵴纹数。斗形纹因有两个三叉点,可得到两个数值,只计多的一侧数值。双箕斗分别先计算两圆心与各自三叉点连线所通过的嵴纹数,再计算两圆心连线所通过的嵴纹数,然后将三个数相加起来的总数除以2,即为该指纹的嵴纹数。 2.2指嵴纹总数(TFRC):为10个手指指嵴纹计数的总和。我国男性平均值为148条,女性为138条。 图:指纹的类型

图像纹理特征提取方法

图像纹理特征提取方法

安徽大学 本科毕业论文(设计、创作) 题目:图像纹理特征提取方法研究 学生姓名:朱邵成学号:Z01114175 院(系):电气工程与自动化学院专业:自动化 入学时间:2011年9月 导师姓名:寻丽娜职称/学位:讲师/博士 导师所在单位:安徽大学电气工程与自动化学院 完成时间:2015年5月

图像纹理特征提取方法研究 摘要 近年来,随着信息多媒体时代的到来,以及网络在世界范围内的日益流行、云计算的风行,人们在日常生活工作接触的信息量越来越大。图像作为信息的一种载体,具有直观、信息量大、便于不同国家间交流的特点,是网络多媒体的重要组成部分。基于文本的图像检索是基于内容图像检索的基础,用人工方式解释图像信息,其工作量我们难以想象,可行性也值得商榷。因此CBIR方法有效解决了这一个难题。基于内容的图像检索(CBIR)包括四个阶段,分别是:获取图像、提取特征、分类图像、检索图像。图像检索主要是一个核心问题:选取何种算法提取哪一种图像特征,快速有效的进行图像的区分与检测。纹理特征的提取是 CBIR 的关键问题之一,本论文也是基于图像纹理特征的提取为基础。首先,本文使用基于纹理基元的共生矩阵分析方法,用来提取纹理特征向量。此方法中,采用局部二进制模式(Local Binary Pattern,LBP)来进行图像的基本纹理基元的提取,并用灰度共生矩阵(Gray Level Co.occurrence Matrix,GLCM)中共生矩阵的分析方法来对纹理基元图像进行分析。其次文中深入研究了基于灰度共生矩阵( GLCM) 的纹理特征提取方法,给出了基于 Matlab 的简便实现代码,分析了共生矩阵各个构造参数对构造共生矩阵的影响。分析结果对优化灰度共生矩阵的构造、实现基于灰度共生矩阵( GLCM) 的特定图像的纹理特征提取等都具有重要参考意义。 关键词:纹理特征;灰度共生矩阵;基于内容的图像检索;Matlab

相关文档
最新文档