水电站厂房布置设计课程设计

水电站厂房布置设计课程设计
水电站厂房布置设计课程设计

水电站课程设计

1.设计题目

水电站厂房布置设计

2.设计目的

进一步巩固和加深厂房部分的理论知识,培养学生独立思考、分析问题及运用理论知识解决实际问题的能力,提高学生制图、使用现行规范、查阅技术资料、使用技术资料的能力以及编写设计说明书的能力。通过该课程设计使学生初步掌握水电站厂房设计的内容、步骤和方法

3.设计任务

3.1、进行厂区枢纽布置

3.2、根据给定的资料进行水轮发电机组的选型;

3.3、根据水轮发电机组的型号选择相应的蜗壳、尾水管、调速器及其它辅助设

备;

3.4、根据所选择的设备进行主、副厂房的平面和立面的布置设计,从而确定厂房

的轮廓尺寸。布置设计包括以下几方面内容:

3.4.1、主机组及相应辅助设备的布置;

3.4.2、主、副厂房各层的布置;

3.4.3、主、副厂房梁、板结构的布置;

3.4.4、厂内交通道的布置。

3.设计资料

本次课程设计的前半部分,即机组的选型、调速器及辅助设备的选择已在水轮机选型作业中完成,因此所有资料已发到每人手中,此阶段的设计内容就是要求根据每人选择的机组进行相应的厂房布置设计。

4.设计成果

4.1、设计图纸一张。

4.1.1、图纸内容包括:1)沿机组中心线厂房横剖面图(1:50~1:100);

2)发电机层平面图(1:100~1:200);

3)水轮机层平面图(1:100~1:200);

4)蜗壳层、尾水管层平面图(1:100~1:200);

5)厂区枢纽布置图(1:500)

4.1.2、图纸要求:1)要求绘于1号白图上或用计算机绘图;

2)要严格按制图要求绘制工程图;

3)设计图纸要求正确、美观、清楚、整洁;

4)图中所用符号应合乎统一规定的符号,文字用仿宋体书写;

5)要求图中尺寸标注完整、正确,图纸上要有必要的说明。

4.2、计算书、说明书一份。

计算书、说明书要求有以下内容:

1)封面;

2)前言;

3)中、英文摘要及中、英文关键词;

4)目录;

5)正文;

正文的内容包括:

(1)工程概况及设计资料;

(2)水轮机、发电机的选型及其所考虑的因素;

(3)蜗壳、尾水管、调速设备的选型及其所考虑的因素;

(4)水电站在整个枢纽中的位置及厂房枢纽布置概述(包括供水方式、引近方式、厂区回车场及对外交通道。)

(5)通过主厂房的剖面布置,确定主厂房各主要高程,并说明理由及所考虑的因素;

(6)通过主厂房各层的平面布置,确定水电站主厂房的长度和宽度,并说明理由及所考虑的因素;

(7)确定副厂房的位置及厂内布置,并说明理由及所考虑的因素;

(8)确定厂内各层平面和立面的交通条件;

(9)确定厂外的交通条件;

(10)其它你认为所必须的内容;

(11)说明书要求论据充分、合理,字迹清晰端正(可打印),文句通顺,逻辑性强,无错别字。

6)结论;

7)总结与体会;

8)参考文献。

5.建议时间安排

根据所给资料选定机组型式、计算出有关参数后,即可进行厂房的布置设计,但不要求作方案比较。

1)熟悉所给资料及参考资料0.5天

2)绘制厂区枢纽布置简图0.5天

3)各设备的尺寸估算0.5天

4)绘制厂房横剖草面图及相关高程的确定 2.0天

5)绘制发电机层平面草图及相关尺寸的确定 1.0天

6)绘制水轮机层、蜗壳层平面草图及相关尺寸的确定2.0天

7)在修改草图的基础上绘制厂房平剖面正式图 2.0天

8)编写说明书 1.5天

备注:各层平面图均包括同层的副厂房。厂房横剖面图若剖到副厂房,也必须绘出副厂房。

6.设计步骤

6.1、在熟悉所给资料、详细了解设计任务的基础上进行厂区枢纽布置,要求确

定引水道(包括压力前池或调压室)、压力钢管、主厂房、副厂房、变压器场、高压开关站、尾水道、交通道的相对位置。在厂区枢纽布置图中,应标明各主要建筑物的尺寸及主要交通道。

6.2、确定各设备的尺寸

6.2.1、通过水轮机的选型计算,选择相应的水轮机并确定水轮机的有关参数(包

括:水轮机型号、转轮直径、标准同步转速、水轮机的工作范围、允许吸出高度、水轮机的安装高程、绘制水轮机的运转特性曲线。)

6.2.2、选择蜗壳的型式,确定蜗壳的有关参数(包括:断面型式、蜗壳的包角、

蜗壳进口断面的平均流速。);并通过相关的水力计算,确定蜗壳的轮廓尺

寸。要求画在坐标纸上,并附在说明书中。

6.2.3、选择相应的调速设备;

6.2.4、选择尾水管的型式,确定尾水管的尺寸,并画在坐标纸上,附在说明书中。

6.2.5、估算发电机的主要尺寸,并画在坐标纸上,附在说明书中。

6.3、厂房布置

6.3.1、以安装高程为基准,根据已选定的机电设备进行厂房的剖面布置,从而确

定厂房各主要高程。

6.3.2、根据主要的机电设备及主要辅助设备的布置和运行要求,并考虑吊车的跨

度进行厂房各层的平面布置,从而确定主厂房的平面尺寸。在进行各层的

平面布置时应严格注意:

1)主要机电设备及主要辅助设备之间的协调。包括调速设备、油、水、气系统的布置和相互协调。

2)考虑吊车的工作范围,保证须起吊的设备在吊钩的极限范围内,并注意吊钩的工作范围对边机组段尺寸的影响。

3)从保证运行安全及方便出发,协调厂内外电气设备的布置。

4)布置厂内的交通系统,包括连接各层的楼梯、吊物孔(包括蝶阀吊孔)、各层平面的交通道的位置及尺寸。

5)根据机组的安装、检修条件,确定装配场的位置、高程及平面尺寸;其中,还应考虑变压器的检修。

6)确定蜗壳及尾水管检修时的进人孔位置及厂内集水井的位置。

7)合理布置厂房的梁、柱系统,使其满足结构、施工及安装要求。

8)初步拟订厂房各构件的结构尺寸,包括梁、柱、门、窗、墙、楼板等。

6.4、根据机电设备及油、水、气系统的布置,结合参考资料提供的参考面积,

对与主厂房运转有直接关系的副厂房进行布置。

6.5、在横剖面图和平面图上应标明各项高程及主要尺寸,所标注尺寸应符合工

程图要求。正式图纸可手绘,也可用计算机绘图。

6.6、编写说明书。

7.设计资料

水电站装机容量13.6万千瓦,效率97.5%,最大工作水头38.0m,最小工作水

头27.0m,加权平均水头32.0m,设计水头为30.5m,海拔高程27m,下游设计水头最低水位22m。

8.摘要及关键词

本课程设计主要是水利水电枢纽工程中水电站厂房设计的部分工作。设计目的在于进一步巩固和加深厂房部分的理论知识,培养学生独立思考、分析问题及运用理论知识解决实际问题的能力,提高学生制图、使用现行规范、查阅技术资料、使用技术资料的能力以及编写设计说明书的能力。通过该课程设计使学生初步掌握水电站厂房设计的内容、步骤和方法。

根据已有的原始资料和设计要求进行设计,主要内容有:水电站总体布置,水轮机型号的选择以及水轮机特性曲线的绘制,蜗壳尺寸的确定,尾水管尺寸的确定,调速器的选择,水电站厂房尺寸的确定,尾水渠渠道布置、形式选择等,并根据要求绘制相应的平面布置图和剖面图。

关键词:装机容量、效率、水轮机、蜗壳、尾水管、调速器、发电机、厂房。

This course is designed primarily water conservancy and hydropower dam project in the part of the hydropower plant design work. Designed to further consolidate and deepen the theoretical knowledge of plant parts, training students to think independently, analyze problems and apply the theoretical knowledge to solve practical problems, to enhance students mapping, the use of existing norms, access to technical information, the ability to use technical data and preparation of design manual ability. Through the course designed to give students a preliminary design of the hydropower plant to master the content, procedures and methods. The basis of the raw data and design requirements for the design, the main contents are: hydropower overall layout, the choice of turbine type and turbine characteristic curve drawing, scroll determine the size, tube size determination, the choice of governor, determine the size hydropower plant, tailrace channel layout, form selection, and are required to draw the appropriate floor plan and sections.

Keywords: capacity, efficiency, turbine, scroll, tail pipes, governor, generator, plant.

第一章水轮机选型计算 (6)

第一节水轮机型号的选择 (6)

第二节水轮机主要参数的计算 (7)

一HL240型水轮机方案主要参数计算 (7)

二ZZ440型水轮机方案主要参数的计算 (9)

第三节水轮机方案的分析比较 (12)

一HL240型水轮机运转特性曲线的绘制 (13)

第二章蜗壳的型式及其主要尺寸的确定 (17)

第一节蜗壳的型式 (17)

第二节蜗壳的主要参数的选择 (17)

第三节蜗壳的水力计算 (18)

第三章尾水管的型式及其主要尺寸的确定 (19)

第四章水轮机调速设备的选择 (20)

第一节调速功的计算 (20)

第二节接力器的选择 (21)

第三节调速器的选择 (22)

第四节油压装置的选择 (22)

第五章水轮发电机选择计算 (22)

第一节发电机主要部分的尺寸计算 (22)

一机距 (22)

二定子铁芯内径 (23)

三定子铁芯长度 (23)

四定子铁芯外径 (23)

第二节外形尺寸估算 (23)

一平面尺寸估算 (23)

二轴向尺寸的计算 (24)

三水轮发电机重量估算 (25)

第三节压力管道参数计算 (26)

第四节主厂房主要尺寸的确定 (26)

一主厂房长度的确定 (26)

二主厂房宽度的确定 (28)

三主厂房高程的确定 (28)

第五节副厂房的布置 (30)

一副厂房的组成 (30)

二副厂房的位置 (31)

三副厂房平面布置的设备 (31)

第六章参考文献 (31)

第一章水轮机选型计算

第一节水轮机型号的选择根据水电站的工作水头范围,在反击式水轮机系列型谱表中查得HL240型水轮机和

ZZ440型水轮机都可以使用,这就需要将两种水轮机都列入比较方案,对其参数分别予以计算和选定。

第 二 节 水轮机主要参数的计算

一 HL240型水轮机方案主要参数计算

1 转轮直径的计算

η

81.92311r r

H Q N D ′=

式中 。

查得由附表)1(/24.1/1240;

5.30;

3487031s m s L Q m H kW N r r ==′==

同时在附表1中查得水轮机模型在限制工况下的效率%4.90η=M

,由此可初步假定水

轮机在该工况的效率为92%。 将以上各值代入上式得

m D 30.492

.05.3024.181.934870

2

31=×××=

选用与之接近而偏大的标准直径m D 5.41=。

2 效率修正值的计算

由附表1查得水轮机模型在最优工况下的%0.92η

max

=M ,模型转轮直径

m D M 46.01=,则原型水轮机的最高效率max

η

可依(3-23)式计算,即

%9.945

.446

.0)92.0-1(-1)η

-1(-1η

55

11max max

===D D M M 考虑到制造工艺水平的情况取%1ε1

=;由于水轮机所应用的蜗壳和尾水管的型式与模

型基本相似,故认为0ε

2

=,则效率修正值Δη为:

019.001.0-92.0-949.0ε-η

-ηΔη1max

max

===M

由此求得水轮机在限制工况的效率为:

%923.0019.0904.0Δηη

η=+=+=M

(与原来假定的数值接近,不再校正)

3 转速的计算

1

10

D H n n a ′=

式中 11010Δn n n M ′+

′=′ 由附表1查得在最优工况下的min

/7210r n M =′,同时由于 03.0016.01-92

.0949

.01-ηηΔmax max 101<===′′M M n n 所以1Δn ′可忽略不计,则以7210

=′n 代入上式得: min /5.905

.432

72r n ==

选用与之接近而偏大的标准同步转速min /8.93r n =。

4 工作范围的验算

在选定的min /8.935.41r n m D ==、的情况下,水轮机的max

1Q ′和各种特征水头下相应的1n ′值分别为:

s m H D N Q r r /24.113.1923

.05.305.481.934870η81.93

2

322321max 1<=×××==

′ 则水轮机的最大引用流量max Q 为:

s m H D Q Q r

/37.1265.305.408.13

221max 1max =××=′= 对1n ′值:在设计水头m H r 5.30=时

min /4.765

.305

.48.9311r H nD n r r =×==

′ 在最大水头m H 0.38max =时

min /5.680

.385

.48.93max 1min 1r H nD n =×==

′ 在最大水头m H 0.27min =时

min /2.810

.275

.48.93min 1max 1r H nD n =×==

′ 在

HL240

型水轮机的模型综合特性曲线图上,分别画出

min

/2.81min /5.68/1130max 1min 1max 1r n r n s L Q =′=′=′和、的直线,如图所示。可以看出这些直线所标出的水轮机相似工作范围(阴影部分)仅包括了部分高效率区,所以对所选定的直径min /8.93,5.41r n D ==还须和其他方案作比较。

5 水轮机吸出高s H 的计算

由水轮机的设计工况(1130,4.76max 11=′=′Q n r )在图上可查得相应的气蚀系数195.0σ=;由设计水头m H r 5.30=,在图2-16上查得04.0Δσ=,则可求得水轮机

的吸出高为:

m m H H s 4-8025.25.30)04.0195.0(-900

27

-0.10)Δσσ(-900?-0.10>=×+=+=

二 ZZ440型水轮机方案主要参数的计算

1 转轮直径1D 的计算

η

81.92

311r r

H Q N D ′=

式中r r H N 、值同前。对于1Q ′值,可由附表2查得该型水轮机在限制工况下的

s L Q /16501=′,同时还查得气蚀系数72.0σ=。但在允许高程[]m H s 4-=时,则相应的

装置气蚀系数z σ为:

[]

72.046.05

.304

90027

-0.10-900?-0.10σ<=+==H H s z 所以,为了满足对吸出高的限制,1Q ′值可在ZZ440型水轮机模型综合特性曲线图上依

工况点)46.0σ115(10

==′、n 查得为s L /1240。同时亦可查该工况点上%86η=M

,由此

可初步假定水轮机的效率为89.5%。

将以上各值代入上式,便可求得:

m D 42.4895

.05.3024.181.934870

2

31=×××=

选用与之接近而偏大的标准直径m D 5.41=。

2 效率修正值的计算

对轴流转浆式水轮机,叶片在不同转角时的最大效率max

η

可用(3-24)式计算,即mas η

10

5

1

1max max 7.03.0)1(1H

H D D M M

M +--=?ηη

已知m H m D m H m D r M M 5.315.45.346.011====、、、,代入上式,则得:

)1(657.015.305.35.446.07.03.0)1(1max 105

max max M M ???ηηη--=??

?

??

?

+--=

叶片在不同转角?时的max M ?η值可自图3-10查得,由此便可应用上式求得相应于该?角时的水轮机最高效率max ?η,并将计算结果列于表4-8。 表4-8

当选取制造工艺影响的效率修正值%11=ε和考虑异形部件的影响时,便可计算得不同

?角时效率修正值为:

%1max max --=?M ??ηηη

将?η?的计算结果亦同时列入表4-8中。

由附表2查得在最优工况下模型的最高效率%89max =M η,由于最优工况很接近于

?=0?的等转角线,故采用效率修正值%6.2=??η,这样便可得出原型水轮机的最高效

率max η为:

%6.91916.0026.089.0max ==+=η

水电站课程设计报告

1.课程设计目的 水电站厂房课程设计是《水电站》课程的重要教学环节之一,通过水电站厂房设计可以进一步巩固和加深厂房部分的理论知识,培养学生运用理论知识解决实际问题的能力,提高学生制图和使用技术资料的能力。为今后从事水电站厂房设计打下基础。 2.课程设计题目描述和要求 2.1工程基本概况 本电站是一座引水式径流开发的水电站。 拦河坝的坝型为5.5米高的砌石滚水坝,在河流右岸开挖一条356米长的引水渠道,获得平均静水头57.0米,最小水头50m,最大水头65m。电站设计引用流量7.2立方米每秒,渠道采用梯形断面,边坡为1:1,底宽3.5米,水深1.8米,纵坡1:2500,糙率0.275,渠内流速按0.755米每秒设计,渠道超高0.5米。在渠末建一压力前池,按地形和地质条件,将前池布置成略呈曲线形。池底纵坡为1:10。通过计算得压力前池有效容积约320立方米。大约可以满足一台机组启动运行三分钟以上,压力前池内设有工作闸门、拦污栅、沉砂池和溢水堰等。 本电站采用两根直径1.2米的主压力钢管,钢管由压力前池引出直至下镇墩各长约110米,在厂房前的下镇墩内经分叉引入四台机组,支管直径经计算采用直径0.9米。钢管露天敷设,支墩采用混凝土支墩。支承包角120度,电站厂房采用地面式厂房。 2.2设计条件及数据 1.厂区地形和地质条件: 水电站厂址及附近经地质工作后,认为山坡坡度约30度左右,下部较缓。沿山坡为坡积粘土和崩积滚石覆盖,厚度约1.5米。并夹有风化未透的碎块石,山脚可能较厚,估计深度约2~2.5米。以下为强风化和半风化石英班岩,厂房基础开挖至设计高程可能有弱风化岩石,作为小型水电站的厂址地质条件还是可以的。 2.水电站尾水位: 厂址一般水位12.0米。 厂址调查洪水痕迹水位18.42米。 3.对外交通: 厂房主要对外交通道为河流右岸的简易公路,然后进入国家主要交通道。4.地震烈度: 本地区地震烈度为六度,故设计时不考虑地震影响。

水电站课程设计

该枢纽工程位西北某省A河上游干流上,其布置和工程参数如附件所示, 该水电站拟定主要设计参数 序号项目单位数值 1 最大水头m 125 2 最小水头m 86 3 多年平均水头m 92.5 4 设计水头m 88 5 总装机容量MW 360 (一)水轮机型号选型 1 根据该水电站的水头变化范围86~125m,在水轮机系列谱表3-3,表3-4中查出适合的机型有HL180和HL200两种。 2 主要参数选择 2.1 选取4台机组 2.2 转轮直径D1计算 单机容量:36万kw/4=9万kw (一)HL180水轮机 2.2.1查文献HL180转轮综合特性曲线可知机组效率M=90%;g =96%

Nr=Ny/zg=360000/4*0.96=93750kw 查表3-6可得HL180型水轮机在限制工况下的单位流量'1M Q =860L/s=0.86m 3/S ,效率m=89.5%,由此可 初步假定原型水轮机在该工况下的单位流量'1 Q =' 1M Q =0.86m 3/S ,效率=92%。 上述的Q1’,和Nr=单机容量:36万kw/4=9万kw ;g=96% Nr=Py/zg=360000/4*0.96=93750kw ,Hr=88m 带入式 η r r 11'81.9r H H Q N D = 可得=3.83m ,选用与之接近而偏大的 标称直径=3.9m 。 2.2.2转速n 计算 查表3-4可得HL180型水轮机在最优工况下单位转速10M n'=67r/min,初步假定M 1010'n ' n = ,将已知的和av H =92.5m ,1 D =3.9m 代入式1 1 ' n n D H =可得n=165.2r/min , 选用与之接近而偏大的同步转速n=166.7r/min 。(上式中'n 选用原型最优单位转速10 'n ,H 选用加权平均水头 Hav ) 2.2.3 效率级单位参数修正 ηηη1 D 1 D 10 'n ? ? ? ???--=-=?)5/1()^(1)1(11Mmax Mmax max D D K K M ηηηη)(

水电站厂房的设计说明

绪论 水电站厂房是水电站主要建筑物之一,是将水能转换为电能的综合工程设施。厂房中安装水轮机、发电机和各种辅助设备。通过能量转换,水轮发电机发出的电能,经变压器、开关站等输入电网送往用户。所以说水电站厂房是水、机、电的综合体,又是运行人员进行生产活动的场所。其任务是满足主、辅设备及其联络的线、缆和管道布置的要求与安装、运行、维修的需要;为运行人员创造良好的工作条件;以美观的建筑造型协调与美化自然环境。 水电站厂区包括: (1)主厂房。布置着水电站的主要动力设备(水轮发电机组)和各种辅助设备的主机室(主机间),及组装、检修设备的装配场(安装间),是水电站厂房的主要组成部分。 (2)副厂房。布置着控制设备、电气设备和辅助设备,是水电站的运行、控制、监视、通讯、试验、管理和运行人员工作的房间。 (3)主变压器场。装设主变压器的地方。电能经过主变压器升高到规定的电压后引到开关站。 (4)开关站(户外高压配电装置)。装设高压开关、高压母线和保护措施等高压电气设备的场所,高压输电线由此将电能输往用户,要求占地面积较大。 由于水电站的开发方式、枢纽布置、水头、流量、装机容量、水轮发电机组形式等因素,及水文、地质、地形等条件的不同,加上政治、经济、生态及国防等因素的影响,厂房的布置方式也各不相同,所以厂房的类型有各种不同的划分,例如按机组工作特点可分为立式机组厂房、卧式机组厂房。根据厂房在水电站枢纽中的位置及其结构特征,水电站厂房可分为以下三种基本类型: 1. 坝后式厂房。厂房位于拦河坝下游坝趾处,厂房与坝直接相连,发电用水直接穿过坝体引人厂房。 2. 河床式厂房。厂房位于河床中,本身也起挡水作用,如西津水电站厂房。若厂房机组段还布置有泄水道,则成为泄水式厂房(或称混合式厂房),。 3. 引水式厂房。厂房与坝不直接相接,发电用水由引水建筑物引人厂房。当厂房设在河岸处时称为引水式地面厂房。 水电站厂房是专门的水工建筑物,它具有一般水工建筑物的共性,故其设计有以

水电站课程设计

水电站课程设计——水轮机选型设计说明书 学校: 专业: 班级: 姓名: 学号: 指导老师:

第一节基本资料 (3) 第二节机组台数与单机容量的选择 (4) 第三节水轮机型号、装置方式、转轮直径、转速、及吸出高度与安装高程的确定 (5) 第四节水轮机运转特性曲线的绘制 (11) 第五节蜗壳设计 (13) 第六节尾水管设计 (16) 第七节发电机选择 (18) 第八节调速设备的选择 (19) 参考资料 (20)

第一节基本资料 一、水轮机选型设计的基本内容 水轮机选型设计包括以下基本内容: (1)根据水能规划推荐的电站总容量确定机组的台数和单机容量; (2)选择水轮机的型号及装置方式; (3)确定水轮机的轮转直径、额定出力、同步转速、安装高程等基本参数; (4)绘制水轮机的运转特性曲线; (5)确定蜗壳、尾水管的型式及它们的主要尺寸,以及估算水轮机的重量和价格;(6)选择调速设备; (7)结合水电站运行方式和水轮机的技术标准,拟定设备订购技术条件。 二、基本设计资料 某梯级开发电站,电站的主要任务是发电,并结合水库特性、地区要求可发挥水产养殖等综合效益。电站建成后投入东北主网,担任系统调峰、调相及少量的事故备用容量,同时兼向周边地区供电。该电站水库库容小不担任下游防洪任务。经比较分析,该电站坝型采用混凝土重力坝,厂房型式为河床式。经水工模型试验,采用消力戽消能型式。 经水能分析,该电站有关动能指标为: 水库调节性能日调节 保证出力 4万kw 装机容量 16万kw 多年平均发电量 44350 kwh 最大工作水头 39.0 m 加权平均水头 37.0 m 设计水头 37.0 m 最小工作水头 35.0 m 平均尾水位 202.0 m 设计尾水位 200.5 m 发电机效率 98.0%

水电站厂房设计

水电站厂房设计 一、水电站厂房的任务 水电站厂房是将水能转为电能的综合工程设施,包括厂房建筑、水轮机、发电机、变压器、开关站等,也是运行人员进行生产和活动 的场所。 水电站厂房的主要任务: (1) 将水电站的主要机电设备集中布置在一起,使其具有良好的运 行、管理、安装、检修等条件。 (2) 布置各种辅助设备,保证机组安全经济运行,保证发电质量。 (3) 布置必要的值班场所,为运行人员提供良好的工作环境。 二、水电站厂房的组成 (一) 从设备布置和运行要求的空间划分 主厂房:布置水电站的主要动力设备(水轮发电机组)和各种辅助设 备,设置装配场(安装间)。 副厂房:布置控制设备,电气设备和辅助设备,是水电站运行、控制、监视、通讯、试验、管理和工作的房间。 主变压器场:装设主变压器的地方。水电站发出的电能经主变压器 升压后,再经输电线路送给用户。 高压开关站:装设高压开关、高压母线、和保护措施等设备的场所, 高压输电线由此送往用户。 此外厂房枢纽中还有:进水道、尾水道和交通道路等。

水电站主厂房、副厂房、主变压器场和高压开关站及厂区交通等,组成水电站厂区枢纽建筑物,一般称厂区枢纽。 (二) 从设备组成的系统划分 水电站厂房内的机械及水工建筑物共分五大系统 (1) 水流系统。水轮机及其进出水设备,包括压力管道、水轮机前 的进水阀、蜗壳、水轮机、尾水管及尾水闸门等。 (2) 电流系统。即电气一次回路系统,包括发电机及其引出线、母 线、发电机电压配电设备、主变压器和高压开关站等。 (3) 电气控制设备系统。即电气二次回路系统,包括机旁盘、励磁设备系统、中央控制室、各种控制及操作设备如各种互感器、表计、继电器、控制电缆、自动及远动装置、通迅及调度设备等直流系统。 (4) 机械控制设备系统。包括水轮机的调速设备,如接力器及操作柜,事故阀门的控制设备,其它各种闸门、减压阀、拦污栅等操作 控制设备。 (5) 辅助设备系统。包括为了安装、检修、维护、运行所必须的各种电气及机械辅助设备,如厂用电系统(厂用变压器、厂用配电装置、直流电系统),油系统、气系统、水系统,起重设备,各种电气和机械修理室、试验室、工具间、通风采暖设备等。 水电站厂房组成(设备组成) (三) 从水电站厂房的结构组成划分 1.平面:主机室+安装间 主机室:水轮发电机组及辅助设备布置在主机室,是运行和管理的 主要场所;

水电站课程设计

一、原始资料及设计条件 1、概述 1.1工程概况 某水电站位于沅水一级支流巫水下游峡谷河段,下距会同县若水乡镇2km,距洪江市15km。坝址下游2km有洪江~绥宁省级公路从若水乡镇经过,交通较为便利。 该工程初拟正常蓄水位191m,迥水至高椅坝址,库容0.0708亿m3,装机16MW,是一座以发电为主,兼有防洪、旅游等综合效益的水电工程,枢纽建筑物由溢流闸坝、重力式挡水坝、右岸引水发电隧洞和引水式厂房组成。 1.2. 工程等别和建筑物级别 本工程以发电为主,兼有防洪、旅游等综合效益。水库正常蓄水位191m时库容为0.0708亿m3,电站装机容量为16MW。 2、水文气象资料 2.1洪水 各频率洪峰流量详见下表1。 (1)下坝址水位~流量关系曲线详见下表2。 表3 上坝址水位~流量关系曲线表(高程系统:85黄海) (3)厂址水位~流量关系曲线详见下表4。 表4 厂址水位~流量关系曲线表(高程系统:85黄海)

多年平均含沙量:0.089kg/m3 多年平均输沙量:22.05万t 设计淤沙高程:169.0m 淤沙内摩擦角:100 淤沙浮容重:0.9t/m3 2.4气象 多年平均气温:16.6℃ 极端最高气温:39.1℃ 极端最低气温:-8.6℃ 多年平均水温:18.2℃ 历年最高气温:34.1℃ 历年最低气温: 2.1℃ 多年平均风速: 1.40m/s 历年最大风速:13.00m/s,风向:NE 水库吹程: 3.0km 最大积雪厚度:21cm 基本雪压:0.25KN/m3 3、工程地质与水文地质 3.1工程地质资料 (1)该工程区地震基本烈度小于Ⅵ度,不考虑地震荷载。 (2)基岩物理力学指标如下 上坝址 饱和抗压强度:20~30MPa 抗剪指标:f砼/岩=0.6~0.65 抗剪断指标:f′砼/岩=0.8~0.9 c′=0.7~0.8MPa 下坝址 饱和抗压强度:15~25MPa 抗剪指标:f砼/岩=0.6~0.62 抗剪断指标:f′砼/岩=0.7~0.8 c′=0.70MPa 3.2坝址工程地质条件 (1)上坝址工程地形、地质条件 上坝址位于河流弯曲段下游,流向2790,基本为“U”型横向河谷。河床基岩裸露,高程181~184m,河床宽136m,水深0.5~3.0m。坝轴线上游100~350m,河床深槽较发育,一般槽宽20~40m,槽深11~14.5。当蓄水位192m 时,河谷宽161m ,左岸冲沟较发育,坝轴线上、下游分别分布2# 及3# 冲沟,边坡具下陡上缓特征,高程227m以下坡角450,以上坡角250,山顶高程271m ;右岸地形较平顺,上游有一小冲沟分布,边坡较陡峻,坡角350~450,山顶高程292m。

水电站课程设计水电站厂房设计

课程设计:水电站厂房设计 专业班级:12级水利水电工程卓越班姓名: 学号: 指导教师: 南昌工程学院水利与生态工程学院印制 2015——2016学年第一学期

南 昌 工 程 学 院 课程设计(论文)任务书 I 、课程设计(论文)题目:某水电站厂房课程设计 II 、课程设计(论文)使用的原始资料(数据)及设计技术要求: 一、设计原始资料 (一)工程概况 图1为某水电站的厂房布置图,它是一座以发电为主兼有防洪、灌溉、过木、供水等综合效益的县办骨干电站。采用钢筋混凝土堆石坝,最大坝高74m ,坝址以上控制流域面积564k ㎡,占全流域面积的75.3%,多年平均流量为s m /6.173水库总库容为3 810783.2m ?,属多年调节。 图1 厂房为坝后式,安装3台8000KW 机组,总装机容量KW 4104.2?,保证出力5500KW ,多年平均发电量h KW ??4107260,年利用小时3025h ,在系统中(地方电网)担任调峰、调相任务,并可对下游梯级进行调节,经济效益显著。 在枢纽布置上,为避免厂房、溢洪道、筏道的相互干扰,将岸坡式溢洪道布置在坝左岸的一鼻形山脊上,用钢筋混凝土挡土墙与堆石坝衔接,出口消能采用挑流形式。过木干筏道布置在坝左岸的山坡上。隧洞布置在坝右岸的山体中,具有导流、发电引水和放空等

多种功能,即施工期用隧洞导流,并在导流洞口上的山岩中另开一洞口,与隧洞相连成为“龙抬头”形式,采用塔式进水口作为发电引水和放空隧洞的首部,水库蓄水时将导流洞口封赌。隧洞直径为5.2m 。隧洞出口设有放空水库用的闸门。在放空闸门上游另凿发电引水岔洞,洞径4.6m ,然后以三根m 2Φ的钢支管与机组相连。 本工程规模属大(2)型,枢纽为二等工程,电站厂房按3级建筑物设计。 (二)水电站厂房主要设备 1、水轮机和发电机 电站最大水头m H 3.64max =,加权平均水头m H cp 63.59=,最小水头m H 02.38min =。按水头范围及装机容量,套用3台现有机组。水轮机型号为140220--LJ HL ,单机额定 出力为KW 8333,该机组适用m H 65max =,m H 38min =m H p 58=,额定流量35.16m /s , 和电站水头范围比较匹配。发电机型号为3300/168000-SF ,单机额定出力KW 8000(悬式),采用密封式通风,可控硅励磁。水轮机导叶0b 为0.35m 。水轮机带轴长3.74m ,发电机转子带轴长4.785m.。一台机组在设计水头、额定出力下运行的尾水位为100.1 m 。 2、调速器:选用3500-YDT 型电气液压式 3、主阀:采用卧式液压型摇摆式接力器双平板偏心蝴蝶阀 4、桥式起重机:本电站的最重部件为发电机转子带轴重37.5t ,结合厂房布置要求。选用起重机跨度m L k 12=,主副钩最大起升高度分别为20m 和22m ,主钩最高位置至轨顶距离为0.911m ,小车高度2.723m 。厂房屋顶结构厚度为2.456 m 。 二、设计技术要求 厂房课程设计重点是主厂房内部主要设备和结构的布置,以及轮廓尺寸的决定。设计图应符合工程图纸的要求,说明书应能说明设计内容,文字通顺、整洁。 III 、课程设计(论文)工作内容及完成时间: 一、工作内容 水电站厂房课程设计要求学生根据所给任务书,利用所给的资料,完成下列工作: 1、用简略的方法选择厂房的主要和辅助设备。 2、进行厂区和厂房内部布置,决定厂房的轮廓尺寸。 3、绘制设计图纸(至少要有一平一立两张图纸)和编写设计计算书和说明书。 二、完成时间 本课程设计2周,具体安排大致如下(供参考): 1、设计布置,了解设计任务书及熟悉原始资料 1天 2、进行厂房布置设计,并布置草图 6天 3、绘厂房布置图(可用计算机绘制)及整理编写计算书和说明书 3天 Ⅳ 主 要参考资料: 《水电站厂房设计规范 SL 266-2014 替代SL266-2001 中华人民共和国水利部 编 中国水利水电出版社 2014》 《DLT5186-2004水力发电厂机电设计规范》 《水力机械(第2版)金钟元 编 中国水利水电出版社 1992》

某水电站设计课程设计 精品

第一章原始资料及设计条件 1.1 概述 1.1.1 工程概况 某水电站位于沅水一级支流巫水下游峡谷河段,下距会同县若水乡镇2km,距洪江市15km。坝址下游2km有洪江~绥宁省级公路从若水乡镇经过,交通较为便利。 该工程初拟正常蓄水位191m,迥水至高椅坝址,库容0.0708亿m3,装机16MW,是一座以发电为主,兼有防洪、旅游等综合效益的水电工程,枢纽建筑物由溢流闸坝、重力式挡水坝、右岸引水发电隧洞和引水式厂房组成。 1.2工程等别和建筑物级别 本工程以发电为主,兼有防洪、旅游等综合效益。水库正常蓄水位191m时库容为0.0708亿m3,电站装机容量为16MW,根据水利水电工程等级划分的规定,工程规模为小(1)型,工程等别为Ⅳ等。永久性建筑物闸坝、电站厂房等属4级建筑物,临时建筑物属5级。 1.2 水文气象资料 1.2.1 洪水 各频率洪峰流量详见下表 表1-1 坝址洪峰流量表 1.2.2 水位~流量关系曲线: 表1-2 下坝址水位~流量关系曲线表高程系统:85黄海

表1-3 上坝址水位~流量关系曲线表 高程系统:85黄海 表1-4 厂址水位~流量关系曲线表 高程系统:85黄海 多年平均含沙量:0.0893/m kg ; 多年平均输沙量:22.05万t ;设计淤沙高程:169.0m ;淤沙内摩擦角:10?;淤沙浮容重:0.93/m t 。 1.2.4 气象 多年平均气温:16.6?C ;极端最高气温:39.1?C ;极端最低气温:-8.6?C ;多年平均水温:18.2?C ;历年最高气温:34.1?C ;历年最低气温:2.1?C ;多年平均风速:1.40s m /; 历年最大风速:13.00s m /,风向:NE ;水库吹程:3.0km ;最大积雪厚度:21cm ;基本雪压:0.252/m KN 。 1.3 工程地质与水文地质 1.3.1 工程地质资料 (1)该工程区地震基本烈度小于Ⅵ度,不考虑地震荷载。 (2) 基岩物理力学指标 上坝址:饱和抗压强度:20~30MPa ;抗剪指标:岩砼/f =0.6~0.65;抗剪断指标:

水电站厂房设计(图文讲解)

水电站厂房设计 第一节水电站厂房的任务、组成及类型 一、水电站厂房的任务 水电站厂房是将水能转为电能的综合工程设施,包括厂房建筑、水轮机、发电机、变压器、开关站等,也是运行人员进行生产和活动的场所。 水电站厂房的主要任务: (1)将水电站的主要机电设备集中布置在一起,使其具有良好的运行、管理、安装、检修等条件。 (2)布置各种辅助设备,保证机组安全经济运行,保证发电质量。 (3)布置必要的值班场所,为运行人员提供良好的工作环境。 二、水电站厂房的组成 (一)从设备布置和运行要求的空间划分 主厂房:布置水电站的主要动力设备(水轮发电机组)和各种辅助设备,设置装配场(安装间)。 副厂房:布置控制设备,电气设备和辅助设备,是水电站运行、控制、监视、通讯、试验、管理和工作的房间。 主变压器场:装设主变压器的地方。水电站发出的电能经主变压器升压后,再经输电线路送给用户。 高压开关站:装设高压开关、高压母线、和保护措施等设备的场所,高压输电线由此送往用户。 此外厂房枢纽中还有:进水道、尾水道和交通道路等。 水电站主厂房、副厂房、主变压器场和高压开关站及厂区交通等,组成水电站厂区枢纽建筑物,一般称厂区枢纽。 (二)从设备组成的系统划分 水电站厂房内的机械及水工建筑物共分五大系统 (1)水流系统。水轮机及其进出水设备,包括压力管道、水轮机前的进水阀、蜗壳、水轮机、尾水管及尾水闸门等。 (2)电流系统。即电气一次回路系统,包括发电机及其引出线、母线、发电机电压配电设备、主变压器和高压开关站等。 (3)电气控制设备系统。即电气二次回路系统,包括机旁盘、励磁设备系统、中央控制室、各种控制及操作设备如各种互感器、表计、继电器、控制电缆、自动及远动装置、通迅及调度设备等直流系统。

水电站厂房课程设计任务说明书

水电站厂房课程设计说明书 张文奇 1.蜗壳的型式 电站设计水头H p=95.5m>40m (且>80m ),根据《水力机械》第二版第96页的蜗壳型式选择金属蜗壳。 2.蜗壳的主要参数 2.1金属蜗壳的断面形状为圆形。 2.2对于圆形断面金属蜗壳为了获得良好的水力性能一般采用蜗壳的包角为 0?=345°。 2.3根据《水力机械》第二版第99页图4-30查得,当设计水头为95.5m 时,蜗壳的进口断面的平均流速c V =7.5m/s ; 2.4己知水轮机的型号HL200-LJ-275,根据《水力机械》第二版附表5查得:1D =2750mm ,H=95.5m 时,蜗壳的座环内径b D =3650mm ,外径a D = 4550 mm ,所以蜗壳座环的内、外半径分别: 3. 金属蜗壳的水力计算 电站设计水头H P =95.5m ,进口平均流速c V =7.5m/s ,包角为0?=345°,每台机组过水能力:max Q =62.69m 3/s 。 3650 182522b b D r mm = ==4550 227522a a D r mm = = =

3.1对于蜗壳进口断面: 断面的面积: 断面的半径: 从轴中心线到蜗壳外缘的半径: 3.2对于中间任一断面: 设为从蜗壳鼻端起算至计算断面i 处的包角,则该计算断面处的 其中max Q =62.69m 3/s 。,c V =7.5m/s ,a r =2.275m 计算成果见表1: 2max 062.69345==8m 3603607.5C C C C Q Q F V V ???= =???max 1.6m ρ= ==max a max 2 2.2752 1.6 5.475R r m ρ=+=+?=i ?max 360i i Q Q ?= ? i ρ= a 2i i R r ρ=+

水电站厂房课程设计西华精选文档

水电站厂房课程设计西 华精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

课程设计报告 (理工类) 课程名称: 水电站建筑物课程设计 课程代码: 8511961 学院(直属系): 能源与环境学院 年级/专业/班: 2010级/水利水电工程/2班 学生姓名: 学号: 3320 实验总成绩:

任课教师: 杨耀 开课学院: 能源与环境学院 水电站厂房课程设计任务书 西华大学能源与环境学院 2012年5月 一、课程设计的目的 课程设计是以工程实例为题,由学生独立思考,灵活应用有关的布置原则和要点,自己动手布置厂房,从而巩固和加深厂房部分的理论知识,并进一步培养学生的计算、制图和应用技术资料的技能。 二、课程设计的内容与要求 设计的内容概括地说,就是在给定工程枢纽布置和厂区位置的前提下,利用现有资料进行厂房布置设计。 具体内容包括: 1.确定主厂房的轮廓尺寸;

确定厂房轮廓尺寸时有关机组和设备的尺寸可由给定的基本数据查找或查阅有关的工具书。 2.绘出蜗壳与尾水管单线图,拟定转轮流道、座环等尺寸; 3.选择厂房起重设备; 4.进行厂区布置; 厂区布置可在地形图上绘出,要求至少拟定两个方案进行比较后,确定一个方案。 5.进行厂房布置; 厂房布置的具体内容包括主、副厂房的布置和对厂房结构布置的考虑,说明如下: ①在布置主、副厂房的同时,对厂房的结构布置一定要有考虑,包括: a.主厂房的分缝 b.一、二期混凝土的划分 c.止水的设置 d.下部块体结构的布置,包括机墩、蜗壳混凝土、尾水管的结构型式、尾水闸墩、上下游墙等的结构布置,在下部块体中要设哪些工作孔道,在什么位置等。

水电站课程设计1

水电站课程设计 一:计算水轮机安装高程 参考教材,立轴混流式水轮机的安装高程Z s 的计算方法如下: 0/2s s Z H b ω=?++ 式中ω?为设计尾水位,取正常高尾水位1581.20m ;0b 为导叶高度,1.5m ; s H 为吸出高度,m 。 其中,10.0()900 s m H H σσ? =- -+? 式中,?为水轮机安装位置的海拔高程,在初始计算时可取为下游平均水位的海拔高程,设计取1580m ; m σ为模型气蚀系数,从该型号水轮机模型综合特性曲线(教材P69)查得m σ=0.20, σ?为气蚀系数的修正值,可在教材P52页图2-26中查得σ?=0.029; H 为水轮机水头,一般取为设计水头,本设计取H=38m 。水头H max 及其对应工况的m σ进行校核计算。 10.0()900 s m H H σσ? =- -+?=10.0-1580900-(0.2+0.029)?38=-0.458 0/2s s Z H b ω=?++=1581.20-0.458+1.5/2=1581.49m 。 二:绘制水轮机、蜗壳、尾水管和发电机图 2.1水轮机的计算

图1.1 转轮布置图 如图所示,可得HL240具体尺寸: 表1.11 转轮参数表 D 1 D 2 D 3 D 4 D 5 D 6 b 0 h 1 h 2 h 3 h 4 1.0 1.078 0.928 0.725 0.483 0.128 0.365 0.054 0.16 0.593 0.283 4.1 4.420 3.805 2.973 1.980 0.525 1.497 0.221 0.656 2.431 1.160 2.2 蜗壳计算 进口断面尺寸计算 (1)进口断面流量的确定 由资料,该水电站初步设计时确定该电站装机17.6×410kW ,电站共设计装4台机组,故每台机组的单机容量为17.6×410kW ÷4=4.4×410kW 。 由水轮机出力公式:9.81N QH QH ωγ===4.4×410kW 式中:Q 为水轮机设计流量(3/m s ); H 为设计水头,m ;由设计资料得H=38.0m 。 所以,4×10//=118.039.81 4.4Q N H ω=?=(9.8138.0)(3/m s )

水电站厂房设计

第十一章水电站地面厂房布置设计 第一节水电站厂房的任务、组成及类型 一、水电站厂房的任务 水电站厂房是水能转为电能的生产场所,也是运行人员进行生产和活动的场所。其任务是通过一系列工程措施,将水流平顺地引入水轮机,使水能转换成为可供用户使用的电能,并将各种必需的机电设备安置在恰当的位置,创造良好的安装、检修及运行条件,为运行人员提供良好的工作环境。 水电站厂房是水工建筑物、机械及电气设备的综合体,在厂房的设计、施工、安装和运行中需要各专业人员通力协作。 二、水电站厂房的组成 水电站厂房的组成可从不同角度划分。 (一)从设备布置和运行要求的空间划分 (1)主厂房。水能转化为机械能是由水轮机实现的,机械转化为电能是由发电机来完成的,二者之间由传递功率装置连接,组成水轮发电机组。水轮发电机组和各种辅助设备安装在主厂房内,是水电站厂房的主要组成部分。 (2)副厂房。安置各种运行控制和检修管理设备的房间及运行管理人员工作和生活用房。 (3)主变压器场。装设主变压器的地方。水电站发出的电能经主变压器升压后,再经输电线路送给用户。 (4)开关站(户外配电装置)。为了按需要分配功率及保证正常工作和检修,发电机和变压器之间以及变压器与输电线路之间有不同电压的配电装置。发电机侧的配电装置,通常设在厂房内,而其高压侧的配电装置一般布置在户外,称高压开关站。装设高压开关、高压母线和保护设施,高压输电线由此将电能输送给电力用户。 水电站主厂房、副厂房、主变压器场和高压开关站及厂区交通等,组成水电站厂区枢纽建筑物,一般称厂区枢纽。 (二)从设备组成的系统划分 水电站厂房内的机械及水工建筑物共分五大系统 (1)水流系统。水轮机及其进出水设备,包括压力管道、水轮机前的进水阀、蜗壳、水轮机、尾水管及尾水闸门等。 (2)电流系统。即电气一次回路系统,包括发电机及其引出线、母线、发电机电压配电设备、主变压器和高压开关站等。 (3)电气控制设备系统。即电气二次回路系统,包括机旁盘、厉磁设备系统、中央控制室、各种控制及操作设备如各种互感器、表计、继电器、控制电缆、自动及远动装置、通迅及调度设备等直流系统,如图11-1所示。

水电站课程设计

. . 水电站课程设计 ——水轮机选型设计说明书 学校: 专业: 班级: : 学号: 指导老师:

第一节基本资料 (3) 第二节机组台数与单机容量的选择 (4) 第三节水轮机型号、装置方式、转轮直径、转速、及吸出高度与安装高程的确定 (5) 第四节水轮机运转特性曲线的绘制 (11) 第五节蜗壳设计 (13) 第六节尾水管设计 (16) 第七节发电机选择 (18) 第八节调速设备的选择 (19) 参考资料 (20)

第一节基本资料 一、水轮机选型设计的基本内容 水轮机选型设计包括以下基本内容: (1)根据水能规划推荐的电站总容量确定机组的台数和单机容量; (2)选择水轮机的型号及装置方式; (3)确定水轮机的轮转直径、额定出力、同步转速、安装高程等基本参数; (4)绘制水轮机的运转特性曲线; (5)确定蜗壳、尾水管的型式及它们的主要尺寸,以及估算水轮机的重量和价格;(6)选择调速设备; (7)结合水电站运行方式和水轮机的技术标准,拟定设备订购技术条件。 二、基本设计资料 某梯级开发电站,电站的主要任务是发电,并结合水库特性、地区要求可发挥水产养殖等综合效益。电站建成后投入东北主网,担任系统调峰、调相及少量的事故备用容量,同时兼向周边地区供电。该电站水库库容小不担任下游防洪任务。经比较分析,该电站坝型采用混凝土重力坝,厂房型式为河床式。经水工模型试验,采用消力戽消能型式。 经水能分析,该电站有关动能指标为: 水库调节性能日调节 保证出力 4万kw 装机容量 16万kw 多年平均发电量 44350 kwh 最大工作水头 39.0 m 加权平均水头 37.0 m 设计水头 37.0 m 最小工作水头 35.0 m 平均尾水位 202.0 m 设计尾水位 200.5 m 发电机效率 98.0%

水电站课程设计

《水电站》课程设计水轮机的选型设计 专业:XXX 班级: XX 姓名:XXX 学号:XXX 指导教师:XXX

【摘要】 本说明书共七个章节,主要介绍了大江水电站水轮机选型,水轮机运转综合特性曲线的绘制,蜗壳、尾水管的设计方案和工作原理以及调速设备和油压装置的选择。主要内容包括水电站水轮机、排水装置、油压装置所满足的设计方案及控制要求和设计所需求的相关辅助图和设计图。系统的阐明了水电站相关应用设备和辅助设备的设计方案的步骤和图形绘制的方法。 【关键词】 水轮机、综合运转特性曲线图、蜗壳、尾水管、调速器、油压装置。

【Abstract】 Curriculum project of hydro station is a important course and practical process in curriculum provision of water-power engineering major . There are more contents and specialized knowledge in the curriculum project , which make students not to adapt themselves quickly to complete the design . In this paper , characteristic of the curriculum project is analyzed , causes of in adaptation to the curriculum project in students are found , rational guarding method are proposed , and a example of applying the guarding method is given . The results show that using provided method to guard student design is a good method, when teaching mode and time chart are given , students are guarded from mode of thinking and methodology , and design step are discussed and given . After the curriculum project of hydro station, the capability of students to solve practical engineering problems is improved , and the confidence to engage in design is strengthened . 【Keyword】 Curriculum project of hydro station; guarding method ; mode of thinking ; methodology; design step.

水电站课程设计

《水电站建筑物》课程设计BL电站计算说明书 姓名: 学号: 指导教师: 年月日

一、基本资料 1.1工程概况 根据某市供水和灌溉的需求,于X河的Y河口坝址修建BL水电站。该电站水库控制流域面积2085km2,坝址处多年平均径流量7.21×108m3。 水库属大(2)型,工程等别为Ⅱ等,主要建筑物为2级,次要建筑物为3级。采用混合坝型,拟建一座坝后式水电站。电站尾水泄入灌溉渠道,结合工农业用水进行发电。 水电站厂房按3级建筑物设计,厂房经右岸坝下公路对外联系。 1.2设计的目的与任务 目的:通过本次课程设计,使学生将所学水电站基本知识加以系统化,能够运用基本理论知识解决实际工程问题,使学生在分析问题、理论计算、制图、编写说明书与计算书等方面得到锻炼,初步掌握水电站的设计步骤、方法、基本理论,为参加工作打下基础。 任务:进行水轮机选型与厂房布置设计。 1.3BL电站设计资料 气象资料: 该地区多年平均气温9.3℃,最低气温-35.8℃。最大风速北风21m/s。最大冰厚0.37m。地面冻结深度一般在1.1m左右。 水文资料: (1)水库特征水位与溢洪道泄量特征: (2 电站尾水渠出口即为灌溉渠道的渠首,渠底高程40.35m,渠顶高程45.90m,渠

道设计流量48.0m 3/s 。渠道加大流量53.0m 3/s 。 电站尾水渠水位流量关系表(Z ~Q ): (3)厂房地质资料 水库坝址系由变质岩、沙岩、熔岩及花岗岩类组成,坝址有一组北北西向断层,在厂房范围内有一小断层通过。 本地区地震基本烈度为Ⅶ度。厂房设计烈度为7度。 (4)水轮机选型的基本资料: 经水能计算,最终确定: 1.电站最大水头H max =27.8m ; 2.加权平均水头H a =22.1m ; 3.设计水头H r =21.3m ; 4.电站正常运转时的最小水头H min =14.0m 。 5.水电站总装机容量N f =6400kW ,考虑水电站运行及用水量变化规律,经方案比较,决定选用两台机组。发电机效率ηf =0.91。 二、 水轮机的选型 本水电站的最大水头H max =27.8m ,正常运转时最小水头H min =14.0m ,加权平均水头H a =22.1m ,设计水头H r =21.3m 。水电站总装机容量N f =6400kW ,设计装机台数2台,单机容量N y1=3200kW 。 2.1水轮机型号选择 根据该水电站的水头变化范围14.0~27.8m ,查《水电站(第三版)》,河海大学,刘启钊主编P 73表3-4水轮机系列型谱中查出合适的机型有HL240、HL310。选择HL240。 2.2 转轮直径的计算 转轮直径D 1按下式计算: m H H Q N D r 63.1%6.893.213.2140.181.93200 81.9r '1r 1=????= =η (2-1) 式中 N r ——水轮机的额定出力,3200kW ; H r ——水轮机的设计水头,21.3m ; '1Q ——原型水轮机单位流量,初步假定s /40.13'1'1m Q Q M ==; η ——与'1Q 相应的原型效率,假设为89.6%。 根据计算结果,D 1=1.63m ,应选择与之相近且偏大的轮转标称直径,但D 1=1.8m 相差太大,可近似取为D 1=1.6m 。

最新整理水电站厂房设计资料

水电站厂房设计 指导老师:徐寅 一、任务书 1、设计技术要求 厂房课程设计重点是主厂房内部主要设备和结构的布置,以及轮廓尺寸的决定,设计图应符合工程图纸的要求,说明书应能说明设计内容,文字通顺,整洁

2、 工作内容 水电站厂房课程设计要求学生根据所给任务书,利用说给的资料,完成下列工作: 用简略的方法选择厂房的主要和辅助设备 进行厂区和厂房内部布置,决定厂房的轮廓尺寸 绘制设计图纸和编写设计说明书 二、工程概况 该水电站是一座以发电为主兼有防洪、灌溉、过木、供水等综合效益的县办骨干电站。采用钢筋混凝土堆石坝,最大坝高74m ,坝址以上控制流域面积564k ㎡,占全流域面积的75.3%,多年平均流量为s m /6.173水库总库容为3810783.2m ?,属多年调节。厂房为坝后式,安装3台8000KW 机组,总装机容量KW 4104.2?,保证出力5500KW ,多年平均发电量h KW ??4107260,年利用小时3025h ,在系统中(地方电网)担任调峰、调相任务,并可对下游梯级进行调节,经济效益显著。 在枢纽布置上,为避免厂房、溢洪道、筏道的相互干扰,将岸坡式溢洪道布置在坝左岸的一鼻形山脊上,用钢筋混凝土挡土墙与堆石坝衔接,出口消能采用挑流形式。过木干筏道布置在坝左岸的山坡上。隧洞布置在坝右岸的山体中,具有导流、发电引水和放空等多种功能,即施工期用隧洞导流,并在导流洞口上的山岩中另开一洞口,与隧洞相连成为“龙抬头”形式,采用塔式进水口作为发电引水和放空隧洞的首部,水库蓄水时将导流洞口封赌。隧洞直径为5.2m 。隧洞出口设有放空水库用的闸门。在放空闸门上游另凿发电引水岔洞,洞径4.6m ,然后以三根m 2Φ的钢支管与机组相连。 本工程规模属大(2)型,枢纽为二等工程,电站厂房按3级建筑物设计。 三、主要设备 1、水轮机和发电机 电站最大水头H max =64.3m ,加权平均水头H cp =59.63m ,最小水头H min =38.02m 。按水头范围及装机容量,套用3台现有机组。水轮机的型号为HL220-LJ-140,单机额定出力为8333KW ,该机组适用H max =65m ,H min =38m ,额定流量16.5m 3/s ,和电站水头范围比较匹配。发电机型号为SF8000-16/3300,单机额定出力8000KW (悬式),采用密封式通风,可控硅励磁。水轮机导叶b0为0.35m 。水轮机带轴长3.74m ,发电机转子带轴长 4.785m.。一台机组在设计水头、额定出力下运行的尾水位为100.1 m 。 2、调速器:选用 YDT-3500型电气液压式 3、主阀:采用卧式液压型摇摆式接力器双平板偏心蝴蝶阀

水电站 课程设计

《某水电站厂房初步设计》 课程设计 学生姓名: 学号: 专业班级:水利水电(2)班 指导教师: 二○一三年九月二十七日

目录 第一章工程概况 (1) 第二章有关设计资料 (2) 2.1 厂区地形和地质条件 (2) 2.2 水电站尾水位 (2) 2.3 对外交通 (2) 2.4 地震烈度 (2) 第三章水轮机型号及主要参数选择 (3) 3.1 水轮机型号选择 (3) 3.2 主轴及蜗壳形式选择 (3) 3.3 HL220型水轮机方案的主要参数选择 (3) 3.4 两种方案的比较分析 (6) 第四章机电设备 (7) 4.1 水轮机 (7) 4.2 调速器(自动调速器) (7) 4.3 发电机 (8) 4.4 蝶阀 (8) 4.5 桥式起重机 (9) 第五章电气主结线及电气设备布置: (10) 第六章主要控制高程的确定 (11) 6.1 水轮机的吸出高度和安装高程 (11) 6.2 水轮机层的地面高程 (11) 6.3 尾水设计及相关高程 (11) 6.4 吊车轨顶高程 (12) 6.5 厂房天花板高程和厂房顶高程 (13) 第七章主厂房的布置设计 (14) 7.1 机组的布置方式 (14) 7.2 厂房下部结构的构造和布置 (14) 7.3 主厂房的长度和宽度 (14) 7.4 安装间的布置 (16)

7.5 主厂房内机电设备布置及交通运输 (16) 第八章副厂房的布置设计 (17) 8.1 中央控制室 (17) 8.2 高压开关室 (17) 8.3 厂用设备的布置 (18) 8.4 楼梯 (18) 8.5 厂变和工具间 (18) 8.6 值班室和休息室 (18) 8.7 调度室和通讯室 (18) 8.8 卫生间 (18) 第九章水电站枢纽布置 (19) 9.1 厂房 (19) 9.2 主变压器场 (19) 9.3 引水道 (19) 9.4 压力钢管 (19) 9.5 尾水道 (19) 9.6 对外交通 (19) 第十章开挖量的计算 (20) 第十一章分析与总结 (23) 11.1 问题分析 (23) 11.2 课设感受 (24) 参考文献 (25) 附图1:水轮机机组平面示意图 (26) 附图2:水轮发电机组剖面图B-B (27) 附图3:水轮发电机组横剖面图A-A (28) 附图4:HL220型水轮机综合特性曲线图 (29)

水电站课程设计计算书

水电站厂房课程设计计算书 1.蜗壳单线图的绘制 1.1 蜗壳的型式 根据给定的基本资料和设计依据,电站设计水头Hp=46.2m ,水轮机型号 :HL220-LJ-225。可知采用金属蜗壳。又Hp=46.2m>40m ,满足《水电站》(第4版)P32页对于蜗壳型式选择的要求。 1.2 蜗壳主要参数的选择 金属蜗壳的断面形状为圆形,根据《水电站》(第4版)P35页可知:为了获得良好的水力性能及考虑到其结构和加工工艺条件的限制,一般取蜗壳的包角为0345?=。 通过计算得出最大引用流量m ax Q 值,计算如下: ○ 1水轮机额定出力:15000 156250.96 f r f N N KW η= = = 式中:60000150004 f KW N KW = =,0.96f η=。 ○ 2'31max 3 3 2222115625 1.11 1.159.819.81 2.2546.20.904 r p N Q m s D H η = = =

相关文档
最新文档