中考总复习之几何综合题

中考总复习之几何综合题
中考总复习之几何综合题

中考总复习---几何综合

几何综合题常研究以下几个方面的问题:

1.证明线段、角的数量关系(包括相等、和差、倍、分关系以及比例关系);

2.证明图形的位置关系(如点与线、线与线、线与圆等);

3.面积计算问题;

4.动态几何问题

在解几何综合问题时,常要分解基本图形,挖掘隐含的数量关系,另外,也需要注意使用数形结合、方程、分类讨论等数学思想方法来解决问题。借助变换的观点也能帮助我们找到更有效的解决问题的思路。

解几何综合题,要充分利用综合与分析的思维方法。当思维受阻时要及时改变方向;要熟悉常用的辅助线添法;强化变换的意识;从特殊或极端位置探究结论。

第一课时:基本证明与计算:

例1.直线CF垂直且平分AD于点E,四边形ABCD是菱形,BA的延长

线交CF于点F,连接AC。

(1)写出图中两对全等三角形。

(2)求证:ΔABC是正三角形。

例2、在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G. (1)求证:ΔADE≌ΔCBF

(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论。

例3、如图1,在四边形ABCD 中,已知AB=BC =CD ,∠BAD 和∠CDA 均为锐角,点P 是对角线BD 上的一点,

PQ ∥BA 交AD 于点Q ,PS ∥BC 交DC 于点S ,四边形PQRS 是平行四边形。

(1)当点P 与点B 重合时,图1变为图2,若∠ABD =90°,求证:△ABR ≌△CRD ;

(2)对于图1,若四边形PRDS 也是平行四边形,此时,你能推出四边形ABCD 还应满足什么条件? 练习:

1.在梯形ABCD 中,AB CD ∥,90ABC ∠=°,5AB =,10BC =,tan 2ADC ∠=. (1)求DC 的长;

(2)E 为梯形内一点,F 为梯形外一点,若BF DE =,FBC CDE ∠=∠,

试判断ECF △的形状,并说明理由.

(3)在(2)的条件下,若BE EC ⊥,:4:3BE EC =,求DE 的长.

2.如图,四边形ABCD 为一梯形纸片,AB//CD ,AD=BC .翻折纸片ABCD ,

图2

图1

R D

C

B

A

S

R

P

Q

D

C

B

A

F B

A D

C

E A

B P C

D

使点A 与点C 重合,折痕为EF .已知CE ⊥AB . (1)求证:EF//BD ;

(2)若AB=7,CD=3,求线段EF 的长.

3.已知:在ABC △中,D 为AB 边上一点,36A ∠=o ,AC BC =,AD AB AC ?=2

(1)试说明:ADC △和BDC △都是等腰三角形; (2)若1AB =,求AC 的值;

(3)请你构造一个等腰梯形,使得该梯形连同它的两条对角线得到8个等腰三角形.(标明各角的度数)

4.如图,AB ⊥BC ,DC ⊥BC ,垂足分别为B 、C 。

(1) 当AB=4,DC=1,BC=4时,在线段BC 上是否存在点P ,使AP ⊥PD ?如果存在,求BP 的长;

如果不存在,请说明理由。

(2) 设AB=a,DC=b,AD=c,那么当a,b,c 满足什么条件时,直线BC 上存在点P ,使得AP ⊥PD ?

5.如图,梯形ABCD 中,AD ∥BC ,∠ABC=90°,AD=9,BC=12,AB=a ,在线段BC 上取一点P ,连结DP ,作

射线PE ⊥DP ,PE 与直线..AB 交于点E. (1)试确定CP=3时,点E 的位置;

(2)若设CP=x ,BE=y ,试写出y 关于自变量x 的函数关系式;

(3)若在线段BC 上找到一点P ,使上述作法得到的点E 与点A 重合,试求出此时a 的值.

6.已知:如图,点O 是四边形BCED 外接圆的圆心,点O 在BC 上,点A 在CB 的延长线上,

且∠ADB=∠DEB,

EF⊥BC 于点F ,交⊙O 于点M ,EM=52. (1)求证:AD 是⊙O 的切线;

(2)若弧BM 上有一动点P ,且sin ∠CPM=

3

2

,求⊙O 直径的长; (3)在(2)的条件下,如果DE=14,求tan ∠DBE 的值.

7.已知:如图,Rt ABC ?中,?=∠90ACB ,点O 在AC 上,以O 为圆心、OC 为半径的圆与AB 相切于点D ,交AC 于点E . (1)求证:DE ∥OB ;

(2)若⊙O 的半径为2,4=BC ,求CD 的长.

8.已知:如图,在⊙O 中,弦CD 垂直直径AB ,垂足为M ,AB=4,CD=32,点E 在AB 的延长线上,且33tan =E 。

(1)求证:DE 是⊙O 的切线

(2)将ΔODE 平移,平移后所得的三角形记为ΔO ’D ’E ’,

求当点E ’与点C 重合时,ΔO ’D ’E ’与⊙O 重合部分的面积。

第二课时 线段、角的数量关系(包括相等、和差、倍、分关系)

E

B

A

D

C

O

例1.如图,在四边形ABCD 中,AD ∥BC ,点E 是AB 上一动点,若∠B=60°,AB=BC ,且∠DEC=60°,

判断AD+AE 与BC 的关系并证明你的结论。

例2.如图1,在正方形ABCD 中,对角线AC 与BD 相交于点E ,AF 平分BAC ∠,交BD 于点F . (1)求证:1

2

EF AC AB +

=; (2)点1C 从点C 出发,沿着线段CB 向点B 运动(不与点B 重合),同时点1A 从点A 出发,沿着BA 的延长线运动,点1C 与1A 的运动速度相同,当动点1C 停止运动时,另一动点1A 也随之停止运动.如图2,11A F 平分11BA C ∠,交BD 于点1F ,过点1F 作1111F E AC ⊥,垂足为1E ,请猜想11E F ,111

2

AC 与AB 三者之间的数量关系,并证明你的猜想;

(3)在(2)的条件下,当113A E =,112C E =时,求BD 的长.

例3.如图,放置两个全等的直角三角形ABC 和△EDA ,点B 、A 、D 在同一条直线上, 操作:在图中,

图1

B

D

图2

A

B C

D

A 1

作∠ABC 的平分线BF ,过点D 作DF ⊥BF ,垂足为F ,连结CE 。 探究:线段BF 、CE 的关系,并证明你的结论。 练习:

1.如图,在△ABC 中,AB=AC ,AE=CF 。求证:BC EF 2

1

2.过正方形ABCD 的点A 作任意直线交CD 和BC 边的延长线于P 和Q 。求证:AP+AQ >2AC 。 (选作)

3.如图,在正方形ABCD 中,E 是AB 边上任意一点,BG ⊥CE ,垂足为点O,交AC 于点F ,交AD 于点G 。 (1) 证明:BE=AG ;

(2) 点E 位于什么位置时,∠AEF=∠CEB ,说明理由.

4. 如图,在直角梯形纸片ABCD 中,AB ∥DC ,?=∠90A ,AD CD >,将纸片沿过点D 的直线折叠,使

A

B

C

E

F

P

B

C

A

D

Q

E

B

A

O F

G C

D

点A 落在边CD 上的点E 处,折痕为DF .连接EF 并展开纸片. (1)求证:四边形ADEF 是正方形;

(2)取线段AF 的中点G ,连接EG ,如果CD BG =,试说明四边形GBCE 是等腰梯形.

第三课时:面积问题

面积问题主要包括①直接用基本公式求面积;②证明所给出的图形是特殊图形,然后利用基本公式求面积;③通过图形的剪拼(或几何变换)把不规则图形转化为基本图形;④利用等积转化求面积;⑤利用比例求面积。

例1.已知,如图,正方形ABCD 的边长为6,菱形EFGH 的三个顶点E G H ,,分别在正方形ABCD 边

AB CD DA ,,上,2AH =,连接CF .

(1)当2DG =时,求FCG △的面积;

(2)设DG x =,用含x 的代数式表示FCG △的面积; (3)判断FCG △的面积能否等于1,并说明理由.

例2.如图,四边形ABCD 的对角线AC 、BD 交于点P ,过点P 作直线交AD 于点E ,交BC 于点F 。

若PE=PF ,且AP+AE=CP+CF 。 (1) 求证:PA=PC

(2) 若AD=12,AB=15,∠DAB=60°,求四边形ABCD 的面积。

例3.已知:如图,在边长为2的菱形ANCD 中,∠B=45°,AE 为BC 边上的高,将ΔABE 沿AE

A

E

C

B

D

A

G F

所在直线翻折后得到ΔE AB 1。求ΔE AB 1与四边形ABCD 重叠部分面积。

例4.如图,在平面直角坐标系xOy 中,直线23

3

+-

=x y 分别交x 轴、y 轴于C 、A 两点.将射线AM 绕着点A 顺时针旋转45°得到射线AN.点D 为AM 上的动点,点B 为AN 上的动点,点C 在∠MAN 的内部. (1) 求线段AC 的长;

(2) 当AM ∥x 轴,且四边形ABCD 为梯形时,求△BCD 的面积; (3) 求△BCD 周长的最小值;

(4) 当△BCD 的周长取得最小值,且BD=

52

3

时,△BCD 的面积为 .

练习:

1.△ABC 中,AB=AC ,M 、N 分别是AB 、AC 的中点,D 、E 为BC 上的点,连结DN 、EM 。若AB=13cm , BC=10cm , DE=5cm ,则图中阴影部分的面积为多少平方厘米?

2.已知:抛物线y=-x 2

+mx+2m 2

(m >0)与x 轴交于A 、B 两点,点A 在点B 的左边,C 是抛物线上一个动点

M

N

F

B1

E

A

B

C

(点C 与点A 、B 不重合),D 是OC 的中点,连结BD 并延长,交AC 于点E 。 (1)用含m 的代数式表示点A 、B 的坐标; (2)求

AE

CE

的值; (3)当C 、A 两点到y 轴的距离相等,且5

8

=CED S △时,求抛物线和直线BE 的解析式。

3.已知,在Rt△ABC 中,∠C=90°,∠A=30°,CD 是AB 边的中线,若将△ABC 沿CD 折叠,使CA 到A C '的位置,连结A 'B .

(1)求证:四边形BCD A '是菱形;

(2)若BC =2,试求四边形BCD A '是菱形的面积S .

4.已知平行四边形ABCD ,AD a AB b ABC α===,,∠.点F 为线段BC 上一点(端点B C ,除外),连结AF AC ,,连结DF ,并延长DF 交AB 的延长线于点E ,连结CE . (1)当F 为BC 的中点时,求证EFC △与ABF △的面积相等;

(2)当F 为BC 上任意一点时,EFC △与ABF △的面积还相等吗?说明理由.

5.如图,BC 是⊙O 的直径,点A 在圆上,且AB=AC=4.P 为AB 上一点,过P 作PE⊥AB 分别BC 、OA 于E 、F

A

B

C

D

E

F

(1)设AP=1,求△OEF 的面积.

(2)设AP=a (0<a <2),△APF 、△OEF 的面积分别记为S 1、S 2。

①若S 1=S 2,求a 的值;

②若S= S 1+S 2,是否存在一个实数a ,使S <15

?若存在,求出一个a 的值;若不存在,说明理由.

第四课时:动态几何

动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对综合分析能力进行考察。

例1(2010,密云,一模)如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为

4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线

段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒).

N

(1)当MN AB ∥时,求t 的值;

(2)试探究:t 为何值时,MNC △为等腰三角形.

例2(2010,崇文,一模)在△ABC 中,∠ACB=45o.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .

(1)如果AB=AC.如图①,且点D在线段BC上运动.试判断线段CF与BD之间的位置关系,并证明你的结论.

(2)如果AB≠AC,如图②,且点D在线段BC上运动.(1)中结论是否成立,为什么?

(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=

42

,3

=

BC,CD=x,求线段CP的长.(用含x的式子表示)

例3(2010,怀柔,一模)已知如图,在梯形ABCD中,24

AD BC AD BC

==

∥,,,点M是AD的中点,MBC

△是等边三角形.

(1)求证:梯形ABCD是等腰梯形;

(2)动点P、Q分别在线段BC和MC上运动,且60

MPQ=?

∠保持不变.设PC x MQ y

==

,,求y与x的函数关系式;

(3)在(2)中,当y取最小值时,判断PQC

△的形状,并说明理由.

例4.(2009,石景山一模)已知:如图(1),射线//

AM射线BN,AB是它们的公垂线,点D、C分别在AM、BN上运动(点D与点A不重合、点C与点B不重合),E是AB边上的动点(点E与A、B

A D

C

B

P

M

Q

60°

不重合),在运动过程中始终保持EC DE ⊥,且a AB DE AD ==+. (1)求证:ADE ?∽BEC ?;

(2)如图(2),当点E 为AB 边的中点时,求证:CD BC AD =+;

(3)设m AE =,请探究:BEC ?的周长是否与m 值有关?若有关,请用含有m 的代数式表示BEC ?的周长;若无关,请说明理由.

第25题(2)

练习:

1.在直角梯形COAB 中,CB ∥OA,以O 为原点建立平面直角坐标系,A 、B 、C 的坐标分别为A(10,0)、B(4,8)、C(0,8),D 为OA 的中点,动点P 自点A 出发沿A →B →C →O 的路线移动,速度为每秒1个单位,移动时间记为t 秒

(1)动点P 在从A 到B 的移动过程中,设△APD 的面积为S ,试写出S 与t 的函数关系式,指出自变量的

取值范围,并写出S 的最大值;

(2)动点P 从A 出发,几秒钟后线段PD 将梯形COAB 的面积分成1:3两部分?求出此时P 点的坐标。

2.在矩形ABCD 中,AB=20cm ,BC=4cm ,点P 从A 开始沿折线A →B →C →D 以4cm/s 的速度移动,点Q 从C 开始沿CD 边以1cm/s 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达D 时,另一点

也随之停止运动,设运动时间为t(s) (1)t 为何值时,四边形APQD 为矩形?

(2)如果⊙P 和⊙Q 都是半径为2cm 的圆,那么t 为何值时,⊙P 和⊙Q 外切?

3、直线21l l ⊥,垂足为点O ,A 、B 是直线1l 上的两个点,且OB=2,AB=2,直线1l 绕点O 按逆时 针方向旋转,旋转的角度为α(?<

(1) 当?=60α时,在直线2l 上找点P ,使得ΔBPA 是以∠B 为顶角的等腰三角形,此时OP= (2) 当α在什么范围内变化时,直线2l 上存在点P ,使得ΔBPA 是以∠B 为顶角的等腰三角形,请用不

等式表示α的取值范围?

4.已知:如图等边三角形ABC 的边长为6,点D 、E 分别在边AB 、AC 上,且AD=AE=2。若点F 从点B 开始以每秒1个单位长的速度沿射线BC 方向运动,设点F 运动的时间为t 秒。当0>t 时,直线FD 与过点A

P

且平行于BC 的直线相交于点O 。

(1) 设ΔEGA 的面积为S ,写出S 与t 的函数关系式; (2) 当t 为何值时,AB ⊥GH (3) 请你证明ΔGFH 的面积为定值; 当t 为何值时,点F 和点C 是线段BH 的三等分

5.如图,直角坐标系中,已知点A(2,4),B(5,0),动点P 从B 点出发沿BO 向终点O 运动,动点O 从A 点出发沿AB 向终点B 运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了x s . (1)Q 点的坐标为(___,___)(用含x 的代数式表示) (2)当x 为何值时,△APQ 是一个以AP 为腰的等腰三角形?

(3)记PQ 的中点为G .请你探求点G 随点P ,Q 运动所形成的图形,并说明理由.

第五课时:课题学习

例1. 如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”. 如图8①所示,矩形ABEF 即为△ABC

H

G E

C

A

B

D

的“友好矩形”. 显然,当△ABC 是钝角三角形时,其“友好矩形”只有一个 .

(1) 仿照以上叙述,说明什么是一个三角形的“友好平行四边形”;

(2) 如图8②,若△ABC 为直角三角形,且∠C =90°,在图8②中画出△ABC 的所有“友好矩形”,并比较这些矩形面积的大小;

(3) 若△ABC 是锐角三角形,且BC>AC>AB ,在图8③中画出△ABC 的所有“友好矩形”,指出其中周长最小的矩形并加以证明.

例2.在ABC △中,AB AC =,点P 为ABC △所在平面内一点,过点P 分别作PE AC ∥交AB 于点E ,PF AB ∥交BC 于点D ,交AC 于点F .若点P 在BC 边上(如图1)

,此时0PD =,可得结论:PD PE PF AB ++=.

请直接应用上述信息解决下列问题:

当点P 分别在ABC △内(如图2),ABC △外(如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD PE PF ,,与AB 之间又有怎样的数量关系,请写出你的猜想,不需要证明.

例3.问题背景 某课外学习小组在一次学习研讨中,得到如下两命题:

①如图1,在正三角形ABC 中,M 、N 分别是AC 、AB 上的点,BM 与CN 相交于点O ,若∠BON = 60°,则BM = CN.

图1

A B

C

E

F

()P D

图2

A B

C

E

F

P

D 图3

A B

C

E

F

D

②如图2,在正方形ABCD 中,M 、N 分别是CD 、AD 上的点,BM 与CN 相交于点O ,若∠BON = 90°, 则BM = CN.

然后运用类比的思想提出了如下的命题:

③如图3,在正五边形ABCDE 中,M 、N 分别是CD 、DE 上的点,BM 与CN 相交于点O ,若∠BON = 108°, 则BM = CN. 任务要求:

(1)请你从①、②、③三个命题中选择一个进行证明; (2)请你继续完成下面的探索:

① 如图3中,画出一条与CN 相等的线段DH ,使点H 在正五边形ABCDE 的边上,且与CN 相交所成的一

个角是108°,这样的线段有几条?(不必写出画法,不要求证明)

② 如图5,在五边形ABCDE 中,M 、N 分别是DE 、AE 上的点,BM 与CN 相交于点O ,当∠BON = 108°时,

请问结论BM = CN 是否还成立?若成立,请给予证明;若不成立,请说明理由

练习:

1.我们给出如下定义:如果三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”。在△ABC 中,∠A 、∠B 、∠C 所对的边分别为a,b,c 。 (1)若∠A=2∠B ,且∠A=60°,求证:)(2c b b a +=。

(2)如果对于任意的倍角三角形ABC (如图),其中∠A=2∠B ,关系式)(2c b b a +=是否仍然成立?

请证明你的结论。

2.如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.

在研究“接近度”时,应保证相似图形的“接近度”相等.

(1)设菱形相邻两个内角的度数分别为m o

和n o

,将菱形的“接近度”定义为m n -,于是,m n -越

图5

O

D

E N M

C

B

A

图2N

M 图1

O

A

B

C

D O

N

M C

B

A

小,菱形越接近于正方形.

①若菱形的一个内角为70o

,则该菱形的“接近度”等于 ; ②当菱形的“接近度”等于

时,菱形是正方形.

(2)设矩形相邻两条边长分别是a 和b (a b ≤),将矩形的“接近度”定义为a b -,于是a b -越小,矩

形越接近于正方形.你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.

3.四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图l ,点P 为四边形ABCD 对角线AC 所在直线上的一点,PD=PB ,PA≠PC,则点P 为四边形ABCD 的准等距点. (1)如图2,画出菱形ABCD 的一个准等距点.

(2)如图3,作出四边形ABCD 的一个准等距点(保留作图痕迹,不写作法). (3)如图4,在四边形ABCD 中,P 是AC 上的点,PA≠PC, 延长BP 交CD 于点E ,延长DP 交BC 于点F ,且∠CDF=∠CBE, CE=CF .求证:点P 是四边形AB CD 的准等距点.

(4)试研究四边形的准等距点个数的情况(说出相应四边形的特征及准等距点的个数,不必证明).

a

n o

m o

中考数学复习检测第2部分专题突破专题十解答题突破—代数几何综合题(涉及二次函数)

2019-2020年中考数学复习检测第2部分专题突破专题十解答题突破—代数几何综合题(涉及二次函数) 类型一以几何图形为背景的综合题 【例1】(xx·苏州一模)如图1①,四边形ABCD中,AD∥BC,DC⊥BC,AD =6 cm,DC=8 cm,BC=12 cm.动点M在CB上运动,从C点出发到B点,速度每秒2 cm;动点N在BA上运动,从B点出发到A点,速度每秒1 cm.两个动点同时出发,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒). (1)求线段AB的长. (2)当t为何值时,MN∥CD? (3)设三角形DMN的面积为S,求S与t之间的函数关系式. (4)如图1②,连接BD,是否存在某一时刻t,使MN与BD互相垂直?若存在,求出这时的t值;若不存在,请说明理由. 图1

【例2】(xx·吉林)如图2,在等腰直角三角形ABC中,∠BAC=90°,AC=8 2 cm,AD⊥BC于点D,点P从点A出发,沿A→C方向以 2 cm/s的速度运动到点C停止,在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2) 图2 备用图 (1)当点M落在AB上时,x=____________; (2)当点M落在AD上时,x=____________; (3)求y关于x的函数解析式,并写出自变量x的取值范围.

1.(xx·宁夏)如图3,在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC 向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒 (0<x≤3),解答下列问题: (1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值; 图3 (2)是否存在x的值,使得QP⊥DP?试说明理由. 2.(xx·梅州)如图4,在Rt△ABC中,∠ACB=90°,AC=5 cm,∠BAC=60°,动点M 从点B出发,在BA边上以每秒2 cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒 3 cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN. 图4 (1)若BM=BN,求t的值; (2)若△MBN与△ABC相似,求t的值; (3)当t为何值时,四边形ACNM的面积最小?并求出最小值.

专题九几何综合体、代数和几何综合题(含问题详解)

2012年中考第二轮专题复习九:几何综合体、代数和几何综 合题 1(2011省)如图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG. (1)求证:①DE=DG;②DE⊥DG (2)尺规作图:以线段DE,DG为边作出正方形DEFG (要求:只保留作图痕迹,不写作法和证明); (3)连接(2)中的KF,猜想并写出四边形CEFK是怎样的 特殊四边形,并证明你的猜想: (4)当时,请直接写出的值. 考点:正方形的性质;全等三角形的判定与性质;平行四边形的判定;作图—复杂作图。分析:(1)由已知证明DE、DG所在的三角形全等,再通过等量代换证明DE⊥DG; (2)根据正方形的性质分别以点G、E为圆心以DG为半径画弧交点F,得到正方形DEFG;(3)由已知首先证四边形CKGD是平行四边形,然后证明四边形CEFK为平行四边形; (4)由已知表示出的值. 解答:(1)证明:∵四边形ABCD是正方形, ∴DC=DA,∠DCE=∠DAG=90°. 又∵CE=AG, ∴△DCE≌△GDA, ∴DE=DG, ∠EDC=∠GDA, 又∵∠ADE+∠EDC=90°, ∴∠ADE+∠GDA=90°, ∴DE⊥DG. (2)如图. (3)四边形CEFK为平行四边形. 证明:设CK、DE相交于M点, ∵四边形ABCD和四边形DEFG都是正方形, ∴AB∥CD,AB=CD,EF=DG,EF∥DG, ∵BK=AG, ∴KG=AB=CD, ∴四边形CKGD是平行四边形,

∴CK=DG=EF,CK∥DG, ∴∠KME=∠GDE=∠DEF=90°, ∴∠KME+∠DEF=180°, ∴CK∥EF, ∴四边形CEFK为平行四边形. (4)=. 点评:此题考查的知识点是正方形的性质、全等三角形的判定和性质、平行四边形的判定及作图,解题的关键是先由正方形的性质通过证三角形全等得出结论,此题较复杂 2(2011建设兵团)如图,在等腰梯形ABCD中,AD=4,BC=9,∠B=45°.动点P从点B出发沿BC向点C运动,动点Q同时以相同速度从点C出发沿CD向点D运动,其中一个动点到达端点时,另一个动点也随之停止运动. (1)求AB的长; (2)设BP=x,问当x为何值时△PCQ的面积最大, 并求出最大值; (3)探究:在AB边上是否存在点M,使得四边形PCQM为 菱形?请说明理由. 考点:等腰梯形的性质;二次函数的最值;菱形的性质;解直角三角形。 分析:(1)作AE⊥BC,根据题意可知BE的长度,然后,根据∠B的正弦值,即可推出AB 的长度; (2)作QF⊥BC,根据题意推出BP=CQ,推出CP关于x的表达式,然后,根据∠C的正弦值推出高QF关于x的表达式,即可推出面积关于x的二次函数式,最后根据二次函数的最值即可推出x的值; (3)首先假设存在M点,然后根据菱形的性质推出,∠B=∠APB=∠BAP=45°,这是不符合三角形角和定理的,所以假设是错误的,故AB上不存在M点. 解答:解:(1)作AE⊥BC, ∵等腰梯形ABCD中,AD=4,BC=9, ∴BE=(BC﹣AD)÷2=2.5, ∵∠B=45°, ∴AB=, (2)作QF⊥BC, ∵等腰梯形ABCD, ∴∠B=∠C=45°, ∵点P和点Q的运动速度、运动时间相同,BP=x, ∴BP=CQ=x, ∵BC=9, ∴CP=9﹣x,QF=, 设△PQC的面积为y,

2017年北京中考数学一模28题“几何综合题”

2017年北京中考数学一模28题“几何综合题” 西城28.在△ABC 中,AB =BC ,BD ⊥AC 于点D . (1)如图1,当∠ABC =90°时,若CE 平分∠ACB ,交AB 于点E ,交BD 于点F . ①求证:△BEF 是等腰三角形; ②求证:()BF BC BD += 2 1 ; (2)点E 在AB 边上,连接CE . 若()BF BC BD += 2 1 ,在图2.中补全图形,判断∠ACE 与∠ABC 之间的数量关系,写出你的结论,并写出求解∠ACE 与∠ABC 关系的思路 图1 图2 朝阳28.在△ABC 中,∠ACB =90°,AC <BC ,点D 在AC 的延长线上,点E 在BC 边上,且BE =AD , (1) 如图1,连接AE ,DE ,当∠AEB =110°时,求∠DAE 的度数; (2) 在图2中,点D 是AC 延长线上的一个动点,点E 在BC 边上(不与点C 重合),且BE =AD ,连接AE , DE ,将线段AE 绕点E 顺时针旋转90°得到线段EF ,连接BF ,DE . ①依题意补全图形; ②求证:BF =DE . D D 图1 图2

东城28. 在等腰△ABC中, (1)如图1,若△ABC为等边三角形,D为线段BC中点,线段AD关于直线AB的对称线段为线段AE,连接DE,则∠BDE的度数为___________; (2)若△ABC为等边三角形,点D为线段BC上一动点(不与B,C重合),连接AD并将线段AD绕点D逆时针旋转60°得到线段DE,连接BE. ①根据题意在图2中补全图形; ②小玉通过观察、验证,提出猜测:在点D运动的过程中,恒有CD=BE.经过与同学们的充分讨论, 形成了几种证明的思路: 思路1:要证明CD=BE,只需要连接AE,并证明△ADC≌△AEB; 思路2:要证明CD=BE,只需要过点D作DF∥AB,交AC于F,证明△ADF≌△DEB; 思路3:要证明CD=BE,只需要延长CB至点G,使得BG=CD,证明△ADC≌△DEG; …… 请参考以上思路,帮助小玉证明CD=BE.(只需要用一种方法证明即可) (3)小玉的发现启发了小明:如图3,若AB=AC=kBC,AD=kDE,且∠ADE=∠C,此时小明发现BE,BD,AC三者之间满足一定的的数量关系,这个数量关系是______________________.(直接给出结论无须证明) 图1 图2 图3

中考数学几何综合圆的综合大题压轴题

圆的综合大题 1.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF. (1)证明:AF平分∠BAC; (2)证明:BF=FD; (3)若EF=4,DE=3,求AD的长. 2.如图,AB是⊙O的直径,过点B作⊙O的切线BM,点P在右半圆上移动(点P与点A,B不重合),过点P作PC⊥AB,垂足为C;点Q在射线BM上移动(点M在点B的右边),且在移动过程中保持OQ∥AP. (1)若PC,QO的延长线相交于点E,判断是否存在点P,使得点E恰好在⊙O上?若存在,求出∠APC的大小;若不存在,请说明理由; (2)连接AQ交PC于点F,设,试问:k的值是否随点P的移动而变化?证明你的结论.

3.已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合),MN为折痕,点M,N分别在边BC,AD上,连接AP,MP,AM,AP与MN相交于点F.⊙O过点M,C,P. (1)请你在图1中作出⊙O(不写作法,保留作图痕迹); (2)与是否相等?请你说明理由; (3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.设AB为4,请你通过计算,画出这时的图形.(图2,3供参考) 4.在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F. (I)如图①,若∠F=50°,求∠BGF的大小; (II)如图②,连接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.

5.如图,在⊙O中,半径OD⊥直径AB,CD与⊙O相切于点D,连接AC交⊙O 于点E,交OD于点G,连接CB并延长交⊙于点F,连接AD,EF. (1)求证:∠ACD=∠F; (2)若tan∠F= ①求证:四边形ABCD是平行四边形; ②连接DE,当⊙O的半径为3时,求DE的长. 6.如图,⊙O的直径AB为10cm,弦BC为6cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE. (1)求AC、AD的长; (2)试判断直线PC与⊙O的位置关系,并说明理由.

代数几何综合题含答案

代数几何综合题 代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。 例1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作P C P B ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式; (2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。 解:(1) P C P B B O P O ⊥⊥, ∴∠+∠=?∠+∠ ∴∠=∠C P A O P B P B O O P B C P A P B O 90, A (2,0),C (2,y )在直线a 上 ∴∠=∠=? B O P P A C 90 ∴??B O PP A C ~ ∴ =P O A C B O P A ,∴=+||||||x y x 2 2 , x y x y x <<∴= -002 2,,∴=-+y x x 122 (2) x <0,∴x 的最大整数值为-1 , 当x =-1时,y =- 32,∴=CA 3 2

B O a B O Q C A Q O Q A Q B O C A //~,,∴∴=?? 设Q 点坐标为()m ,0,则A Q m =-2 ∴-=∴=m m m 2232 8 7 , ∴Q 点坐标为()8 7 0, 说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。关键是搞清楚用坐标表示的数与线段的长度的关系。 练习 1.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO. (1)求证:CD ∥AO ;(3分) (2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3分) (3)若AO +CD =11,求AB 的长。(4分) B

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析 几何综合题一般以圆为基础,涉及相似三角形等有关知识;这类题虽较难,但有梯度,一般题目中由浅入深有1~3个问题,解答这种题一般用分析综合法. 【典型例题精析】 例1.如图,已知⊙O的两条弦AC、BD相交于点Q,OA⊥BD. (1)求证:AB2=AQ·AC: (2)若过点C作⊙O的切线交DB的延长线于点P,求证:PC=PQ. P 分析:要证A B2=AQ·AC,一般都证明△ABQ∽△ACB.∵有一个公共角∠QAB=∠BAC,?∴只需再证明一个角相等即可. 可选定两个圆周角∠ABQ=∠ACB加以证明,以便转化,题目中有垂直于弦的直径,可知AB=AD,AD和AB所对的圆周角相等. (2)欲证PC=PQ, ∵是具有公共端点的两条线段, ∴可证∠PQC=∠PCQ(等角对等边) 将两角转化,一般原地踏步是不可能证明出来的,没有那么轻松愉快的题目给你做,因为数学是思维的体操. ∠BQC=∠AQD=90°-∠1(充分利用直角三角形中互余关系) ∵∠PCA是弦切角,易发现应延长AO与⊙交于E,再连结EC,?利用弦切角定理得∠PCA=∠E,同时也得到直径上的圆周角∠ACE=90°, ∴∠PCA=∠E=90°-∠1. 做几何证明题大家要有信心,拓展思维,不断转化,寻根问底,不断探索,?充分发挥题目中条件的总体作用,总能得到你想要的结论,同时也要做好一部分典型题,?这样有利于做题时发生迁移,联想. 例2.如图,⊙O1与⊙O2外切于点C,连心线O1O2所在的直线分别交⊙O1,⊙O2于A、E,?过点A作⊙O2的切线AD交⊙O1于B,切点为D,过点E作⊙O2的切线与AD交于F,连结BC、CD、?DE. (1)如果AD:AC=2:1,求AC:CE的值; (2)在(1)的条件下,求sinA和tan∠DCE的值; (3)当AC:CE为何值时,△DEF为正三角形?

中考数学专题突破几何综合

2016年北京中考专题突破几何综合 在北京中考试卷中,几何综合题通常出现在后两题,分值为8分或7分.几何综合题主要包含三角形(全等、相似)、四边形、锐角三角函数、圆等知识,主要研究图形中的数量关系、位置关系、几何计算以及图形的运动、变换等规律. 求解几何综合题时,关键是抓住“基本图形”,能在复杂的几何图形中辨认、分解出基本图形,或通过添加辅助线补全、构造基本图形,或运用图形变换的思想将分散的条件集中起来,从而产生基本图形,再根据基本图形的性质,合理运用方程、三角函数的运算等进行推理与计算. 1.[2015·北京] 在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C,D 不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH,PH. (1)若点P在线段CD上,如图Z9-1(a). ①依题意补全图(a); ②判断AH与PH的数量关系与位置关系,并加以证明. (2)若点P在线段CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果 .........) 图Z9-1 2.[2014·北京] 在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F. (1)依题意补全图Z9-2①; (2)若∠PAB=20°,求∠ADF的度数; (3)如图②,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.

图Z9-2 3.[2013·北京] 在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B 逆时针旋转60°得到线段B D. (1)如图Z9-3①,直接写出∠ABD的大小(用含α的式子表示); (2)如图②,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明; (3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值. 图Z9-3 4.[2012·北京] 在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ. (1)若α=60°且点P与点M重合(如图Z9-4①),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数; (2)在图②中,点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想∠CDB 的大小(用含α的代数式表示),并加以证明; (3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,请直接写出α的范围. 图Z9-4

中考数学几何综合题汇总.doc

如图 8,在Rt ABC中,CAB 90,AC 3 , AB 4 ,点 P 是边 AB 上任意一点,过点 P 作PQ AB 交BC于点E,截取 PQ AP ,联结 AQ ,线段 AQ 交BC于点D,设 AP x ,DQ y .【2013徐汇】 (1)求y关于x的函数解析式及定义域;( 4 分) (2)如图 9,联结CQ,当CDQ和ADB相似时,求x的值;( 5 分) (3)当以点C为圆心,CQ为半径的⊙C和以点B为圆心,BQ为半径的⊙B相交的另一个交点在边 AB 上时,求 AP 的长.( 5 分) C Q D E A P B (图 8) C Q D E A (图 9) P B C A B (备用图) 【2013 奉贤】如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点 C作 AB的垂线交⊙ O于点 D,联结 OD,过点 B 作 OD的平行线交⊙ O于点 E、交射 线CD于点 F. (1)若 ⌒ ED BE⌒ ,求∠ F 的度数; (2)设CO x, EF y,写出y 与x之间的函数解析式,并写出定义域;

(3)设点 C 关于直线 OD 的对称点为 P ,若△ PBE 为等腰三角形,求 OC 的长. 第 25 题 【 2013 长宁】△ ABC 和△ DEF 的顶点 A 与 D 重合,已知∠ B = 90 . ,∠ BAC = 30 . , BC=6,∠ FDE = 90 , DF=DE=4. (1)如图①, EF 与边 、 分别交于点 ,且 . 设 DF a ,在射线 上取 AC AB G 、H FG=EH DF 一点 P ,记: DP xa ,联结 CP. 设△ DPC 的面积为 y ,求 y 关于 x 的函数解析式,并写 出定义域; (2)在( 1)的条件下,求当 x 为何值时 PC // AB ; ( 3)如图②,先将△ DEF 绕点 D 逆时针旋转,使点 E 恰好落在 AC 边上,在保持 DE 边与 AC 边完 全重合的条件下, 使△ DEF 沿着 AC 方向移动 . 当△ DEF 移动到什么位置时, 以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 图① 图② 【 2013 嘉定】已知 AP 是半圆 O 的直径,点 C 是半圆 O 上的一个动点 (不与点 A 、P 重合),联结 AC ,以直线 AC 为对称轴翻折 AO ,将点 O 的对称点记为 O 1 ,射线 AO 1 交半圆 O 于 点 B ,联结 OC . (1)如图 8,求证: AB ∥ OC ; (2)如图 9,当点 B 与点 O 1 重合时,求证: AB CB ;

初三数学代数几何综合题

代数几何综合题 【题型特征】代数、几何知识相结合的综合题是以几何知识为主体,以代数知识为工具(背景),来确定图形的形状、位置、大小(坐标)的问题.解答时往往需要从代数几何的结合点或在几何图形中寻找各元素之间的数量关系或在代数条件中探讨各个量的几何模型,进行数与形之间的互相转化,使问题得到解决. 为了讲解方便,我们将代数几何综合题按题目叙述的背景分为:坐标系、函数为背景的代数几何综合题和以几何图形为背景的代数几何综合题. 【解题策略】几何图形为背景的代数几何综合题,建立函数表达式的常见思路是:利用图形的面积公式建立函数表达式;或利用勾股定理或解直角三角形知识建立函数表达式;或利用相似三角形的线段成比例建立函数表达式. 类型一坐标系、函数为背景 典例1(2015·湖南怀化)如图(1),在平面直角坐标系中,AB=OB=8,∠ABO=90°,∠yOC=45°,射线OC以每秒2个单位长度的速度向右平行移动,当射线OC经过点B时停止运动,设平行移动x秒后,射线OC扫过Rt△ABO的面积为y. (1)求y与x之间的函数表达式; (2)当x=3秒时,射线OC平行移动到O'C',与OA相交于点G,如图(2),求经过G,O,B三点的抛物线的表达式; (3)现有一动点P在(2)中的抛物线上,试问点P在运动过程中,是否存在三角形POB的面积S=8的情况?若存在,求出点P的坐标,若不存在,请说明理由. (1)

(2) 【全解】 (1)∵AB=OB,∠ABO=90°, ∴△ABO是等腰直角三角形. ∴∠AOB=45°. ∵∠yOC=45°, ∴∠AOC=(90°-45°)+45°=90°. ∴AO⊥CO. ∵C'O'是CO平移得到, ∴AO⊥C'O'. ∴△OO'G是等腰直角三角形. ∵射线OC的速度是每秒2个单位长度, ∴OO'=2x. ∴其以OO'为底边的高为x. ∴点G的坐标为(3,3). 设抛物线表达式为y=ax2+bx,

折叠几何综合专题---16道题目(含答案)

01如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG. (1)求证:四边形EFDG是菱形; (2)探究线段EG,GF,AF之间的数量关系,并说明理由; (3)若AG=6,EG=25,求BE的长.

(1)证明:由折叠性质可得,EF =FD ,∠AEF =∠ADF =90°,∠ EFA =∠DFA ,EG =GD ,∵EG ∥DC ,∴∠DFA =∠EGF , ∴∠EFA =∠EGF ,∴EF =EG =FD =GD ,∴四边形EFDG 是菱形; (2)解:EG 2 =1 2 GF ·AF .理由如下: 如解图,连接ED ,交AF 于点H , ∵四边形EFDG 是菱形, ∴DE ⊥AF ,FH =GH =12GF ,EH =DH =1 2 DE , ∵∠FEH =90°-∠EFA =∠FAE ,∠FHE =∠AEF =90°, ∴Rt △FEH ∽Rt △FAE ,∴EF AF =FH EF ,即EF 2=FH ·AF , 又∵FH =12GF ,EG =EF ,∴EG 2 =12 GF ·AF ; (3)解:∵AG =6,EG =25,EG 2 =12AF ·GF ,∴(25)2 =12 (6+GF )·GF , 解得GF =4或GF =-10(舍),∴GF =4,∴AF =10. ∵DF =EG =25,∴AD =BC =AF 2-DF 2=45, DE =2EH =2 EG 2 -(1 2 GF )2=8,

∵∠CDE+∠DFA=90°,∠DAF+∠DFA=90°,∴∠CDE=∠DAF,∵∠DCE=∠ADF=90°, ∴Rt△DCE∽Rt△ADF,∴EC DF = DE AF ,即 EC 25 = 8 10 , ∴EC=85 5 ,∴BE=BC-EC= 125 5 . 02如图,将矩形ABCD沿对角线BD对折,点C落在E处,BE与AD相交于点F,若DE=4,BD=8. (1)求证:AF=EF; (2)求证:BF平分∠ABD.

初中数学中考几何综合题

中考数学复习--几何综合题 Ⅰ、综合问题精讲: 几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键. 解几何综合题,还应注意以下几点: ⑴ 注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基 本图形. ⑵ 掌握常规的证题方法和思路. ⑶ 运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用数 学思想方法伯数形结合、分类讨论等). Ⅱ、典型例题剖析 【例1】(南充,10分)⊿ABC 中,AB =AC ,以AC 为直径的⊙O 与AB 相交于点E ,点F 是 BE 的中点. (1)求证:DF 是⊙O 的切线.(2)若AE =14,BC =12,求BF 的长. 解:(1)证明:连接OD ,AD . AC 是直径, ∴ AD⊥BC. ⊿ABC 中,AB =AC , ∴ ∠B=∠C,∠BAD=∠DAC. 又∠BED 是圆内接四边形ACDE 的外角, ∴∠C =∠BED . 故∠B =∠BED ,即DE =DB . 点F 是BE 的中点,DF ⊥AB 且OA 和OD 是半径, 即∠DAC =∠BAD =∠ODA . 故OD ⊥DF ,DF 是⊙O 的切线. (2)设BF =x ,BE =2BF =2x . 又 BD =CD =21BC =6, 根据BE AB BD BC ?=?,2(214)612x x ?+=?. 化简,得 27180x x +-=,解得 122,9x x ==-(不合题意,舍去). 则 BF 的长为2.

中考数学压轴题精选(几何综合题)

中考数学压轴题(几何综合题) 1、如图1,△ABC中,∠ACB=90°,AC=4厘米,BC=6厘米,D是BC的中点.点E从A 出发,以a厘米/秒(a>0)的速度沿AC匀速向点C运动,点F同时以1厘米/秒的速度从C出发,沿CB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,过点E作AC的垂线,交AD于点G,连接EF,FG.设它们运动的时间为t秒(t>0).(1)当t=2时,△ECF∽△BCA,求a的值; (2)当a=1 2 时,以点E、F、D、G为顶点的四边形是平行四边形,求t的值; (3)当a=2时,是否存在某个时间,使△DFG是直角三角形?若存在,请求出t的值; 若不存在,请说明理由. 解:(1)∵t=2,∴CF=2厘米,AE=2a厘米, ∴EC=(4-2a ) 厘米. ∵△ECF∽△BCA.∴EC CF CB AC = ∴422 64 a - =.∴ 1 2 a=. (2)由题意,AE=1 2 t厘米,CD=3厘米,CF=t厘米. ∵EG∥CD,∴△AEG∽△ACD.∴EG AE CD AC =, 1 2 34 t EG =.∴EG= 3 8 t. ∵以点E、F、D、G为顶点的四边形是平行四边形,∴EG=DF. 当0≤t<3时,3 3 8 t t =-, 24 11 t=. 当3<t≤6时,3 3 8 t t=-, 24 5 t=. 综上 24 11 t=或 24 5 (3)由题意,AE=2t厘米,CF=t厘米,可得:△AEG∽△ACD AG=5 2 t厘米,EG= 3 2 t,DF=3-t厘米,DG=5- 5 2 t(厘米). G D B A C F E (第27题) D B A C 备用图 图1

中考数学代数几何综合题2

中考数学代数几何综合题2 Ⅰ、综合问题精讲: 代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,近几年中考试题中的综合题大多以代数几何综合题的形式显现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数和几何知识解题. Ⅱ、典型例题剖析 【例1】(2005,温州,12分)如图,已知四边形ABCD 内接于⊙O,A 是BDC 的中点,AE⊥AC 于A ,与⊙O 及CB 的延长线分别交于点F 、E ,且BF AD =,EM 切⊙O 于M 。 ⑴ △ADC∽△EBA ;⑵ AC2=1 2 BC·CE; ⑶假如AB =2,EM =3,求cot∠CAD 的值。 解:⑴∵四边形ABCD 内接于⊙O,∴∠CDA=∠ABE, ∵BF AD =,∴∠DCA=∠BAE, ∴△CAD∽△AEB ⑵ 过A 作AH⊥BC 于H(如图) ∵A 是BDC 中点,∴HC=HB =1 2 BC , ∵∠CAE=900,∴AC 2 =CH·CE=12 BC·CE ⑶∵A 是BDC 中点,AB =2,∴AC=AB =2, ∵EM 是⊙O 的切线,∴EB·EC=EM 2 ① ∵AC 2 =12 BC·CE,BC·CE=8 ② ①+②得:EC(EB +BC)=17,∴EC 2 =17 ∵EC 2 =AC 2 +AE 2 ,∴AE=17-22=13 ∵△CAD∽△ABE,∴∠CAD=∠AEC, ∴cot∠CAD=cot∠AEC =AE AC =13 2 点拨:此题的关键是树立转化思想,将未知的转化为已知的.此题表现的专门突出.如,将∠CAD 转化为∠AEC 就专门关键. 【例2】(2005,自贡)如图 2-5-2所示,已知直线y=2x+2分 别与x 轴、y 轴交于点A 、B ,以线段AB 为直角边在第一象限内 作等腰直角△ABC ,∠BAC=90○ 。过C 作CD ⊥x 轴,D 为垂足. (1)求点 A 、B 的坐标和AD 的长; (2)求过B 、A 、C 三点的抛物线的解析式。

中考数学专题复习教学案几何综合题

几何综合题 Ⅰ、综合问题精讲: 几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键. 解几何综合题,还应注意以下几点: ⑴ 注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形. ⑵ 掌握常规的证题方法和思路. ⑶ 运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用数学思想方法伯数形结合、分类讨论等). Ⅱ、典型例题剖析 【例1】(南充,10分)⊿ABC 中,AB =AC ,以AC 为直径的⊙O 与AB 相交于点E ,点F 是BE 的中点. (1)求证:DF 是⊙O 的切线.(2)若AE =14,BC =12,求BF 的长. 解:(1)证明:连接OD ,AD . AC 是直径, ∴ AD ⊥BC . ⊿ABC 中,AB =AC , ∴ ∠B =∠C ,∠BAD =∠DAC . 又∠BED 是圆内接四边形ACDE 的外角, ∴∠C =∠BED . 故∠B =∠BED ,即DE =DB . 点F 是BE 的中点,DF ⊥AB 且OA 和OD 是半径, 即∠DAC =∠BAD =∠ODA . 故OD ⊥DF ,DF 是⊙O 的切线. (2)设BF =x ,BE =2BF =2x . 又 BD =CD =21 BC =6, 根据BE AB BD BC ?=?,2(214)612x x ?+=?. 化简,得 27180x x +-=,解得 122,9x x ==-(不合题意,舍去).

中考数学几何综合题汇总

如图8,在ABC Rt ?中,?=∠90CAB ,3=AC ,4=AB ,点P 是边AB 上任意一点,过点P 作AB PQ ⊥交BC 于点E ,截取AP PQ =,联结AQ ,线段AQ 交BC 于点D ,设x AP =,y DQ =.【2013徐汇】 (1)求y 关于x 的函数解析式及定义域; (4分) (2)如图9,联结CQ ,当CDQ ?和ADB ?相似时,求x 的值; (5分) (3)当以点C 为圆心,CQ 为半径的⊙C 和以点B 为圆心,BQ 为半径的⊙B 相交的另一 个交点在边AB 上时,求AP 的长. (5分) 【2013奉贤】如图,已知AB 是⊙O 的直径,AB =8, 点C 在半径OA 上(点C 与点O 、A 不重合),过点C 作AB 的垂线交⊙O 于点D ,联结OD ,过点B 作OD 的平行线交⊙O 于点E 、交射线CD 于点F . (1)若 ,求∠F 的度数; (2)设,,y EF x CO ==写出y 与x 之间的函数解析式,并写出定义域; (图8) C A B D E P Q C A B D E P Q (图9) (备用图) C A B BE ED =⌒ ⌒

第25题 (3)设点C 关于直线OD 的对称点为P ,若△PBE 为等腰三角形,求OC 的长. 【2013长宁】△ABC 和△DEF 的顶点A 与D 重合,已知∠B =?90. ,∠BAC =?30. ,BC=6,∠ FDE =?90,DF=DE=4. (1)如图①,EF 与边AC 、AB 分别交于点G 、H ,且FG=EH . 设a DF =,在射线DF 上取一点P ,记:a x DP =,联结CP. 设△DPC 的面积为y ,求y 关于x 的函数解析式,并写出定义域; (2)在(1)的条件下,求当x 为何值时 AB PC //; (3)如图②,先将△DEF 绕点D 逆时针旋转,使点E 恰好落在AC 边上,在保持DE 边与AC 边完全重合的条件下,使△DEF 沿着AC 方向移动. 当△DEF 移动到什么位置时,以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 【2013嘉定】已知AP 是半圆O 的直径,点C 是半圆O 上的一个动点(不与点A 、P 重合),联结AC ,以直线AC 为对称轴翻折AO ,将点O 的对称点记为1O ,射线1AO 交半圆O 于点B ,联结OC . (1)如图8,求证:AB ∥OC ; (2)如图9,当点B 与点1O 重合时,求证:CB AB =; 图① 图②

代数几何综合题(含答案)

代数几何综合题 x<0,连 1、如图,已知平面直角坐标系中三点A(2,0),B(0,2),P(x,0)() ⊥交过点A的直线a于点C(2,y) 结BP,过P点作PC PB (1)求y与x之间的函数关系式; (2)当x取最大整数时,求BC与PA的交点Q的坐标。 2.如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,⊙O的直径BD为6,连结CD、AO. (1)求证:CD∥AO; (2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围; (3)若AO+CD=11,求AB的长. B

3.如图,A 、B 两点的坐标分别是(x 1,0)、(x 2,O),其中x 1、x 2是关于x 的方程x 2 +2x+m-3=O 的两根,且x 1<0

1、已知抛物线)0(22 >--=m m x x y 与y 轴的交于C 点,C 点关于抛物线对称轴的对称点为C ′。 (1)求抛物线的对称轴及C 、C ′的坐标(可用含m 的代数式表示); (2)如果点Q 在抛物线的对称轴上,点P 在抛物线上,以点C 、C ′、P 、Q 为顶点的四边形是平行四边形,求Q 点和P 的坐标(可用含m 的代数式表示); (3)在(2)的条件下,求出平行四边形的周长。 2、如图,抛物线)0(2≠++=a c bx ax y 与x 轴、y 轴分别相交于 A (-1,0)、 B (3,0)、 C (0,3)三点,其顶点为 D . (1)求:经过A 、B 、C 三点的抛物线的解析式; (2)求四边形ABDC 的面积; (3)试判断△BCD 与△COA 是否相似若相似写出证明过程;若不相似,请说明理由. A B D C o x y

几何综合(习题)

几何综合(习题) ? 例题示范 例:如图,在四边形ABCD 中,AB =2,BC =CD =B =90°, ∠C =120°,则AD 的长为_______. D C B A 解:如图,连接AC . D C B A 在Rt △ABC 中,∵∠B =90°,AB =2,BC =∴tan ∠ACB = 3 AB BC = ∴∠ACB =30° ∴AC =2AB =4 ∵∠BCD =120° ∴∠ACD =∠BCD -∠ACB =90° 在Rt △ADC 中,AC =4,CD =∴AD = ? 巩固练习 C D B A

1. 如图,在△ABC 中,AB =15 m ,AC =12 m ,AD 是∠BAC 的外角平分线,DE ∥ AB 交AC 的延长线于点E ,那么CE =________. 2. 在△ABC 中,AB =12,AC =10,BC =9,AD 是BC 边上的高.将△ABC 按如图所 示的方式折叠,使点A 与点D 重合,折痕为EF ,则△DEF 的周长为________. D B A 3. 如图,矩形EFGD 的边EF 在△ABC 的BC 边上,顶点D ,G 分别在边AB ,AC 上.已知AB =AC=5,BC=6,设BE =x ,EFGD S y 矩形,则y 关于x 的函数关系式为________________. (要求写出x 的取值范围) G F E D C B A N M G F E D C B A 第3题图 第4题图 4. 如图,在△ABC 中有一正方形DEFG ,其中D 在AC 上,E ,F 在AB 上,直线 AG 分别交DE ,BC 于M ,N 两点.若∠B =90°,AB =4,BC =3,EF =1,则BN 的长度为( ) A .43 B .32 C .85 D .127 5. 如图,在△ABC 中,AB =BC =10,AC =12,BO ⊥AC ,垂足为O ,过点A 作射线 AE ∥BC ,点P 是边BC 上任意一点,连接PO 并延长与射线AE 相交于点Q ,设B ,P 两点之间的距离为x ,过点Q 作直线BC 的垂线,垂足为R .小明同学思考后给出了下面五条结论:①△AOB ≌△COB ; ②当0<x <10时,△AOQ ≌△COP ;

初中数学中考几何综合题[1]

页眉内容 中考数学复习--几何综合题 Ⅰ、综合问题精讲: 几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键. 解几何综合题,还应注意以下几点: ⑴ 注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基 本图形. ⑵ 掌握常规的证题方法和思路. ⑶ 运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用数 学思想方法伯数形结合、分类讨论等). Ⅱ、典型例题剖析 【例1】(南充,10分)⊿ABC 中,AB =AC ,以AC 为直径的⊙O 与AB 相交于点E ,点F 是BE 的中点. (1)求证:DF 是⊙O 的切线.(2)若AE =14,BC =12,求BF 的长. 解:(1)证明:连接OD ,AD . AC 是直径, ∴ AD⊥BC. ⊿ABC 中,AB =AC , ∴ ∠B=∠C,∠BAD=∠DAC. 又∠BED 是圆内接四边形ACDE 的外角, ∴∠C =∠BED . 故∠B =∠BED ,即DE =DB . 点F 是BE 的中点,DF ⊥AB 且OA 和OD 是半径, 即∠DAC =∠BAD =∠ODA . 故OD ⊥DF ,DF 是⊙O 的切线. (2)设BF =x ,BE =2BF =2x . 又 BD =CD =21 BC =6, 根据BE AB BD BC ?=?,2(214)612x x ?+=?. 化简,得 27180x x +-=,解得 122,9x x ==-(不合题意,舍去).

代数几何综合题含答案

代数几何综合题 1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0) ()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式; (2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。 2.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO. (1)求证:CD ∥AO ; (2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)若AO +CD =11,求AB 的长. 3.如图,A 、B 两点的坐标分别是(x 1,0)、(x 2,O),其中x 1、x 2是关于x 的方程x 2+2x+m -3=O 的两根,且x 1<0--=m m x x y 与y 轴的交于C 点,C 点关于抛物线对称轴的对称点为C ′。 (1)求抛物线的对称轴及C 、C ′的坐标(可用含m 的代数式表示); (2)如果点Q 在抛物线的对称轴上,点P 在抛物线上,以点C 、C ′、P 、Q 为顶点的四边形是平行四边形,求Q 点和P 的坐标(可用含m 的代数式表示); (3)在(2)的条件下,求出平行四边形的周长。 B

相关文档
最新文档