复变函数在解决实函数问题中的若干应用

复变函数在解决实函数问题中的若干应用
复变函数在解决实函数问题中的若干应用

关于复变函数在解决实函数问题中的若干应用

摘要:实函数和复函数的贯穿于我们高中和大学的数学之中,我们通过学习了解了部分实函数和复函数的知识点,我们发现这些知识点有着深刻的联系。我们知道复函数分为实部和虚部,那么我们研究能不能把要求的实函数当做一个复函数的实部或虚部,进而利用复函数的知识来处理有关实函数的问题。 关键词:实函数 复函数 构造 求解

复变函数论中的 柯西-黎曼方程、柯西积分,解析函数的幂级数表达式,牛顿莱布尼茨公式等,那么它与我们经常使用的实函数有什么关系,其相关知识点能否运用在实函数的解题上面,下面我们将从几个方面来探究其在实函数上的应用。

1 预备知识[1]

定理1 若(1)函数()f z 在单连通区域D 内连续;(2)()f z dz ?

沿区域D 内任一圆周的积分值为零(从而积分与路径无关),则函数

()()z

z F Z f d ζζ=?(0z 为D 内一定点)

在D 内解析,且'()()F Z f z =.

定义2 在区域D 内,如果函数()f z 连续,则称符合条件

'()()z f z F =(z D ∈)

的函数()F z 为()f z 的一个不定积分或原函数(显然()z F 必在D 内解析)。 定理3 在定理(1)或定义(2)的条件下,如果()z F 为()f z 的单连通区域D 内的任意一个函数,则

00

()z

z z z f d F F ζζ=-?

定理 4 设a 为()f z 的n 阶极点,()

()()n

z f z z a ?=-,其中()z ?在a 点解析,

()0a ?≠则

(1)()

Re ()(1)!n z a

a s f z n ?-==

-

这里0()()a a ??=,(1)(1)()()n n z a

a Lim z ??--→=。

引理1 (若当引理) 设函数()f z 沿版圆周:Re i R S z θ=(0,R θπ≤≤充分大)上连续,且()0z Lim f z ?

=在R S 上一致连续,则()R

im R S Lim f z e dz o π→+∞

=?

(0)m >。

引理 2 设()f z 沿圆弧:R e i R S z θ=(12θθθ≤≤,充分大)上连续,且

()R Lim zf z λ→+∞

=于R S 上一致成立,则有

21()()R

R S Lim

f z dz i θθλ→+∞

=-?

引理2 欧拉公式:

cos sin i e i θθθ=+

引理3

(1)2

2

x e dx π

+∞

-=

?

(2) 2

ax e dx a

π

+∞

--∞

=

?

(0)a >

(3) n n n z a ib =+ 1212n n z z z z z z =

(4) 2

200

2sin cos 4

x dx x dx π

+∞

+∞

==

??

(5) 2

2

40

1cos 2b ax

a

a

e bxdx e π

-+∞

-=? 2 在求实函数的不定积分中的应用

在解决类型如

cos ax e bxdx ? sin ax

e bxdx ? 22(0)a b +≠

的实函数的不定积分时,我们往往采用的是分部积分法,其过程往往复杂且容易

出错,但是通过我们学习过的复积分能方便的解决这些问题。

我们已知cos sin i e i θθθ=+,我们能不能通过构造一个复积分的问题来解

决这个问题

例2.1 计算积分

cos ax e bxdx ? ,,a b x R ?

此时我们添加一个辅助函数sin ax

e bxdx ?

()f x =cos ax

e bxdx ?

()g x =sin ax

e bxdx ?

()F x =()()()F x f x ig x =+

()F x =cos ax e bxdx ?+i sin ax

e bxdx ?

=ax ibx

e

dx +?

=ax ibx

e a ib

++12c ic ++ =22

()(cos sin )ax e a ib bx i bx a b

-++ =22

[cos sin (sin sin )]

ax

a bx

b bx i a bx b bx e a b

++-+ 此时

()f x =22

(cos sin )

Re ()ax

a bx

b bx F x e a b +=+1

c +

222

(sin sin )

()Im ()ax e a bx b bx g x F x c a b -==++

由此可以看出复函数积分可以快速解决形如

cos ax e bxdx ? sin ax e bxdx ?

22(0)a b +≠ 的问题,但是其解决的问题只是我们常见问题中的很小一部分,我们常见的积分

不只是这种情况,更多的是型如:

()cos ax c dx e bxdx +?, ()sin ax

c dx e bxdx +?

22(0)a b +≠(,,,,)a b c d R x R 挝 我们是否也可以借助复变的相关知识解决问题。 例2.2 计算积分

()sin ax

c dx e bxdx +?

解法1 我们利用实函数的分部积分方法来解决问题。

解法2 令

()()cos ax f x A Bx e bxdx =+? ()()sin ax g x A Bx e bxdx =+?

()()()F x f x ig x =+

此时我们得到

()()cos ()sin ax ax F x A Bx e bxdx i A Bx e bxdx =+++??

()()(cos sin )()ax a ib x

A Bx e bx i bx dx A Bx e

dx

+=++=+??

此时我们可以知道 ()Re ()f x F x =1c + ()Im ()g x F x =2c + 我们对于()F x 运用分部积分,可以轻松的得到()f x ()g x 。

()()cos ax

f x A Bx e bxdx =+?

是在极少某种特殊情况下的看到的,我们经常看

到的是形如

()()cos ax I x f x e bxdx =?(()f x 为任意m 阶常数),我们也可以应用构造函数的

方法来解决此类问题,

()()()F x I x iJ x =+

我们可以得出对于任意的形如()()cos ax I x f x e bxdx =

?

()()sin ax J x f x e bxdx =?(()f x 为任意m 阶实函数),我们可以轻松利用复变函

数知识得出。

3 利用复变函数求定积分

我们通过学习复变函数和实函数,我们学习了定积分。那么复变函数中学习的一些知识是否可以被应用于计算一些特殊的实函数中,我们下面来谈论下。 我们已知

2

2

x e dx π

+∞

-=

?

2

ax e

dx a

π

+∞

--∞

=

?

(0)a >

220

2sin cos 4

x dx x dx π+∞

+∞

==

??

那么2

ax e dx a

π

+∞

--∞

=

?

是否在复函数也适用。下面我们看看一些特殊情况,我们

取i =a 时,我们可以看出

2

cos x dx +∞

?

-20

sin x dx +∞

?

=

24π

-i 24

π

,然而2

2

x e

d x π

+∞

-=

?

,显然2

ax e

dx a

π

+∞

--∞

=

?

,在复函数情况下也能成立。

下面我们来看下面 例3.1

sin (

)x

I dx x

+∞

=?

我们知道0

sin ()x I dx x +∞

=?=12

sin (

)x

dx x

+∞

-∞

?

,取,r R ,使0R r >>,考虑函数()iz e f z z

=沿由[,]r R ,半圆弧:R e (0),[,i R C z R r θ

θπ

=≤≤--及半圆弧

:e (0)

i r C z r θ

θπ=≤≤的反向所组成的闭曲线C 的积分。 根据柯西积分定理得

()0c

f z dz =?,即

()()()()0R ix iz ix

iz

R

r r

R C C e e e e dx dz dx dz x z x z -

--+++=?

??? (1)

由引理1知()R iz R C e Lim dz o z →+∞=?由引理2知0()r iz

r C e Lim dz i z π→=?:

在式(1)中令0,r R →→+∞取得极限()ix

e dx x

π+∞

-∞=?

所以0

sin ()x I dx x +∞

=?=1

2

sin (

)x dx x +∞

-∞

?

=2

p

4 利用复变函数求实函数的n 阶导数

我们知道,在复变函数和实函数中都有泰勒展开式,导数等知识,那么我们

常用的实函数的泰勒展开式等有没有什么关系,我们是否能够应用复函数的求导来求出实函数的导数。 例4.1 求函数

()cos ax f x e bx = 22(0)a b +

的n 阶导数。

解法1 我们利用实函数的相关知识求出解

解法2 设存在函数 ()sin ax g x e bx =,令()()()F x f x ig x =+,

()F x =()a ib x e +

()0()[]n

k k a ib x n k

n k C a ib e

+-==+∑ 我们已知()Re ()n n f x F x = ()Im ()n n g x F x = 可以很轻松地得到想求得结果。

那么如果()()cos ax f x c dx e bx =+2222(0)a b c d +++≠时,我们可以看出运用实函数所学习的知识解出这道问题过程十分复杂,并且出错。我们来看看在复函

数的范围ia 是否可以求出。 设存在一个函数

()()sin ax g x c dx e bx =+

令 ()()()F x f x ig x =+

()(cos sin )ax c dx e bx i bx =++

()()a ib x c dx e +=+

我们对()F x 求n 阶导数,可以得到

()0()()[]n

n

k

k a ib x n k n k F x C c dx e +-==+∑ ()1()[()()()]n a ib x n a ib x c

d x x ib

e n x ib e d

+-+=+

+++ [(1)]

12

2

2

()

[()()]ax i n bx n c c d a b e

a x n i

b x d d

θ+-+-=++

+++ 其中θ满足22

cos a a b

q =

+ 2

2

sin b a b

q =

+ ()R q ?,所以

1

2

2

2

()Re ()

{[()cos[(1)]()sin[(1)]}n n

n

ax c c

f x F d a b e a x n n bx b x n bx d d

q q -==+++-+-+-+

1

22

2()Im ()(){[()]sin[(1)]()cos[(1)]}n n n ax c c g x F x d a b e a x n n bx b x n bx d d q q -==+++-+++-+

仿上题,同理当我们求()()cos I x f x bx = ()()sin J x g x bx = ((),()f x g x 为任意m 次多项式)的n 阶导数时,我们也可以同构造复函数,然后对复函数求n 阶导数,此时

()Re ()n n f x F x = ()Im ()n n g x F x =

5 复函数在求不等式中的应用

在复平面上,我们知道其上的亦遵守平面直角坐标系的一些规律,在实数范围内我们经常利用向量解决一些不等式,那么复函数德尔知识是否也能够应用在阶不等式上面。 5.1

我们已经知道

1212n n z z z z z z =?

例5.1 求证不等式

2222ac bd a b c d +≤++ (,,,)a b c d R ∈

证 令

1z a ib =+;221z a b =+; 2z c id =+: 222z c d =+ 12()z z ac bd i ad bc =-++ 2222222212z z a c b d a d c b =

+++ 2()ac bd ≥

+

ac bd =+

ac bd ≥+

5.2

我们知道复数模有

1212n n z z z z z z +++≥+++

例5.2 证明不等式

22222()()a b c d a b b d +++≥

++

证 我们利用复函数知识来求这道题,设

1z a ib =+;2z c id =+

221z a b =+;:222z c d =+

()z a c i b d =+++;22()()z a b c d =+++

222222a b c d ac bd =+++++

222a b ab +≥ 222c d cd +≥

122()z z ab ac bc cd +≥

+++

2()()a c b d =++

此题得证

例5.3 设a ,b ,c 为非负实数,证明

2222222()a b c b a c a b c ++

++

+≥

++

证 设

1z a ib =+ 2z b ic =+ 3z c ia =+ a ,b ,c 为非负实数

123()()z z z a b c i a b c ++=+++++

因为

123123z z z z z z ++≥++

22222222()a b c b a c a b c ++

++

+≥

++

=2a b c ++ =()a b c ++

例5.3设,,a b c 为小于1的正数,证明

22222222()()()()2a b c a b a c b c a c b ++

-++

+-+

-+-≥

证 设

1234,(),(),()()z a ib z c a ib z a i c b z c a i c b =+=-+=+-=-+-, 其中,,,(0,1)a b c ∈则

22222222()()()()a b c a b a c b c a c b ++-+++-+-+-=1234z z z z +++

1423z z z z ≥+++ 2c i =+2=

通过上面的四部分的应用,我们可以通过复函数的知识让我们更加方便的解决我们所求得实函数。

参考文献

[1]钟玉泉.复变函数论[M].第3版.北京: 高等教育出版社

[2][美]保罗 J 纳欣著朱惠霖译.虚数的故事[M].上海上海教育出版社

[3]路线.复变函数与积分变换[M]. 北京科学出版社

[4]杨谱.留数在几类特殊函数的定积分计算中的运用[J]. 中国高科技企业

[5]孙清华,赵德修.新编复变函数题解[M].湖北武汉:华中科技大学出版社

[6]四川大学数学系.高等数学(第4版)[M].北京:高等教育出版社

[7]李昌兴,史克岗.复变函数[M].陕西西安:西安工业大学出版社

[8]完巧玲.《利用复积分计算实积分》菏泽学院学报[J].第32卷第2期 2010 3

[9]崔冬玲《复积分的计算方法》淮南师范学院报[J第8卷第3期 2006

[10]陈汉光.《实变复值函数在微积分的应用》高等数学研究[J].第9卷第4期 2006 7

复变函数试题及答案

1、复数i 212--的指数形式是 2、函数w = z 1将Z S 上的曲线()1122 =+-y x 变成W S (iv u w +=)上 的曲线是 3.若01=+z e ,则z = 4、()i i +1= 5、积分()?+--+i dz z 22 22= 6、积分 ?==1sin 21z dz z z i π 7、幂级数()∑∞ =+0 1n n n z i 的收敛半径R= 8、0=z 是函数 z e z 1 11--的 奇点 9、=??? ? ??-=1Re 21z e s z z 10、将点∞,i,0分别变成0,i,∞的分式线性变换=w 二、单选题(每小题2分) 1、设α为任意实数,则α1=( ) A 无意义 B 等于1 C 是复数其实部等于1 D 是复数其模等于1 2、下列命题正确的是( ) A i i 2< B 零的辐角是零 C 仅存在一个数z,使得 z z -=1 D iz z i =1 3、下列命题正确的是( ) A 函数()z z f =在z 平面上处处连续 B 如果()a f '存在,那么()z f '在a 解析 C 每一个幂级数在它的收敛圆周上处处收敛 D 如果v 是u 的共轭调和函数,则u 也是v 的共轭调和函数

4、根式31-的值之一是( ) A i 2321- B 2 23i - C 223i +- D i 2321+- 5、下列函数在0=z 的去心邻域内可展成洛朗级数的是( ) A z 1sin 1 B z 1cos C z ctg e 1 D Lnz 6、下列积分之值不等于0的是( ) A ? =-12 3z z dz B ? =-1 2 1z z dz C ?=++1242z z z dz D ?=1 cos z z dz 7、函数()z z f arctan =在0=z 处的泰勒展式为( ) A ()∑∞ =+-02121n n n n z (z <1) B ()∑∞ =+-0 1221n n n n z (z <1) C ()∑∞ =++-012121n n n n z (z <1) D ()∑∞=-0 221n n n n z (z <1) 8、幂级数n n n z 20 1)1(∑∞ =+-在1w 的分式线性变换是( ) A )1(1>--=a z a a z e w i β B )1(1<--=a z a a z e w i β C )1(>--=a a z a z e w i β D )1(<--=a a z a z e w i β 三、判断题(每小题2分)

(完整版)复变函数知识点梳理解读

第一章:复数与复变函数 这一章主要是解释复数和复变函数的相关概念,大部分内容与实变函数近似,不难理解。 一、复数及其表示法 介绍复数和几种新的表示方法,其实就是把表示形式变来变去,方便和其他的数学知识联系起来。 二、复数的运算 高中知识,加减乘除,乘方开方等。主要是用新的表示方法来解释了运算的几何意义。 三、复数形式的代数方程和平面几何图形 就是把实数替换成复数,因为复数的性质,所以平面图形的方程式二元的。 四、复数域的几何模型——复球面 将复平面上的点,一一映射到球面上,意义是扩充了复数域和复平面,就是多了一个无穷远点,现在还不知道有什么意义,猜想应该是方便将微积分的思想用到复变函数上。 五、复变函数 不同于实变函数是一个或一组坐标对应一个坐标,复变函数是一组或多组坐标对应一组坐标,所以看起来好像是映射在另一个坐标系里。 六、复变函数的极限和连续性 与实变函数的极限、连续性相同。 第二章:解析函数

这一章主要介绍解析函数这个概念,将实变函数中导数、初等函数等概念移植到复变函数体系中。 一、解析函数的概念 介绍复变函数的导数,类似于实变二元函数的导数,求导法则与实变函数相同。 所谓的解析函数,就是函数处处可导换了个说法,而且只适用于复变函数。而复变函数可以解析的条件就是:μ对x与ν对y的偏微分相等且μ对y和ν对x的偏微分互为相反数,这就是柯西黎曼方程。二、解析函数和调和函数的关系 出现了新的概念:调和函数。就是对同一个未知数的二阶偏导数互为相反数的实变函数。而解析函数的实部函数和虚部函数都是调和函数。而满足柯西黎曼方程的两个调和函数可以组成一个解析函数,而这两个调和函数互为共轭调和函数。 三、初等函数 和实变函数中的初等函数形式一样,但是变量成为复数,所以有一些不同的性质。 第三章:复变函数的积分 这一章,主要是将实变函数的积分问题,在复变函数这个体系里进行了系统的转化,让复变函数有独立的积分体系。但是很多知识都和实变函数的知识是类似的。可以理解为实变函数积分问题的一个兄弟。 一、复积分的概念 复积分就是复变函数的积分,实质是两个实二型线积分。所以应该具有相应的实二型线积分的性质。复积分存在的充分条件是实部函数和虚部函数都连续。 二、柯西积分定理

实变函数论课后答案第三章1

实变函数论课后答案第三章1 第三章第一节习题 1.证明:若E 有界,则m E *<∞. 证明:若n E R ?有界,则存在一个开区间 (){}120,,;n M n E R I x x x M x M ?=-<< . (0M >充分大)使M E I ?. 故()()()111 inf ;2n n n n m n n i m E I E I I M M M ∞∞ * ===??=?≤=--=<+∞????∑∏ . 2.证明任何可数点集的外测度都是零. 证:设{}12,,,n E a a a = 是n R 中的任一可数集.由于单点集的外测度为零, 故{}{}{}()12111 ,,,00n i i i i i m E m a a a m a m a ∞ ∞ ∞ * * * *===??==≤== ???∑∑ . 3.证明对于一维空间1R 中任何外测度大于零的有界集合E 及任意常数μ,只要 0m E μ*≤≤,就有1E E ?,使1m E μ*=. 证明:因为E 有界,设[],E a b ?(,a b 有限), 令()(),f x m E a x b *=?<< , 则()()()()[]()()0,,f a m E m f b m a b E m E ****=?=?=== . 考虑x x x +?与,不妨设a x x x b ≤≤+?≤, 则由[])[]())()[](),,,,,a x x E a x x x x E a x E x x x E +?=+?=+????? . 可知())()[](),,f x x m a x E m x x x E ** +?≤++??? ()[]()(),f x m x x x f x x *≤++?=+?.

Matlab在复变函数中应用解读

Matlab在复变函数中应用 数学实验(一) 华中科技大学数学系 二○○一年十月

MATLAB在复变函数中的应用 复变函数的运算是实变函数运算的一种延伸,但由于其自身的一些特殊的性质而显得不同,特别是当它引进了“留数”的概念,且在引入了Taylor级数展开Laplace 变换和Fourier变换之后而使其显得更为重要了。 使用MATLAB来进行复变函数的各种运算;介绍留数的概念及MAT–LAB的实现;介绍在复变函数中有重要应用的Taylor展开(Laurent展开Laplace变换和Fourier变换)。 1 复数和复矩阵的生成 在MATLAB中,复数单位为)1 j i,其值在工作空间中都显示为 =sq rt = (- 0+。 .1 i 0000 1.1 复数的生成 复数可由i z+ =。 a =语句生成,也可简写成bi a z* + b 另一种生成复数的语句是) exp(i theta r =,也可简写成) =, z* exp(theta * i r z* 其中theta为复数辐角的弧度值,r为复数的模。 1.2 创建复矩阵 创建复矩阵的方法有两种。 (1)如同一般的矩阵一样以前面介绍的几种方式输入矩阵 例如:)] i A* * i i = + 3[i * - + * , ), 23 5 33 6 exp( 2 3 , exp( 9 (2)可将实、虚矩阵分开创建,再写成和的形式 例如: )2,3( re=; rand im=; )2,3( rand

im i re com *+= ] 5466.07271.05681.02897.07027.05341.08385.03420.03704.03412.03093.06602.0[i i i i i i com ++++++= 注意 实、虚矩阵应大小相同。 2 复数的运算 1.复数的实部和虚部 复数的实部和虚部的提取可由函数real 和imag 实现。 调用形式 )(x real 返回复数x 的实部 )(x imag 返回复数x 的虚部 2.共轭复数 复数的共轭可由函数conj 实现。 调用形式 )(x conj 返回复数x 的共轭复数 3.复数的模和辐角 复数的模和辐角的求解由功能函数abs 和angle 实现。 调用形式 )(x abs 复数x 的模 )(x angle 复数x 的辐角 例:求下列复数的实部与虚部、共轭复数、模与辐角 (1) i 231 + (2)i i i --131 (3)i i i 2)52)(43(-+ (4)i i i +-2184 由MATLAB 输入如下:

复变函数经典习题及答案

练习题 一、选择、填空题 1、下列正确的是( A ); A 1212()Arg z z Argz Argz =+; B 1212()arg z z argz argz =+; C 1212()ln z z lnz lnz =+; D 10z Ln Ln Lnz Lnz z ==-=. 2、下列说法不正确的是( B ); A 0()w f z z =函数在处连续是0()f z z 在可导的必要非充分条件; B lim 0n n z →∞=是级数1 n n z ∞=∑收敛的充分非必要条件; C 函数()f z 在点0z 处解析是函数()f z 在点0z 处可导的充分非必要条件; D 函数()f z 在区域D 内处处解析是函数()f z 在D 内可导的充要条件. 3、(34)Ln i -+=( 45[(21)arctan ],0,1,2,3ln i k k π++-=±± ), 主值为( 4 5(arctan )3 ln i π+- ). 4、2|2|1 cos z i z dz z -=? =( 0 ). 5、若幂级数0n n n c z ∞=∑ 在1(1)2z = +处收敛,那么该级数在45 z i =处的敛散性为( 绝对收敛 ). 6、 311z -的幂级数展开式为( 30n n z ∞=∑ ),收敛域为( 1z < ); 7、 sin z z -在0z =处是( 3 )阶的零点; 8、函数221 (1)z z e -在0z =处是( 4 )阶的极点; 二、计算下列各值 1.3i e π+; 2.tan()4i π -; 3.(23)Ln i -+; 4 . 5.1i 。 解:(略)见教科书中45页例2.11 - 2.13

实变函数论课后答案第五章1

实变函数论课后答案第五章1 第无章第一节习题 1.试就[0,1]上 的D i r i c h l e 函数()D x 和Riemann 函数()R x 计算[0,1] ()D x dx ? 和 [0,1] ()R x dx ? 解:回忆1 1()0\x Q D x x R Q ∈?=?∈?即()()Q D x x χ= (Q 为1 R 上全体有理数之集合) 回忆: ()E x χ可测E ?为可测集和P129定理2:若E 是n R 中测度有 限的可测集, ()f x 是E 上的非负有界函数,则_ ()()() E E f x dx f x dx f x =???为E 上的可测函数 显然, Q 可数,则*0m Q =,()Q Q x χ可测,可测,有界,从而Lebesgue 可积 由P134Th4(2)知 [0,1] [0,1][0,1][0,1][0,1]()()()10c c Q Q Q Q Q Q Q x dx x dx x dx dx dx χχχ????= + = + ? ? ? ? ? 1([0,1])0([0,1])10010c m Q m Q =??+??=?+?= 回忆Riemann 函数()R x :1:[0,1]R R 11,()0[0,1]n n x m n m R x x x Q ?= ??==??∈-?? 和无大于的公因子1 在数学分析中我们知道, ()R x 在有理点处不连续,而在所有无理点处连续,且在[0,1]上Riemann 可积, ()0 .R x a e =于[0,1]上,故()R x 可

测(P104定理3),且 [0,1] ()R x dx ? [0,1]()()Q Q R x dx R x dx -= +? ? 而0()10Q Q R x dx dx mQ ≤≤==??(Q 可数,故*0m Q =)故 [0,1] [0,1][0,1]()()00Q Q R x dx R x dx dx --= = =? ? ? 2.证明定理1(iii)中的第一式 证明:要证的是:若mE <+∞,(),()f x g x 都是E 上的非负有界函数,则 ()()()E E E f x dx f x dx g x dx --≥+??? 下面证明之: 0ε?>,有下积分的定义,有E 的两个划分1D 和2D 使 1 ()()2 D E s f f x dx ε -> - ? ,2 ()()2 D E s g g x dx ε -> - ? 此处1 ()D s f ,2 ()D s g 分别是f 关于1D 和g 关于2D 的小和数,合并12 ,D D 而成E 的一个更细密的划分D ,则当()D s f g +为()()f x g x +关于D 的小和数时 12(()())()D D D D D f x g x dx s f g s f s g s f s g - +≥+≥+≥+? ()()()()22E E E E f x dx g x dx f x dx g x dx εε ε----≥ -+-=+-? ???(用到下确界的性 质和P125引理1) 由ε的任意性,令0ε→,而得(()())()()E E f x g x dx f x dx g x dx - --+≥+??? 3.补作定理5中()E f x dx =+∞?的情形的详细证明 证明 :令 {} |||||m E E x x m =≤,当 ()E f x dx =+∞ ?时, ()lim ()m m E E f x dx f x dx →∞ +∞==?? 0M ?>,存在00()m m M N =∈,当0m m ≥时,

实变函数引论参考答案 曹怀信 第二章

。习题2.1 1.若E 是区间]1,0[]1,0[?中的全体有理点之集,求b E E E E ,,,' . 解 E =?;[0,1][0,1]b E E E '===?。 2.设)}0,0{(1sin ,10:),( ???? ??=≤<=x y x y x E ,求b E E E E ,,,' . 解 E =?;{(,):0,11}.b E E x y x y E E '==-≤≤== 3.下列各式是否一定成立? 若成立,证明之,若不成立,举反例说明. (1) 11n n n n E E ∞ ∞=='??'= ???; (2) )()(B A B A ''=' ; (3) n n n n E E ∞=∞==? ??? ??1 1 ; (4) B A B A =; (5) ???=B A B A )(; (6) .)(? ??=B A B A 解 (1) 不一定。如设12={,, ,,}n r r r Q ,{}n n E r =(单点集),则1 ( )n n E ∞=''==Q R , 而1.n n E ∞ ='=?但是,总有11 n n n n E E ∞∞=='??'? ???。 (2) 不一定。如 A =Q , B =R \Q , 则(),A B '=? 而.A B ''=R R =R (3) 不一定。如设12={,, ,,}n r r r Q ,{}n n E r =(单点集),则 1 n n E ∞===Q R , 而 1 .n n E ∞ ==Q 但是,总有11 n n n n E E ∞∞ ==??? ???。 (4) 不一定。如(,)A a b =,(,)B b c =,则A B =?,而{}A B b =。 (5) 不一定。如[,]A a b =, [,]B b c =, 则(,)A a b =, (,)B b c =,而 ()(,)A B a c =,(,)\{}A B a c b =. (6) 成立。因为A B A ?, A B B ?, 所以()A B A ?, ()A B B ?。因此, 有()A B A B ?。设x A B ∈, 则存在10δ>,20δ>使得1(,)B x A δ?且2(,)B x B δ?,令12min(,)δδδ=,则(,)B x A B δ?。故有()x A B ∈,即 ()A B A B ?。因此,()A B A B =. 4.试作一点集A ,使得A '≠?,而?='')(A . 解 令1111 {1,,,,,,}234A n =,则{0}A '=,()A ''=?. 5.试作一点集E ,使得b E E ?. 解 取E =Q ,则b E =R 。 6.证明:无聚点的点集至多是可数集. 证明 因为无聚点的点集必然是只有孤立点的点集,所以只要证明:任一只有孤立点的点集A 是最多可数。对任意的x A ∈,都存在0x δ>使得(,){}x B x A x δ=。有理开球(即中心为有理点、半径为正有理数的开球)(,)(,)x x x B P r B x δ?使得(,)x x x B P r ∈,从而 (,){}x x B P r A x =。显然,对于任意的,x y A ∈,当x y ≠时,有(,)(,)x x y y B P r B P r ≠, 从而(,)(,)x x y y P r P r ≠。令()(,)x x f x P r =,则得到单射:n f A + →?Q Q 。由于n + ?Q Q 可

复变函数测试题及答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,50 75100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 (tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos( sec θπθπ θ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3

7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -43 (D )i --4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续

(0195)《实变函数论》网上作业题及答案

[0195]《实变函数论》 第一次作业 [单选题]1.开集减去闭集是() A:A.开集 B:B.闭集 C:C.既不是开集也不是闭集 参考答案:A [单选题]2.闭集减去开集是() A:开集 B:闭集 C:既不是开集也不是闭集 参考答案:B [单选题]3.可数多个开集的交是() A:开集 B:闭集 C:可测集 参考答案:C [单选题]4.可数多个闭集的并是() A:开集 B:闭集 C:可测集 参考答案:C [单选题]6.可数集与有限集的并是() A:有界集 B:可数集 C:闭集 参考答案:B

[判断题]5.任意多个开集的并仍是开集。 参考答案:正确 [单选题]8.可数多个有限集的并一定是() A:可数集 B:有限集 C:以上都不对 参考答案:C [单选题]7.设f(x)是定义在[a,b]上的单调函数,则f(x)的间断点集是()A:开集 B:闭集 C:可数集 参考答案:C [单选题]9.设f(x)是定义在R上的连续函数,E=R(f>0),则E是 A:开集 B:闭集 C:有界集 参考答案:A [单选题]10.波雷尔集是() A:开集 B:闭集 C:可测集 参考答案:C [判断题]7.可数多个零测集的并仍是零测集合。 参考答案:正确 [单选题]1.开集减去闭集是()。 A:A.开集 B.闭集 C.既不是开集也不是闭集 参考答案:A [单选题]5.可数多个开集的并是() A:开集 B:闭集

C:可数集 参考答案:A [判断题]8.不可数集合的测度一定大于零。 参考答案:错误 [判断题]6.闭集一定是可测集合。 参考答案:正确 [判断题]10.开集一定是可测集合。 参考答案:正确 [判断题]4.连续函数一定是可测函数。 参考答案:错误 [判断题]3.零测度集合或者是可数集合或者是有限集。 参考答案:正确 [判断题]2.有界集合的测度一定是实数。 参考答案:正确 [判断题]1.可数集合是零测集 参考答案:正确 [判断题]9.任意多个闭集的并仍是闭集。 参考答案:错误 [判断题]9.任意多个闭集的并仍是闭集。 参考答案:错误 第二次作业 [单选题]4.设E是平面上边长为2的正方形中所有无理点构成的集合,则E的测度是A:0 B:2 C:4 参考答案:C [单选题]3.设E是平面上边长为2的正方形中所有有理点构成的集合,则E的测度是A:0 B:2 C:4 参考答案:A [单选题].2.[0,1] 中的全体有理数构成的集合的测度是() A:0 B:1

复变函数在中学数学中的应用1

毕业论文 学生姓名林文强学号160901074 学院数学科学院 专业数学与应用数学 题目复变函数在中学数学中的应用 熊成继 指导教师 (姓名)(专业技术职称/学位) 2013 年 5 月

毕业论文独创性声明 本人郑重声明: 本论文是我个人在导师指导下进行的研究工作及取得的研究成果。本论文除引文外所有实验、数据和有关材料均是真实的。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果。其他同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。 作者签名: 日期:

摘要:本文通过对代数、几何以及三角函数等问题的探讨来说明复数在中学数学中的应用。将一些解决起来非常复杂的非复数问题,依据题目所给出的条件的特性,将该题目经过一定方式转换成复数问题,然后运用复数的性质及意义解决它。例如在代数问题中,利用复数模的性质;几何问题中,可以利用复数的几何意义及其与向量的关系;在三角函数中,可以利用复数的三角形式。运用复数解题的方法突破了常规的解题方法,有助于培养学生的创新思维。 关键词:复数;代数;几何;三角函数

Abstract:Based on the algebra, geometry and trigonometry problems to illustrate the application of the complex in the middle school mathematics.Some solutions are very complicated non complex problems, according to the characteristics of the given conditions, the title after a certain conversion into a complex problem, and then use the nature and meaning of complex number to easily solve.For example, in the algebraic problem, using the properties of complex modes; geometric problems, can the geometric meaning of complex utilization and its relationship with the vector; in the trigonometric function, can use the triangle form of complex https://www.360docs.net/doc/603089082.html,ing the method of complex problem solving through the method of solving problems of conventional, contributes to the cultivation of students' creative thinking. Keyword:Complex Number; Algebra; Geometry; Trigonometric Function

复变函数试题与答案

复变函数试题与答案 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2 321+- (D )i 2 1 23+- 3.复数)2 (tan πθπθ<<-=i z 的三角表示式是( ) (A ))]2 sin()2 [cos(sec θπ θπθ+++i (B ) )]2 3sin()23[cos( sec θπ θπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小

5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得2 2z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i -- 4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无 界闭区域 10.方程232=-+i z 所代表的曲线是( )

1-2复变函数基本概念

§1.2 复数函数 授课要点:区域的概念,闭区域,复变函数的极限,连续的概念。 难点:极限概念及其与实变函数中相关概念的区别 1、 邻域:以0z 为圆心,以任意小ε半径作圆,则圆内所有点的集合称为0z 的邻域。 注意,这里说的是“圆内”,“圆边”上的不算。 内点、外点和边界点: 设有一个点集E ,若0z 及其领域均属于点集E ,则称0z 为E 的“内” ,若0z 及其邻域均不属于E ,则0z 为外点,若0z 的每个领域内,既有属于E 的点,也有不属于E 的点,则称0z 为E 的边界点,边界点的全体称为E 的边界线。 区域:(1)全由内点组成 (2)具有连通性,即点集中任意两点都可以用一条折线连起来,且折线上的点全都 属于该点集。 闭区域:区域B 及其边界线所组成的点集称为闭区域,用B 表示。 练习: 下面几个图所示的,哪个是区域? 答:(a),(b)皆为区域,(a)为单通区域,(b)为复连通区域,(c)不是区域. 例子: ||z r <代表一个圆内区域 ||z r <代表一个圆外区域 12||r z r <<代表一个圆环区域 将上面三个式中的 < 换成 ≤, > 换成 ≥,则变成闭区域。 注意:区域的边界并不属于区域,闭区域和区域是两个概念 2、复变函数 定义:形式和实变函数一样,()w f z =

复变函数的定义域不再限于实轴上某个区间,而是复平面上的某个区域. 函数的值域也可以对应复平面上的某个区域(也可能不是): 变量:z x iy =+ 函数:()(,)(,,)w f z u x y iv x y ==+ 复变函数的实部和虚部都是一个二元函数(实函数),关于二元实变函数的很多理论都可用于复变函数中(形式可能有所变化) 极限: 设函数f (z )在0z 点的领域内有定义,如果存在复数A ,对于任意的0ε>,总能找到一个()0δε>,使得:当0||z z δ-<时,恒有|()|f z A ε-<,则称0z z →时f (z )的极限为A ,即 0lim ()z z f z A →= 对于非数学专业的学生而言,这段话略显晦涩,一个不太严格但直观的表述是: 当z 以任意方式逼近0z ,()f z 都逼近A 不会因为z 逼近方式之不同,而导致()f z 逼近不同的值,或者发散 举例:(1)222()()xy f z i x y x y =+++ 222(,)xy u x y x y =+ 2222 lim 22(,)010 kx k u x y x x ky k y ==→++→ 结果将因k 之不同而不同,故极限不存在. (2)实变函数例子1()f x x = 0lim ()x f x +→=+∞, lim ()x x f x -→=-∞ 连续:0 0lim ()()z z f z A f z →== 因为()(,)(,)f z u x y iv x y =+,所以,复变函数的连续问题,可以归结为两个二元实变函数的连续问题。 几个简单的复变函数 (1) 多项式:2012n n a a z a z a z +++ (其中n 为整数) (2) 有理分式:20122012n n n n a a z a z a z b b z b z b z ++++++

实变函数论考试试题及答案

实变函数论考试试题及答案 证明题:60分 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ ==UI 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以I ∞ +=∈ 1 n m m A x Y I ∞=∞ =?1n n m m A , 则可知n n A ∞ →lim YI ∞ =∞ =?1n n m m A 。设YI ∞ =∞ =∈1n n m m A x ,则有n ,使I ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →=YI ∞=∞ =1n n m m A 。 2、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令I ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 3、设在E 上()()n f x f x ?,且1()()n n f x f x +≤几乎处处成立,Λ,3,2,1=n , 则有{()}n f x .收敛于)(x f 。 证明 因为()()n f x f x ?,则存在{}{}i n n f f ?,使()i n f x 在E 上.收敛到()f x 。设 0E 是()i n f x 不收敛到()f x 的点集。1[]n n n E E f f +=>,则00,0n mE mE ==。因此 ()0n n n n m E mE ∞∞==≤=∑U 。在1 n n E E ∞ =-U 上,()i n f x 收敛到()f x , 且()n f x 是单调的。 因此()n f x 收敛到()f x (单调序列的子列收敛,则序列本身收敛到同一极限)。 即除去一个零集1n n E ∞ =U 外,()n f x 收敛于()f x ,就是()n f x . 收敛到()f x 。

复变函数在信号处理分析中的应用

复变函数在信号分析处理中的应用 班级021161 姓名张秋实 学号02116013

前言 复变函数学了一个学期了,不敢说自己学习十分认真努力,也不敢说自己理解这个学科,有自己的见解,很多对复变函数的理解仅仅建立在人云亦云的基础之上。而且,对于信号的分析处理这门更加复杂,更需要科研精神的学科,我之前根本就没有多少的关注,对此我感到十分惭愧。基于以上几点,这篇文字对于我来说没有多少东西是真正属于我的,大部分为参考资料和前人的论文得来的,希望老师理解。 何为复变函数?何为信号分析? 以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。而复变函数在工程领域有很多的应用,其中在电气电子领域中,用的比较多的就是在信号的分析和处理上了。那么什么是信号分析与处理呢? 为了充分地获取信息和有效利用信息,必须对信号进行分析和处理。信号分析就是通过解析方法或者测试方法找出不同信号的特征,从而了解其特性,掌握它随时间或频率变化的规律的过程。 通过信号分析,可以将一个复杂的信号分解成若干个简单信号的分量之和,或者用有限的一组参量去考察信号的特性。信号分析是获取信号源或信号传递系统特征信息的重要手段,人们往往通过对信号特征的深入分析,得到信号源或者系统特征、运行情况甚至故障等信息,这正是故障的诊断基础。 而信号分析的基本方法有:时域分析法;频域分析法;复频域分析法。时间信号的频域分析和复频域分析中,复变函数的应用比较典型。 一、连续时间信号的频域分析 在时域中,将信号分解为不同时延、强度的冲激信号;在频域中,信号可以分解为不同频率、相位及振幅的简单信号(傅氏变换与反变换)。频率特性是信号的第二个特性,频率特性就是通过变换将时间变量转变为频率变量,在频域中分析信号的方法。

复变函数测试题及答案

第一章 复 数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( )

(A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 i (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z

(C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 0) Im()Im(z z -) 1 1.设) 2)(3() 3)(2)(1(i i i i i z ++--+= ,则=z 2.设)2)(32(i i z +--=,则=z arg 3.设4 3)arg(,5π = -=i z z ,则=z

复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用 § 1■留数 1.(定理6.1柯西留数定理): 2.(定理6.2):设a为f(z)的m阶极点, 其中在点a解析,,则 3. (推论6.3):设a为f(z)的一阶极点, 则 4. (推论6.4):设a为f(z)的二阶极点则 5. 本质奇点处的留数:可以利用洛朗展式 6. 无穷远点的留数: 即,等于f(z)在点的洛朗展式中这一项系数的反号 7. (定理6.6)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为,则f(z)在各点的留数总和为零。 注:虽然f(z)在有限可去奇点a处,必有,但是,如果点为f(z)的可去奇点(或解析点),则可以不为零。 &计算留数的另一公式:

§ 2■用留数定理计算实积分 型积分一引入 注:注意偶函数 型积分 1.(引理6.1大弧引理):上 2.(定理6.7)设为有理分式,其中 为互质多项式,且符合条件: (1)n-m> 2; (2)Q(z)没有实零点 于是有 注: 可记为 型积分 3.(引理6.2若尔当引理):设函数g(z)沿半圆周充分大上连续,且 在上一致成立。则 4.(定理6.8):设,其中P(z)及Q(z)为互质多项式,且符合条件:

(1)Q的次数比P高; (2)Q无实数解; (3)m>0 则有 特别的,上式可拆分成: ——及—— 四■计算积分路径上有奇点的积分 5.(引理 6.3小弧引理): 于上一致成立,则有 五■杂例 六■应用多值函数的积分 § 3■辐角原理及其应用 即为:求解析函数零点个数 1■对数留数: 2.(引理6.4):( 1)设a为f(z)的n阶零点,贝U a必为函数------ 的一阶极点,并且 (2)设b为f(z)的m阶极点,贝U b必为函数--- 的一阶极点,并且 3. (定理6.9对数留数定理):设C是一条周线,f(z)满足条件:

复变函数及积分变换试题及答案

第一套 第一套 一、选择题(每小题3分,共21分) 1. 若( ),则复函数()(,)(,)f z u x y iv x y =+是区域D 内的连续函数。 A. (,)u x y 、(,)v x y 在区域D 内连续; B. (,)u x y 在区域D 内连续; C. (,)u x y 、(,)v x y 至少有一个在区域D 内连续; D. 以上都不对。 2. 解析函数()f z 的实部为sin x u e y =,根据柯西-黎曼方程求出其虚部为( )。 A.cos x e y C -+; B cos x e y C -+; C sin x e y C -+; D cos x e y C + 3. 2|2|1(2)z dz z -==-?( ) 。 A. i π2; B. 0; C. i π4; D. 以上都不对. 4. 函数()f z 以0z 为中心的洛朗展开系数公式为( )。 A. 1 01 ()2()n n f d c i z ξξ πξ+= -? B. 0()!n n f z c n = C. 2 01()2n k f d c i z ξξπξ= -? D. 210! ()2()n n k n f d c i z ξξ πξ+= -? 5. z=0是函数z z sin 2 的( )。 A.本性奇点 B.极点 C. 连续点 D.可去奇点 6. 将点∞,0,1分别映射成点0,1,∞的分式线性映射是( )。 A.1 z z w -= B. z 1z w -= C. z z 1w -= D. z 11 w -= 7. sin kt =()L ( ),(()Re 0s >)。 A. 22k s k +; B.22k s s +; C. k s -1; D. k s 1 . 二、填空题(每小题3分,共18分) 1. 23 (1)i += [1] ; ---------------------------------------- 装 --------------------------------------订 ------------------------------------- 线 ----------------------------------------------------

相关文档
最新文档