受扰动非线性系统的反馈线性化最优控制

受扰动非线性系统的反馈线性化最优控制
受扰动非线性系统的反馈线性化最优控制

浙大控制系面试题(带答案)

历年集锦 建模的方法 (1)机理建模(微分方程、传递函数、状态空间) 原理:根据过程的工艺机理,写出各种有关的平衡方程,由此获得被控对象的数学模型。应用:首要条件是生产过程的机理必须已经为人们充分掌握,并且可以比较确切的加以数学描述。 (2)测试建模 原理:对过程的输入(包括控制变量与扰动变量)施加一定形式的激励信号,同时记录相关的输入输出数据,再对这些数据进行处理,由此获得对象的动态模型。 应用:一般只用于建立输入输出模型,它把研究的工业过程视为一个黑匣子 建模的步骤## (1)明确模型的目的和要求 (2)对系统进行一般语言描述 (3)弄清系统中主要因素及其相互关 系(4)确定模型的结构 (5)估计模型中的参数 (6)实验研究 (7)必要修改 动态建模和静态建模有什么差别? 动态数学模型是输出变量与输入变量之间随时间变化的动态关系的数学描述 静态数学模型则是输出变量与输入变量之间不随时间变化情况下的数学关系 前者用于工业设计和最优化等;后者则用于各类自动控制系统的设计与分析,用于工艺设计和操作条件的分析和确定 稳态是怎样的? 稳态:此时系统没有受到任何外来扰动,同时设定值保持不变,因而被控变量也不会随时间变化,整个系统处于稳定平衡的工况。 动态:此时系统受到外来扰动的影响或者在改变了设定值后,原来的稳态遭到破坏,系统中各组成部分的输入输出量都相应发生变化,尤其是被控变量也将偏离稳态而随时间变化。 智能控制的常用模型 模糊控制、神经网络控制、专家系统~~~ (模糊控制举例:查表法——模糊控制表是最简单的模糊控制器之一) 说说你对人工智能这个概念的认识? 它通过赋予计算机以人类智慧的某些特点,使计算机去做过去只有人才能做的智能工作。 人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算 机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来

最优控制

最优控制综述 摘要:最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。从经济意义上说,是在一定的人力、物力和财力资源条件下,使经济效果达到最大(如产值、利润),或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。而最优控制通常针对控制系统而言,目的在于使一个机组、一台设备或一个生产过程实现局部最优。本文重点阐述了最优系统常用的变分法、极小值原理和动态规划三种方法的基本理论及其在典型系统设计中的应用。 关键词:变分法、极小值原理、动态规划 1 引言 最优控制是分析控制系统常用的方法,是现代控制理论的核心之一。它尤其与航空航天的制导、导航和控制技术密不可分。最优控制理论所研究的问题可以概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标最优。 这类问题广泛存在于技术领域或社会问题中。例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少,选择一个温度的调节规律和相应的原料配比使化工反应过程的产量最多,制定一项最合理的人口政策使人口发展过程中的老化指数、抚养指数和劳动力指数为最优等,都是一些经典的最优控制问题。 最优控制问题是要在满足约束条件下寻求最优控制函数,使目标泛函取极值。求解动态最优化问题的方法主要有古典变分法,极小值原理及动态规划法等。 2 研究最优控制的前提条件 2.1状态方程 对连续时间系统: x t=f x t,u t,t 对离散时间系统:x(k+1)=f x k,u k,k k=0,1,……,(N-1)

一种求解条件非线性最优扰动的快速算法及其在台风-中国气象学会

基于月动力延伸预报最优信息的中国降水降尺度预测模型 顾伟宗1,2陈丽娟1张培群1李维京1李想1刘绿柳1 1. 国家气候中心,中国气象局气候研究开放实验室,北京,100081 2. 山东省气候中心,济南, 250031 摘要 利用国家气候中心月动力延伸预报结果、NCEP/NCAR再分析资料和中国160个站观测资料,通过计算两次相关的方法,获取最优预报信息作为建立降尺度预测模型的预测因子,提取的最优预测因子同时满足既是观测环流要素场影响降水的关键区域,又是模式要素场预报的高技巧区域两个条件。结合挑选出的最优预测因子,利用最优子集回归建立月平均降水的降尺度预测模型。文中设计了消除预测因子和预测量的线性趋势值后建立预测模型(方案1)和直接利用原始资料建立预测模型(方案2)两种方案。经过独立样本检验,发现这两种方案建立的预测模型都能够提高月尺度降水预测,方案1对月尺度降水预测的距平相关系数平均可达0.35。利用该方案对超前时间分别为0、5、10 d的月动力延伸预报产品进行月降水的降尺度预测表明,模式初值信息不仅影响月动力延伸预报结果,也影响降尺度应用效果,利用超前时间为0和5 d的月动力延伸预报结果进行降水降尺度预测可在业务中参考。此外,降尺度预测模型中选取的预测因子不仅在统计上是显著的,同时也具有清楚的物理意义。关键词月动力延伸预报, 最优信息, 降水, 降尺度预测 资助课题:国家自然科学基金项目(40675039)、国家科技部科技支撑计划项目(2006BAC02B04)和中国气象局业务建设项目(气候模式产品在区域气候预测业务中的应用)。 作者简介:顾伟宗,研究方向:气候预测研究和应用。Email: longmarch529@https://www.360docs.net/doc/606373807.html, 通讯作者:陈丽娟,研究方向:气候预测研究和应用。Email:chenlj@https://www.360docs.net/doc/606373807.html, 中图法分类号P456.2 P456.7 2007-09-04收稿,2007-11-07改回. Downscaling precipitation prediction in China based on Optimization Information Extracted from Monthly Dynamic Extended Range Forecast. Gu Weizong1,2, Chen lijuan1, Zhang peiqun1, Li Weijing1, Li Xiang 1and Liu Lvliu1 1. National Climate Center, Laboratory for Climate Studies,, CMA, Beijing .100081 China 2. Shandong Climate Center, Jinan, 250031 China Abstract Using monthly dynamic extended range forecast (DERF) products, NCEP/NCAR reanalysis data and 160 station data in China, we have extracted optimal predictors which significantly influence precipitation. The predictors are selected from high skill regions of DERF and high correlation between observing precipitation and other variables. Downscaling monthly anomaly precipitation are predicted using the optimal subset regression from selected predictors. Two schemes are designed in the paper. One uses the detrending data to establish the prediction equations (scheme 1), the other uses the original data to establish the prediction equations (scheme 2). The results show that the two schemes can improve the skills of monthly precipitation forecast whereas scheme 1 has higher skills than scheme 2. The anomaly correlation coefficient between scheme 1 and observation can reach 0.35. Downscaling tests indicate that initial fields could have great influence on model results and downscaling precipitation prediction. Using scheme 1 and DERF results from different leadtime including 0 day, 5 days and 10 days, it shows that when lead time is 5 days and 0 day, the downscaling precipitation

第8章 非线性系统分析 参考答案汇总

参考答案 一、填空题 1. 非本质;本质 2. 自持振荡 3. 初始条件;输入信号大小 4. 饱和非线性;死区非线性;间隙非线性;继电器非线性 5. 不稳定 6. 稳定;不稳定;半稳定 7. 自左向右;自右向左 二、分析与计算题 1. 求3()()y t ax t =的描述函数。 解:由于3()()y t ax t =是单值奇函数,所以其傅里叶级数展开式中A 0=0、A 1=0、φ1=0,将()sin x t A t ω=代入B 1的计算公式,可得 2102330340 3203203 03031()sin 1sin sin 2sin 21cos 2()2 212cos 2cos 24 1cos 412cos 22242311(cos 2cos 4)828 231 (sin 284 B y t td t aA t td t aA td t aA t d t aA t t d t t t aA d t aA t t d t aA π π π ππππωωπωωωπωωπωωπωωωπωωωπωωωπππ===-=-+=+-+==-+=-???????3 1sin 4) 003234 t t aA ππωω+= 所以 32 133()44 B aA N A aA A A === 2.设具有滞环继电器非线性特性的非线性系统结构如题图8.1所示,已知b =1,a =0.3,试判断系统是否存在自持振荡,若存在,则求出自持振荡的幅值和频率。 题图8.1 解:具有滞环的继电器非线性特性的描述函数为 2 4()j ()ab N A A a A π=≥ 其描述函数负倒数特性为 1j ()()4a A a N A b π-=≥ 可见,描述函数负倒数特性的虚部为常数4a b π-,即1()N A -曲线为一条虚部为4a b π-的直线。 由于10 ()(21)(0.41) G s s s =++,所以

非线性振动

非线性振动的研究包括理论分析方法和数值分析方法。其中理论分析方法有是沿着两个方向发展,第一是定性方法,第二是定量方法,也称为解析法。 定性方法是对方程解的存在性、唯一性、周期性和稳定性等的研究;定量方法是对方程解的具体表达形式、数量大小和解的数目等的研究。数值方法目前已广泛用于计算非线性振动系统,是一种求解非线性方程的有效方法。 本文在查询相关文献的基础上,对非线性振动理论的分析方法最新研究成果做简要概括和分析比较。 1、平均法 平均法是求解非线性振动最常见和最实用的近似方法之一。其基本思想是设待解微分方程与派生方程具有相同形式的解,只是振幅和相位随时间缓慢变化。将振幅和相位的导数用一个周期的平均值替代,得到平均化方程,求解平均化方程,得到振幅和相位的表达式,从而求解出原方程的近似解析解。 1.1利用平均法分析多自由度非线性振动 平均法主要是用在单自由度非线性振动的分析中,是一种求近似解的方法,虽然精度较低,但可避免繁琐的中间运算,具有便于应用的突出优点。将其推广的到多自由度系统,导出了平均化方程,由此能够得到多自由度非线性振动的幅频特性。 1.2用改进平均法求解自由衰减振动 用平均法求解自由衰减振动方程时,无论是线性阻尼还是平方阻尼,

在阻尼常量很小的情况下,平均法解均有较高的精度。但随阻尼常量的增加,阻尼对振动周期的影响已不能忽略,此时平均法解的结果与实际振动情况有了明显的偏离,需要改进。改进平均法是将待解微分方程的圆频率与派生方程圆频率的差异函数表示为阻尼系数的多项式。 2、FFT多谐波平衡法分析非线性系统 非线性动力系统的响应可能含有几个主导频率,且有可能与激振频率不成倍数关系。现有的单一谐波法和多谐波法仅限于系统响应主导频率为激振频率的非线性系统,因此在某些情况下使用单一谐波法或多谐波法研究非线性系统动力学特性是不可靠的,而基于快速傅立叶变换(FFT)和主导频率的 FFT 多谐波平衡法能够依据所有的主导频率构筑多谐波平衡方程,因此其解析解精确度高,并能广泛适用于单倍周期、多倍周期、与初始条件有关的多解性及拟周期响应等典型的非线性特征响应。 3、等效小参数法求解强非线性系统 等效小参量法是将谐波平衡法和扰动法相结合用于求高阶非线性系 统近似解的一种比较有效的方法,这种方法不仅适用于弱非线性系统,而且适用于强非线性系统,其近似解能较好地反映系统特性。在求解弱非线性系统时,扰动法和等效小参量法均具有较高的精确度,但对于强非线性系统,等效小参量法表现出较明显的优势。 参考文献: 【1】王海期.非线性振动.高等教育出版社.1992

强非线性随机振动系统的最优控制

项目名称:强非线性随机振动系统的最优控制 推荐单位:中国力学学会 推荐单位意见: 我单位认真审核了该项目推荐书及附件材料,确认全部材料真实有效,相关栏目均符合国家自然科学奖推荐书填写要求。 多自由度强非线性随机振动系统的最优控制是振动控制理论与随机振动力学学科迫切需要发展的学科前沿,同时也是一个极为困难的研究领域,原有的研究成果极少。该项目针对多种随机激励下多自由度强非线性随机系统的多种不同目标的最优控制进行了系统深入的研究,取得了一系列原创性成果。提出并发展了多自由度强非线性随机振动系统多种不同目标的的最优控制理论、计及实际应用中多种非理想因素的最优控制理论、以及多种随机激励下多自由度强非线性系统的随机平均法,构成了一个非线性随机振动系统最优控制的较为完整的理论体系,对振动控制理论与随机振动力学学科的发展具有里程碑意义,并为解决科学与工程中广泛存在又十分困难的强非线性随机振动系统的控制问题提供了一整套崭新而有效的理论方法。该项目的研究成果得到了美国工程院院士Y.K. Lin、印度国家工程院院士T.K. Datta、中国科学院院士胡海岩、方同教授、李杰教授等国内外动力学与控制领域著名专家学者的广为引用与高度评价,认为该项目具有首创性与系统性,首次建立了非线性随机振动最优控制的系统的理论方法,整体上达到了国际领先水平。特推荐该项目申报国家自然科学奖。 对照国家自然科学奖授奖条件,推荐该项目申报国家自然科学奖二等奖。 项目简介: 该项目属振动控制理论、随机振动力学学科。多自由度强非线性随机振动系统的最优控制是振动控制理论与随机振动力学学科迫切需要发展的前沿,是一个极为困难的研究领域,原有研究成果极少。该项目针对多种随机激励下多自由度强非线性随机振动系统的多种目标并计及多种非理想因素的最优控制进行了系统深入的研究,取得了一系列原创性成果。 主要研究内容:研究多种随机激励下多自由度强非线性振动系统的响应、稳定性及可靠性的最优控制理论,发展计及实际控制中可能出现的各种因素的强非线性随机振动系统的最优控制方法。 主要科学发现点:(1)建立了多自由度强非线性随机振动系统的最优控制理论,提出并发展了分别以响应最小、稳定性裕度最大、可靠度最大、平均寿命最长及给定平稳概率密度为目标的非线性随机最优控制设计方法;(2)针对实际控制系统的部分可观测与不确定,实际控制力的时滞、有界及不能完全执行最优控制律等难题,提出并发展了有效解决这些难题的多自由度强非线性随机振动系统的最优控制理论方法;(3)提出并发展了非高斯白噪声激励、非经典(包括滞迟、时滞及含分数阶

非线性系统最优控制理论综述

非线性系统最优控制理论综述 时间:2015-06-17 作者:马玲珑 摘要:非线性系统,其最优控制求解相当困难,寻求近似的最优控求解方法是当下解决这一问题的主要途径。目前,比较成熟的最优控制求解方法主要有七类,本文对这七种方法进行了详细的阐述,并对其优缺点进行了客观的对比。 论文关键词:非线性,最优控制 近年来,最优控制理论[1,2]的研究,无论在深度和广度上,都有了很大的发展,已成为系统与控制领域最热门的研究课题之一,取得了许多研究成果。同时,也在与其他控制理论相互渗透,出现了许多新的最优控制方式,形成了更为实用的学科分支。例如鲁棒最优控制[3]、随机最优控制[4]、分布参数系统的最优控制[5]、大系统的次优控制[6]、离散系统的最优控制及最优滑模变结构控制[7,8]等。而对于非线性系统,其最优控制求解相当困难,需要求解非线性HJB方程或非线性两点边值问题,除简单情况外[9],这两个问题都无法得到解析解。因此,许多学者都致力于寻求近似的求解方法[10~13],通过近似解得到近似的最优控,即次优控制。 1、非线性最优控制理论研究成果分类 目前,较为流行的近似最优控制求解方法主要有以下几类[6][13]。 1)幂级数展开法:幂级数展开方法通过一个幂级数来构造控制律,得到序列形式的近似最优解,或者将系统中的非线性项以幂级数形式分解,或者通过引进一个临时变量并围绕它展开。 将上式代入HJB方程求得级数近似解,也可利用Adomian分解将非线性项进行分解,由此寻求非线性HJB方程级数的近似解。 2)Galerkin逐次逼近方法:由动态规划得到的一般性偏微分HJB方程,引入一个迭代过程来求解一般非线性HJB方程的一个近似解序列。 3)广义正交多项式级数展开法:其主要思想是将最优控制问题中的状态变量,控制输入,性能指标和各个参数分别用广义正交多项式展开,利用广义正交多项式的积分、乘积运算阵 将描述系统的微分方程转化为一系列的代数方程。然后,得到 ,T非奇异时由得到的控制律是一个多项式级数解。该方法将最优控制问题转化为代数极值问题,从而避免了求解时变非线性Riccati方程。 4)有限差分和有限元方法:经典的有限差分和有限元方法可以用来近似求解非线性

(完整word)MIMO非线性系统的反馈线性化初步理论

第五章 MIMO 非线性系统的反馈线性化初步理论 引言: 对于多输入多输出系统仍可以用下列紧缩的形式的方程来描述: )()()(x h y u x g x f x =+=& (*) n R x ∈ 若输入的个数与输出的个数的数目相同时,可令 ) 1( )](),...,([)()1()](),...,([)()()](),...,([)() 1() ,...,() 1(),...,(11111?=?=?=?=?=m x h x h Col x h n x f x f Col x f m n x g x g x g m y y Col y m u u Col u m n m m m )(),...,(),(1x g x g x f m 均是光滑的向量场,)(),...,(1x h x h m 是光滑的函数,均定义在n R 的某个开集上。 5.1 向量相对阶和总相对阶: 一个多变量非线性系统(*),在οx 处有向量相对阶},...,{1m r r 是指: (i) 0)(=x h L L i k f g j 对所有:111-<≤≤≤≤i r k m i m j οx x ∈?的邻域 (ii) m m ?矩阵 ?? ?? ? ? ?????? ??=------)(.. ) (. ...)(..)() (.. )()(11212111 11 12211 1 1x h L L x h L L x h L L x h L L x h L L x h L L x A m r f g m r f g r f g r f g r f g r f g m m m m m 在οx x =处是非奇异的。 注意: (1)该定义涵盖了SISO 系统。 (2)整数m r r ,...,1中的某个i r 是与系统第i 个输出)(x h i 有关的。行向量: )](),...,([111x h L L x h L L i r f g i r f g i m i --,至少有一个元素是非零的,

非线性最小二乘平差

非线性最小二乘平差 6-1问题的提出 经典平差是基于线性模型的平差方法。然而在现实世界中,严格的线性模型并不多见。测量上大量的数学模型也是非线性模型。传统的线性模型平差中的很多理论在非线性模型平差中就不一定适用;线性模型平差中的很多结论在非线性模型平差中就不一定成立;线性模型平差中的很多优良统计性质在非线性模型平差中就不一定存在。例如,在线性模型平差中,当随机误差服从正态分布时,未知参数X 的最小二乘估计具有一致无偏性和方差最小性。但在非线性模型平差中,即使随机误差严格服从正态分布,未知参数X的非线性最小二乘估计也是有偏的。其方差一般都不能达到最小值。 对于测量中大量的非线性模型,在经典平差中总是进行线性近似(经典的测量平差中称之为线性化),即将其展开为台劳级数,并取至一次项,略去二次以上各项。如此线性近似,必然会引起模型误差。过去由于测量精度不高,线性近似所引起的模型误差往往小于观测误差,故可忽略不计。随着科学技术的不断发展,现在的观测精度已大大提高,致使因线性近似所产生的模型误差与观测误差相当,有些甚至还会大于观测误差。例如,GPS载波相位观测值的精度很高,往往小于因线性近似所产生的模型误差。因此,用近似的理论、模型、方法去处理具有很高精度的观测结果,从而导致精度的损失,这显然是不合理的。现代科学技术要求估计结果的精度尽可能高。这样,传统线性近似的方法就不一定能满足当今科学技术的要求。另外,有些非线性模型对参数的近似值十分敏感,若近似值精度较差,则线性化会产生较大的模型误差。由于线性近似后,没有顾及因线性近似所引起的模型误差,而用线性模型的精度评定理论去评定估计结果的精度,从而得到一些虚假的优良统计性质,人为地拔高了估计结果的精度。 鉴于上述各种原因,对非线性模型平差进行深入的研究是很有必要的。非线性模型的平差和精度估计以及相应的误差理论研究也是当前国内外测绘界研究的前沿课题之一。 电子教材 > 第六章非线性模型平差 > 6-2 非线性模型平差原理

王全祥偏微分方程约束最优控制,计算流体力学研究领域_王

姓名王全祥性别男 职称副教授系别基础课部 学位博士电话 E-mail wangqx@https://www.360docs.net/doc/606373807.html, 单位地址南京市浦口区点将台路40号邮编210031 研究领域 偏微分方程约束最优控制,计算流体力学 社会兼职 无 承担项目1.国家自然科学基金数学天元青年基金:新型有限体积元方法及其在沿海洪水预报中的应用研究,2015/01-2015/12,(编号:11426134),主持。 2. 江苏省“大规模复杂系统数值模拟”重点实验室开放研究基金:水波方程的保能量有限体积元方法,2015/01-2016/12,(编号:201403),主持。 3. 中央高校基本科研业务费自主创新重点项目:有限体积元方法及其在流体力学中的应用,2015/01-2017/12,(编号:KYZ201565),主持。 4. 国家自然科学基金:新型有限体积元方法及其在随机地球流体力学中的应用研究,11471166,2015年1月-2018年12月,(编号:11471166),参加。 5. 国家自然科学基金:非线性最优扰动方法及其在数值天气预报中的应用研究,2011年1月-2013年12月,(编号:11071123),参加。 6. 江苏省研究生培养创新工程:球面上准地转方程的新型有限体积方法,CXZZ12_0382,2012年6月-2013年5月,(编号:CXZZ12_0382),主持。 学术成果近期主要论文: 1.Quanxiang Wang, Zhiyue Zhang, Quanyong Zhu. Non-linear and linear evolution of perturbation in stochastic basic flows. International Journal of Non-Linear Mechanics, 2015(77),291-298. 2.Quanxiang Wang, Zhiyue Zhang, Xinhua Zhang and Quanyong Zhu, Energy- preserving finite volume element method for the improved Boussinesq equation, Journal of Computational Physics, 270, 58-69, 2014. 3.Quanxiang Wang, Zhiyue Zhang, High-order upwind finite volume element schemes for modeling of neuronal firing,International Journal of Computer Mathematics, 91, 625-640,2014. 4.Quanxiang Wang, Zhiyue Zhang and Zhilin Li, A Fourier finite volume element method for solving two-dimensional quasi-geostrophic equations on a sphere, Applied Numerical Mathematics, 71, 1-13, 2013. 5.Quanxiang Wang, Zhiyue Zhang and Quanyong Zhu, Numerical simulation of the

最优控制问题求解方法综述

最优控制问题方法综述 研究生管理大队学员四队 燕玉林 115081105018

最优控制问题方法综述 姓名单位学号 一、最优控制(optimal control)的一般性描述 最优控制是现代控制理论的核心,它研究的主要问题是:根据已建立的被控对象的时域数学模型或频域数学模型,选择一个容许的控制律,使得被控对象按预定的要求运行,并使给定的某一性能指标达到最优值。 使控制系统的性能指标实现最优化的基本条件和综合方法。可概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。这类问题广泛存在于技术领域或社会问题中。例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少。最优控制理论是50年代中期在空间技术的推动下开始形成和发展起来的。美国学者R.贝尔曼1957年动态规划和前苏联学者L.S.庞特里亚金1958年提出的极大值原理,两者的创立仅相差一年左右。对最优控制理论的形成和发展起了重要的作用。线性系统在二次型性能指标下的最优控制问题则是R.E.卡尔曼在60年代初提出和解决的。 从数学上看,确定最优控制问题可以表述为: 在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。解决最优控制问题的主要方法有古典变分法(对泛函求极值的一种数学方法)、极大值原理和动态规划。最优控制已被应用于综合和设计最速控制系统、最省燃料控制系统、最小能耗控制系统、线性调节器等。 研究最优控制问题有力的数学工具是变分理论,而经典变分理论只能够解决控制无约束的问题,但是工程实践中的问题大多是控制有约束的问题,因此出现了现代变分理论。 现代变分理论中最常用的有两种方法。一种是动态规划法,另一种是极小值原理。它们都能够很好的解决控制有闭集约束的变分问题。 值得指出的是,动态规划法和极小值原理实质上都属于解析法。此外,变分法、线性二次型控制法也属于解决最优控制问题的解析法。最优控制问题的研究方法除了解析法外,还包括数值计算法和梯度型法。 最优控制的求解方法包括变分法、极小值原理、动态规划、线性最优

综述非线性系统最优控制理论.docx

综述非线性系统最优控制理论 近年来,最优控制理论[1,2]的研究,无论在深度和广度上,都有了很大的发展,已成为系统与控制领域最热门的研究课题之一,取得了许多研究成果。同时,也在与其他控制理论相互渗透,出现了许多新的最优控制方式,形成了更为实用的学科分支。例如鲁棒最优控制[3]、随机最优控制[4]、分布参数系统的最优控制[5]、大系统的次优控制[6]、离散系统的最优控制及最优滑模变结构控制[7,8]等。而对于非线性系统,其最优控制求解相当困难,需要求解非线性HJB方程或非线性两点边值问题,除简单情况外[9],这两个问题都无法得到解析解。因此,许多学者都致力于寻求近似的求解方法[10~13],通过近似解得到近似的最优控,即次优控制。 1、非线性最优控制理论研究成果分类 目前,较为流行的近似最优控制求解方法主要有以下几类[6][13]。 1)幂级数展开法:幂级数展开方法通过一个幂级数来构造控制律,得到序列形式的近似最优解,或者将系统中的非线性项以幂级数形式分解,或者通过引进一个临时变量并围绕它展开。 将上式代入HJB方程求得级数近似解,也可利用Adomian分解将非线性项进行分解,由此寻求非线性HJB方程级数的近似解。 2)Galerkin逐次逼近方法:由动态规划得到的一般性偏微分HJB方程,引入一个迭代过程来求解一般非线性HJB方程的一个近似解序列。 3)广义正交多项式级数展开法:其主要思想是将最优控制问题中的状态变量,控制输入,性能指标和各个参数分别用广义正交多项式展开,利用广义正交多项式的积分、乘积运算阵 将描述系统的微分方程转化为一系列的代数方程。然后,得到,T非奇异时由得到的控制律是一个多项式级数解。该方法将最优控制问题转化为代数极值问题,从而避免了求解时变非线性Riccati方程。 4)有限差分和有限元方法:经典的有限差分和有限元方法可以用来近似求解非线性HJB方程。近年来,这类方法用来近似求取非线性HJB方程的粘性解。 5)状态相关Riccati方程方法:这种方法适用的模型是仿射非线性系统,

计量经济学 第四章 非线性回归模型的线性化范文

第四章 非线性回归模型的线性化 以上介绍了线性回归模型。但有时候变量之间的关系是非线性的。例如 y t = α 0 + α11βt x + u t y t = α 0 t x e 1α+ u t 上述非线性回归模型是无法用最小二乘法估计参数的。可采用非线性方法进行估计。估计过程非常复杂和困难,在20世纪40年代之前几乎不可能实现。计算机的出现大大方便了非线性回归模型的估计。专用软件使这种计算变得非常容易。但本章不是介绍这类模型的估计。 另外还有一类非线性回归模型。其形式是非线性的,但可以通过适当的变换,转化为线性模型,然后利用线性回归模型的估计与检验方法进行处理。称此类模型为可线性化的非线性模型。下面介绍几种典型的可以线性化的非线性模型。 4.1 可线性化的模型 ⑴ 指数函数模型 y t = t t u bx ae + (4.1) b >0 和b <0两种情形的图形分别见图4.1和4.2。显然x t 和y t 的关系是非线性的。对上式等号两侧同取自然对数,得 Lny t = Lna + b x t + u t (4.2) 令Lny t = y t *, Lna = a *, 则 y t * = a * + bx t + u t (4.3) 变量y t * 和x t 已变换成为线性关系。其中u t 表示随机误差项。 010 20 30 40 50 1 2 3 4 X Y 1 图4.1 y t =t t u bx ae +, (b > 0) 图4.2 y t =t t u bx ae +, (b < 0)

⑵对数函数模型 y t = a + b Ln x t+ u t(4.4) b>0和b<0两种情形的图形分别见图4.3和4.4。x t和y t的关系是非线性的。令x t* = Lnx t, 则 y t = a + b x t* + u t(4.5) 变量y t和x t* 已变换成为线性关系。 图4.3 y t = a + b Lnx t + u t , (b > 0) 图4.4 y t = a + b Lnx t + u t , (b < 0) ⑶幂函数模型 y t= a x t b t u e(4.6) b取不同值的图形分别见图4.5和4.6。x t和y t的关系是非线性的。对上式等号两侧同取对数,得 Lny t = Lna + b Lnx t + u t(4.7) 令y t* = Lny t, a* = Lna, x t* = Lnx t, 则上式表示为 y t* = a* + b x t* + u t(4.8) 变量y t* 和x t* 之间已成线性关系。其中u t表示随机误差项。(4.7) 式也称作全对数模型。 图4.5 y t = a x t b t u e图4.6 y t = a x t b t u e

非线性控制理论和方法

非线性控制理论和方法 姓名:引言 人类认识客观世界和改造世界的历史进程,总是由低级到高级,由简单到复杂,由表及里的纵深发展过程。在控制领域方面也是一样,最先研究的控制系统都是线性的。例如,瓦特蒸汽机调节器、液面高度的调节等。这是由于受到人类对自然现象认识的客观水平和解决实际问题的能力的限制,因为对线性系统的物理描述和数学求解是比较容易实现的事情,而且已经形成了一套完善的线性理论和分析研究方法。但是,现实生活中,大多数的系统都是非线性的。非线性特性千差万别,目前还没一套可行的通用方法,而且每种方法只能针对某一类问题有效,不能普遍适用。所以,可以这么说,我们对非线性控制系统的认识和处理,基本上还是处于初级阶段。另外,从我们对控制系统的精度要求来看,用线性系统理论来处理目前绝大多数工程技术问题,在一定范围内都可以得到满意的结果。因此,一个真实系统的非线性因素常常被我们所忽略了,或者被用各种线性关系所代替了。这就是线性系统理论发展迅速并趋于完善,而非线性系统理论长期得不到重视和发展的主要原因。控制理论的发展目前面临着一系列严重的挑战, 其中最明显的挑战来自大范围运动的非线性复杂系统, 同时, 现代非线性科学所揭示的分叉、混沌、奇异吸引子等, 无法用线性系统理论来解释, 呼唤着非线性控制理论和应用的突破。 1.传统的非线性研究方法及其局限性 传统的非线性研究是以死区、饱和、间隙、摩擦和继电特性等基本的、特殊的非线性因素为研究对象的, 主要方法是相平面法和描述函数法。相平面法是Poincare于1885年首先提出的一种求解常微分方程的图解方法。通过在相平面上绘制相轨迹, 可以求出微分方程在任何初始条件下的解。它是时域分析法在相空间的推广应用, 但仅适用于一、二阶系统。描述函数法是 P. J.Daniel于1940

非线性系统例题

第十章非线性系统 §10.1 与线性系统的差异 线性系统与非线性系统的不同之处在于: 1. 非线性系统的运动是由一个非线性微分方程控制的,但是很多非线性方程都不存在精确解。 2. 一个非线性系统可能不只一个平衡点,而平衡点可能是稳定的,也可能是不稳定的。 3. 非线性系统是否存在稳态运动取决于初始条件。 4.非线性系统的自由振动周期由初始条件决定,这就意味着自由振动的频率依赖于自由振动的振幅。 5. 非线性系统的共振出现在激发频率不同于系统的线性固有频率处,在一个三维非线性系统中,当激发频率为系统线性固有频率的1/3时,产生超频共振;当激发频率为系统线性固有频率近三倍时,就产生亚频共振。 6. 线性叠加原理不能用来分析受多频激励的非线性系统,共振的组合是对应于激发频率的近似组合。 7. 对应于固有频率的近似组合,在多自由度的连续系统中存在内共振。 8. 在非线性系统中,周期激励可能会引起非周期响应,由于一些特定的参数值,这种混沌运动出现在很多非线性系统中。 §10.1 定性分析 状态平面或相位平面是速度和位移在整个运动过程中的关系曲线,通过在平衡点的邻域内将控制微分方程线性化,可以检验平衡点的性质及其稳定性(见题10.2),平衡点的各种类型如图10.1所示。

§10.3 达芬方程 达芬方程 rt F sin 23=+++εχχχμχ (10.1) 是一个无量纲方程。它作为一个模型可用于求解三维非线性系统。如果ε为正,则表示一个硬弹簧的响应;如果ε为负,则表示一个软弹簧系统的响应。一个系统自由振动的振幅关系由达芬方程决定,它可以用扰动方法近似表示为: )(8 3 122εεωO A ++= (10.2) 其中ω是固有频率的无量纲化(对于线性系统ω=1),A 是振幅,分析共振附近达芬方程的受迫响应可以设

一类含动态扰动的随机非线性系统的FNN控制

一类含动态扰动的随机非线性系统的FNN 控制 李亚锋,李桂芳,陈一川 (南京航空航天大学民航飞行学院,江苏南京211100) 摘一要:针对一类非仿射且带有动态扰动的纯反馈随机非线性不确定系统,在随机Lyapunov 稳定性理论框架下,利用自适应Backstepping 方法并结合模糊神经网络(FNN ),设计出保证闭环系统所有信号概率意义下有界的自适应控制器三在控制器设计中,对系统动态扰动进行参数化处理,并对系统不确定性进行FNN 逼近,以四层神经网络为基础构架,引入模糊逻辑对网络进行推理,其输出权值可自适应调整,设计方法有效地减少了可调参数的数量,数值仿真结果也表明设计方法的有效性三 关键词:随机非线性系统;动态扰动;模糊神经网络;自适应反推 中图分类号:TP183一一一文献标识码:A一一一文章编号:1671-654X (2016)04-0039-05 Fuzzy Neural Network -based Control for a Class of Uncertain Stochastic Nonlinear Systems with Dynamics Disturbances LI Ya-feng ,LI Gui-fang ,CHEN Chuan (College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 211100,China)Abstract :The problem of boundedness in probability is investigated for a class of uncertain stochastic nonlinear pure-feedback systems with dynamic disturbances.Under the framework of stochastic Lyapunov stability theory and based on FNN ,the controllers and the adaptation laws are obtained by using of the backstepping design technique ,which render the closed-loop systems boundedness in probability.During the course of designing ,the dynamic disturbances are parameterized and the uncertainties are approxima-ted.Due to four layers of neural network architecture ,a better approximation can be achieved by introdu-cing fuzzy logic and the adjustable weight of output layer.So the fewer design parameters are demanded.An example is given to verify the effectiveness of the proposed design approach.Key words :stochastic nonlinear systems ;dynamic disturbances ;fuzzy neural networks ;adaptive backstep-ping 引言 近几年来,对于随机非线性不确定系统控制问题的研究,已成为研究热点三许多非线性系统控制方法被扩展到随机非线性系统的研究中,如Lyapunov 函数法,Backstepping 技术[1],自适应模糊方法[2]等,这些方法对于随机非线性系统问题的研究起到了重要的推动作用三 在飞行系统中,往往存在外界动态干扰信号,同时伴随着随机因素的干扰,致使实际问题的建模不可避免地存在诸多不确定性三而模糊逻辑和神经网络具有优良的逼近未知函数的特点,二者对系统中存在的不 确定性问题有着较好的处理能力,因此在不确定系统控制问题的研究中获得了广泛的应用三其中,文[3]对带有参数不确定项的随机非线性系统进行自适应观测器设计,使观测器概率意义下有界;文[4]对一类严格反馈型的随机非线性系统,利用Backstepping 技术和神经网络方法设计出一类自适应神经网络输出反馈控制器,使闭环系统依概率稳定;文[5]通过引入模糊神经网络对一类非仿射纯反馈随机非线性系统进行跟踪控制器设计保证跟踪误差依概率最终有界;文[6]对含有时滞的随机非线性系统设计了神经网络状态反馈控制器,使闭环系统中所有信号概率意义下半全局 一收稿日期:2016-05-30一一一修订日期:2016-06-30 一基金项目:国家自然科学基金青年科学基金项目资助(61304020);江苏省科研创新实践计划项目资助(SJLX15-0129);南京航空航天大学研究生一一一一一一创新基地开放基金项目资助(kfjj20150703) 一 作者简介:李亚锋(1991-),男,河南许昌人,硕士研究生,主要研究方向为飞行安全控制二随机非线性控制三 第46卷一第4期航空计算技术Vol.46No.42016年7月 Aeronautical Computing Technique Jul.2016

非线性动力学分析方法

第一章非线性动力学分析方法(6学时) 一、教学目标 1、理解动力系统、相空间、稳定性的概念; 2、掌握线性稳定性的分析方法; 3、掌握奇点的分类及判别条件; 4、理解结构稳定性及分支现象; 5、能分析简单动力系统的奇点类型及分支现象。 二、教学重点 1、线性稳定性的分析方法; 2、奇点的判别。 三、教学难点 线性稳定性的分析方法 四、教学方法 讲授并适当运用课件辅助教学 五、教学建议 学习本章内容之前,学生要复习常微分方程的内容。 六、教学过程

本章只介绍一些非常初步的动力学分析方法,但这些方法在应用上是十分有效的。 相空间和稳定性 一、动力系统 在物理学中,首先根据我们面对要解决的问题划定系统,即系统由哪些要素组成。再根据研究对象和研究目的,按一定原则从众多的要素中选出最本质要素作为状态变量。然后再根据一些原理或定律建立控制这些状态变量的微分方程,这些微分方程构成的方程组通常称为动力系统。研究这些微分方程的解及其稳定性以及其他性质的学问称为动力学。 假定一个系统由n 个状态变量1x ,2x ,…n x 来描述。有时,每个状态变量不但是时 间t 的函数而且也是空间位置r 的函数。如果状态变量与时空变量都有关,那么控制它们变化的方程组称为偏微分方程组。这里假定状态变量只与时间t 有关,即X i =X i (t),则控制它们的方程组为常微分方程组。 ),,,(2111 n X X X f dt dX ),,,(2122 n X X X f dt dX (1.1.1) … ),,,(21n n n X X X f dt dX 其中 代表某一控制参数。对于较复杂的问题来说,i f (i =l ,2,…n)一般是 i X 的非线性函数,这时方程(1.1.1)就称为非线性动力系统。由于 i f 不明显地依赖时间t ,故称方程组(1.1.1)为自治动力系统。若 i f 明显地依赖时间t ,则称方程组为非自治动力系统。非自治动力系统可化为自治动力系统。 对于非自治动力系统,总可以化成自治动力系统。 例如:)cos(t A x x

相关文档
最新文档