微粒系统用于眼用药物制剂已成新趋势

微粒系统用于眼用药物制剂已成新趋势
微粒系统用于眼用药物制剂已成新趋势

微粒系统用于眼用药物制剂已成新趋势

由于传统的眼用药物制剂具有一些固有的缺点,而且,材料学的发展提供了多的药用辅料,如何利用些新的材料研制新的剂型,改善眼部用药在角膜或结膜的滞留时间,提高药物在眼部组织的生物利用度,以便获得更好的局部治疗效果,成为当前给药系统研究者关注的热点。本文分别对眼用脂质体、眼用微球、眼用纳米粒、眼用微乳等眼用微粒给药系统的国内外研究概况进行详细的介绍,将给关注该领域的读者带来收获。

传统眼用制剂(滴眼剂和膏剂)存在一些明显的缺点,如:药物在眼部病变部位停留时间短,吸收欠佳,需要频繁给药等。所以,如何提高药物的眼部吸收,改善其治疗指数,减少其不良反应,是眼部给药系统研究的热点问题。近年来,作为眼用药物的载体,脂质体、微球、纳米粒和微乳等微粒分散系统与传统眼部给药剂型相比,正逐渐显示其独特的优势。一方面,眼用微粒给药系统可解决部分难溶性药物眼部给药的困难,并在一定程度上提高药物在眼部组织的生物利用度;另一方面,眼用微粒给药系统可延长药物的角膜滞留时间,减少用药次数,降低药物在眼部或全身的毒副作用。因此,眼用微粒给药系统的研究与应用将成为今后眼用制剂发展的新趋势。

■脂质体有效促进药物透过角膜

以脂质体为载体的眼用制剂,一般无异物感,生物相容性良好。目前代表药物有毛果芸香碱、环孢素A、阿托品、阿替洛尔等。近年来,脂质体眼用给药系统研究的热点主要集中在以下几点:提高角膜对药物的穿透率;增大脂质体在角膜上的靶向性及黏着力;用于结膜下或眼球内注射给药,治疗眼内疾病;携带单克隆抗体的靶向给药系统和基因片段的眼内传递系统。

Meisner等研究了药物的理化性质对脂质体眼用制剂在眼组织分布的影响。结果显示,亲脂性药物阿托品制成脂质体眼用制剂后,增加了药物在兔眼前室组织(包括角膜、房水、虹膜和睫状体等)的浓度;而亲水性药物碘解磷定在兔眼前、后室各部分组织中均呈现较低的药物浓度。这些说明脂质体作为眼用制剂载体更适于亲脂性药物。

此外,药物分子的结构和脂质载体的类型也是影响药物在眼部组织分布的重要因素。将散瞳药托品酰胺分别制成不荷电的中性脂质体和分散于聚卡波菲凝胶的中性脂质体,眼部给药后进行比较,后者散瞳效果明显优于前者。

Law等制备了阿昔洛韦眼用脂质体,对其的体内研究显示:对于荷正电的脂质体,药物在家兔眼部的吸收显著高于荷负电的脂质体。

脂质体除了以局部滴眼的形式给药外,还可以在结膜下或玻璃体内注射给药,用于治疗眼后段的眼疾。与普通眼内注射制剂相比,眼内注射脂质体可维持较长时间药效、减少注射频率、减轻痛苦等。Fishman等采用双向玻璃体内注射氟尿嘧啶脂质体,提高了眼内药物水平,减慢周围组织的清除作用,注射48小时后,氟尿嘧啶眼内药物浓度为580毫克/升,而对照组氟尿嘧啶生理盐水为1毫克/升。

目前,国内以脂质体为载体的眼用给药系统的研究也日益增多,包括环孢素眼用脂质体对离体兔角膜的渗透性以及在家兔眼部的吸收与组织分布的研究等。

■微球和纳米粒多种因素影响与药物结合

微球和纳米粒是粒径分别在微米和纳米尺度范围的微粒型药物载体。它们的药物传递机制不同于脂质体,不能与细胞融合透过角膜,而是通过特定细胞对微球或纳米粒的摄取或吞噬,来完成释药。

纳米粒包括纳米球和纳米囊,粒径通常在1微米以下,药物可包埋于聚合物中或选择性吸附于颗粒表面。微球粒径在1微米以上,但不宜大于10微米,以避免粒径过大引起的眼部不适感,有助于提高患者的顺应性。目前,以微球、纳米粒作为眼用给药载体的代表药物有抗青光眼药物如毛果芸香碱、β-阻滞剂(噻吗洛尔、倍他洛尔),有抗感染药物如丁胺卡那霉素、硫酸卡那霉素等。

Zimmer等采用白蛋白制备了毛果芸香碱微球和纳米粒,获得载药条件为含毛果芸香碱2%,粒子浓度为20~40毫克/毫升。模拟眼内行为进行体外释放试验,结果在几分钟内粒子即全部释药。家兔的体内试验结果表明,2%毛果芸香碱纳米粒(粒子浓度为40毫克/毫升)的缩瞳效果比对照水溶液组提高50%~90%,降低眼压效果提高50%~70%。

此外,相关研究发现,透明质酸、多黏菌素、羧甲基纤维素钠、卡波姆等具有生物黏附特性的聚合物对微球、纳米粒进行包衣后,可产生药效的叠加效应,其原因可能是包衣粒子与结膜黏蛋白结合,延长了药物粒子在角膜前区的滞留时间。但是,甲基纤维素、聚乙烯醇、羟丙甲基纤维素等黏度增强剂却未能取得上述的协同作用。

DeCampos等研究发现,聚乙二醇包衣的纳米囊与未包衣的纳米囊在角膜间转运的药物量和在角膜上的滞留时间无显著差异;而壳多糖包衣的ε-聚己内酯纳米囊在角膜上皮的滞留时间更长。这表明:药物载体的表面组成将影响它们在眼部组织的分布。该结果可用于指导眼用药物靶向制剂和提高药物生物利用度的设计。科研人员以环孢素A为模型药物,采用

离子化凝胶技术制备了壳多糖包衣的环孢素A纳米粒。体内试验显示,眼部给药48小时,在兔眼外部组织(如角膜和结膜)仍可检测到环孢素A处于治疗浓度水平,且显著高于作为参比制剂的环孢素A壳多糖溶液剂和环孢素A的混悬液。这说明壳多糖包衣的纳米粒可以增加眼部用药的临床疗效指数。

Merodio等将抗病毒药物更昔洛韦制成了牛血清白蛋白纳米粒。经大鼠玻璃体内注射后,药物在眼组织的滞留时间延长,肉眼可见的乳浊化减少;组织学研究显示纳米粒主要分布在玻璃体和睫状体,视网膜与周围眼组织未发现有细胞结构的改变和脉管炎症的发生;免疫组织化学研究表明,牛血清白蛋白纳米粒与空白对照组有相同的内源性抗原表达,证实了更昔洛韦白蛋白纳米粒不会在机体产生特定的自身免疫反应,呈现出良好的安全性。

国内也有诺氟沙星眼用纳米粒的研究报道。此外,已上市的眼用微粒制剂产品有地塞米松缓释微粒。临床上将其置于眼前房或后房,用于由于白内障摘除并植入人工晶体后引起的术后眼内炎症的治疗。

药物与微球或纳米粒之间的结合,取决于药物本身的理化性质、所采用的聚合材料以及制备工艺。对各因素进行优化后,制得的以微球或纳米粒为载体的眼用给药系统与传统的滴眼液相比,可显著增加药物在眼部的生物利用度。

另外,相关研究表明,纳米粒在角膜炎症组织呈现更理想的黏附特性,有利于今后将药物设计成靶向于眼部炎症区域的给药系统。

在眼用微球或纳米粒的研发过程中,载体辅料的安全性(生物相容性,生物降解性以及毒性)是首先要考虑的问题;此外,进一步研究产品的载药量以及如何控制药物在眼部组织的释放速度也是重要问题。

■微乳理想药物载体但有待深入研究

微乳是粒径在10~100纳米之间,热力学稳定的特殊乳剂。其工业化制备和灭菌工艺相对简单,生产成本较低。近20年来,以微乳为载体的眼用给药传递系统逐渐为人们认识和应用。

随着材料学和新技术的发展,微乳作为比较理想的眼用药物的载体,吸引着越来越多研究人员的兴趣。Radomska和Dobrucki选用适宜的表面活性剂和助表面活性剂,分别制备维生素A及其棕榈酸酯、乙酸酯的微乳,在20℃放置6月,未见显著的物理性状(折射指数、黏度、pH值和渗透压)改变。Melamed等制备马来酸阿达洛尔微乳滴眼液,乳滴的平均粒径为100±30纳米,在室温和45℃放置6个月,其理化参数未见任何变化;在40位健康受试者的临床研究中,与普通滴眼液比较,也未见有刺激性报告。Garty和Lusky选用40位

高眼压患者,试验前停用各种药物2~3周,试验时随机给予毛果芸香碱微乳滴眼液(1天两次)和普通滴眼液(1天4次),连续给药7天。结果未见局部副作用报告,两组眼压降低效果均为25%左右,无显著差异。这说明微乳滴眼液1天给药两次与普通滴眼液1天给药4次相当,两者具有生物等效性。眼用微乳的体内试验证实,以微乳为载体的眼用制剂具有延缓乳滴在角膜的吸收,提高药物在眼组织生物利用度的优点。

Benita和Levy根据角膜的生理特性,提出带正电荷的微乳乳滴,在眼部组织的吸收具有特异性。Elbra等采用硬脂酸胺作为正电荷修饰剂,制备了带正电荷的毛果芸香碱眼用微乳剂,研究结果表明硬脂酸胺会影响乳滴的Zeta电位,随其用量的增加电位升高,用量达0.3%时界面电荷达饱和,该浓度不影响微乳乳滴的粒径。依据该处方,Klang等进行了家兔眼刺激性等急性毒性实验,结果未见任何毒性表征。上述结果表明,含硬脂酸胺的荷正电的微乳可适用于眼部给药。

Abdulrazik等采用浓度为0.12%(w/w)的硬脂酸胺制备荷正电的环孢素A眼用乳剂,结果显示,荷正电眼用乳剂在角膜的滞留时间是荷负电乳剂的4倍多;家兔眼部单剂量给药,在角膜和结膜组织,荷正电眼用乳剂的药物浓度高于荷负电眼用乳剂;经眼部刺激性实验证明该制剂安全。目前,该制剂已申请进入I期临床试验阶段。

目前,已上市的眼用乳剂的产品有美国食品药品管理局(FDA)于2002年12月批准环孢素眼用乳剂,该产品为荷负电的眼用乳剂,临床用于治疗干燥性角膜结膜炎引起的干眼症,其Ⅱ期和Ⅲ期临床研究结果表明环孢素眼用乳剂能显著改善中、重度干眼患者的症状。同期,空白眼用乳剂(一种油性人造眼泪)获FDA批准上市,亦用于治疗轻度和中度干眼患者的症状。

目前对于眼用微乳制剂的研究与开发已经取得了一定的进展,但是对于微乳作为眼用制剂载体的进一步研究仍很必要。这主要表现在:一方面,有必要设计零级释放的眼用微乳传递系统,以达到更加平稳的释药效果;另一方面,可从角膜和微乳间的亲和力以及微乳在角膜的滞留时间考虑,比较和测定荷正电的微乳或荷负电的微乳在眼部组织的分布行为。此外,眼用微乳现存的一大挑战还在于寻找适合的体外评价方法,以外推法获得相应的体内结果。

微粒给药系统

1.两亲嵌段聚合物载药胶束研究进展 构成亲水链段的材料:PEG、聚( 2-甲基丙烯酰氧乙基磷酰胆碱) ( PMPC) 构成憎水链段的材料:聚酯、聚氨基酸以及聚酰胺、聚乳酸( PLA )] 、聚乳酸羟基乙酸共聚物( PLGA)、聚己内酯( PCL)、聚天冬氨酸( PAsp)、聚组氨酸( PHis)] 以及聚谷氨酸苄酯( PBLG) 聚合物的制备方法:氮氧自由基调介聚合( NMP), 原子转移自由基聚合( ATRP) 两亲嵌段聚合物载药胶束的制备:有机溶剂挥发法和透析法 有机溶剂挥发法 将药物和两亲嵌段聚合物一同溶于丙酮、甲醇、乙醇等有机溶剂后加入去离子水, 在敞口条件下用剧烈搅动或旋转蒸发等方法使有机溶剂挥发。溶剂挥发完后, 将溶液离心、过滤以除去未被聚合物包裹的药物, 最后, 通过冷冻干燥得到聚合物的载药粒子或用去离子水将其配制成一定浓度后使用。该方法的问题在于有机溶剂无法完全除净, 同时制备过程中将产生挥发性有机物污染。 透析法 药物和聚合物一同溶于丙酮、甲醇、乙醇等有机溶剂后将溶液装入截留分子量小于药物和聚合物但大于溶剂的透析袋中, 将该透析袋浸入去离子水中进行透析, 期间, 新鲜的去离子水不断替换原有的水,至溶剂除净后, 将溶液离心、过滤以除去未被聚合物包裹的药物, 最后, 用冷冻干燥法得到聚合物的载药粒子或用去离子水将其配制成一定浓度后使用。该方法的缺陷是制备过程往往耗时数天, 同时, 透析过程将产生大量废水。 基于超临界二氧化碳的制备方法 将药物溶于超临界二氧化碳后, 加入两亲嵌段聚合物的水溶液中, 经充分搅拌后释压放出二氧化碳而制得胶束。 具有靶向性的载药胶束:pH 敏感型胶束 肿瘤细胞的pH 值较正常细胞低,因此在中性条件下稳定而在弱酸性条件下分解的载药胶束可以实现药物在肿瘤细胞中的靶向性释放。 2.姜黄素PLGA-PEG-PLGA载药胶束的研究 【摘要】姜黄素(Curcumin, CUR)为黄色双酚类化合物,具有抗肿瘤、抗炎、抗病毒、抗氧化等多种药理作用。但其水溶性差,性质不稳定,体内代谢迅速,生物利用度低,严重制约了其开发与应用。如何改善CUR的各方面缺点,制备生物利用度高、用药量低的CUR制剂已经成为近年来药学工作者亟待解决的课题。由疏水-亲水链段组成的两亲性嵌段共聚物可以在水溶液中自发组装形成具有核-壳结构的超分子有序聚集体胶束,处于壳层的亲水链段可避免药物与水环境的接触,稳定聚合物胶束,避免体内网状内皮系统识别;疏水链段组成的内核提供了疏水微环境,可增加难溶性物质在水环境中的溶解度。该类胶束可提高脂溶性药物的水溶性,改善药物释放特性,实现药物靶向控制释放。本文首先进行了PLGA-PEG-PLGA嵌段共聚物的合成、结构表征等研究。在此基础上,研究了PLGA-PEG-PLGA包载CUR胶束的制备工艺、含量测定方法等,并测定了该嵌段共聚物的临界胶束浓度、空白和载药胶束的粒径分布、载药胶束的zeta电位和微观形态以及体外释药行为。同时,建立了血浆及各组织中CUR提取与定量分析的HPLC方法,研究了CUR载药胶束体 内药动学性质及组织分布。研究发现,采用水透析方法制备CUR的PLGA-PEG-PLGA胶束,其包封率平均值为70.03±0.34%,载药量平均值为6.4±0.02%,平均粒径为26.29nm,计算药物的溶解度为1.47mg/ml, zeta电位为-0.7lmV。体外释放研究表明,CUR胶束的体外释放呈现先突释后缓释的特性,符合双相双指数动

9014 微粒制剂指导原则 微粒制剂,也称微粒给药系统

9014 微粒制剂指导原则 微粒制剂,也称微粒给药系统(microparticle drug delivery system,MDDS) , 系指药物或与适宜载体(一般为生物可降解材料) ,经过一定的分散包埋技术制 得具有一定粒径(微米级或纳米级)的微粒组成的固态、液态或气态药物制剂, 具有掩盖药物的不良气味与口味、液态药物固态化、减少复方药物的配伍变化, 提高难溶性药物的溶解度,或提高药物的生物利用度,或改善药物的稳定性,或 降低药物不良反应,或延缓药物释放、提高药物靶向性等作用的一大类新型药物 制剂。 根据药剂学分散系统分类原则,将直径在 10-4~10-9m 范围的分散相构成的 分散体系统称为微粒分散体系,其中,分散相粒径在 1~500μm 范围内统称为粗 (微米)分散体系的 MDDS,主要包括微囊、微球亚微乳等;粒径小于 1000 nm 属于纳米分散体系的 MDDS,主要包括脂质体、纳米乳、纳米粒、聚合物胶束 等。微囊、微球、亚微乳、脂质体、纳米乳、纳米粒、聚合物胶束等均可作为药 物载体。 随着现代制剂技术的发展,微粒载体制剂已逐渐用于临床,其给药途径包括 外用、口服与注射。外用和口服微粒载体制剂一般将有利于药物对皮肤、粘膜等 生物膜的渗透性,注射用微粒载体制剂一般具有缓释、控释或靶向作用。其中具 有靶向性药物载体的制剂通常称为靶向制剂。 靶向制剂系指采用载体将药物通过循环系统浓集于或接近靶器官、靶组织、 靶细胞和细胞内结构的一类新制剂,具有提高疗效并显著降低对其他组织、器官 及全身的毒副作用。靶向制剂可分为三类:①一级靶向制剂,系指进入靶部位的 毛细血管床释药;②二级靶向制剂,系指药物进入靶部位的特殊细胞(如肿瘤细 胞)释药,而不作用于正常细胞;③三级靶向制剂,系指药物作用于细胞内的一 定部位。
一、药物载体的类型 (1)微囊系指固态或液态药物被载体辅料包封成的微小胶囊。 通常粒径在 1~ 250μm 之间的称微囊, 而粒径在 0.1~1μm 之间的称亚微囊, 粒径在 10~100nm 之间的称纳米囊。

药剂学第四章药物微粒分散体系讲课讲稿

药剂学第四章药物微粒分散体系

第四章药物微粒分散体系 一、概念与名词解释 1.分散体系 2.扩散双电层模型 3.DLVO理论 4.临界聚沉状态 二、判断题(正确的填A,错误的填B) 1.药物微粒分散系是热力学稳定体系,动力学不稳定体系。( ) 2.药物微粒分散系是动力学稳定体系,热力学不稳定体系。( ) 3.药物微粒分散系是热力学不稳定体系,动力学不稳定体系。( ) 4.微粒的大小与体内分布无关。( ) 5.布朗运动可以提高微粒分散体系的物理稳定性,而重力产生的沉降降低微粒分散体系的稳定性。( ) 6.分子热运动产生的布朗运动和重力产生的沉降,两者降低微粒分散体系的稳定性。( ) 7.微粒表面具有扩散双电层。双电层的厚度越大,则相互排斥的作用力就越大,微粒就越稳定。( ) 8.微粒表面具有扩散双电层。双电层的厚度越小,则相互排斥的作用力就越大,微粒就越稳定。( ) 9.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为反絮凝。( )

10.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为絮凝。( ) 11.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降。( ) 12.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ上升。( ) 13.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ降低,会出现反絮凝现象。( ) 14.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降,出现絮凝状态。加入的电解质叫絮凝剂。( ) 15.絮凝剂是使微粒表面的ζ降低到引力稍大于排斥力,引起微粒分散体系中的微粒形成絮凝状态的电解质。( ) 16.絮凝剂是使微粒表面的ζ升高,使排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。( ) 17.反絮凝剂是使微粒表面的ζ升高,使到排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。( ) 18.微粒的物理稳定性取决于总势能曲线上势垒的大小。倘若势垒为零,微粒会发生 聚结。( ) 19.微粒的物理稳定性取决于总势能曲线上势垒的大小。倘若有势垒存在,微粒不会发生聚结。( )

(完整版)药剂学第四章药物微粒分散体系

第四章药物微粒分散体系 一、概念与名词解释 1.分散体系 2.扩散双电层模型 3.DLVO理论 4.临界聚沉状态 二、判断题(正确的填A,错误的填B) 1.药物微粒分散系是热力学稳定体系,动力学不稳定体系。( ) 2.药物微粒分散系是动力学稳定体系,热力学不稳定体系。( ) 3.药物微粒分散系是热力学不稳定体系,动力学不稳定体系。( ) 4.微粒的大小与体内分布无关。( ) 5.布朗运动可以提高微粒分散体系的物理稳定性,而重力产生的沉降降低微粒分散体系的稳定性。( ) 6.分子热运动产生的布朗运动和重力产生的沉降,两者降低微粒分散体系的稳定性。( ) 7.微粒表面具有扩散双电层。双电层的厚度越大,则相互排斥的作用力就越大,微粒就越稳定。( ) 8.微粒表面具有扩散双电层。双电层的厚度越小,则相互排斥的作用力就越大,微粒就越稳定。( ) 9.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为反絮凝。( ) 10.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为絮凝。( ) 11.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降。( ) 12.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ上升。( ) 13.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ降低,会出现反絮凝现象。( ) 14.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降,出现絮凝状态。加入的电解质叫絮凝剂。( ) 15.絮凝剂是使微粒表面的ζ降低到引力稍大于排斥力,引起微粒分散体系中的微粒形成絮凝状态的电解质。( ) 16.絮凝剂是使微粒表面的ζ升高,使排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。( ) 17.反絮凝剂是使微粒表面的ζ升高,使到排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。( ) 18.微粒的物理稳定性取决于总势能曲线上势垒的大小。倘若势垒为零,微粒会发生 聚结。( ) 19.微粒的物理稳定性取决于总势能曲线上势垒的大小。倘若有势垒存在,微粒不会发生聚结。( ) 20.微粒的物理稳定性取决于总势能曲线上势垒的大小。倘若有势垒存在,微粒会发生慢聚结。( )

微粒给药系统不同给药途径的研究进展解读

微粒给药系统不同给药途径的研究进展 【摘要】按给药途径综述国内外文献近年来微粒给药系统的研究与应用进 展。微粒给药系统具有增加药物溶解度、提高药物生物利用度、降低药物刺激性和延缓药物释放、增强靶向性与皮肤渗透性等作用。表明微粒给药系统能改善药物的理化性质及生物学性质,应用前景广阔。 【关键词】微粒给药系统给药途径溶解度生物利用度刺激性靶向 性渗透性 微粒给药系统(microparticle drug delivery system,MDDS 近年来成为国内外一个重要的研究热点,是给药系统中发展较快的领域。这是由于MDD有助于提高难溶性药物的溶解度及生物利用度;改善药物的稳定性;具有明显的缓释作用;不同大小的微粒分散体系在体内分布上具有一定的选择性,从而具有靶向性]1]。在药剂学中,将直径在10-9?10-4 m范围的分散相构成的分散体系统称为微粒分散体系,由微粒分散体系可构成多种微粒给药系统。粒径在500?100卩m范围内属于粗分散体系的MDDS 主要包括混悬剂、乳剂、微囊、微球等;粒径小于1 000 nm属于胶体分散体系的MDDS 主要包括脂质体、纳米乳、纳米粒等。现在MDDS勺研究热点主要在微乳、脂质体、纳米粒、微球这几方面]2]0下面主要从口服、注射、经皮、眼部、鼻腔这几个常用给药途径总结国内外文献,对MDDS勺热点研究应用进行归纳、分析与总结。 1 口服给药 药物在胃肠道溶解度、生物膜透过性、对胃肠道pH及酶的稳定性是影响口 服药物生物利用度及临床疗效的重要因素。因此对于易分解的药物包括蛋白质、多肽类药物,必须有合适的载体系统使药物被胃肠吸收而进入体内。 1.1提高药物生物利用度 固体脂质纳米粒(solid lipid nan oparticles ,SLN)是由多种类脂材料 如脂肪酸、脂肪醇及磷脂等形成的固体颗粒。其性质稳定,在体内对单核细胞吞噬系统有黏附性,使其在网状内皮系统的分布增加。环抱素A是临床最常用 的免疫抑制药物,广泛应用于控制异体器官移植手术后的排斥反应。但其口服生物利用度低,体内消除快导致需要多次给药,同时毒副作用大。Mu ller等[3]研制了环抱素A的SLN 口服后,血药浓度在14 h内恒定在200?800 ng/mL,作用持久,副作用小。而市售的Sandimmum Neroal给药2 h后出现血药浓度峰值超过1 400 ng/mL,这一浓度往往导致肾毒性、肝毒性、 运动性脊髓综合征等副作用。市售制剂在达到血药浓度峰值后,血药浓度急剧下降,作用维持时间较短。SLN提高生物利用度与SLN黏附于吸收部位,同时由于粒度小,与胃肠黏膜接触面积大而增加吸收并减少不规则吸收有关。喜树碱(CA)的SLN研究也证明了这一观点[4]。 自微乳化体系(self microemulsifyi ng drug delivery system,SMEDD)是由油相、表面活性 剂、助表面活性剂和药物组成的均一、澄清的液体,一般最后制成软胶囊应用。SMEDD 口服后,通过胃肠道蠕动可自发形成粒径小于100 nm的纳米乳剂, 极大地增加了药物表面积,有利于增加难溶性药物溶出度,提高生物利用度 [5,6]。水飞蓟宾由于水溶性和脂溶性都很差,口服生物利用度极低。赵锦花等[7]制备了由23.9 %蓖麻油、23.9 %丙二醇及47.8 %聚氧乙烯(60)氢化蓖麻油组成的水飞蓟宾SMEDDS其在水中自发形成平均粒径57 nm的纳米微乳,大鼠口服后,Cmax =

药剂学第四章药物微粒分散体系word精品

第四章 药物微粒分散体系 一、概念与名词解释 1.分散体系 2.扩散双电层模型 3. DLVO 理论 4.临界聚沉状态 二、判断题 (正确的填 A ,错误的填 B) 1.药物微粒分散系是热力学稳定体系,动力学不稳定体系。 ( ) 2.药物微粒分散系是动力学稳定体系,热力学不稳定体系。 ( ) 3.药物微粒分散系是热力学不稳定体系,动力学不稳定体系。 ( ) 4.微粒的大小与体内分布无关。 ( ) 5.布朗运动可以提高微粒分散体系的物理稳定性,而重力产生的 沉降降低微粒分散体系的 稳定性。 ( ) 6.分子热运动产生的布朗运动和重力产生的沉降, 两者降低微粒分散体系的稳定性。 ( ) 7.微粒表面具有扩散双电层。双电层的厚度越大,则相互排斥的作用力就越大,微粒就越 稳定。 ( ) 8.微粒表面具有扩散双电层。双电层的厚度越小,则相互排斥的作用力就越大,微粒就越 稳定。 ( ) 9. 微粒体系中加入某种电解质使微粒表面的 毋高,静 电排斥力阻碍了微粒之间的碰撞聚集, 这个过程称为反絮凝。 ( ) 10?微粒体系中加入某种电解质使微粒表面的 毋高,静电排斥力阻碍了微粒之间的碰撞聚 集,这个过程称为絮凝。 ( ) 11. 微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒间的 斥 力下降。 ( ) 12. 微粒体系中加入某种电解质,中和微粒表面的电荷, Ch 升。() 13. 微粒体系中加入某种电解质,中和微粒表面的电荷, Z 降低,会出现反絮凝现象。 ( ) 14. 微粒体系中加入某种电解质,中和微粒表面的电荷, 力下降,出现絮凝状态。加入的电解质叫絮凝剂。 ( 15?絮凝剂是使微粒表面的 Z 降低到引力稍大于排斥力,引起微粒分散体系中的微粒形成絮 凝状态的电解质。 ( ) 16?絮凝剂是使微粒表面的 Z 升高,使排斥力大于吸引力,引起微粒分散体系中的微粒形成 絮凝状态的电解质。 ( ) 17?反絮凝剂是使微粒表面的 毋高,使到排斥力大于吸引力,引起微粒分散体系中的微粒 形成絮凝状态的电解质。 ( ) 18. 微粒的物理稳定性取决于总势能曲线上势垒的大小。倘若势垒为零,微粒会发生 聚结。 ( ) 19. 微粒的物理稳定性取决于总势能曲线上势垒的大小。 倘若有势垒存在, 微粒不会发生聚 结。 ( ) 20. 微粒的物理稳定性取决于总势能曲线上势垒的大小。 倘若有势垒存在, 微粒会发生慢聚 结。 ( ) 降低双电层的厚度,使微粒表面的 降低双电层的厚度,使微粒表面的 降低双电层的厚度,使微粒间的

微粒系统用于眼用药物制剂已成新趋势

微粒系统用于眼用药物制剂已成新趋势 由于传统的眼用药物制剂具有一些固有的缺点,而且,材料学的发展提供了多的药用辅料,如何利用些新的材料研制新的剂型,改善眼部用药在角膜或结膜的滞留时间,提高药物在眼部组织的生物利用度,以便获得更好的局部治疗效果,成为当前给药系统研究者关注的热点。本文分别对眼用脂质体、眼用微球、眼用纳米粒、眼用微乳等眼用微粒给药系统的国内外研究概况进行详细的介绍,将给关注该领域的读者带来收获。 传统眼用制剂(滴眼剂和膏剂)存在一些明显的缺点,如:药物在眼部病变部位停留时间短,吸收欠佳,需要频繁给药等。所以,如何提高药物的眼部吸收,改善其治疗指数,减少其不良反应,是眼部给药系统研究的热点问题。近年来,作为眼用药物的载体,脂质体、微球、纳米粒和微乳等微粒分散系统与传统眼部给药剂型相比,正逐渐显示其独特的优势。一方面,眼用微粒给药系统可解决部分难溶性药物眼部给药的困难,并在一定程度上提高药物在眼部组织的生物利用度;另一方面,眼用微粒给药系统可延长药物的角膜滞留时间,减少用药次数,降低药物在眼部或全身的毒副作用。因此,眼用微粒给药系统的研究与应用将成为今后眼用制剂发展的新趋势。 ■脂质体有效促进药物透过角膜 以脂质体为载体的眼用制剂,一般无异物感,生物相容性良好。目前代表药物有毛果芸香碱、环孢素A、阿托品、阿替洛尔等。近年来,脂质体眼用给药系统研究的热点主要集中在以下几点:提高角膜对药物的穿透率;增大脂质体在角膜上的靶向性及黏着力;用于结膜下或眼球内注射给药,治疗眼内疾病;携带单克隆抗体的靶向给药系统和基因片段的眼内传递系统。 Meisner等研究了药物的理化性质对脂质体眼用制剂在眼组织分布的影响。结果显示,亲脂性药物阿托品制成脂质体眼用制剂后,增加了药物在兔眼前室组织(包括角膜、房水、虹膜和睫状体等)的浓度;而亲水性药物碘解磷定在兔眼前、后室各部分组织中均呈现较低的药物浓度。这些说明脂质体作为眼用制剂载体更适于亲脂性药物。 此外,药物分子的结构和脂质载体的类型也是影响药物在眼部组织分布的重要因素。将散瞳药托品酰胺分别制成不荷电的中性脂质体和分散于聚卡波菲凝胶的中性脂质体,眼部给药后进行比较,后者散瞳效果明显优于前者。

微粒和纳米粒眼部给药系统

[5]Riz os I.Three 2year survival of patients with heart failure caused by dilat 2 ed cardiomy opathy and L 2carnitine adm inistration [J ].Am Heart J ,2000,139(2Pt3):s120. [6]Sethi R ,Dhalla K S ,G anguly PK,et al .Beneficial effects of propionyl L 2carnitine on sarcolemmal changes in congestive heart failure due to my 2ocardial in farction[J ].Cardiovasc Res ,1999,42(3):607. [7]Eskandari G H ,K andem ir O ,P olat G,et al .Serum L 2carnitine levels and lipoprotein com positions in chronic viral hepatitis patients[J ].Clin Biochem ,2001,34(5):431. [8]Neri S ,Pistone G,Saraceno B ,et al .L 2carnitine decreases severity and type of fatigue induced by interferon 2alpha in the treatment of pa 2tients with hepatitis C[J ].Neuro Psychobiology ,2003,47(2):94.[9]杨金龙,夏子禹,游龙英,等.复方卡尼汀治疗慢性病毒性肝炎 [J ].中国新药与临床杂志,2001,20(2):125. [11]M alaguarnera M ,Pistone G,Astuto M ,et al .L 2carnitine in the treat 2 ment of m ild or m oderate hepatic encephalopathy[J ].Dig Dis ,2003,21(3):271. [12]林修,叶榕,王耀新.卡尼汀治疗急性脑梗死[J ].中国新药与 临床杂志,2001,20(2):121. [13]M ontg omery S A ,Thal LJ ,Amrein R ,et al .M eta 2analysis of double blind random ized controlled clinical trials of acetyl 2L 2carnitine versus placebo in the treatment of m ild cognitive im pairment and m ild Alzheimer ’s disease [J ].Int Clin Psychopharmacol ,2003,18(2):61. [14]Benvenga S ,Ruggeri RM ,Russ o A ,et al .Usefulness of L 2carnitine , a naturally accurally peripheral antag onist of thyroid horm one action in iatrogenic hyperthyroidism :a random ized ,double 2blind ,placebo 2con 2trolled clinical trial[J ].J Clin Endocrinol M eta b ,2001,86(8):3579.[15]Benvenga S ,Lapa D ,Canav o S ,et al .Successive thyroid storms treat 2 ed with L 2carnitine and low doses of methimaz ole [J ].Am J M ed ,2003,115(5):417. [16]M alone J I ,Schocken DD ,M orris on AD ,et al .Diabetic cardiomy opa 2 thy and carnitine deficiency[J ].J Diabetes C om plications ,1999,13(2):86. [17]王咏梅,殷仁富,杜荣增,等.左旋卡尼汀对糖尿病伴高血压患 者血浆肉碱浓度及血糖的影响[J ].第二军医大学学报,2003, 24(4):425. [18]Vestla E ,Racek J ,Irefil L ,et al .E ffect of L 2carnitine supplementa 2 tion in hem odialysis patients[J ].Nephron ,2001,88(1):218.[19]M atsumura M ,Hatakeyama S ,K oni I ,et al .C orrelation between serum carnitine levels and erythrocyte osm otic fragility in hem odialysis patients[J ].Nephron ,1996,72(4):574. [20]Labonia W D.L 2carnitine effects on anem ia in hem odialyzed patients treated with erythropoietin[J ].Am J K idney Dis ,1995,26(5):757.[21]Boran M ,Dalva I ,G onenc F ,et al .Response to recombinant human erythropoietin (r 2HuEPO )and L 2carnitine combination in patients with anem ia of end 2stage renal disease[J ].Nephron ,1996,73(2):314. (2004201202收稿) 3 国家自然科学基金资助(30100204) 【作者简介】 胡 (1981-),男,在读硕士研究生。研究方向:药物新剂型与新技术。【通讯作者】 吴 伟。T el :021*********,E 2mail :wuwei @https://www.360docs.net/doc/607965995.html, 微粒和纳米粒眼部给药系统3 胡 ,吴 伟 (复旦大学药学院药剂学教研室,上海200032) 【中图分类号】R944.9 【文献标识码】A 【文章编号】100724006(2005)022******* 眼部给药剂型最常见的是滴眼剂和眼膏剂。 这两种普通剂型使用方便,易于被患者接受。但眼膏剂容易引起雾视,滴眼剂则易从眼部流失,生物利用度很低。对于需要长期治疗的眼部疾病,即使反复使用,效果也不能维持,同时个别药物由于鼻泪管引流易引起全身不良反应。近年来,眼部给药系统的研究愈来愈受到关注,剂型的研究主要集中在延长药物与角膜上皮和结膜的接触时间,提高生物利用度,减少全身不良反应,局部定位给药和眼部的缓、控释给药系统。 微粒和纳米粒眼部给药系统是克服普通剂型缺 点的一种行之有效的方法。一般微粒粒径为1~500μm ,纳米粒粒径在10~1000nm ,可包裹一系列水溶性和难溶性药物。做成缓控释制剂,维持长时间的疗效,还具有一定的靶向作用。同时粒径<10μm 的微粒或纳米粒可以滴眼给药,克服了传统滴眼液易在角膜前消除的缺点,使用方便。现就微粒和纳米粒的眼部给药系统的研究进展作一综述。1 眼内分布和靶向性 粒径较大的微粒,眼内注射主要起缓释长效作

初级药师考试复习笔记——药剂学药物微粒分散系的基础理论流变学基础药物制剂的稳定性药物制剂的设计

1 药剂学 药物微粒分散系的基础理论、流变学基础、药物制剂的稳定性、药物制剂的设计 一、药物微粒分散系的基础理论 1.概述 概念:一种或多种物质高度分散在某种介质中所形成的体系 小分子真溶液(直径<10-9m ) 微粒分散体系 分类 胶体分散体系(直径在10-7 ~10-9m 范围):主要包括纳米微乳、脂质体、纳米粒、纳米囊、纳米胶束等,他们的粒径全都小于1000nm 粗分散体系(直径>10-7m ):主要包括混悬剂、乳剂、微囊、微球,他们的微粒在500~100μm 范围内 微粒:10-9 ~10-4m 范围的分散相统称微粒 多相体系,出现大量的表面现象 微粒分散体系特殊的性能 热力学不稳定体系 粒径更小的分散体系还有明显的布朗运动、丁铎尔现象、电泳现象性质 有助于提高药物的溶解速度及溶解度,有利于提高难溶性药物的生物利用度 有利于提高药物微粒在分散介质中的分散性和稳定性 在体内分布上有一定的选择性 一般具有缓释作用 2.微粒分散系的主要性质与特点 单分散体系:微粒大小完全均一的体系 多分散体系:微粒大小不均一的体系 微粒粒径表示方法:几何学粒径、比表面粒径、有效粒径 测定方法:光学显微镜法、电子显微镜法、激光散射法、库尔特计数法、Stokes 沉降法、吸附法 小于50nm 的微粒能够穿透肝脏内皮,通过毛细血管末梢通过淋巴传递进入骨髓组织 静脉注射、腹腔注射~μm 的微粒分散体系能很快被网状内皮系统的巨噬细胞所吞噬,最终多数药物微粒浓集于肝脏和脾脏等部位 7~12μm 的微粒,由于大部分不能通过肺的毛细血管,结果被肺部机械性的滤取,肺是静脉注射给药后的第一个能贮留的靶位 若注射大于50μm 的微粒指肠系膜动脉、门静脉、肝动脉或肾动脉,可使微粒分别被截留在肠、肝、肾等相应部位 微粒的动力学性质:布朗运动是微粒扩散的微观基础,而扩散现象又是布朗运动的宏观表现 纳米体系:丁铎尔现象 微粒的光学性质 粗分散体系:反射光为主,不能观察到丁铎尔现象 低分子的真溶液:透射光为主,不能观察到丁铎尔现象 微粒分散体系在药剂学中的意义 微粒大小与测定方法 微粒大小与体内分布

靶向给药系统

靶向给药系统 摘要: 靶向给药系统也被称作靶向治疗药物。本文主要针对靶向给药系统进行阐述。主要介绍靶向给药系统的优势与原理、各种靶向给药系统的类型等。 关键词:靶向给药系统,剂型,靶向给药 正文:靶向给药系统( targeting drug delivery system,TDDS)又叫做靶向治疗制剂。通过局部给药或者通过血液循环选择性的将药物运送到靶细胞,靶组织,靶器官而发挥治疗作用。这样可以提高药物的作用部位的选择性,从而提高治疗效果降低药物的毒副作用。靶向给药系统的概念由Ehrlich在1906年提出。Florence在1993年创办了有关于靶向制剂的专业学术期刊“Journal of Drug Targeting”[1]。 在普通的药物治疗中,药物不仅仅在病变部位发生治疗作用,而且还与正常的组织器官产生相互作用,而产生毒副作用。因此为了提高药物的治疗效果需要提高药物的病变靶区的药物浓度。其主要优点有[2]:1将药物靶向的运送到靶组织提高了药物的疗效。靶向制剂主要利用了病变部位的独特性质,采用了特殊的载体将药物传递到病变的组织、器官、细胞,从而减少药物的非靶向部位的分布,因而提高了药物的作用的效果。2降低了药物对正常的细胞的毒性。靶向制剂可以减少正常组织的分布,减少具有毒性作用的药物对正常细胞的毒性作

用。3减少剂量,增加药物的生物利用度。4改善药物的分散性。5提高药物在体内的 作用时间,改善药物在体内半衰期短等缺陷等。 靶向给药系统的原理 (1)按靶向性机理可以分为生物物理靶向制剂、生物化学靶向制剂、生物免疫靶向制 剂和双重、多重靶向制剂等几类。 (2)按靶向源动力[3,4]可以分为主动靶向制剂(TDDS主动寻找靶区)、被动靶向制剂(TDDS被动地被选择摄取到靶区)、前体靶向药物。 主动靶向制剂是利用经过特殊修饰的药物载体把药物定向的运送的病变区而发挥靶向治疗的作用。主要有:受体介导的靶向给药系统,抗体介导的靶向给药系统等。受体介导的靶向给药系统是指利用体内某些器官和组织中的一些特殊的受体,能选择性地识别具特异性的配体来实现主动靶向给药。将药物以共价键连接到配体上,将药物输送到靶部位。抗体介导的靶向给药系统是利用抗体与抗原的特异性结合的原理而将将药物导向特定的靶部位。 被动靶向制剂是指将微粒给药系统作为药物载体将药物被动的输送到病变部位的给药系统[。微粒给药系统包括脂质体、纳米粒微球、微囊等药物载体。微粒给药系统实现被动靶向的原理在于:体内的网状内皮系统如肺、脾、肝和骨髓等组织中分布着大量的吞噬细胞,吞噬细胞可以将一定大小的微粒作为异物而吞噬摄取,其中较大的微粒由于不能滤过毛细血管床,而被机械截留于目标病变部位。如7-30 m的微粒可被动靶向肺部位,而小于50 nm的微粒

微粒给药系统在药物制剂中的应用进展

2019.24科学技术创新微粒给药系统在药物制剂中的应用进展 杨硕 (哈尔滨商业大学药学院, 黑龙江哈尔滨150076)微粒给药系统(Microparticle Drug Delivery Systems ,MDDS )作为国内外一个重要的研究热点,近年来备受关注。MDDS 具有诸多优势:如载药量高;生物利用度高;局部和全身副作用少;减 少血药浓度的波动;提高疗效和患者依从性; 增加难溶性药物的溶解度;提高药物微粒在介质中的稳定性; 有缓释作用和靶向性[1] 。本文就MDDS 在药物制剂中的应用进展作以综述, 为新型药物递送系统的研究开发提供参考。 1MDDS 在制剂中的应用1.1长效制剂、缓释制剂中的应用 通过将药物包封在聚合物基质中, 降低药物的溶出速率,达到长效或缓释效果。MDDS 将药物的血液浓度长时间保持在治疗窗内,可以降低给药频率,从而改善毒副作用。Muhammad Hanif [2]制备的奈必洛尔脂质体,能达到24h 的缓释效果,改善奈必洛尔口服生物利用度。 1.2控释制剂中的应用 控释制剂指在规定介质中,药物缓慢恒速的于局部或全身释放,具有零级释药的动力学特征[3]。Nagendra R [4]制备奥昔布宁 氯化物微粒,体外释放行为达到控释效果, 制剂中药物的稳定性良好。 1.3局部给药中的应用通过局部给药,在一定的时间内,微粒可在作用部位维持有效治疗浓度。局部给药不仅可以在患处形成较高的血药浓度,还可以减少药物对全身的毒副作用。Flexion Therapeutics [5]以PLGA 为载体包封曲安奈德制备的FX-006微粒可通过关节腔内注射给药治疗关节炎,使FX-006在关节炎治疗方面的统计学上得到显著改善。 1.4脉冲给药系统中的应用 脉冲给药系统指在给药后不立即释药,而是在特定的条件下一次或多次突然释放药物的制剂。在脉冲给药系统中,MDDS 可应用于抗生素和疫苗的制剂。抗生素的脉冲制剂可避免缓、控释制剂给药时,抗生素在体内维持较长时间的低血药浓度,从而导致细菌耐药性的产生。在疫苗的制剂中,脉冲给药系统的释药模式可模拟初始增强注射。任[6]以牛血清白蛋白为模型药物,制备的多糖颗粒复合PLGA 微球,脉冲式释药效果良好。 1.5靶向制剂中的应用 药物可以通过在组织内释放或细胞内释放等不同的途径达到靶向释放[7]。组织内释药主要包含通过动脉注射抗肿瘤微粒靶向释放到器官,以及通过腔内给药方式达到靶向释药等。细 胞内释药主要包括基因传递;反义疗法; 核酶传递;疫苗佐剂。Wang QS [8]以淫羊藿苷为模型药物制备的藻酸盐-壳聚糖微球,在大鼠体内结肠中的停留时间超过12h 。 1.6肺部吸入给药系统中的应用MDDS 应用于肺部吸入给药系统,可制备成粉雾剂、喷雾剂、雾化吸入制剂等,经肺部吸入药物可直达病灶,靶器官的药物浓度高,毒副作用小,提高患者依从性。马洋[9]研制的布地奈德和富马酸福莫特罗复方雾化吸入混悬液,小于5μ的颗粒达98.2%。 1.7皮肤给药系统(TDDS )中的应用 MDDS 应用于TDDS 中的主要制剂有纳米乳、纳米脂质体等。MDDS 应用于TDDS 具有如下优势[10]:药物可透皮吸收进入 血循环,避免药物经胃肠道时受到pH 、酶、食物等的影响, 避免首过效应;无创;可达到长效、缓释或控释,降低给药频率等。于芹[11]等制备的托法替尼脂质纳米粒脂质凝胶,与溶液凝胶相比, 透过皮肤的药物含量降低,而皮肤内的药物浓度增加, 增加治疗白癜风的疗效。 1.8疫苗佐剂中的应用 佐剂在疫苗中可以增加其免疫原性, 节约疫苗用量。理想的佐剂能增强疫苗免疫原性的同时,不会影响其安全性。许多物 质具有佐剂作用如金属盐、乳剂、 脂质体、免疫刺激复合物、可生物降解高分子化合物等。MDDS 中乳剂、纳米乳、 脂质体等作为疫苗佐剂已有大量研究,乳剂佐剂AS03、AF03、MF59已被批准用于人体[12]。毕湖冰[13]以聚氧乙烯蓖麻油EL-司盘80-1,2丙二醇-注射用大豆油为油相,灭活H3N2流感病毒疫苗水溶液为水相制备的纳米乳疫苗佐剂,小鼠体内实验结果表明该疫苗佐剂安全性、有效性良好。 2结论 MDDS 可以通过物理方式改变和改善各类药物分子的药代 动力学和药效学特性,可以增加进入体内的药物的稳定性, 具有缓释、控释、靶向作用,从而增加疗效, 降低副作用。随着市场对创新、高效、稳定的药物制剂的需求,MDDS 及基于MDDS 构建的其他给药系统的多功能性具有很大的潜力。通过新颖的制剂方法和处方设计,MDDS 在新一代制药行业将始终占有一席之地。 参考文献 [1]Kumari S,Nagpal M,Aggarwal G,et al.Microparticles drug delivery system:a review [J].World journal of pharmacy and pharmaceutical sciences,2016,5(3):543-566. [2]Hanif M,Khan HU,Afzal S,et al.Sustained release biodegradable solid lipid microparticles:Formulation,evaluation and statistical optimization by response surface methodology [J].Acta Pharm,2017,67:441-461. [3]任君刚,杨硕,王立.口服渗透泵制剂的研究进展[J].药学研究,2013,32(5):295-297.摘要:微粒给药系统作为新型给药系统的代表,在药物制剂中被广泛应用。本文主要从微粒给药系统在药物制剂中的诸多 应用综述微粒给药系统的研究进展,为新型给药系统的研究开发提供思路。 关键词:微粒给药系统;缓释制剂; 靶向制剂中图分类号:TQ460.6文献标识码:A 文章编号:2096-4390(2019)24-0043-02(转下页) 劼 43--

自考01761药剂学(二)大纲[1]

课程名称:药剂学(二)课程代码:01761 第二部分考核内容与考核目标 第一章绪论 一、学习目的与要求 1. 掌握药剂学、药物剂型、药物制剂的定义; 2. 熟悉药典、药品标准、处方与非处方药、GMP、GLP、GCP等概念; 3. 了解辅料在药物制剂中的应用,了解药物的传递系统等。 二、考核知识点与考核目标 (一)药剂学的概念和任务(重点) 理解:药剂学、制剂和剂型的概念 (二)药物剂型与DDS ;GMP、GLP与GCP (次重点) 理解:剂型的重要性;剂型的分类 识记:药物的传递系统;GMP的定义;GMP的发展历程;GLP、GCP的含义 (三)辅料在药物剂型中的应用;药典与药品标准;药剂学的分支学科(一般) 识记:辅料在药物剂型中的应用;中华人民共和国药典;国外药典;工业药剂学、物理药剂学、生物药剂学、药用高分子材料学、药物动力学、临床药剂学、医药情报学的概念与研究内容 理解:药品标准,处方药与非处方药的概念 第二章液体制剂 一、学习目的与要求 1. 掌握高分子溶液剂性质和制备方法 2. 掌握混悬剂的概念、物理稳定性;熟悉混悬剂的稳定剂及质量评价 3. 掌握乳剂、乳化剂的概念、乳化剂的选择以及乳剂的稳定性 4. 熟悉液体制剂的特点、质量要求和分类 5. 熟悉液体制剂的溶剂和附加剂

6. 了解不同给药途径液体制剂的种类与应用 二、考核知识点与考核目标 (一)概述;混悬剂;乳剂(重点) 识记:液体制剂的概念,液体制剂的特点 理解:液体制剂的质量要求及分类;混悬剂的概念、质量要求;混悬剂的物理稳定性与稳定剂;乳剂的定义、组成、类型;乳化剂的种类;乳剂的稳定性与质量评价; 应用:混悬剂的制备、质量评价;乳剂的制备 (二) 液体制剂的溶剂和附加剂(次重点) 识记:液体制剂常用的极性、非极性溶剂 理解:液体制剂的附加剂:增溶剂、助溶剂、潜溶剂 识记:防腐剂、甜味剂、着色剂 (三)低分子溶液剂和高分子溶液剂;溶胶剂;不同给药途径用液体制剂(一般) 识记:溶胶的性质及制备 理解:高分子溶液的性质;高分子溶液的制备;溶胶的定义、双电层构造; 应用:溶液剂、芳香水剂、糖浆剂、醑剂、甘油剂、涂剂、酊剂的定义及制备方法; 搽剂、涂膜剂、洗剂、滴鼻剂、滴耳剂、含漱剂、滴牙剂、合剂的概念及应用 第三章灭菌制剂与无菌制剂 一、学习目的与要求 1. 掌握灭菌制剂、无菌制剂的定义与种类 2. 掌握常用的物理灭菌技术;掌握D值、Z值、F0值的概念及意义 3. 掌握注射剂的概念、特点、分类与质量要求 4. 熟悉注射用溶剂、添加剂; 5. 掌握注射剂的等渗与等张概念与调节,掌握注射液的配制工艺流程 6. 了解注射液的过滤装置、注射容器的处理 7. 掌握输液的质量要求与制备工艺流程。

微粒分散体系在药剂学中具有重要的意义

微粒分散体系在药剂学中具有重要的意义:①由于粒径小,有助于提高药物的溶解速度及溶解度,有利于提高难溶性药物的生物利用度;②有利于提高药物微粒在分散介质中的分散性与稳定性;③具有不同大小的微粒分散体系在体内分布上具有一定的选择性,如一定大小的微粒给药后容易被网状内皮系统吞噬;④微囊、微球等微粒分散体系一般具有明显的缓释作用,可以延长药物在体内的作用时间,减少剂量,降低毒副作用;⑤还可以改善药物在体内外的稳定性等等。总而言之,微粒分散体系具有很多优良的性能,在缓控释、靶向制剂等方面发挥着重要的作用。随着纳米技术的应用,更加快了微粒给药系统的发展,未来几十年内,围绕着微粒给药体系的研究和应用,必将有一个非常广阔的前景。 湿法制粒压片法工艺流程 原、辅料——粉碎、过筛——混合、制软材——制粒——干燥——整粒——总混——压片——包衣——包装——成品 水杨酸1.0g(主药) 羧甲基纤维素钠1.2g(基质) 甘油 2.0g(保湿剂) 苯甲酸钠0.1g(防腐剂) 蒸馏水16.8ml(溶剂) 维生素C 104g (主药)碳酸氢钠49g (调节剂) 亚硫酸氢钠0.05g (抗氧剂)依地酸二钠2g (金属络合剂)注射用水加至1000ml (溶剂) 影响溶解速度的因素 药物的粒径药物的溶解度溶出介质的体积扩散系数扩散层的厚度 影响药物溶出度的因素是多方面的,简述如下:①仪器的性能及操作水平, 如介质除气程度,液体温度,仪器震动情况,搅拌速度,取样点位置,过滤 的快慢,药物在杯中或转蓝中的位置等等,②药物本身的因素,如溶解度, 药物的表面积,药物的结构与晶型,③制剂方面的因素,如剂型,处方,辅 料工艺,药物相互作用,表面活性剂制剂崩解或主药释放后,微粒细度及总 面积大小等。

抗肿瘤靶向微粒给药系统的研究进展

【关键词】微粒给药系统;靶向制剂;抗肿瘤药物 化疗是治疗恶性肿瘤的一种重要措施,但是抗肿瘤药在体内呈全身性分布,肿瘤组织内很难达到有效药物浓度,且自身又不具备辨别正常细胞与肿瘤细胞的能力,因此,在杀灭癌细胞的同时也损伤了正常细胞,造成全身毒性反应,如骨髓抑制等,常常导致化疗失败。近年来,抗肿瘤药物的靶向性传递研究越来越受到人们的重视。 靶向给药系统(targeting drug delivery systems,tads)是指药物载体通过局部或全身血液循环而使药物选择性地浓集定位于靶组织、靶器官、靶细胞或细胞内结构并在该靶部位发挥治疗作用的给药系统,近年来靶向给药系统的研究已经成为国内外药剂学研究的重点之一。靶向制剂可以提高药物的溶出度和稳定性,增加药物对靶细胞的指向性,降低对正常细胞的毒性,使药物具有药理活性的专一性,减少剂量,提高药物制剂的生物利用度,适于临床运用[1]。近年来,提高抗癌药物的局部浓度及对癌细胞的选择性,减少全身的毒副反应方面的研究取得了明显的进展[2]。本文就近年来抗肿瘤靶向药物给药载体的体内分析研究作一简要综述。 1 脂质体 脂质体(liposomes)是一种由磷脂双分子层构成的、具有类细胞结构的脂质囊泡,作为药物载体,可以改变被包封药物的体内分布、提高药物治疗指数、减少给药剂量和降低药物毒性,体内易降解、无毒、无免疫原性,已广泛用作包载各类药物尤其是抗肿瘤药物的载体。脂质体作为抗肿瘤药物载体具有免疫原性小、无毒、缓慢释放、持续时间长、无免疫原性定向分布的靶向等特点,可提高治疗指数,降低毒副作用[3]。 将单克隆抗体与脂质体一起可构建成免疫脂质体,经单抗与靶细胞抗原 抗体特异性结合,可将脂质体靶向到特定细胞和器官。但免疫脂质体表面单抗应达到一定数目,并且保持足够的导靶活性才能发挥作用。yanagie等[4]将抗癌胚抗原(cea)单抗制备成免疫脂质体,可与细胞表面带有cea的人胰腺癌细胞选择性结合,应用这种免疫脂质体携带药物向瘤内注射,其抑瘤效果较普通脂质体明显增强,且能破坏正常组织与癌组织交界处的恶性细胞。 goren等[5]将叶酸通过酰胺键连接在阿霉素长循环脂质体中peg链的末端制备了主动靶向脂质体,静脉注射到患有m109 hifr肿瘤的balb/c小鼠体内。检测结果表明:与阿霉素相比,叶酸阿霉素长循环脂质体靶向性明显,治疗组与对照组的复发率分别为10%和65%。 saul等[6]制备了叶酸和mab225 (表皮生长因子受体的单克隆抗体)联合介导的主动靶向长循环脂质体,并以kb细胞(同时表达叶酸受体和表皮生长因子受体)为模型进行体外细胞毒性实验。将kb细胞、封闭叶酸受体的kb细胞、封闭表皮生长因子受体的kb细胞、两受体均被封闭的kb细胞培养在96孔板中,24 h后分别加入阿霉素长循环脂质体、叶酸阿霉素长循环脂质体,mab225阿霉素长循环脂质体及叶酸与mab225联合介导的长循环脂质体。结果表明:与单一介导的脂质体相比,联合介导的主动靶向长循环脂质体保留了相近的细胞毒作用,同时其选择性增强,能明显降低不良反应。 抗肿瘤药物脂质体制剂对肿瘤组织具有靶向性和缓释性,在肿瘤组织能保持较高的药物浓度,持续作用时间长,全身分布药量较少,减少了抗肿瘤药物的不良反应,显示了其特有的优越性。但由于脂质体的制备和质量控制工艺要求较高,导致其较难实现产业化生产,大多研究尚停留在实验室阶段,所以如何实现脂质体制剂的产业化生产应成为今后研究的方向。 2 微球 微球(microsphere,ms)是指药物溶解或分散在高分子材料基质中形成的微小球状实体,属于基质型骨架微粒。微球的粒径可小至几微米大到几百微米,有成孔性微球、双层微球等各种结构形式。通过将具有较大副作用的药物(如抗肿瘤药物)置于微球内,在靶器官局部释放可达到保护药物、延缓药物的释放、减少给药次数、减小剂量和增加疗效的目的[7]。药物制成微球后,因其对特定器官和组织的靶向性及微粒中药物释放的缓释性,已经成为近年来

相关文档
最新文档