晶间腐蚀检验方法

晶间腐蚀检验方法
晶间腐蚀检验方法

不锈钢硫酸-硫酸铁腐蚀试验方法(GB4334.2-84)适用于将奥氏体不锈钢在硫酸-硫酸铁溶液中煮沸试验后,以腐蚀率评定晶间腐蚀倾向的一种试验方法。试验步骤:

1)将硫酸用蒸馏水或去离子水配制成50±0.3%(质量百分比)的硫酸溶液,然后取该溶液600ml加入25g硫酸铁加热溶解配制成试验溶液。

2)测量试样尺寸,计算试样面积(取三位有效数字)。

3)试验前后称质量(准确到1mg)。

4)溶液量按试样表面积计算,其量不小于20ml/cm2。每次试验用新的溶液。5)试样放在试验溶液中用玻璃支架保持于溶液中部,连续沸煮沸120h。每一容器内只放一个试样。

6)试验后取出试样,在流水中用软刷子刷掉表面的腐蚀产物,洗净、干燥、称重。

试验结果以腐蚀率评定为

W前-W后

腐蚀率=──────(g/m2.h)

St

式中W前──试验前试样的质量(g);

W后──试验后试样的质量(g);

S──试样的表面积;

t──试验时间(h)。

(3)不锈钢65%硝酸腐蚀试验方法(GB4334.3-84)适用于将奥氏体不锈钢在65%硝酸溶液中煮沸试验后,以腐蚀率评定晶间腐蚀倾向的试验方法。

试验步骤:

1)试验溶液的配制将硝酸用蒸馏水或去离子水配制成65±0.2%(质量百分比)的硫酸溶液。

2)、3)、4)同硫酸-硫酸铁试验方法。

5)每周期连续煮沸48h,试验五个周期。

试验结果以腐蚀率评定,同硫酸-硫酸铁试验方法。

焊接试样发现刀状腐蚀即为具有晶间腐蚀倾向,性质可疑时,可用金相法判定。(4)不锈钢硝酸-氢氟酸腐蚀试验方法(GB4334.4-84)适用于检验含钼奥氏体不锈钢的晶间腐蚀倾向。用在70℃、10%硝酸-3%氢氟酸溶液中的腐蚀率的比值来判定晶间腐蚀倾向。

试验步骤:

1)试验溶液:将硝酸和氢氟酸试剂,用蒸馏水或去离子水配制成质量分数为10%的硝酸-3%的氢氟酸试验溶液。

2)、3)同硫酸-硫酸铁试验方法。

4)将支架放入容器中,溶液量按试样表面积计算,其量不少于10ml/cm2。

5)装有试验溶液的容器放入恒温水槽中,试验溶液的温度加热到70±0.5℃时再将试样放入容器内的支架上,使试样处于溶液中部,连续保持2h。每一容器内只放一个试样。

6)同硫酸-硫酸铁试验方法。

7)试验两个周期,每周期为2h。每周期必须使用新的溶液。

试验结果以腐蚀率评定,同硫酸-硫酸铁试验方法。

将两周期的腐蚀率相加,然后按下式求腐蚀率的比值,取两位小数:

对于一般含碳量的钢种为

交货状态试样的腐蚀率

腐蚀率的比值=──────────────

再固溶处理后试样的腐蚀率

对于超低碳钢种(也用于焊接的非超低碳钢种)为

敏化处理后试样的腐蚀率

腐蚀率的比值=──────────────

交货状态试样的腐蚀率

(5)不锈钢硫酸-硫酸铜试验方法(GB4334.5-90)适用于检验奥氏体、奥氏体-铁素体不锈钢在加有铜屑的硫酸-硫酸铜溶液中的晶间腐蚀倾向。

试验步骤:

1)试验溶液配制时将100g硫酸铜溶解于700ml蒸馏水或去离子水中,再加入100ml硫酸,用蒸馏水或去离子水稀释至1000ml,配制成硫酸-硫酸铜溶液。2)试验前将试样用适当的溶剂或洗涤剂(非氯化物)去油并干燥。

3)在烧瓶底部铺一层铜屑,然后放置试样。保证每个试样与铜屑接触的情况下,同一烧瓶中允许放几层同一钢种的试样,但是,试样之间要互不接触。

>4)试验溶液应高出最上层试样20mm以上,每次试验都应使用新的试验溶液。5)将烧瓶放在加热装置上,通以冷却水,加热试验溶液,使之保持微沸状态,连续加热16h。

6)试验后取出试样、洗净、干燥、弯曲。

试验结果评定:焊接件试样弯曲角度为180°,沿熔合线进行弯曲。当试样厚度不大于1mm时,压头直径为1mm;当试样厚度大于1mm时,压头直径为5mm。弯曲后的试样在10倍放大镜下观察弯曲试样外表面,有无因晶间腐蚀而产生的裂纹。

(6)不锈钢5%硫酸腐蚀试验方法(GB4334.6-84)适用于测定含钼奥氏体系不锈钢在沸腾5%硫酸溶液中的腐蚀失重,以试验不锈钢耐均匀腐蚀性能。(7)不锈钢三氯化铁腐蚀试验方法(GB4334.7-84)适用于测定不锈在35或50的6^三氯化铁溶液中的腐蚀率,以试验不锈钢耐点蚀性能。

(8)不锈钢42%氯化镁应力腐蚀试验方法(GB4334.8-84)适用于试验不锈钢在沸腾42%氯化镁溶液中应力腐蚀裂纹敏感性的方法。

(9)不锈钢点蚀电位测量方法(GB4334.9-84)适用于动电位法测量不锈钢在中性3.5%氯化钠溶液中的点蚀电位

阀门的检验及试验规定

目录 一、适用范围 (1) 二、检查、检验和补充检验 (1) 三、压力试验 (4) 四、压力试验程序 (8) 五、合格证书 (10) API Std 598-1996 阀门的检验和试验规定 一、适用范围 1. 本标准适用于对闸阀、截止阀、旋塞阀、球阀、止回阀、蝶阀的 检查、检验,补充检验和压力试验的要求。 但经采购方与阀门制造厂商定,API598也可用于其它类阀门。 2. 检查要求适用于由制造厂进行的检验和试验及采购方要求在制造 厂内进行任何补充试验。 试验要求的适用于在制造厂内进行的需要的和任选的压力试验。 3. 本标准所规定的试验和检验如下: a. 壳体试验 b. 上密封试验 c. 低压密封试验 d. 高压密封试验 e. 铸件的外观检验 f. 高压气体壳体试验 二、检查、检验和补充检验 1、在阀门制造厂内的检查。 采购方将在订单中规定要在制造厂内检查阀门,并见证阀门的检验和试验,可自由进入制造厂内与其有关的任何部门。 2、在阀门制造厂外的检查

当采购方规定,检查包括在制造厂外制造的壳体部件时,应在制造地接受采购方检查。 3、检查范围 检查范围可在订单中规定,除另外说明外,检查应限于下列各 项。 1)在装配过程中对阀门进行检查,以保证符合订单中的规定, 检查可包括使用规定的无损检验方法。 2)现场见证需要和规定任选的压力试验和检验。 3)现场见证任何补充检验。 ?各种补充检验仅在订单中规定时,并仅在规定范围内进行。 ?铸钢件或锻钢件的MT、RT、PT、UT应符合ASME B16.34 第8章或采购方自己的验收准则。 ?这些检验应在采购方现场见证的情况下,由阀门制造厂进行。 4)审查加工记录和无损检验记录(包括规定的RT记录). 4、阀门检验 1)制造厂应对所有的阀体、阀盖和密封件的铸件进行外观检验, 以保证符合MSS SP-55的规定。 2)制造厂应对每个阀门进行检验,以保证符合本标准和采购规 范。 3)所有的检验均应按根据相应标准编制的书面程序进行。 5、检验内容(此条参照SH3518规定) 1)阀体上应有制造厂铭牌:型号、公称压力、公称通径及制造厂 名称等标识。 2)质量证明文件:包括制造厂名称、出厂日期、产品名称、型号 及规格、公称压力、公称通径、适用介质及适用温度、依据的标准、检验结论及检验日期、出厂编号、检验人员及负责检验人员签章。 3)设计要求作低温密封试验的阀门,应有制造厂的低温密封试验 合格证明书。 4)铸钢阀门的MT和RT由供需双方协定,如需检验,厂方应按 合同要求的标准检验,并出具报告。

_各种不锈钢的耐腐蚀性能复习过程

_各种不锈钢的耐腐蚀 性能

各种不锈钢的耐腐蚀性能 304是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的设备和机件。 301不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。 302不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。 302B是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。 303和303Se是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度高的场合。303Se不锈钢也用于制作需要热镦的机件,因为在这类条件下,这种不锈钢具有良好的可热加工性。 304L是碳含量较低的304不锈钢的变种,用于需要焊接的场合。较低的碳含量使得在靠近焊缝的热影响区中所析出的碳化物减至最少,而碳化物的析出可能导致不锈钢在某些环境中产生晶间腐蚀(焊接侵蚀)。 304N是一种含氮的不锈钢,加氮是为了提高钢的强度。 305和384不锈钢含有较高的镍,其加工硬化率低,适用于对冷成型性要求高的各种场合。 308不锈钢用于制作焊条。

309、310、314及330 不锈钢的镍、铬含量都比较高,为的是提高钢在高温下的抗氧化性能和蠕变强度。而30S5和310S乃是309和310不锈钢的变种,所不同者只是碳含量较低,为的是使焊缝附近所析出的碳化物减至最少。330不锈钢有着特别高的抗渗碳能力和抗热震性. 316和317型不锈钢含有铝,因而在海洋和化学工业环境中的抗点腐蚀能力大大地优于304不锈钢。其中,316型不锈钢由变种包括低碳不锈钢316L、含氮的高强度不锈钢316N以及合硫量较高的易切削不锈钢316F。 321、347及348是分别以钛,铌加钽、铌稳定化的不锈钢,适宜作高温下使用的焊接构件。348是一种适用于核动力工业的不锈钢,对钽和钻的合量有着一定的限制。 不锈钢的腐蚀与耐腐蚀的基本原理 金属受环境介质的化学及电化学作用而被破坏的现象即腐蚀。化学腐蚀的环境介质是非电解质(汽油、苯、润滑油等),电化学腐蚀的环境介质是电解质(各种水溶液)。电化学腐蚀是涉及电子转移的化学过程,该过程能否进行取决于金属能否离子化,而离子化的趋势可用金属的标准电极电位(ε0)来表示。 由于碳化物、夹杂物,以及组织、化学成分和内部应力的不均匀等的作用,将促使各部分在电解液中产生相互间的电极电位差。电极电位差愈大,微阳极和微阴极间的电流强度愈大,钢的腐蚀速度也愈大,微阳极部分产生严重的腐蚀。在电化学腐蚀中能够控制腐蚀反应速度的现象称为极化,极化可使阳极与阴极参与反应的速度得到减弱和减缓。电解液中离子的缓慢移动、原子缓慢结合成气体分子或电解液中离子的缓慢溶解,都可能是极化的表现形式。反应面积、搅拌或电解液流动、氧气、温度等因素,都将影响极化的速度。用极化技术与临界电位可衡量金属与合金在氯化物溶液中点腐蚀与缝隙腐蚀的敏感性。当不锈钢与异种金属接触时,需考虑电化学腐蚀。但若不锈钢是正极,则不会产生电流腐蚀。

不锈钢钢材的进场验收

材料 所有材料按照要求进行尺寸、外观、表面质量检查,同时根 据RCCM和材料采购合同中,由于钢材在生产过程由ACPP全程 监造并提供质保第三方见证报告,因此对于进入现场的钢材 针对与不锈钢水池直接接触的不锈钢覆面抽检并按照RCCM规 定进行成份和机械性能检验,不锈钢覆面抽检钢材如下。 ——Z2CN18-10钢板 3mm、4mm、6mm; ——Z2CN17-12钢板 3mm。 检验项目 5. 1 尺寸公差 厚度=3mm钢板,按BTS4.02如下要求:厚度公差±0.1mm, 长度公差±2mm,宽度公差±1mm。 厚度>3mm钢板按照EN10029的规定如下: 不锈钢板厚度 h(mm) 厚度公差(mm) 3<h<5-0.3~+0.9 5≤h<8-0.3~+1.2 8≤h<15-0.3~+1.4 15≤h<25-0.3~+1.6 25≤h<40-0.3~+1.9 40≤h<80-0.3~+2.5 80≤h<150-0.3~+2.9 不锈钢板长度L(mm)长度公差(mm)

L<40000~20 4000≤L<60000~30 6000 ≤L<80000~40 不锈钢板宽 宽度公差(mm) D(mm) 600≤D<20000~20 2000≤D<30000~25 5. 2 外观检查 所有钢板必须进行目检,钢板表面必须平坦而均匀,不得凹凸 不平、卷边、起泡、裂纹和夹渣。钢板切割到交货状态尺寸 后,应按MC7100 要求对边缘进行目检,不得有开裂和分层 (例如,在轧制过程中引出细小夹杂物夹层)现象。如必 要,按MC4000 的规定进行液体渗透检验。 验收准则 只允许下列情况: a)对于2 级设备钢板 ——钢板厚度≤40mm 时,允许呈现长度≤8mm 的线性痕迹, 钢板厚度>40mm 时,允许呈现长度≤10mm 的线性痕迹。 另外,当钢板的使用条件有可能导致层状撕裂的危险时,则 只允许存在下述的密集显示,在缺陷最密集的1 米范围内, 显示总长度为: ——钢板厚度≤40mm 时,<30mm; ——钢板厚度>40mm 时,<40mm。 如果相邻两个痕迹间距小于其中较小者长度的两倍时,则可 视为一个痕迹。 其总长度等于两个痕迹长度之和再加上两个痕迹之间的距

晶间腐蚀方法

6.4不锈钢局部腐蚀(晶间腐蚀、点蚀)试验结果与对比 6.4.1不锈钢晶间腐蚀试验方法 1)沸腾硝酸法(E法,用于304、410S、430、409L) 目的:检测304(敏化后)和410S、430、409L(热轧态)的耐晶间腐蚀性能;实验条件:试样在65%硝酸溶液中微沸48h(304)或24h(其他); 试样情况:试样表面抛光,并用乙醇清洗; 检测:测量失重;腐蚀后的特征形貌; 标准:GB 4334.3 2)硫酸-硫酸铜法(用于奥氏体不锈钢304) 目的:检测304(敏化后)的耐晶间腐蚀性能; 实验条件:试样在CuSO4+H2SO4+铜屑的微沸溶剂中24h(对于≤18%C r的不锈钢); 试样情况:试样表面抛光,并用乙醇清洗; 检测:测量失重;腐蚀后的金相特征; 溶剂配方:100g CuSO4+100ml H2SO4加蒸馏水稀释至1000ml。 标准:GB 4334.2 注1:304不锈钢为热轧后再经650℃、2h处理的敏化态,铁素体不锈钢为热轧态。 注2:以上二法对304都适用;对铁素体不锈钢,试验表明:410、430、409L 在硫酸-硫酸铜 溶液中试样表面发生较严重的镀铜现象,故仅采用沸腾硝酸法。因此, 为了便于304与其它3种铁素体不锈钢进行耐晶间腐蚀性能的对比分 析,以下以沸腾硝酸法为主,此外还要与晶间腐蚀的电化学试验、分 析相结合(参6.7)。

图0-1 晶间腐蚀试验装置图0-2 点蚀试验装置(恒温水浴锅)6.7 不锈钢局部腐蚀的电化学分析与对比 6.7.1不锈钢晶间腐蚀电化学试验方法 主要目的:对不锈钢耐晶间腐蚀的电化学性能的测定和对比分析,与浸泡试验结果相辅相成。 测试项目:用动电位再活化法测得晶间腐蚀的电化学曲线,可得阳极化环和再活化环的最大电流Ia和Ir,并以其比值Ir/Ia作为耐晶间腐蚀性能的度量。 试样状态:304---650o C 2h、空冷; 430、410、409L---热轧态;均经机械抛光。 所用仪器:CHI600C电化学分析仪 标准:JIS G0580-1986,ASTM G108,GB/T 15260-1994 晶间腐蚀电化学测定方法: 采用电化学动电位再活化法(EPR):以0.5mol/L的H2SO4为腐蚀介质(30o C),采用双环EPR法,以6V/h的扫描速度从腐蚀电位[约-400mv(SCE)] 极化到+300mv(SCE),一旦达到这个电位则扫描方向反转,以相同速度降低到腐蚀电位。分别测定阳极化环和 再活化环的最大电流Ia和Ir(如图2,单位为A),Ir:Ia比值越小越耐晶间腐蚀。

常用合金纯属的耐腐蚀性能

常用合金纯金属的耐腐蚀性能 注:为了改善纯金属的机械性能,在冶炼过程中,根据需要加入微量的其它金属。

接触介质部分材质的耐腐蚀性能参考 分类介质名 称 浓度 (%) 温 度 碳 钢 316 钢 哈 氏 C 蒙 耐 尔 钽镍钛 分 类 介质名称 浓度 (%) 温 度 碳 钢 316 钢 哈 氏 C 蒙 耐 尔 钽镍钛 无机盐盐酸 5 RT BP ○ ○○ ○ ○ ● ●○○ 有 机 盐 氢氟酸 5 48 RT RT ○ ○ ○ ○ ○ ○ ●○ ○10 RT BP ○ ○○ ○ ○ ● ●○○ 醋酸100 RT BP ○ ○ ● ● ● ● ● ● ● ● ● ●20 RT BP ○ ○○ ○ ○ ● ● ○ ○○ 甲酸50 RT BP ○ ○ ○ ○ ● ● ● ●35 RT BP ○ ○○ ○ ○ ● ● ○ ○ ○ ○ 草酸10 RT BP ○ ○○ ●●○ ○ ○ ○硫酸 5 RT BP ● ○ ●●● ● ○ ○ ○ ○ 柠檬酸50 RT BP ○ ○ ● ● ● ● ● ● ●10 RT BP ○ ○ ● ○ ●● ● ○ ○ ○ ○ 碱 苛性钠 20 RT BP ●● ● ●●● ● ●60 RT BP ○○● ○ ●● ● ○ ○ ○ ○ 40 RT BP ●● ● ●○ ○ ● ●80 RT BP○ ○ ○ ● ○ ○●○ ○ ○ ○ 苛性钾50BP●●●●○95 RT BP○ ● ○ ● ○ ○● ○ ○ ○ ○ ○ 盐 氯化铁30 RT BP ○○ ○○ ○ ○ ● ● ○● ●硝酸 10 RT BP ○● ● ○ ○ ● ● ○ ○ ● ● 氯化钠 20° 饱和 RT BP ● ○ ●● ● ● ● ● ●30 RT BP ○● ●○ ○ ○ ● ● ○ ○ ● ○ 氯化铵25 RT BP ○● ● ●● ●68 RT BP ○●● ○ ● ● ○ ○ ● ● 氯化钙25 RT BP● ● ● ● ● ●● ●发烟RT●○○氯化镁42 RT BP ● ● ● ● ● ● ● ●磷酸 30 RT BP ○ ○ ●● ● ○ ○ ● ● ○ ○硫 化 物 硫酸铵 20° 饱和 RT BP ●●●● ● ●●50 RT BP ○ ○ ●● ● ○ ○ ● ● ○ ○ 硫化钠10 RT BP ● ● ● ● ● ● ● ●70RT ○●●○●○硫酸钠50RT ●●

晶间腐蚀

不锈钢产品晶间腐蚀的危害和防止措施 自然界的腐蚀无处不在,腐蚀给人类带来的危害和损失远远的超过了火灾、水灾和地震等自然灾害的总合,它可以在不知不觉中毁掉你能看到的东西,腐蚀造成损失是非常巨大的,而由于腐蚀引起的突发恶性事故,不仅仅带来巨大经济损失,而往往会引发火灾、中毒、爆炸、人身伤亡等灾祸,造成严重的社会后果,应引起我们的高度重视。据资料统计在石油化工设备腐蚀失效设备中,我国每年因金属腐蚀造成的损失至少200亿,晶间腐蚀占了9%左右。 1.晶间腐蚀的特征: 晶间腐蚀与一般的腐蚀不同,它不是从金属外表面开始,而是集中发生在金属的晶界区,沿着金属晶界向内部扩展。这种腐蚀使得金属在外表面看不出任何迹象的情况下,完全丧失其力学性能,危害极大。已晶间腐蚀的不锈钢产品,表面看起来还是很光亮的,但是内部已经损坏,严重时已失去金属的声音,在外表面轻轻的敲击就会破碎成细粒。用显微镜观察,发现晶界已成网状,晶界区因腐蚀已造破坏,这时晶粒已接近分离状态,稍受外力作用即发生晶界断裂,成为粉末,造成设备破坏和人员伤亡。晶间腐蚀隐蔽性强是突发事故,危害巨大。 2.晶间腐蚀原因: 2.1介质:引起A氏体不锈钢晶间腐蚀的介质主要酸性介质,如工业醋酸、硫酸、硝酸、草酸、盐酸等,在强氧化性介质中,随着不锈钢中Cr含量的减少,出现晶界贫Cr,因此晶界的腐蚀速度远远大于晶粒本体的腐蚀速度。 2.2不锈钢是否产生晶间腐蚀以及腐蚀的程度取决于产品的受热过程,不锈钢在450°C~850°C范围内加热,有产生晶间腐蚀的倾向,其中在650°C~750°C范围内加热对晶间腐蚀最为敏感,此温度称为“敏化温度”,在敏化温度下产生的晶间腐蚀倾向的时间最短,加热时间越长,晶间腐蚀的倾向越大。 2.3晶界合金元素的贫Cr化是产生晶间腐蚀的主要原因,不锈钢在450°C~850°C范围内,Cr的碳化物主要在晶间析出,这种碳化物中Cr的含量远高于基体中的含Cr量,势必引起临近区域Cr 的集聚和扩散,从而形成贫Cr区(Cr<12%),贫Cr区不能抵抗某些介质的腐蚀,就形成晶间腐蚀。 2.4钢种的含碳量越高,碳向晶界扩散的倾向越大,晶间腐蚀的倾向就越大, 2.5发生晶间腐蚀的电化学条件 2.5.1晶粒和晶界区的组织不同,电化学性质存在显著差异,晶界为阳极,晶粒为阴极,两级的电位不同,形成电位差,这是产生晶间腐蚀的内因。 2.5.2腐蚀和应力、晶界间的不均匀性有关,晶粒和晶界间的差异要在一定的条件和环境温度下才能显露出来,在腐蚀介质和内外应力的作用下,晶界的电化学腐蚀就显现出来了,这是产生腐蚀的外因条件。

各种不锈钢的耐腐蚀性能1

各种不锈钢的耐腐蚀性能? 答:304 是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的设备和机件。301 不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。 302 不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。 302B 是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。 303和303Se 是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度高的场合。303Se不锈钢也用于制作需要热镦的机件,因为在这类条件下,这种不锈钢具有良好的可热加工性。 304L 是碳含量较低的304不锈钢的变种,用于需要焊接的场合。较低的碳含量使得在靠近焊缝的热影响区中所析出的碳化物减至最少,而碳化物的析出可能导致不锈钢在某些环境中产生晶间腐蚀(焊接侵蚀)。 304N 是一种含氮的不锈钢,加氮是为了提高钢的强度。305和384 不锈钢含有较高的镍,其加工硬化率低,适用于对冷成型性要求高的各种场合。 308 不锈钢用于制作焊条。

309、310、314及330 不锈钢的镍、铬含量都比较高,为的是提高钢在高温下的抗氧化性能和蠕变强度。而30S5和310S 乃是309和310不锈钢的变种,所不同者只是碳含量较低,为的是使焊缝附近所析出的碳化物减至最少。330不锈钢有着特别高的抗渗碳能力和抗热震性. 316和317 型不锈钢含有铝,因而在海洋和化学工业环境中的抗点腐蚀能力大大地优于304不锈钢。其中,316型不锈钢由变种包括低碳不锈钢316L、含氮的高强度不锈钢316N 以及合硫量较高的易切削不锈钢316F。 是分别以钛,铌加钽、铌稳定化的不锈348 及347、321.钢,适宜作高温下使用的焊接构件。348是一种适用于核动力工业的不锈钢,对钽和钻的合量有着一定的限制。 不锈钢与不锈铁的区别 不锈钢一般是不锈钢和耐酸钢的总称。不锈钢是指耐大气、蒸汽和水等弱介质腐蚀的钢,而耐酸钢则是指耐酸、碱、盐等化学浸蚀性介质腐蚀的钢。不锈钢自本世纪初问世,到现在已有90多年的历史。不锈钢的发明是世界冶金史上的重大成就,不锈钢的发展为现代工业的发展和科技进步奠定了重要的物质技术基础。不锈钢钢种很多,性能各异,它在发展过程中逐步形成了几大类。按组织结构分,分为马氏不锈钢(包括沉淀硬化不锈钢)、铁素体不锈钢、奥氏体不锈

无损探伤实验报告

2011—2012 学年第2 学期实验(实习)报告 课程名称:飞机结构防腐 授课班级:090146A 授课教师:郭巧荣 姓名:李一鲁 学号:090146111

实验一超声波检测法 一、实验目的 1、了解超声波检测法的基本原理、优点和应用局限性。 2、熟悉超声波检测设备的基本使用方法;熟悉使用垂直探头和斜探头探测试件内部缺陷的操作过程。 二、实验仪器设备(只需写明实验设备的重要组成部分,无需写具体型号) 数字式超声波探伤仪、被测试块和耦合剂 三、实验原理 所谓超声波检测法是利用超声波在被检材料中的响应关系来 检测孔蚀、裂纹等缺陷及厚度的一种检测方法。利用压电材料产生超声波,入射到被检材料中。超声波在异质界面上会发生反射、折射等现象,尤其是不能通过气体固体界面。如果金属中有气孔、裂纹、分层等缺陷(缺陷中有气体),超声波传播到金属与缺陷的界面处时,就会全部或部分反射。反射回来的超声波被探头接收,通过仪器内部的电路处理,在仪器的荧光屏上就会显示出不同高度和有一定间距的波形。可以根据波形的变化特征判断缺陷在工件中的深度、位置和形状。 四、实验步骤 1. 探头连接:将直探头、斜探头或其它类型探头与超声波探伤仪相连接。 2. 超声波探伤仪基本参数的设定:根据探伤构件的材料、外形尺寸及选用的探头类型,调节、设定超声波探伤仪的声速、声程等检测参数。 3. 仪器校准:利用标准校准试块,校准仪器,设定仪器零点。 4. 涂耦合剂:在探伤区域内涂抹耦合剂。

5. 进行探伤操作。 五、实验结果描述 纵波进行检测,工件无缺陷时,只显示始波T和底波B,当工件中有缺陷时,在始波和底波之间出现一个伤波;当工件中缺陷横截面积很大时,将无底波,声束被缺陷全反射。 用横波进行检测,工件无缺陷时,一般只显示始波T而不显示底波B,因为横波的穿透能力差,当有缺陷时,在始波后出现一个伤波。 六、回答思考题 1、简述超声波检测法的特点及适用性。 超声波检测法可用于金属、非金属、复合材料制件的损伤探测,既可以检测工件内部的缺陷,也可以检测工件表面的缺陷。可用来检测锻件、型材的裂纹、分层、夹杂,铸件中的气孔、裂纹、疏松等缺陷,焊缝中的裂纹、气孔、未焊透等缺陷,复合材料的分层、脱胶等缺陷,还可以测定工件的厚度。 采用超声波厚度仪从一侧测量构件的厚度,精确度可达到±1%。 可以用超声波厚度仪检测轻微的腐蚀,但不能检测中等或严重的腐蚀损伤。这是因为中等以上的腐蚀损伤,由于超声波的散射,不会得到构件厚度度数。但是,当清除腐蚀产物后,可以用它来测量去腐后的构件的厚度,并可以进一步确定腐蚀造成的材料的减少量。 2、说明纵波探测法根据什么确定缺陷的位置和大小。 设探测面到缺陷的距离为x,材料的厚度为t,从示波器始波T 到伤波F的长度为Lf,从始波到底波的长度为Lb,可得x=(LF/LB)t。由此,可求出缺陷的位置。另外伤波高度随缺陷或损伤增大而增高,所以可由伤波高度估计缺陷或损伤的大小。当缺陷或损伤很大时,可以移动探头,按显示缺陷或损伤的范围求出缺陷或损伤的延伸尺寸。 3、分析超声波探测法中使用斜探头产生横波的特点,说明为

材料化学失效与控制实验:晶间腐蚀

材料化学失效与控制综合实验 执笔人:汪崧 说明:本综合实验涉及热处理、金相、电化学的内容,以及一种晶间腐蚀国家标准试验方法,试验分为三部分: 1.按照《不锈钢硫酸-硫酸铜腐蚀试验方法(GB4334.5-90)》检验不同敏化 处理的不锈钢晶间腐蚀敏感性 2.EPR法判断不同敏化处理的不锈钢晶间腐蚀敏感性 3.塔菲尔直线外推法测量不同敏化处理的不锈钢的腐蚀速度 一、实验目的 1.了解热处理制度对材料组织及材料性能的影响 2.掌握奥氏体不锈钢产生晶间腐蚀的机理及其影响因素 3.了解不锈钢晶间腐蚀实验方法的国家标准及其适用范围 4.了解用电化学手段检测不锈钢晶间腐蚀敏感性的原理和方法 5.掌握塔菲尔直线外推法测量金属腐蚀速度的原理和方法 二、实验原理 1.奥氏体不锈钢产生晶间腐蚀的机理 2.奥氏体不锈钢产生晶间腐蚀的影响因素 3.不锈钢晶间腐蚀实验方法的国家标准及其适用范围 4.EPR法检测不锈钢晶间腐蚀敏感性的原理和方法 5.塔菲尔直线外推法测金属腐蚀速度的原理和方法 奥氏体不锈钢具有优良的抗均匀腐蚀的能力,但在一定成分、应力和腐蚀介质下特别容易发生晶间腐蚀,这种腐蚀是由敏化引起的。所谓敏化是指奥氏体不锈钢在Cr的碳化物沿其晶界脱溶的温度下保持足够长的时间,而引起对晶间腐蚀敏感的现象。经过热处理的不锈钢,在晶界上析出Cr23 C6,使晶界附近形成贫Cr区,从而发生晶间腐蚀。 电化学动电位再活化法( Electrochemical Poten2tiokinetic Reactivation,简称EPR)是一种快速、无损、定量检测不锈钢敏化的电化学测试方法,可用于工业现场检验材料的晶间腐蚀敏感性。其原理是利用不锈钢的钝化再活化特性与钝化膜中的主体合金元素的含量及膜的特性有关这一特点,研究钢的敏化行为。在钝化状态下,钝化膜的形态、结构在很大程度上依赖于固溶体中Cr、Mo的含量。在一定电介质和外加电位作用下,钢的表面将形成一层完整、致密的钝化膜;而经敏化的试样因晶界贫Cr,形成的钝化膜是不完整的,在外加电位回扫到再活化区时,不完整的钝化膜将优先受到腐蚀,再活化电流增高。利用这一性质可判断钢的敏化程度。

各种不锈钢的耐腐蚀性能

各种不锈钢的耐腐蚀性能 304 是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的设备和机件。 301 不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。 302 不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。 302B 是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。 303和303Se 是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度高的场合。303Se不锈钢也用于制作需要热镦的机件,因为在这类条件下,这种不锈钢具有良好的可热加工性。 304L 是碳含量较低的304不锈钢的变种,用于需要焊接的场合。较低的碳含量使得在靠近焊缝的热影响区中所析出的碳化物减至最少,而碳化物的析出可能导致不锈钢在某些环境中产生晶间腐蚀(焊接侵蚀)。 304N 是一种含氮的不锈钢,加氮是为了提高钢的强度。 305和384 不锈钢含有较高的镍,其加工硬化率低,适用于对冷成型性要求高的各种场合。 308 不锈钢用于制作焊条。 309、310、314及330 不锈钢的镍、铬含量都比较高,为的是提高钢在高温下的抗氧化性能和蠕变强度。而30S5和310S乃是309和310不锈钢的变种,所不同者只是碳含量较低,为的是使焊缝附近所析出的碳化物减至最少。330不锈钢有着特别高的抗渗碳能力和抗热震性. 316和317 型不锈钢含有铝,因而在海洋和化学工业环境中的抗点腐蚀能力大大地优于304不锈钢。其中,316型不锈钢由变种包括低碳不锈钢316L、含氮的高强度不锈钢316N以及合硫量较高的易切削不锈钢316F。 321、347及348 是分别以钛,铌加钽、铌稳定化的不锈钢,适宜作高温下使用的焊接构件。348是一种适用于核动力工业的不锈钢,对钽和钻的合量有着一定的限制。 镍与不锈钢基础知识—镍在不锈钢中的作用 镍在不锈钢中的主要作用在于它改变了钢的晶体结构。在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC)结构,加入镍,促使晶体结构从体心立方(BCC) 结构转变为面心立方(FCC)结构,这种结构被称为奥氏体。然而,镍并不是唯一具有此种性质的元素。常见的奥氏体形成元素有:镍、碳、氮、锰、铜。这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。目前,人们已经研究出很多公式来表述奥氏体形成元素的相对重要性,最著名的是下面的公式: 奥氏体形成能力=Ni%+30C%+30N%+0.5Mn%+0.25Cu% 从这个等式可以看出:碳是一种较强的奥氏体形成元素,其形成奥氏体的能力是镍的30倍,但是它不能被添加到耐腐蚀的不锈钢中,因为在焊接后它会造成敏化腐蚀和随后的晶间腐蚀问题。氮元素形成奥氏体的能力也是镍的30倍,但是它是气体,想要不造成多孔性的问题,只能在不锈钢中添加数量有限的氮。添加锰和铜会造成炼钢过程中耐火生命减少和焊接的问题。 从镍等式中可以看出,添加锰对于形成奥氏体并不非常有效,但是添加锰可以使更多的氮溶解到不锈钢中,而氮正是一种非常强的奥氏体形成元素。在200系列的不锈钢中,正是用足够的锰和氮来代替镍形成100%的奥氏体结构,镍的含量越低,所需要加入的锰和氮数量就越高。例如在201型不锈钢中,只含有4.5%的镍,同时含有0.25%的氮。由镍等式可知这些氮在形成奥氏体的能力上相当于7.5%的镍,所以同样可以形成100%奥氏体结构。这也是200系列不锈钢的形成原理。在有些不符合标准的200系列不锈钢中,由于不能加入足够数量的锰和氮,为了形成100%的奥氏体结构,人为的减少了铬的加入量,这必然导致了不锈钢抗腐蚀能力的下降。 在不锈钢中,有两种相反的力量同时作用:铁素体形成元素不断形成铁素体,奥氏体形成元素不断形成奥氏体。最终的晶体结构取决于两类添加元素的相对数量。铬是一种铁素体形成元素,所以铬在不锈钢晶体结构的形成上和奥氏体形成元素之间是一种竞争关系。因为铁和铬都是铁素体形成元素,所以400系列不锈钢是完全铁素体不锈钢,具有磁性。在把奥氏体形成元素-镍加入到铁-铬不锈钢的过程中,随着镍成分增加,形成的奥氏体也会逐渐增加,直至所有的铁素体结构都被转变为奥氏体结构,这样就形成了300系列不锈钢。如果仅添加一半数量的镍,就会形成50%的铁素体和50%的奥氏体,这种结构被称为双相不锈钢。 400系列不锈钢是一种铁、碳合铬的合金。这种不锈钢具有马氏体结构和铁元素,因此具有正常的磁特性。400系列不锈钢具有很强的抗高温氧化能力,而且与碳钢相比,其物理特性和机械特性都有进一步的改善。大多数400系列不锈钢都可以进行热处理。

不锈钢晶间腐蚀控制措施

不锈钢晶间腐蚀控制措施 1 问题的提出 技术统一规定中通常包括“奥氏体不锈钢制容器用于可能引起晶间腐蚀的环境, 焊后应做固 溶或稳定化处理”, 提出这样的要求, 自有其存在的合理性。但即使设计人员在图样的技术要求中提出这一条, 要求制造厂进行不锈钢制容器(比如换热器) 的焊后热处理, 由于实际热处理工艺参数难以控制和其他一些意想不到的困难, 通常难以达到设计人员提出的理想要求, 实际上在役的不锈钢设备绝大部分是在焊后态使用。这就促使我们去思考:晶间腐蚀是奥氏体不锈钢最常见的腐蚀形式, 那么产生晶间腐蚀的机理是什么? 在什么介质环境下会引起晶间腐蚀?防止和控制晶间腐蚀的主要方法有哪些?奥氏体不锈钢制容器用于可能引起晶间腐蚀的环境焊后是否都要热处理?本文查阅有关的标准、规范,专著,结合生产实际谈谈个人看法。 2 晶间腐蚀的产生机理 晶间腐蚀是一种常见的局部腐蚀, 腐蚀沿着金属或合金晶粒边界或它的临近区域发展, 而晶粒腐蚀很轻微,这种腐蚀便称为晶间腐蚀,这种腐蚀使晶粒间的结合力大大削弱。严重的晶间腐蚀,可使金属失去强度和延展性,在正常载荷下碎裂。现代晶间腐蚀理论, 主要有贫铬理论和晶界杂质选择溶解理论。 2. 1 贫铬理论 常用的奥氏体不锈钢, 在氧化性或弱氧化性介质中之所以产生晶间腐蚀, 多半是由于加工或使用时受热不当引起的。所谓受热不当是指钢受热或缓慢冷却通过450~850 ℃温度区, 钢就会对晶间腐蚀产生敏感性。所以这个温度是奥氏体不锈钢使用的危险温度。不锈钢材料在出厂时已经固溶处理,所谓固溶处理就是把钢加热至1050~1150 ℃后进行淬火, 目的是获得均相固溶体。奥氏体钢中含有少量碳, 碳在奥氏体中的固溶度是随温度下降而减小的。如0Cr18Ni9Ti , 在1100 ℃时, 碳的固溶度约为0. 2 % , 在500~700 ℃时, 约为0. 02 %。所以经固溶处理的钢,碳是过饱和的。当钢无论是加热或冷却通过450~850 ℃时,碳便可形成( Fe 、Cr) 23C6 从奥氏体中析出而分布在晶界上。( Fe 、Cr) 23C6 的含铬量比奥氏体基体的含铬量高很多, 它的析出自然消耗了晶界附近大量的铬, 而消耗的铬不能从晶粒中通过扩散及时得到补充, 因为铬的扩散速度很慢, 结果晶界附近的含铬量低于钝化必须的的限量(即12 %Cr) ,形成贫铬区, 因而钝态受到破坏, 晶界附近区域电位下降, 而晶粒本身仍维持钝态, 电位较高, 晶粒与晶界构成活态———钝态微电偶电池, 电池具有大阴极小阳极的面积比,这样就导致晶界区的腐蚀。 2. 2 晶界杂质选择溶解理论 在生产实践中, 我们还了解到奥氏体不锈钢在强氧化性介质(如浓硝酸) 中也能产生晶间腐蚀, 但腐蚀情况和在氧化性或弱氧化性介质中的情况不同。通常发生在经过固溶处理的钢上,经过敏化处理的钢一般不发生。当固溶体中含有磷这种杂质达100ppm时或硅杂质为1000 - 2000ppm 时, 它们便会偏析在晶界上。这些杂质在强氧化性介质作用下便发生溶解, 导致晶间腐蚀。而钢经敏化处理时, 由于碳可以和磷生成(MP) 23C6 , 或由于碳的首先偏析限制了磷向晶界扩散, 这两种情况都会免除或减轻杂质在晶界的偏析, 就消除或减弱了钢对晶间腐蚀的敏感性。 上述两种解释晶间腐蚀机理的理论各自适用于一定合金的组织状态和一定的介质, 不是互相排斥而是互相补充的。生产实践中最常见的不锈钢的晶间腐蚀多数是在弱氧化性或氧化性介质中发生的,因而绝大多数的腐蚀实例都可以用贫铬理论来解释。 3 引起晶间腐蚀的的介质环境

奥氏体不锈钢晶间腐蚀试验

奥氏体不锈钢晶间腐蚀试验方法 一、试验方法:奥氏体不锈钢10%草酸浸蚀试验方法 试样在10%的草酸溶液中电解浸蚀后,在显微镜下观察浸蚀表面的金相组织。 二、试样 1、取样及制备: 1)焊接试样从与产品钢材相同而且焊接工艺也相同的试块上取样,试样应包括母材、热影响区以及焊接金属的表面; 2)取样方法:原则上用锯切,如用剪切方法时应通过切削或研磨的方法除去剪切影响部分;3)试样被检查的表面应抛光,以便进行腐蚀和显微组织检验; 2、试样的敏化处理 1)敏化前和试验前试样用适当的溶剂或洗涤剂(非氯化物)除油并干燥; 2)焊接试样直接以焊后状态进行试验。对焊后还要经过350℃以上热加工的焊接件,试样在焊后还应进行敏化处理。试样的敏化处理在研磨前进行,敏化处理制度为650℃,保温1小时,空冷。 三、试验方法 1、试验溶液:将100克符合GB/T9854的优先级纯草酸溶解于900ml蒸馏水或去离子水中, 配置成10%草酸溶液; 2、实验仪器和设备:阴极为奥氏体不锈钢制成的钢杯或表面积足够大的钢片,阳极为试样, 如用钢片作阴极时要采用适当形状的夹具,使试样保持于试验溶液中,浸蚀电路如图1所示。 1——不锈钢容器 2——试样 3——直流电源 4——变阻器 5——电流表 6——开关 图1 电解浸蚀装置图 3、试验条件和步骤: 1)把浸蚀试样作阴极,以不锈钢杯或不锈钢片作为阴极,倒入10%草酸溶液,接通电流。阳极电流密度为1A/cm2,浸蚀时间为90s,浸蚀溶液温度为20℃~50℃。 2)试样浸蚀后,用流水洗净,干燥。在金相显微镜下观察试样的全部浸蚀表面,放大倍数为200倍~500倍,根据表1、表2和图2~图8判定组织的类别。 3)每次试验使用新的溶液。 4、浸蚀组织的分类 1)显示晶界形态浸蚀组织的分类见表1;

304,316不锈钢耐腐蚀性

不锈钢的耐腐蚀性能一般随铬含量的增加而提高,其基本原理是,当钢中有足够的铬时,在钢的表面形成非常薄的致密的氧化膜,它可以防止进一步的氧化或腐蚀。氧化性的环境可以强化这种膜,而还原性环境则必然破坏这种膜,造成钢的腐蚀。 1、在各种环境中的耐腐蚀性能 ①大气腐蚀 不锈钢耐大气腐蚀基本上是随着大气中的氯化物的含量而变化的。因此,靠近海洋或其他氯化物污染源对不锈钢的腐蚀是极为重要的。一定量的雨水,只有对钢表面的氯化物浓度起作用时才是重要的。 农村环境1Cr13、1 Cr 17和奥氏体型不锈钢可以适应各种用途,其外观上不会有显著的改变。因此,在农村暴露使用的不锈钢可以根据价格,市场供应情况,力学性能、制作加工性能和外观来选择。 工业环境在没有氯化物污染的工业环境中,1Cr17和奥氏体型不锈钢能长期工作,基本上保持无锈蚀,可能在表面形成污膜,但当将污膜清除后,还保持着原有的光亮外观。在有氯化物的工业环境中,将造成不锈钢锈蚀。 海洋环境1Cr13和1 Cr 17不锈钢在短时期就会形成薄的锈膜,但不会造成明显的尺寸上的改变。奥氏体型不锈钢如1 Cr 17Ni7、1 Cr 18Ni9和0 Cr 18Ni9,当暴露于海洋环境时,可能出现一些锈蚀。锈蚀通常是浅薄的,可以很容易地清除。0 Cr 17 Ni 12M 02含钼不锈钢在海洋环境中基本上是耐腐蚀的。 除了大气条件外,还有另外两个影响不锈钢耐大气腐蚀性能的因素,即表面状态和制作工艺。 精加工级别影响不锈钢在有氯化物的环境中的耐腐蚀性能。无光表面(毛面)对腐蚀非常敏感,即正常的工业精加工表面对锈蚀的敏感性较小。表面精加工级别还影响污物和锈蚀的清除。从高精加工的表面上清除污物和锈蚀物很容易,但从无光的表面上清除则很困难。对于无光表面,如果要保持原有的表面状态则需要更经常的清理。

理化检验控制.

第 11章理化检验控制 11.1 目的 本章对 A1级、 A2级压力容器产品理化试验中有关人员的资格、检验设备仪器管理、理化检验管理、试验方法和试验过程管理、试样制备、原始记录和试验报告确认、重复试验、部分理化检验分包等控制环节的基本内容作出了规定,以保证各项试验报告准确可靠,真实并可追溯。 11.2适用范围 适用于压力容器制造过程中理化检验质量活动控制。 11.3 职责 11.3.1理化质量控制系统由质管部归口管理,生产部、技术部、采购部和车间配合。 11.3.2理化质量控制实行理化责任工程师负责制。负责本系统控制环节和控制点的管理,对理化报告的正确性负责,并接受质保工程师的监督和检查。 11.4 控制要求 “理化检验控制系统控制程序”见图 11-1。 11.4.1理化人员资格控制 11.4.1.1理化试验人员、检验人员经申请, 批准后参加省、市有关部门组织的培训考试,取得“理化试验人员资格等级证书”后方可上岗。

11.4.1.2理化责任人应具备理化试验专业技术并由总经理任命, 负责全厂理化试验的质量控制,对理化试验的取样、加工操作、计算的技术标准执行的正确性负责,对理化试验报告做技术性结论。其人员资格和责任制见公司标准 Q/HL20815-2012《理化试验管理制度》第 4章相关内容。 11.4.2试验委托 11.4.2.1原材料、焊接材料、焊接工艺评定试件、焊工考试试件及产品试件需进行化学分析、力学试验、晶间腐蚀试验时,应由委托部门开具“送检委托单” , “送检委托单”填写要求按公司标准 Q/HL20815-2012《理化试验管理制度》第 5.3节的规定执行。 11.4.2.2焊接工艺评定试件、焊工考试试件、产品试件,先进行外观检验合格,再进行无损检测后,才可进行力学试验委托。 11.4.2.3理化责任人应认真核查检验委托单是否符合要求。检验委托单应经理化责任人审核签字。检验委托单具体要求见公司标准 Q/HL20815-2012《理化试验管理制度》。 11.4.3试样制备 11.4.3.1试件取样、标记、加工和制备的基本要求和程序按有关标准及公司标准 Q/HL20815-2012《理化试验管理制度》第 5.4节的规定程序及工艺科提供的试样加工图进行。

不锈钢晶间腐蚀试验规程

1.主题内容与适用范围 本标准规定了不锈钢硫酸—硫酸铜试验方法的试验设备,试验条件和步骤,试验结果的评定和试验报告的要求。 本标准适用于本厂不锈钢晶间腐蚀试验。 2.试样的选取 2.1 压力加工钢材的试样从同一炉号、同一批热处理和同一规格的钢材中选取。 2.2 焊接试样从产品钢材相同而且焊接工艺也相同的试板上选取。 2.3 试样尺寸及选取方法见表一。 3.试样的制备 3.1 试样用锯切取,如用剪刀时,应通过切削或研磨方法除去剪刀的影响部份。 3.2 试样上有氧化皮时,要通过切削或研磨除掉。需要敏化处理的试样,应在敏化处理后研磨。 3.3 试样切取及表面研磨时,应防止过热,被试验的试样表面粗糙度R a必须小于0.08μm。不能进行研磨的试样,根据双方协议也可采用其他方法处理。 试样尺寸及选取方法表一mm

4. 试样的敏化处理 4.1 试样的敏化处理在研磨前进行。 4.2 敏化处理前试样用适当的溶剂或洗涤剂(非氧化物)去油并干燥。 4.3 含碳量大于0.08%,不含稳定化元素的钢种不进行敏化处理。 4.4 对超低碳钢(碳含量不大于0.03%时)或稳定化钢种(添加钛或铌),敏化处理温度为650℃,压力加工试样保温2小时,铸件保温1小时。 4.5 含碳量大于0.03%,不大于0.08%,不含稳定化元素并用于焊接的钢种,应以敏化处理的试样进行试验。敏化处理制度在协议中另行规定。 4.6 焊接试样直接以焊后状态进行试验。对焊后还要经过350℃以上热加工的焊接件,试样在焊后还应进行敏化处理,敏化处理制度在协议中另行规定。 5. 试验设备 5.1 1容量为1-2L带回流冷凝器的启口—锥形烧瓶。 5.2 使试验溶液能保持微沸状态的加热装置。 6. 试验条件和步骤: 6.1 试验溶液:将100g硫酸铜(GB665 分析纯)溶介于700毫升蒸馏水或离子水中,再加入100ml硫酸(GB625 优级纯),用蒸馏水或去离子水稀释至1000ml,配制成硫酸—硫酸铜溶液。 6.2 试验前将试样用适当的溶剂或洗涤剂(非氯化物)去油并干燥。 6.3 在烧瓶底部铺一层铜屑(纯度不小于99.5%),然后放置试样。保证每个试样与铜屑接触的情况下,同一烧瓶中允许放几层同一钢种试样。但是试样之间要互不接触。 6.4 试验溶液应高出最上层试样20mm以上,每次试验都应使用新试验液。 6.5 将烧瓶放在加热装置上,通以冷却水,加热试验溶液,使之保持微沸状态。试样连续16小时。 6.6 试验后取出试样、洗净、干燥、弯曲。 7. 试验结果评定 7.1 压力加工件和焊接件试样弯曲度为180°,焊接接头沿溶合线进行弯曲。 7.2 试样弯曲用的压头直径,当试样厚度不大于1mm时,压头直径为1mm,当试样厚度大于1mm 时,压头直径为5mm。 7.3 弯曲后的试样在10倍放大镜下观察弯曲试样外表面,有无因晶间腐蚀而产生的裂纹。从试样的弯曲部位棱角产生的裂纹,以及不伴有裂纹的滑移线,绉纹和表面粗糙等都不能认为是晶间腐蚀而产生的裂纹。 7.4 试样不能进行弯曲评定或弯曲裂纹难以判定时,则采用金相法观察。金相磨片经浸蚀后,

不锈钢的耐腐蚀性能

所有金属都和大气中的氧气进行反应,在表面形成氧化膜。不幸的是,在普通碳钢上形成的氧化铁继续进行氧化,使锈蚀不断扩大,最终形成孔洞。可以利用油漆或耐氧化的金属(例如,锌,镍和铬)进行电镀来保证碳钢表面,但是,正如人们所知道的那样,这种保护仅是一种薄膜。如果保护层被破坏,下面的钢便开始锈蚀。 不锈钢的耐腐蚀性取决于铬,但是因为铬是钢的组成部分之一,所以保护方法不尽相同。 在铬的添加量达到10.5%时,钢的耐大气腐蚀性能显著增加,但铬含量更高时,尽管仍可提高耐腐蚀性,但不明显。原因是用铬对钢进行合金化处理时,把表面氧化物的类型改变成了类似于纯铬金属上形成的表面氧化物。这种紧密粘附的富铬氧化物保护表面,防止进一步地氧化。这种氧化层极薄,透过它可以看到钢表面的自然光泽,使不锈钢具有独特的表面。而且,如果损坏了表层,所暴露出的钢表面会和大气反应进行自我修理,重新形成这种氧化物"钝化膜",继续起保护作用。 因此,所有的不锈钢元素都具有一种共同的特性,即铬含量均在10.5%以上。 普通碳钢与大气中氧,在金属表面形成过氧化膜,然后继续进行氧化,使锈蚀不断扩大,形成“千层糕”式的腐蚀物,直至烂穿。不锈钢的不锈性与钢中铬含量有光。钢中铬含量达到12%时,与大气接触,在不锈钢表面产生一层钝化膜(Cr2O3),它是致密的富铬氧化物,有效

地保护着不锈钢表面,特别是能防止进一步再氧化。这种氧化膜极薄(只有几个微米),头各国它可以看到钢表面的自然光泽,使不惜刚既有独特的表面。若表面钝化膜一旦被破坏,钢中的铬与大气中的氧心生成钝化膜,继续起保护作用。 不锈钢遇到特殊环境,也会出现某些局部腐蚀,如孔蚀、晶间腐蚀、应力腐蚀、电偶腐蚀等。为了克服这些腐蚀,在钢中分别加入了钼、氮、钛或铌等元素,并研制出了低碳、超低碳、双相不锈钢等新品种,提高不锈钢的耐腐性。 不锈钢的耐腐蚀性能一般随铬含量的增加而提高。其基本原理是,当钢中有足够的铬时,在钢的表面形成非常薄的至密的氧化膜,它可以防止进一步的氧化或义腐蚀。氧化性的环境可以强化这种膜,而还原性环境则必然破坏这种膜,造成钢的腐蚀。 (一)在各种环境中的耐腐蚀性能 1.大气腐蚀 不锈钢耐大气腐蚀基本上是随大气中的氯化物的含量而变化的。因此,靠近海洋或其他氯化物污染源对不锈钢的腐蚀是极为重要的。一定量的雨水,只有对钢表面的氯化物浓度起作用时才是重要的。 农村环境 1Cr13、1Cr17和奥氏体型不锈钢可以适应各种用途,其外观上不会有显著的改变。因此,在农村暴露使用的不锈钢可以根据价格,市场供应情况,力学性能、制作加工性能和外观来选择。

相关文档
最新文档