模糊数学和有限状态机矩阵形式描述的人工情绪模型

模糊数学和有限状态机矩阵形式描述的人工情绪模型
模糊数学和有限状态机矩阵形式描述的人工情绪模型

第32卷第9期2010年9月

北京科技大学学报Jou rnal of U niversity of Sc i ence and T echno l ogy B eijing

V o.l 32No .9Sep .2010

模糊数学和有限状态机矩阵形式描述的人工情绪模型

史雪飞 王志良 张 琼

北京科技大学信息工程学院,北京100083

摘 要 根据大脑的情绪加工环路提出了三个层次的人工情绪框架结构.重点对智能体的底层情绪模型进行了研究,分别采用模糊关系理论和有限状态机的矩阵形式建立了相应的情绪激活状态和行为输出方程.模型考虑了心境和需求对当时情绪的影响,利用矩阵模型可以直接计算出不同情绪状态下的输出行为,解决了单纯用表的形式记录/事件)情绪)行为0序列对的存储空间和查表问题.选择了婴儿的情感行为数据来验证模型的正确性.仿真结果表明:模型在考虑了敏感因子和心境对情绪激活阀值影响的因素后,在机器系统中可以建立有效的情绪与行为输出模型.关键词 模糊关系;有限自动机;情绪模型;人工智能分类号 T P 181

M odelli ng e moti on based on fuzzy mathe m atics and m atrix descri pti on of fi nite

state machi nes

S H I Xue -fei ,WAN G Zh i -li ang ,ZHANG Q iong

School of Infor mati on E ngi neeri ng ,U n i vers it y of Science and T echnology Be iji ng ,Beijing 100083,Ch i na

AB STRACT A t hree -l ayer emo ti on m ode l structure based on bra i n science was proposed firstly .T hen a bo ttom -leve l emo ti on m ode l o f t he i ntelli g ent syste m was presented in de tai.l Itw as constructed by usi ng fuzzy m athe m atics andm a trix descr i pti on o f fi n ite state m a -ch i nes .A f uzzy re l a ti on bet w een sti m u l us and e m otion w as produced to de ter m i ne the ac tive e m otion i n conside ration o fm ood and de -sire a t that ti m e .The outpu t behav i o r w as calculated by a m atr i x sty l e o f fi n ite sta te m ach i nes wh ile the active e m oti on w as g iven .T he m ode l constructed in this w ay cou l d reduce m e m ory spaces used only f o r st o ri ng the correspond i ng re l ations a m ong sti m u l us ,emo ti on and behav i or .T he si m ulati on result and concl us i on are presen ted i n the end .K EY W ORDS

f uzzy relation ;fi n ite autom aton ;e m otion mode llin

g ;artificial i nte lli g ence

收稿日期:2009

--11--16基金项目:国家高技术研究发展计划资助项目(2007AA04Z218);北京市自然科学基金重点项目(KZ200810028016)

作者简介:史雪飞(1973)),女,讲师,博士研究生,E-m ai:l sxf 1245@i es .u st https://www.360docs.net/doc/6115622286.html, .cn;王志良(1956)),男,教授,博士生导师

人工智能的研究从20世纪50年代开始发展到现在已经达到了较高的水平,它的研究内容也从模拟人的感知觉、推理和学习等认知智能逐渐扩展到人的情绪和情感.目前人工情感已成为人工智能领域的研究热点.其中,如何赋予机器情感智力(即情绪建模问题)是研究的核心,其基础和根本是对自然情绪实质的理解和表示.近年来,国内外已有许多人工情绪的模型

[1-

-7].由于情绪的复杂性以及人类对自身情感产生和变化规律的研究尚不完善,情绪建模的研究工作进行得比较艰难甚至对这一问题本身的提出也存在着争议.尽管如此,目前在情感计算领域己经有很多

人工情绪模型的出现,它们至少从功能的角度上实现了对人类情绪有限的模仿.最早的经典情绪模型是1988年O rtony 等

[1]

提出的/OCC 情绪认知模

型0.它是基于情绪的认知理论和基于规则的建模,

因为很容易用计算机实现而得到广泛使用.然而,情绪不仅由单一的认知评价过程产生,还与一些低层次的非认知性因素影响有密切联系.英国伯明翰大学的S l o m an

[2]

提出的/Cog A ff 模型0同时考虑了

低层的身体反应机制和高层的心理认知对情感的影响,建立了情感的三层体系结构,但是这些抽象的模

型没有提供一个具体的可供计算机执行的情感建模方法.人类情绪的激活具有一定程度的不确定性,

第9期史雪飞等:模糊数学和有限状态机矩阵形式描述的人工情绪模型

为了描述这种随机性,情感计算的创始人P icard

[3]

在1995年提出的隐马尔可夫模型是一种用参数表示的、用于描述随机过程统计特性的概率模型.但是,人类情绪的发生和激活并不是随机的,而且激活的情绪状态和外显的表情也不是各自独立和毫无关联的.2001年,A r k i n 等

[4]

为索尼公司的C anis 系列

机器狗提出了一种内置的情感模型,并首先应用在

A I BO 机器狗的控制系统中,其特色之处在于利用有限状态机的技术实现了底层的本能情感模型;但是该体系结构中,缺少对认知推理功能的支持.韩国

的Par k 等[5]

提出了基于神经认知科学的服务机器人情感系统,该系统借鉴神经科学和认知科学的研究成果,在OCC 模型的基础上构建起来,可以使机器人同时拥有多种情绪.国内提出的人工情绪模型

主要有张冬蕾等[6]

开发的情绪知识模型支撑的智能情感主体,其内部情绪产生模块采用了分层的结构:反射式情绪产生模块、主体认知式情绪产生模

块.杨宏伟等[7]

提出了一种应用于虚拟智能体的综合可计算的情感建模方法,此模型综合考虑了生理、认知对情感的影响,分别在D a m asi o 的生理机制和OCC 及Rose m an 等提出的基于事件评价的认知机制基础上建立的.

本文的人工情绪模型结构是在文献[8--9]的基础上提出的,并尝试研究机器容易实现的技术方法;模型还重点考虑了情绪作为后天习得的一种智能是

生物体与外界交互过程中逐渐发展起来的,强调了人工情绪发展的建模思路;对于模型中提出的底层情绪环节,本文在有限状态机理论的基础上引入了矩阵形式并利用模糊数学描述情绪的不确定性

[10--11]

,建立了适用于智能体或者机器的可计算的

建模方法.

1 人工情绪模型的分层结构

情绪心理学理论认为[12]

:人类情感的发生和发展绝不是偶然的,只要把它放置在物种进化这一更大的范畴中,就能较好地认识到:情绪是长期积淀在神经系统和脑结构中的一种最有用、最有效的独特属性,这意味着应当把情绪的发生和发展放在人脑的进化和发展上去考察.从进化的观点看,情绪是在脑进化的低级阶段发生的,特别是与那些同调节和维持生命的神经部位相联系.情绪作为脑的功能,首先发生在神经组织进化上古老的部位.丘脑系统、脑干结构、边缘系统和皮下神经核团等这些整合有机体生命过程的部位,都是整合情绪的中枢.随着人类的进化,大脑皮层、尤其是前额叶的发展对情绪与认知的整合起着重要的作用.从情绪与脑的进化可以说明人类现有的情绪是经历了不同阶段的进化发展而来的,大脑对情感刺激信息的处理是分层次和等级的,人工情绪建模必须要考虑到这一客观的生理结构.

具体的人工情绪模型分为三层,即先天预置的感觉驱动水平、后天习得的图式水平以及理性认知参与的概念性水平,如图1所示.其中先天预置的感觉驱动级情绪状态由自主神经系统和中央神经系统引发,属于无意识自动加工水平,可以根据模糊有限状态机的相关理论进行描述和实现,本文重点建立了这部分的情绪模型;后天习得的图式水平级情感状态是与外界环境交互过程中通过激活先天无条件情绪而形成的条件式情绪,这部分情绪也是由无意识评价产生的,是基于从前的情绪记忆或者情绪体验;最高级的概念性水平是有意识的理性加工,由比较、执行和期望等引起的情绪状态

.

图1 对应于人脑结构的人工情绪模型.(a)人脑的结构;(b)人工情绪模型的三层结构

F i g.1 Th ree -layer e m oti onalm odel according to hum an b rai n s tructure :(a)hum an bra i n struct u re ;(b)t h ree -layer stru cture of the artifici al e mo -tionalm odel

#

1239#

北 京 科 技 大 学 学 报第32卷

2 基于模糊数学和有限状态机矩阵模型的人工情绪与行为建模

211 模型的结构

本文提出的情绪模型适用于一般的智能体系统,实现的技术方法主要是基于底层情绪智能,此时情绪的产生是在无意识的状态下自动完成的,不经历认知过程,因此复杂的性格对情绪的影响并不是主要因素.模型考虑了不同个体对于刺激的敏感程度不同,提出了图2所示的智能体情绪与行为的模型结构,模型认为外界刺激是客观的,通过引入敏感因子A 刻画了不同个体的感知能力,得到了模糊的刺激矩阵;根据当时的心境和需求决定了情绪状态的激活阈值,情绪激活模块计算出了此时智能体的主导情绪,模型的这些部分是模糊的,具有不确定性;而给定情绪状态下的行为具有相对的确定性,所以模型的后半部分采用确定性有限状态机的矩阵模型加以建立,使得整体模型克服了单纯用表的形式记录/刺激)情绪)行为0序列对占用存储空间并随之带来的查表搜索问题,提高了模型的实时性

.

图2 智能体的情绪与行为模型结构

F ig .2 Em oti on and b ehavior m odel of the i n t elli gent s yste m

212 模糊刺激感知矩阵的建立

由于人类对于外界引起情绪的刺激事件的感知是模糊的,很难精确量化,所以事件与每种情绪状态的激活关系应该是模糊的,定义论域X ={x 1,x 2,,,x m }为有限事件集,Q ={Q 1,Q 2,,,Q n }为基本情绪集,则乘积空间X @Q 上的一个模糊子集R I F (X @Q )称为从X 到Q 的模糊关系,其隶属度L R (x,Q )描述了事件与情绪之间的相关程度,记为L R (x i ,Q j )=r ij I [0

,1],此时模糊关系可以用模糊矩阵R =(r ij )m @n 表示,这个模糊矩阵描述了客观的外界刺激和激活情绪之间的对应关系.对于不同的个体,这个模糊矩阵需要根据敏感因子A I [0,1]加以调整,A 值越大表示个体对外界刺激的感知越敏感,这样就确定了针对自身的刺激感知与情绪激活的模糊矩阵R c ,从而使模型有了一定程度上的/个性0,调整计算的原则表示如下:

r c i j =

r ij +(A -015),0

r ij =0

(i =1,2,,,m;j =1,2,,,n )

(1)

213 情绪激活状态的计算

人处于不同的情绪状态下对同样的刺激反应是

不同的,这就是心境对于人的情绪乃至行为也有一定的影响,因此模型认为心境的好与坏直接左右着情绪状态的激活阈值.对于模糊矩阵R c ,可以通过其K 截矩阵表示情绪激活的最终结果,模型中的K 是可变的,由心境的状态调整和更新它的大小,K (t)更新的原则表示如下.

正向情绪或者需求满足导致的积极心境条件下采用式(2)更新,负向情绪或者需求未满足导致的消极心境条件下采用式(3)更新.

积极心境下的更新:

K (t)=

K j -$K ,Q j 为正向情绪K j +$K

,Q j 为负向情绪(2)

消极心境下的更新:K (t)=

K j +$K

,Q j 为正向情绪K j -$K

,Q j 为负向情绪

(3)

式中,K j 为平静心境下的激活阈值;$K 描述心境对于情绪激活阈值的影响,可以视情况不同定义为由情绪状态确定的调整修正值.

智能体的情绪激活状态根据模糊矩阵R c 的K 截矩阵计算得出:

r ij (K )=

1,r ij >K (t)0,

r ij [K (t)

(4)

r ij (K )取值为1,表示刺激x i 在当时的心境条件下激

活了q j 的情绪状态,那么输出行为的方程根据矩阵模型可以计算得到.

214 有限状态机矩阵模型描述的输出行为方程如图2所示的模型结构,智能体在情绪激活状态下的行为输出是确定的,一种情绪状态下可以对应多个输出,根据文献[13]所研究的有限自动机的矩阵模型方法,可以将给定的情绪状态下的行为输出用矩阵形式的映射方程加以描述.

首先将n 种情绪状态用0和1进行编码,确定由初始状态(采用编码值)转移到激活状态(不采用编码值,只采用0和1的值)下不同的行为输出集合Z ={o 1,o 2,,,o l },Z i ={o i },整理出如表1所示的情绪与行为的对应转移关系,表中以四种基本情绪、八个行为输出为例,基本情绪n 和行为输出l 可以扩展为任意多个.

#

1240#

第9期史雪飞等:模糊数学和有限状态机矩阵形式描述的人工情绪模型

表1激活情绪与行为的对应关系

Tabl e1C orrespond i ng rel ations b et w een e m oti on and behav i or

t+1时刻的激活情绪

t+1时刻的行为输出

Q n1=(0,0)Q n2=(0,1)Q n3=(1,0)Q n4=(1,1)

Q n+1

1

(o1,o3,o4)(o3,o6)(o2,o8)(o5,o7)

Q n+1

2

(o3,o5)(o3,o6,o8)(o2,o7,o8)(o2,o5,o7)

Q n+1

3(o

3

,o

7

)(o

2

,o

3

)(o

6

,o

8

)(o

1

,o

4

,o

5

)

Q n+1

4

(o3,o8)(o1,o3,o4)(o2,o6)(o5,o7,o8)将情绪状态激活条件下对应的行为输出方程表示为:

Z1=q1q2Q n+1

1+q1q2Q n+1

3+q1q2Q

n+1

4

Z2=q1q2Q n+1

1+(q1q2+q1q2

)Q n+1

2+

q1q2Q n+13+q1q2Q n+14 ,

Z7=q1q2Q n+1

1+(q1q2+q1q2)Q n+1 2+

q1q2Q n+13+q1q2Q n+14

Z8=q1q2Q n+1

1+(q1q2

+q1q2)Q n+1

2+

q1q2Q n+13

+(q1q2+q1q2)Q n+1

4

(5)

式中,q1q2的最小项分别为t时刻的情绪状态编码;

Q n+1

i为t+1时刻的情绪状态,若Q n+1

i=1表示该情

绪激活,Q n+1

i

=0表示该情绪未被激活.

根据有限状态机的矩阵模型将上述方程组(5)整理化简可以得到:

Z1

Z2

s

Z7

Z

8

=

q1q20q1q2q1q2

q1q2q1q2+q1q2q1q2q1q2

s s s s

q1q2q1q2+q1q2q1q2q1q2

q1q2q1q2+q1q2q1q2q1q2+q1q2@

Q n+1

1

Q n+1

2

Q n+1

3

Q n+1

4

(6)

式(6)说明激活情绪状态下的多个行为输出可以通过矩阵方程直接计算得到,尤其对于情绪状态

和行为的序列对比较庞大时,这种计算方法可以有

效地提高模型的实时性.

3仿真结果

考虑到本文描述的模型侧重先天固化在神经系统中的那部分情绪智能,因此选择了婴儿的情感行

为数据来验证模型的正确性.表2所示的情绪诱因

作为模型的刺激输入,定义了X={x1,x2,,,x10}的

事件集合,Q={Q qu iet,Q scar e,Q happ y,Q anger,Q cur iou s,

Q d isgu st,Q sad}的情绪状态集合,行为输出集合Z=

{o1,o2,,,o12};确定了刺激事件和情绪状态之间的

模糊关系R,定义了不同的敏感因子A={012,015,

017},不同的心境和需求满足程度(分心境好与心

境坏两种情形),建立了情绪与行为之间的对应方

程,实现了外界刺激、激活的情绪及输出的行为三者

之间的数学描述,并整理得到了如图3和图4所示

的仿真结果.图3说明了两种不同的心境条件下,

情绪的激活阈值有所调整.在心境好的时候,正向

情绪的激活阈值降低,负向情绪的激活阈值升高;在

心境差的时候,正向情绪的激活阈值升高,负向情绪

的激活阈值下降.图中的六个事件分别对应于表2

中的相应内容.图4说明了不同的敏感因子对情绪

的激活产生影响.敏感因子为012的个体对外界的

刺激不敏感,情绪的激活阈值都比较高;敏感因子为

017的个体对外界的刺激敏感,情绪的激活阈值都

比较低.仿真结果表明模型在考虑了敏感因子和心

境对情绪激活影响的因素后,能够通过文中所提的

建模方法在机器系统中实现.

表2婴儿的情绪与行为输出

Table2C orres pond i ng relati ons bet w een baby p s e m otion and b ehavior

资料来源情绪诱因情绪状态行为趋势被柔和地轻拍和抚摸(事件1)高兴靠近、笑、摆手华生活动受到限制(事件2)生气、害怕攻击、哭、乱动突然出现的声音和身体失去支撑(事件3)害怕后退、哭

味道刺激(事件4)厌恶后退、捂鼻子

新异性光、声或动的物体(事件5)兴趣靠近、睁大眼睛

与熟人分离(事件6)悲伤哭、抱头

孟昭兰从高处降落害怕哭、抖动

独处害怕哭、蜷缩

失败悲伤、生气哭、乱动

陌生人出现,新异性较大物体出现害怕后退、哭

# 1241

#

北京科技大学学报第32

图3不同心境条件下的K(t)更新和情绪的激活

F i g.3K(t)refresh i ng and e m oti onal generation based on differen t m oods

图4敏感因子对情绪激活的影响

F ig.4E ffect of sens i ti ve coeffici en t on e m otional generation

4结语

人工情感领域对于情绪建模的研究正如心理学对情绪本身的探讨一样,都分别从不同的角度、侧重不同的功能展开相应的研究工作.本文从智能体的基本情绪出发,试图侧重考虑情绪激活与刺激事件的离散对应关系以及情绪本身的模糊差异性,采用模糊集合和敏感因子建立了具有不同个性的情绪激活计算方法,利用有限状态机的矩阵模型建立了情绪激活条件下的行为输出方程,这种矩阵模型的方法尤其适用于数据量较大的应用场合.仿真实验说明采用模糊关系和有关截集的理论可以较准确地描述人类情绪本身的特点,结合离散的有限自动机矩阵形式可以建立有效的机器系统的情绪与行为输出模型.

参考文献

[1]Ort ony A,C lore G L,C olli ns A.Th e C ogn iti v e S t ru ct u re of Em o-

tion s.N e w Y ork:C a m bri dge Un i versit y Press,1988:68[2]S l o m an A.Vari eti es of affect and t he C og A ff arch itect u re sche m a

M P rocee d i ng s Symposium on Emotion,Cogn ition,and Affective Co m pu ti ng Conven ti on.York,2001:39

[3]Picard R W.Affective C o mputing.Translated by Luo S L.Beiji ng:

Beiji ng Instit u te ofTechnol ogy Press,2005

(P i card R W.情感计算.罗森林译.北京:北京理工大学出版社,2005)

[4]A r k i n R C,Fu jitaM,Takag iT,et a.l E t h ol og i ca lm odeli ng and

arch itect u re for an entertai nm ent rob ot M P rocee d i ng s o f t h e2001 IEEE In te rnationa lC onfere nce on R obotics and Auto m ation.Seou,l

2001:454

[5]Park G Y,Lee S I,Kw on W Y.Neu rocogn iti ve affective syste m

f or an e m otive robot M P rocee d i n

g s of t

h e2006I EEE/RSJ In te rna-

tional Conference on In telli g e n t R obots and Syst e m s.Beiji ng,

2006:2595

[6]Zhong D L,Yong X,C ao C G.Research on e m otion and action

abou t gen erati on of i n t elli gent story.Inf T ec hnol L ett,2006,4

(5):16

(张冬蕾,雍兮,曹存根.智能故事生成中的行为和情绪研究.信息技术快报,2006,4(5):16)

[7]Yang H W,Pan Z G,Li u G D.A co m prehens i ve co m pu tati on al

m odel of e moti on s.J C o mpu t R esD ev,2008,45(4):579

(杨宏伟,潘志庚,刘更代.一种综合可计算情感建模方法.计算机研究与发展,2008,45(4):579)

[8]M arpaung A H,L i settiC L.M u ltilevel e m oti on m od eli ng for au-

tono m ou s agen ts M Procee d ing s AAA I FSS p04,F all Symposium on

t h e In tersection of C ogniti ve S cie nce and Robotics:Fro m In terfaces to In telli g e nce.W as h i ngton D C,2004:1542

[9]Zhou W D,C oggi ns R.C o m pu tati on alm odels of t he a m ygdal a and

the orb it ofrontal cortex:A h i erarch ical rei n f orce m ent l earn i ng sys-te m f or robotic con trol M AI2002:Advances i n A rti fici a l In telli-gence.H ei del b erg,2002:419

[10]W ang P L,W u X H,Xu L.I m ple m entati on of an artifi cial e m o-

ti on m odel and behav i or strateg i es based on fi n ite au t o m ata.M i-

croelectron C o mpu t,2009,26(2):36

(王培良,吴小红,许力.一种人工情感及行为策略模型的有

限自动机实现.微电子学与计算机,2009,26(2):36) [11]M andryk R L,A t k i n s M S.A f u zz y physiol og i cal approach f or

con ti nuous l y m odeli ng e m oti on du ri ng i nteracti on w it h p lay tech-

nol ogi es.In t JH um Compu t S t ud,2007,65:329

[12]M eng Z L.Emotiona l P s ycholo gy.B eiji ng:Pek i ng Un i versity

P ress,2005

(孟昭兰.情绪心理学.北京:北京大学出版社,2005) [13]Zhu Z Y,Zhu Q S.M atri x m odelm et hod f or research es on fi n ite

au t o m ata.Co mpu t Sc i,2001,28(4):46

(朱征宇,朱庆生.有限状态机的矩阵模型描述.计算机科学,

2001,28(4):46)

# 1242 #

模糊数学评价方法教程

模糊综合评价法(见课件) 模糊数学是从量的角度研究和处理模糊现象的科学.这里模糊性是指客观事物的差异在中介过渡时所呈现的“亦此亦比”性.比如用某种方法治疗某病的疗效“显效”与“好转”、某医院管理工作“达标”与“基本达标”、某篇学术论文水平“很高”与“较高”等等.从一个等级到另一个等级间没有一个明确的分界,中间经历了一个从量变到质变的连续过渡过程,这个现象叫中介过渡.由这种中介过渡引起的划分上的“亦此亦比”性就是模糊性. 一、单因素模糊综合评价的步骤 1. 根据评价目的确定评价指标(evaluation indicator )集 合 },,,{21m u u u U = 例如评价某项科研成果,评价指标集合为U ={学术水平,社会效益,经济效益}. 2. 给出评价等级(evaluation grade )集合 },,,{21n v v v V = 如评价等级集合为V ={很好,好,一般,差}. 3. 确定各评价指标的权重(weight ) },,,{21m W μμμ = 权重反映各评价指标在综合评价中的重要性程度,且∑=1i μ. 例如假设评价科研成果,评价指标集合U ={学术水平,社会效益,

经济效益}其各因素权重设为}4.0,3.0,3.0{=W . 4.确定评价矩阵R 请该领域专家若干位,分别对此项成果每一因素进行单因素评价(one-way evaluation ),例如对学术水平,有50%的专家认为“很好”,30%的专家认为“好”,20%的专家认为“一般”,由此得出学术水平的单因素评价结果为()0,2.0,3.0,5.01=R 同样如果社会效益,经济效益两项单因素评价结果分别为 ()1.0,2.0,4.0,3.02=R ()2.0,3.0,2.0,2 .03=R 那么该项成果的评价矩阵为 ???? ? ??=????? ??=2.03.02.02.01.02.04.03.002.03.05.0321R R R R 5.进行综合评价 通过权系数矩阵W 与评价矩阵R 的模糊变换得到模糊评判集S : 设m j W ?=1)(μ,n m ji r R ?=)(,那么 ()()n mn m m n n m s s s r r r r r r r r r R W S ,,,,,,212 1 22221 11211 21 =???? ?? ? ??==μμμ 其中“ ”为模糊合成算子. 进行模糊变换时要选择适宜的模糊合成算子,模糊合成算子通 常有四种: (1) ),(∨∧M 算子

北京师范大学模糊系统与人工智能方向简介(讨论稿)

北京师范大学模糊系统与人工智能方向简介(讨论稿) 北京师范大学模糊数学与人工智能方向是国内最早从事模糊数学及其应用研究的单位之一,可以说是国内模糊数学研究的重要基地。早在1979年北师大数学科学学院开始就开始招收模糊数学研究方向的硕士研究生,是我国最早从事模糊数学研究的硕士学科点。1986年,汪培庄先生牵头,以模糊数学为主申请下来应用数学博士点,这也是我国最早从事模糊数学研究的博士学科点。迄今为止,北师大数学科学学院已培养几十名硕士和博士研究生,并且在各种工作岗位已成为骨干力量。 北京师范大学模糊系统与模糊信息研究中心暨复杂系统实时智能控制实验室创建于2000年。现任中心主任为国家级有突出贡献中青年专家李洪兴教授。目前,实验室拥有博导教授2人,副教授3人,博士后2人,在读博士生15人(其中具有教授职称者2人,副教授4人),硕士研究生19人。该研究中心现有一个应用数学的博士学位授权点,应用数学和控制理论与控制工程两个硕士学位授权点。 1982年至今,北京师范大学模糊数学与人工智能研究群体先后提出并研究了因素空间、真值流推理、随机集落影、模糊计算机、模糊摄动理论、幂结构提升理论、基于变权综合的智能信息处理、模糊系统的插值表示、变论域智能计算、复杂系统建模以及知识表示的数学理论模糊计算机等一些先进的理论方法。近期的主要研究成果包括: 1)给出因素空间理论,建立知识表示的数学框架,并系统研究概念的内涵与外延表示问题,为专家经验、领域知识在软件系统中的表示与计算提供了理论基础; 2)揭示了模糊逻辑系统的数学本质,给出常用模糊逻辑系统地插值表示,并系统研究了模糊逻辑系统的构造、分析以及泛逼近性等理论问题; 3)提出变论域自适应智能信息处理理论,设计了基于变论域思想的一类高精度模糊控制器,在世界上第一个实现了四级倒立摆控制实物系统,经教育部组织专家鉴定,确认这是一项原创性的具有国际领先水平的重大科研成果; 4)引入变权的概念,并给出基于自适应变权理论的智能信息处理方法; 5)提出模糊计算机的概念,并研究了模糊计算机设计的若干理论问题; 6)给出数学神经网络理论,从数学上揭示了模糊逻辑系统与人工神经网络之间的关系,首次定义了“输出返回”的模糊逻辑系统并证明了它与反馈式神经

模糊数学综合评价模型

三种电视机模糊综合评价模型 摘要 本文通过顾客对三种电视机的图像,价格,音质三种评价因素建立的模糊综合评价的模型,此模型首先设定了评价指标因素集U 和评语集V ,从而建立了评价矩阵R , 然后根据评价指标权重集A 最后分别运用了四个算子,进而采用了加权平均原则的方法建立了如下四个模型,最终得出 模型一:运用① 算子和加权平均原则方法对三种电视机建立模糊综合评价模型,得出11 2.73B =,12 2.62B =,13 2.46B =,即第一种电视机最受顾客青睐 模型二:运用② 和加权平均原则方法对三种电视机建立模糊综合评价模型,得出21 2.72B =,22 2.75B =,23 2.51B =,即第二种电视机最受顾客青睐 模型三:运用③ 算子和加权平均原则方法对三种电视机建立模糊综合评价模型,得出31 2.71B =,32 2.58B =,3 3 2.32B =,即第一种电视机最受顾客青睐 模型四:运用④ 算子和最大隶属原则方法对三种电视机建立模糊 综合评价模型,得出41 2.75B =,4 2 2.71B =,43 2.39B =,即顾客对第二种电视机做出综合评价较好。 综合四个模型这三种电视机的综合评价在较好和可以之间并且在这三种电视机中第一种电视机最受顾客青睐,第二种次之,第三种最不受欢迎。 关键词:综合评价 模糊数学 加权平均原则 算子 ),(∨∧M (,)M ?∨算子),(⊕∧M ),(⊕?M

一、问题重述 在对电视机质量的评价中,其涉及的因素很多,一般说来基本要考虑图像,声音,价格等等,而每一类因素的质量水平受许多因素的影响。这些评价因素往往具有模糊性。评价的结果本身也带有模糊性。如何合理地评价电视机的质量呢? 假设对电视机的评价因素U={图像u1,声音u2,价格u3},评语集合V={很好v1,较好v2,可以v3,不好v4},现请专家10人对三种电视机进行评价,结果如下: 设某类顾客主要关心图像、价格,对音质不太关心,即 试对以上三种电视机进行模糊综合评价。 二、问题分析 根据对题目的理解,我们知道问题的求解是根据10位专家对三种电视机的图像,价格,音质的评价结果,而要求我们对这三种电视机进行模糊综合评价,所以我采用四种算子方法。 即① 算子 评语 因素 (1)第一类电视机 (2)第二类电视机 (3)第三类电视机 v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4 u1 5 4 1 0 4 3 2 1 1 5 2 2 u2 4 3 2 1 5 1 2 2 4 3 1 2 u3 0 1 3 6 2 1 3 4 2 4 4 (0.5,0.2,0.3) A =(){}n k r r s jk j m j jk j m j k ,,2,1, ,min max )(11 =∧=≤≤=∨μμ=),(∨∧M

模糊数学模型

第六部分模糊数学 第十五章模糊数学模型 模糊数学的起源 15.1.1数学是精确的 数学是关于物质世界的空间形式和数量关系的科学。在二十世纪三十年代,数学的发展被划分成三个阶段: 第一阶段:数学是数,量,几何图形的科学; 第二阶段:数学是研究量的变化和几何图形变换的科学; 第三阶段:数学是作为关于现实世界一切普遍性的数量形式和空间形式的科学。 近代科学技术的发展同精确数学方法的发展和应用是密切相关的,牛顿力学为其经典。到了19世纪,天文,力学,屋里,化学等理论自然科学先后在不同程度上走向定量化,数学化,形成一个被称为“精密科学”的学科群。大量使用数学方法,反过来又推动了数学的巨大进步。19世纪是精确科学方法飞速发展的时期。 20世纪以来,精确数学及其应用以更大的规模和速度发展着。相对论,量子力学,分子生物学,原子能,电子计算机和空间技术等邻域的创建和开发为精确方法奏响了一曲又一曲的凯歌,但也进一步助长了对精确方法的盲目崇拜。人们愈加相信,一切都应当精确化,只有现在还没有实现精确化的问题,没有不需要或不可能精确化的问题。 客观而言,精益求精是科学工作者的美德,是评价研究工作科学性的一条准则,但是,这种对精确方法的崇拜,似乎被当作一种不言而喻的真理,在很长的历史时期中未受到人们的怀疑。科学方法论中的这种绝对化的观点,也反映到哲学中。例如,一些分析哲学家提倡把一切概念,包括日常用语都加以精确化,这种现象的发生是值得深思的。但是,实践是检验真理的唯一标准,任何理论上的片面性和绝对化,迟早会在实践中暴露其错误而得到纠正。 15.1.2精确数学的局限性 人脑的思维活动一般说来具有两方面的特征: (1)直觉性跟严格性的有机结合,可以进行整体性和平行性的思考,例如联想过程,这些是具有模糊性的; (2)逻辑推理过程,它具有逻辑和顺序的特点,因而又是形式化的。 关于形式化思维,可以用数理逻辑的方法把它数学化,这样就能把它变成一系列的数学符号,可以用计算机去解。最突出的成果就是1976年美国人阿贝尔和哈肯利用电子计算机解决有名的数学难题——四色问题,这一难题的解决使不少人惊叹:这简直是电脑对人脑的嘲弄! 真是这样吗? 从另一个角度来看,譬如,看电视的时候,要把图像调得“更清楚一些”,或者,说一个人比另一个人更好看一些或更丑一些,这对于人来说是件容易的事,但是对于电脑来说,却是个大难题。从这个角度来说,电脑的“智力”还不如一个小孩子。 为什么会出现这样的情况呢? 因为用传统数学的方法处理模糊食物,首先要求将对象简化,舍弃对象固有的模糊性,在本来没有明确界限的对象之间认为地挂定界限,变模糊数量关系为清晰数量关系。例:西

人工智能,机器学习和深度学习之间的差异是什么

人工智能,机器学习和深度学习之间的差异是什么? 人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。 人工智能+区块链的发展趋势及应用调研报告 如果你在科技领域,你经常会听到人工智能,机器学习,甚至是深度学习。怎样才可以在正确的时间正确的使用这些词?他们都是一样的意思吗?然而更多时候,人们总是混淆的使用它们。 人工智能,机器学习和深度学习都是属于一个领域的一个子集。但是人工智能是机器学习的首要范畴。机器学习是深度学习的首要范畴。 深度学习是机器学习的一个子集,机器学习是人工智能的一个子集 这个领域的兴起应该归功于深度学习。人工智能和机器学习这个领域近年来一直在解决一系列有趣的问题,比如从自动化的杂货店购买到自动驾驶汽车。

人工智能: 人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。 尼尔逊教授对人工智能下了这样一个定义:“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而另一个美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”这些说法反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。 人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心

模糊数学基础

第六章模糊数学基础6.1概述 6.1.1传统数学与模糊数学 6.1.2不相容原理 6.2 模糊集合与隶属度函数 6.2.1 模糊集合及其运算 6.2.2 隶属度函数 6.3 模糊逻辑与模糊推理 6.3.1模糊逻辑 6.3.2模糊语言 6.3.3 模糊推理

第六章 模糊数学基础 6.1 概述 6.1.1 传统数学与模糊数学 6.1.2 不相容原理 1965年,美国自动化控制专家扎德(L. A. Zadeh )教授首先提出用隶属度函数 (membership function)来描述模糊概念,创立了模糊集合论,为模糊数学奠定了基础。 不相容原理:“随着系统复杂性的增加,我们对其特性作出精确而有意义的描述的能力会随之降低,直到达到一个阈值,一旦超过它,精确和有意义二者将会相互排斥”。这就是说,事物越复杂,人们对它的认识也就越模糊,也就越需要模糊数学。不相容原理深刻的阐明了模糊数学产生和发展的必然性,也为三十多年来模糊数学的发展历史所证实。 6.2 模糊集合与隶属度函数 6.2.1 模糊集合及其运算 一、模糊集合(Fuzzy Sets )的定义 传统集合中的元素是有精确特性的对象,称之为普通集合。例如,“8到12之间的实数”是一个精确集合C ,C ={实数r |8≤r ≤12},用特征函数μC (r )表示其成员,如图6.1(a)所示。 ??? ? ?≤≤=其它 , , 012 81)(r r C μ 在模糊论域上的元素符合程度不是绝对的0或1,而是介于0和1之间的一个实数。例如,“接近10的实数”是一个模糊集合F ={r |接近10的实数},用“隶属度(Membership)” μF (r )作为特征函数来描述元素属于集合的程度。 1 812 1 107.2911 0.750.275 12.8 r r μC (r ) μF (r ) (a) (b) 图6.1 普通集合与模糊集合的对比

人工智能与机器人

江西蓝天学院 人工智能与机器人 系别:机械系 班级:09热动本(1)班 姓名:艾立强 学号:109202020001 人工智能 最近看了电影《终结者》,对其中的科幻生活有了憧憬,然而现在的世界是否会如电影中一样呢?人工智能的神话是否会发生在当前社会中的呢? 人类正向信息化的时代迈进,信息化是当前时代的主旋律。信息抽象结晶为知识,知识构成智能的基础。因此,信息化到知识化再到智能化,必将成为人类社会发展的趋势。人工智能已经并且广泛而有深入的结合到科学技术的各门学科和社会的各个领域中,它的概念,方法和技术正在各行各业广泛渗透。 人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。

当前人工智能的发展方向可以分为两种:一种是由知识工程师将 有关的知识归纳、整理,并且表示为计算机可以接受、处理的方式输入计算机。另一种是使计算机本身有获得知识的能力,它可以学习人类已有的知识,并且在实践过程中不总结、完善。 人工智能并不像很多人想象的是几个科学家的工作,而是随着社会各学科发展而默默发展的。在智能领域里,最关键的问题之一,就是机器学习的问题。一旦机器有了学习的能力,谁还(敢)预测未来呢?人类的社会发展其实也是在不断积累中发展而来,人的智能也就是事实依据库+推理机制所构成了的。当所有领域的定律都能用特定的公式推理出来,《终结者》的实现就要到来了。 研究人工智能的目的,一方面是要创造出具有智能的机器,另一方面是要弄清人类智能的本质,因此,人工智能既属于工程的范畴,又属于科学的范畴。通过研究和开发人工智能,可以辅助,部分替代甚至拓宽人类的智能,使计算机更好的造福人类。 目前,人工智能的研究是与具体领域相结合进行的。基本上有如下领域; 一、专家系统 专家系统是依靠人类专家已有的知识建立起来的知识系统,目前专家系统是人工智能研究中开展较早、最活跃、成效最多的领域,广泛应用于医疗诊断、地质勘探、石油化工、军事、文化教育等各方面。它是在特定的领域内具有相应的知识和经验的程序系统,它应用人工智能技术、模拟人类专家解决问题时的思维过程,来求解领域内的各种问题,达到或接近专家的水平。 二、机器学习 机器学习的研究,主要在以下三个方面进行:一是研究人类学习的机理、人脑思维的过程;和机器学习的方法;以及建立针对具体任务的学习系统。

Fuzzy模糊数学-共5节-电子书---讲义

模糊数学 第1节模糊聚类分析 第2节模糊模式识别 第3节模糊相似优先比方法 第4节模糊综合评判 第5节模糊关系方程求解 在自然科学或社会科学研究中,存在着许多定义不很严格或者说具有模糊性的概念。这里所谓的模糊性,主要是指客观事物的差异在中间过渡中的不分明性,如某一生态条件对某种害虫、某种作物的存活或适应性可以评价为“有利、比较有利、不那么有利、不利”;灾害性霜冻气候对农业产量的影响程度为“较重、严重、很严重”,等等。这些通常是本来就属于模糊的概念,为处理分析这些“模糊”概念的数据,便产生了模糊集合论。 根据集合论的要求,一个对象对应于一个集合,要么属于,要么不属于,二者必居其一,且仅居其一。这样的集合论本身并无法处理具体的模糊概念。为处理这些模糊概念而进行的种种努力,催生了模糊数学。模糊数学的理论基础是模糊集。模糊集的理论是1965年美国自动控制专家查德(L. A. Zadeh)教授首先提出来的,近10多年来发展很快。 模糊集合论的提出虽然较晚,但目前在各个领域的应用十分广泛。实践证明,模糊数学在农业中主要用于病虫测报、种植区划、品种选育等方面,在图像识别、天气预报、地质地震、交通运输、医疗诊断、信息控制、人工智能等诸多领域的应用也已初见成效。从该学科的发展趋势来看,它具有极其强大的生命力和渗透力。 在侧重于应用的模糊数学分析中,经常应用到聚类分析、模式识别和综合评判等方法。在DPS系统中,我们将模糊数学的分析方法与一般常规统计方法区别开来,列专章介绍其分析原理及系统设计的有关功能模块程序的操作要领,供用户参考和使用。 第1节模糊聚类分析 1. 模糊集的概念 对于一个普通的集合A,空间中任一元素x,要么x∈A,要么x?A,二者必居其一。这一特征可用一个函数表示为: A x x A x A ()= ∈ ?? ? ? 1 A(x)即为集合A的特征函数。将特征函数推广到模糊集,在普通集合中只取0、1两值推广到模糊集中为[0, 1]区间。 定义1 设X为全域,若A为X上取值[0, 1]的一个函数,则称A为模糊集。 如给5个同学的性格稳重程度打分,按百分制给分,再除以100,这样给定了一个从域X={x1 , x2 , x3 , x4, x5}到[0, 1]闭区间的映射。 x1:85分,即A(x1)=0.85 x2:75分,A(x2)=0.75 x3:98分,A(x3)=0.98 x4:30分,A(x4)=0.30 x5:60分,A(x5)=0.60

人工智能的认识-(1)讲课教案

1谈谈你对人工智能的看法?人工智能是21世纪世界三大尖端技术之一,它在社会生产生活中起到了无可替代的巨大作用,它研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统。作为计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,它是多种学科互相渗透的一门综合性新学科,是研究如何制造出人造的智能机器或智能系统,来模拟人类智能活动的能力,用以延伸人们智能的科学。 2)在我看来,人工智能可以分成两个部分来理解,即“人工”和“智能”。人工,自然就是一些人力所能做到的事情,由人去完成活动。智能,应该理解为智慧和能力。既然走智能平台之路,就必须做到两点:一、通过向开发者开放免费的API 接口,方便导入后台数据库;二、平台具备自我学习能力,不断完善信息和丰富数据库。3)人工智能的本质就是机器自学习的过程。机器学习包括两大模块:一是数据来源,即大数据;二是数据处理方式,即机器学习算法,机器在自学习过程中两大模块同时运行。深度学习是机器学习研究中的全新领域,主要为建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据。深度学习能增强机器学习的能力,整个机理得到大幅改进。4)但受限于技术瓶颈,目前人工智能远未到达成熟的地步。人工智能一旦做成,将对现有移动互联网产品商业模式产生巨大的颠覆,甚至很多移动互联网、互联网产品将不复存在。它的到来,将改变现有的购物、聊天和通信方式,甚至对社交产生冲击。5)基于大数据的分析和处理的人工智能能实现精准推荐。但用它来模拟人工存在较大瓶颈,即模拟不出情感、道德等人类特有特征,最根本的解决办法是基于生物计算机去变革,这是人工智能演化必经的基础性变革。以上就是我对人工智能的看法。 2谈谈你对智能机器人的看法?智能机器人是当前人工智能领域一个十分重要的应用领域和热门的研究方向,它直接面向应用,社会效益强,发展非常迅速。它的研制几乎需要所有的人工智能技术,而且还涉及其他许多科学技术部门和领域。作为人工智能的理想研究平台,它是一个集感知、思维、效应等多方面全面模拟人的机器系统,但其外形不一定像人。它是人工智能技术的综合试验场。可以全面地考察人工智能各个领域的技术。其能力和水平已经成为人工智能技术水平甚至人类科学技术综合水平的一个表现和体现,研究它们相互之间的关系还可以在有害环境中代替人从事危险工作、上天下海、战场作业等方面大显身手。2)智能机器人作为第三代机器人,具有感知、识别、推理、规划和学习等智能机制, 其中,感知本身, 就是人类和动物所具有的低级智能。智能机器人可以把感知和行动智能化结合起来。它的智能分为两个层次:第一即具有感觉、识别、理解和判断功能;第二即具有总结经验和学习的功能。3)智能机器人技术将会沿着自主性、智能通信和适应性三个方向发展。移动功能是智能机器人与工业机器人显著的区别之一。智能机器人的生命在于创新, 开展仿生机构的研究, 可以从生体机构、移动模式、运动机理、信息处理与综合, 以及感知和认知等方面多层次得到启发。智能机器人的发展必将伴随着智能化算法的不断涌现,模糊控制、神经网络、遗传算法以及它们的相互结合也是智能机器人研究热点之一。由于智能机器人工作环境复杂度和任务的加重, 人类对其要求不再局限于单台智能机器人, 在动态环境中多智能机器人的合作与单个机器人路径规划要很好地统一,才能更好实现智能化。由于智能机器人的造价太高,所以至今无法普及。不过,总有一天,智能机器人将会伴着我们的生活,为我们的生活带来方便。 3、谈谈你对专家系统的看法?专家系统是人工智能中最重要的也是最活跃的一个应用领域,它实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。ES的理论和技术不断发展,应用渗透到几乎各个领域,包括军事、法律、商业、计算机设计和制造等众多领域,开发的专家系统,其中不少在功能上已达到,甚至超过同领

中小学人工智能课程分析

中小学人工智能课程定位分析 ( 原文刊于《中国现代教育装备》2017 年10 月基教版) 艾伦 摘要从人工智能的定义出发,指出人工智能科学与人工智能技术的区别,分析人工智能 技术与信息技术的关系,并以此为依据讨论中小学人工智能课程的定位、课程标准的制订以及 课程内容的设置。 关键词人工智能科学;人工智能技术;信息技术;课程设置;课程标准 2017 年7 月20 日,国务院颁布了《新一代人工智能发展规划(国发〔2017〕35 号)》,该规划指出人工智能已成为国际竞争的新焦点,明确规定要实施全民智能教育项目,并在中小学设置人工智能相关课程,逐步推广编程教育。就像我国的信息技术迅速走在世界前列而 依赖社会需求与应用的同步发展一样,人工智能事业的发展也需要具有一个牢固的社会基础。 所以,中小学开设人工智能课程就是为了这一目的以使得全民族的应用水平普遍提高、社会基础逐步牢固的英明举措。该规划将中小学开设人工智能相关课程的指示放在了“五、保障措施”的“(六)广泛开展人工智能科普活动”部分,说明了它作为社会基础而起到我国人 工智能事业发展保障措施的重要作用。于是,在中小学开设人工智能课程的必要性、可行性以及操作性等问题摆在了人们的面前,而针对中小学课时资源的紧缺状况,如何科学且有效 地设置人工智能课程教学是首先需要解决的难题。 一、人工智能 要讨论中小学人工智能课程如何定位的问题,首先应该了解人工智能是什么,以及人工智能在课程中意味着什么。为此,我们对人工智能的定义以及研究与应用领域做一些介绍和 分析。 1 人工智能的定义 作为一个研究领域,人工智能(Artificial Intelligence ,简称AI )出现于上个世纪的1956 年。此后人工智能科学与技术不断发展,人们对它的研究逐渐深入,并赋予了它一些定义。 这些定义大致可以分为两类,一类是从学科角度出发对人工智能进行概念界定,而另一类, 更多的则是从功能角度出发对其概念进行界定。 (1)从学科角度出发对人工智能的部分定义开列如下: ①人工智能是智能科学(Artificial Science )中涉及研究、设计和应用智能机器和智能系 统的一个分支,而智能科学是一门与计算机科学并行的学科。 ②人工智能是计算机科学中与智能行为的自动化有关的一个分支(Luger & Stubblefield, 1997)。 (2)从功能角度出发对人工智能做出的定义较多,部分开列如下[2]: ①人工智能是指智能机器所执行的与人类智能有关的功能,这些智能功能包括学习、感知、思考、理解、识别、规划、推理、决策、抽象、学习、创造和问题求解等,又称机器智 能(Machine Intelligence )。(笔者注:原文中出现了两次“学习”,应该去掉重复的一个) ②人工智能是一种使计算机能够思维,使机器具有智力的激动人心新尝试

用模糊数学对学生成绩进行评估

用模糊数学班上的学生进行评估 姓名:李万杰 学号:201107010113 2014年6月27日

模糊数学综合评判法,作为一种模糊数学方法,被用于各个领域,取得了很好的效果。本文将用这种方法分析班上的学生以成绩分类。这种方法能有效处理学生平时成绩中的一些模糊性,同时,也使考核的成绩更加合理与公正。 一、模糊数学的基本概念 长期以来,人们对干客观事物的认识习惯于追求其精确性或清晰性。但人脑作为认识和改造客观世界的主体,对自然现象的反映往往都是模糊的。模糊集合是对这些模糊现象或模糊概念的刻画。利用模糊数学理论,建立模型,根据模糊数学最大隶属度原则,使学生以成绩分类更加合理化。综合评判就是对受到多个因素制约的事物或对象作出一个总的评价,这是在日常生活和科研工作中经常遇到的问题,由于从多方面对大学生综合素质进行评价难免带有模糊性和主观性,采用模糊数学的方法进行综合评价将使结果尽量客观从而取得更好的实际效果。 二、评定学生平时成绩的依据 通过长期的教学实践,对学生平时成绩的评定主要依据四个方面:(1)出勤情况,以学生到课情况作为平时成绩给定的依据,这一评价制度的具体要求是通过上课点名的办法来找出缺课的学生。(2)课堂表现,包括课堂笔记记录情况、回答问题的积极主动性、课堂纪律等。根据“上课提问情况”来评定平时成绩是教师经常使用的方法。这种方式也存在不足:假设每一个学生在教师提问 后都举手抢答,教师应该将首答权交给谁呢?这一模式的公正程度取决于教师有没有足够的时间允许学生都回答课堂上的提问。(3)作业情况,检查平时作业是教师经常使用的考核学生平时学习情况的重要方法。然而实践表明,这个方法也存在不足。由于教师无法了解学生的平时作业究竟是不是自己独立完成的,在假定“学生都能按时完成作业”的前提下,教师只能根据作业的工整情况或对错状况来判定学生的平时成绩。教师经常遇到的问题是:有时抄袭作业的学生,作业的卷面反而要比自己独立完成的学生要工整些;或者由于参考了一些同学的作业,其正确率反而比独立完成的同学高一些。(4)平时测验情况。对上述四个方面综合考虑,把学生平时成绩评定分为四级:优、良、中、差。在上述评定学生平时成绩的主要依据的因素中,多数因素很难区分出较严格的数值界限,而且有一定的相关性和很大的“模糊性”。对这些具有“模糊性”的因素进行综合评定,并以此来确定学生平时成绩是很困难的。采用模糊综合评判法来考核学生的平时成绩,在促进学生学习积极性方面,效果是明显的,同时也使考核的成绩更加合理、公正。 三、模糊数学综合评判法 所谓评判,就是按给定的条件对事物的优劣、好坏进行评比、判别;综合的意思就是指评判条件包含多个因素或多个指标。因此,综合评判就是要对受多个因素影响的事物作出全面评价。综合评判的方法有许多种,常用的有两种: (一)评总分法。即根据评判对象列出评价项目,对每个项目定出评价的等级,并用分数表示,以决定方案的优劣。 (二)加权评分法。这种方法主要考虑诸因素(或诸指标)在评价中所处的地位或所起的作用不尽相同,因此不能一律平等地对待诸因素(或诸指标)。于是,就引进了权重的概念,它体现了诸因素(或诸指标)在评价中的不同地位或不同作

人工智能简介及发展趋势

计算机科学与技术概论结业作业 人工智能技术简介及发展趋势 院系:信息科学与技术学院计算机科学与技术系 姓名:尹颜朋 学号:2011508009

前言 人工智能(Artificial Intelligence), 英文缩写为 AI, 是一门综合了计算机科学、生理学、哲学的交叉学科。人工智能的研究课题涵盖面很广,从机器视觉到专家系统,包括了许多不同的领域。这其中共同的基本特点是让机器学会“思考” 。为了区分机器是否会“思考”(thinking),有必要给出“智能”(intelligence)的定义。究竟“会思考”到什么程度才叫智能?比方说,解决复杂的问题,还是能够进行概括和发现关联? 还有什么是“知觉”(perception),什么是“理解”(comprehension)等等?对学习过程、语言和感官知觉的研究为科学家构建智能机器提供了帮助。现在,人工智能专家们面临的最大挑战之一是如何构造一个系统,可以模仿由上百亿个神经元组成的人脑的行为, 去思考宇宙中最复杂的问题。或许衡量机器智能程度的最好的标准是英国计算机科学家阿伦·图灵的试验。他认为,如果一台计算机能骗过人,使人相信它是人而不是机器,那么它就应当被称作有智能。 人工智能从诞生发展到今天经历了一条漫长的路,许多科研人员为此而不懈努力。人工智能的开始可以追溯到电子学出现以前。象布尔和其他一些哲学家和数学家建立的理论原则后来成为人工智能逻辑学的基础。而人工智能真正引起研究者的兴趣则是1943年计算机发明以后的事。技术的发展最终使得人们可以仿真人类的智能行为,至少看起来不太遥远。接下来的四十年里,尽管碰到许多阻碍,人工智能仍然从最初只有十几个研究者成长到现在数以千计的工程师和专家在研究;从一开始只有一些下棋的小程序到现在的用于疾病诊断的专家系统,人工智能的发展有目共睹。 人工智能始终处于计算机发展的最前沿。高级计算机语言、计算机界面及文字处理器的存在或多或少都得归功于人工智能的研究。人工智能研究带来的理论和洞察力指引了计算技术发展的未来方向。现有的人工智能产品相对于即将到来的人工智能应用可以说微不足道,但是它们预示着人工智能的未来。对人工智能更高层次的需求已经并会继续影响我们的工作、学习和生活。 第一章人工智能的产生 人工智能, 英文单词 artilect,来源于雨果·德·加里斯的著作 . “人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了 众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的,现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确,因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”, 可见复杂工作的定义是随着时代的发具有人工智能的机器人展和技术的进步而变化的, 人工智能这门科学的具体目标也自然随着 时代的变化而发展。它一方面不断获得新的进展,一方面又转向更有意义、更加困难的目标。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机, 人工智能的发展历史是和计算机科学技术的发展史联系在一起的。除了计算机科学以外, 人

人工智能教学与计算思维培养

人工智能教学与计算思维培养 摘要:计算机专业教育要选择适当的知识为载体,来进行能力培养和素质教育。首先分析人工智能的基本教学内容和计算思维能力间的联系,然后给出了人工智能教学中计算思维能力的培养方法,并进行了总结。 关键词:人工智能;计算思维;创新思维 教育理应摆脱单一的知识和技能传授功能,着重唤醒学生自身的潜能,培养其自我性,主动、抽象能力和理解能力。从计算机专业教育的角度看,就是要处理好专业知识、能力和素质间的关系。知识是基础和载体,是表现形式。能力是技能化的知识,是知识的综合体现,它把知识运用的综合性、灵活性和探索性作为自己的重要内容。素质是知识和能力的升华,素质教育就是在知识和能力的基础上全面提高学生的基本素质,尊重其主体作用和主动精神,开发其潜能,进而培养其健全的人格[1]1。 在人工智能的教学过程中,将一般的课本知识和内容传授给学生的同时,还要挖掘深层次的内容,传授典型的问题求解思路和方法,重视科学的世界观和方法论。这样的教育过程将知识、能力和素质贯通,以人工智能的具体知识为载体,进行专业能力培养和专业素质教育,并强调创新意识的建立和

培养。 笔者首先概述计算思维的内涵,然后分析人工智能课程内容与计算思维间的联系,最后论述如何通过人工智能的知识传授培养学生的计算思维能力,进而培养学生的专业素质和创新能力。 1计算思维 计算思维(Computational Thinking)于2006年由美国卡内基•梅隆大学的周以真(J.M. Wing)教授提出[2],其定义为:运用计算机科学的基础概念(即思想和方法)去求解问题,设计系统和理解人类行为。它的特征可描述为:是概念化而不是程序化;是根本的而不是刻板的技能;是人的而不是计算机的思维方式;是数学和工程思维的互补与融合;是思想而不是人造物;是面向所有的人、所有的地方。计算思维的本质是抽象和自动化。抽象体现在完全使用符号系统甚至形式化语言;自动化体现在算法实现最终是机械地按步骤自动执行。计算思维是一种形式规整的、问题求解的和人机共存的思维。典型的计算思维包括一系列广泛的计算机科学的思维方法:递归、抽象和分解、保护、冗余、容错、纠错和恢复,利用启发式推理来寻求解答,在不确定情况下的规划、学习和调度等。 计算思维的概念一经提出,就引起了国内外很多研究者

预测模型可靠性的模糊数学评价方法

收稿日期:2003-11-10 作者简介:许康(1969-),男(汉族),江苏宜兴人,讲师,博士研究生,从事油气储运与热能工程方面的教学与科研工作。 文章编号:1000-5870(2004)04-0102-03 预测模型可靠性的模糊数学评价方法 许 康,张劲军,陈 俊,李鸿英 (石油大学石油天然气工程学院,北京102249) 摘要:预测模型的可靠程度是通过预测结果中分布规律的可信度体现出来的。针对常见的预测模型可靠性评价中存在的问题,将预测模型预测结果的可信概率定义为预测模型的可靠度,提出了一种评价预测模型的新方法。在新方法中,运用模糊数学理论对预测结果的可信程度进行了评价,建立了预测结果可信度与预测结果相对误差绝对值之间的隶属函数关系,并将模糊数学与可靠性理论相结合,给出了求解预测模型可靠度的计算公式。以含蜡原油粘温关系模型为例,对新方法的评价过程进行了验证。结果表明,对同一种油样采用不同的隶属函数,或对不同油样采用同一个隶属函数,所得预测模型的可靠度均不相同,这说明该方法具有通用性。关键词:含蜡原油;粘温关系;预测模型;可靠度;评价方法;模糊数学;隶属函数中图分类号:O 159 文献标识码:A A new assessment method for reliability of prediction model with fuzzy mathematics XU Kang,ZHANG Jin -jun,CH EN Jun,LI Hong -ying (College of Petr oleum Engineer ing in the University of Petroleum ,China,Beij ing 102249,China) Abstract :T he distribution of the authentic forecast results can embo dy the fiduciar y level o f the prediction model.T he probability o f the authentic for ecast results obtained by t he prediction model w as defined as the fiduciary lev el o f prediction model.A new method for assessment of t he fiduciary level of prediction model was proposed.In or der to assess the fiduciary lev el of the for ecast results,a membership function for describing the relationship betw een the fiduciary lev el and absolute value of relative err or of fo recast results was established on the theory of fuzzy mathematics.By using the fuzzy mat hemat ics and reliabilit y theory ,the formula to calculate the fiduciary level of the pr edict ion model w as provided.A prediction model for waxy o il viscosity was taken as an ex ample to prove the applicability of the assessment method.T he r esults show that the fiduciary levels of prediction model are different fo r the same o il sample with the different membership function or for the different oil sample with the same membership function. Key w ords :w ax y oil;viscosity -temperature r elationship;prediction model;reliabilit y;assessment method;fuzzy mathe -matics;membership function 我国生产的原油80%以上属于含蜡原油,其组成复杂,粘度及粘温关系的变化规律往往不能用纯液体的粘度模型进行描述。原油粘度及粘温关系 直接影响其管道输送的摩阻,是管输工艺设计及运行管理所需的重要基础数据。国内外研究者提出了若干含蜡油粘度模型,这些模型都是基于实验数据统计分析得出的经验模型,对于预测模型预测结果的可靠程度,常见的方法是用大量的预测结果与实测值之间的(绝对或相对)误差的平均值和其中最大 值来说明。但是预测结果是否 准确可信 是一个很模糊的概念,预测结果的 准确可信 与 不可信 之间没有一个明显的界限,对预测结果可信程度的评 价用常规的数学方法不能解决,需要引入模糊数学的理论。对于使用预测模型进行预测时获得可信的预测结果的概率(可靠度),用常用的预测模型的评价方法是无法得出的。因此,笔者根据模糊数学和可靠性理论提出一种评价预测模型可靠性的新方法,介绍新方法的评价过程。 2004年 第28卷 石油大学学报(自然科学版) Vol.28 No.4 第4期 Journal of the U niversity of Petroleum,China Aug.2004

人工智能解读

人工智能解读 人工智能(英语:Artificial Intelligence,缩写为AI)亦称智械、机器智能,指由人制造出来的机器所表现出来的智能。通常人工智能是指通过普通计算机程序来呈现人类智能的技术。该词也指出研究这样的智能系统是否能够实现,以及如何实现。人工智能于一般教材中的定义领域是“智能主体(intelligent agent)的研究与设计”,智能主体指一个可以观察周遭环境并作出行动以达致目标的系统。约翰·麦卡锡于1955年的定义是“制造智能机器的科学与工程”。安德里亚斯·卡普兰(Andreas Kaplan)和迈克尔·海恩莱因(Michael Haenlein)将人工智能定义为“系统正确解释外部数据,从这些数据中学习,并利用这些知识通过灵活适应实现特定目标和任务的能力”。人工智能的研究是高度技术性和专业的,各分支领域都是深入且各不相通的,因而涉及范围极广。 AI的核心问题包括建构能够跟人类似甚至超卓的推理、知识、规划、学习、交流、感知、移物、使用工具和操控机械的能力等。当前有大量的工具应用了人工智能,其中包括搜索和数学优化、逻辑推演。而基于仿生学、认知心理学,以及基于概率论和经济学的算法等等也在逐步探索当中。思维来源于大脑,而思维控制行为,行为需要意志去实现,而思维又是对所有数据采集的整理,相当于数据库,所以人工智能最后会演变为机器替换人类。 2017年12月,人工智能入选“2017年度中国媒体十大流行语”。 人工智能定义: 人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。[1] 关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(CONSCIOUSNESS)、自我(SELF)、思维(MIND)(包括无意识的思维(UNCONSCIOUS_MIND))等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制

相关文档
最新文档